1
|
Aljani B, Lindner A, Weigelt M, Zhao M, Sharma V, Bonifacio E, Jones P, Eugster A. Small RNA-Seq and real time rt-qPCR reveal islet miRNA released under stress conditions. Islets 2024; 16:2392343. [PMID: 39154325 PMCID: PMC11332650 DOI: 10.1080/19382014.2024.2392343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
Replacement of beta cells through transplantation is a potential therapeutic approach for individuals with pancreas removal or poorly controllable type 1 diabetes. However, stress and death of beta cells pose significant challenges. Circulating miRNA has emerged as potential biomarkers reflecting early beta cell stress and death, allowing for timely intervention. The aim of this study was to identify miRNAs as potential biomarkers for beta cell health. Literature review combined with small RNA sequencing was employed to select islet-enriched miRNA. The release of those miRNA was assessed by RT-qPCR in vivo, using a streptozotocin induced diabetes mouse model and in vitro, through mouse and human islets exposed to varying degrees of hypoxic and cytokine stressors. Utilizing the streptozotocin induced model, we identified 18 miRNAs out of 39 candidate islet-enriched miRNA to be released upon islet stress in vivo. In vitro analysis of culture supernatants from cytokine and/or hypoxia stressed islets identified the release of 45 miRNAs from mouse and 8 miRNAs from human islets. Investigation into the biological pathways targeted by the cytokine- and/or hypoxia-induced miRNA suggested the involvement of MAPK and PI3K-Akt signaling pathways in both mouse and human islets. We have identified miRNAs associated with beta cell health and stress. The findings allowed us to propose a panel of 47 islet-related human miRNA that is potentially valuable for application in clinical contexts of beta cell transplantation and presymptomatic early-stage type 1 diabetes.
Collapse
Affiliation(s)
- Bssam Aljani
- Faculty of Medicine, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Annett Lindner
- Faculty of Medicine, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Marc Weigelt
- Faculty of Medicine, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Min Zhao
- German Center for Environmental Health, Institute of Diabetes Research, Helmholtz Munich, Munich, Germany
| | - Virag Sharma
- Faculty of Medicine, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Ezio Bonifacio
- Faculty of Medicine, Center for Regenerative Therapies Dresden, Dresden, Germany
- Faculty of Medicine, German Center for Diabetes Research (DZD), Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Peter Jones
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London, UK
| | - Anne Eugster
- Faculty of Medicine, Center for Regenerative Therapies Dresden, Dresden, Germany
| |
Collapse
|
2
|
Mostafa EA, Ismail NA, El Din Abd El Baky AMN, ElShaer TF, Ashmawy I, Wahby AA, Wahed MMA, Hamdy Abd El Aziz S. MiR-375: it could be a general biomarker of metabolic changes and inflammation in type 1 diabetes patients and their siblings. J Endocrinol Invest 2024:10.1007/s40618-024-02474-4. [PMID: 39453571 DOI: 10.1007/s40618-024-02474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE Type 1 diabetes (T1D) is a chronic autoimmune illness that results in loss of pancreatic beta cells and insulin insufficiency. MicroRNAs (miRNAs) are linked to immune system functions contributing to the pathophysiology of T1D, miRNA-375 is significantly expressed in the human pancreas and its circulatory levels might correspond to beta cell alterations. Pancreatic islet cell antibodies (ICA) and Glutamic acid decarboxylase antibodies (GADA) have roles in autoimmune pathogenesis and are predictive markers of T1D. The aim of this work was to detect serum level changes of miRNA-375, ICA, and GADA in T1D patients, and their siblings compared to healthy controls and correlate them with T1D biochemical parameters. METHODS The study included 66 T1D patients (32 males and 34 females; age range 3-18 years), 22 patients' siblings (13 males and 9 females; age range 4-17 years), and 23 healthy controls (7 males and 16 females; age range 4-17 years). MiRNA-375 levels were measured using quantitative reverse transcription polymerase chain reaction (RT-qPCR), while ICA and GADA levels were measured using enzyme-linked immunosorbent assay (ELISA). Data analysis was done utilizing SPSS-17 software. RESULTS MiR-375 levels were downregulated in T1D patients and further decreased in their siblings when compared to healthy controls. Furthermore, miR-375 exhibited inverse correlations with HbA1c levels but no correlations with Total Insulin Dose, disease duration, or autoantibodies (GADA & ICA). CONCLUSION Our study indicates that miR-375 is significantly downregulated in children with T1D and their siblings, suggesting its potential role as a biomarker for beta-cell function and glycemic control.
Collapse
Affiliation(s)
- Eman A Mostafa
- National Research Center, Department of Pediatrics, El Buhouth St., P. O. 12622, Dokki, Cairo, Egypt.
| | - Nagwa Abdallah Ismail
- National Research Center, Department of Pediatrics, El Buhouth St., P. O. 12622, Dokki, Cairo, Egypt
| | | | - Tarek F ElShaer
- National Research Center, Department of Pediatrics, El Buhouth St., P. O. 12622, Dokki, Cairo, Egypt
| | - Ingy Ashmawy
- National Research Center, Department of Clinical and Chemical Pathology, Cairo, Egypt
| | - Aliaa Ahmed Wahby
- National Research Center, Department of Clinical and Chemical Pathology, Cairo, Egypt
| | - Mai Magdy Abdel Wahed
- National Research Center, Department of Clinical and Chemical Pathology, Cairo, Egypt
| | | |
Collapse
|
3
|
Dekkers MC, Lambooij JM, Pu X, Fagundes RR, Enciso-Martinez A, Kats K, Giepmans BNG, Guigas B, Zaldumbide A. Extracellular vesicles derived from stressed beta cells mediate monocyte activation and contribute to islet inflammation. Front Immunol 2024; 15:1393248. [PMID: 39114661 PMCID: PMC11303142 DOI: 10.3389/fimmu.2024.1393248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Objective Beta cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In recent years, the role played by beta cells in the development of T1D has evolved from passive victims of the immune system to active contributors in their own destruction. We and others have demonstrated that perturbations in the islet microenvironment promote endoplasmic reticulum (ER) stress in beta cells, leading to enhanced immunogenicity. Among the underlying mechanisms, secretion of extracellular vesicles (EVs) by beta cells has been suggested to mediate the crosstalk with the immune cell compartment. Methods To study the role of cellular stress in the early events of T1D development, we generated a novel cellular model for constitutive ER stress by modulating the expression of HSPA5, which encodes BiP/GRP78, in EndoC-βH1 cells. To investigate the role of EVs in the interaction between beta cells and the immune system, we characterized the EV miRNA cargo and evaluated their effect on innate immune cells. Results Analysis of the transcriptome showed that HSPA5 knockdown resulted in the upregulation of signaling pathways involved in the unfolded protein response (UPR) and changes the miRNA content of EVs, including reduced levels of miRNAs involved in IL-1β signaling. Treatment of primary human monocytes with EVs from stressed beta cells resulted in increased surface expression of CD11b, HLA-DR, CD40 and CD86 and upregulation of IL-1β and IL-6. Conclusion These findings indicate that the content of EVs derived from stressed beta cells can be a mediator of islet inflammation.
Collapse
Affiliation(s)
- Mette C. Dekkers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Joost M. Lambooij
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Xudong Pu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Raphael R. Fagundes
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Agustin Enciso-Martinez
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Oncode institute, Leiden University Medical Center, Leiden, Netherlands
- Amsterdam Vesicle Center, Biomedical Engineering and Physics and Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Kim Kats
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bruno Guigas
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Sebastiani G, Grieco GE, Bruttini M, Auddino S, Mori A, Toniolli M, Fignani D, Licata G, Aiello E, Nigi L, Formichi C, Fernandez-Tajes J, Pugliese A, Evans-Molina C, Overbergh L, Tree T, Peakman M, Mathieu C, Dotta F. A set of circulating microRNAs belonging to the 14q32 chromosome locus identifies two subgroups of individuals with recent-onset type 1 diabetes. Cell Rep Med 2024; 5:101591. [PMID: 38838677 PMCID: PMC11228666 DOI: 10.1016/j.xcrm.2024.101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Circulating microRNAs (miRNAs) are linked to the onset and progression of type 1 diabetes mellitus (T1DM), thus representing potential disease biomarkers. In this study, we employed a multiplatform sequencing approach to analyze circulating miRNAs in an extended cohort of prospectively evaluated recent-onset T1DM individuals from the INNODIA consortium. Our findings reveal that a set of miRNAs located within T1DM susceptibility chromosomal locus 14q32 distinguishes two subgroups of individuals. To validate our results, we conducted additional analyses on a second cohort of T1DM individuals, confirming the identification of these subgroups, which we have named cluster A and cluster B. Remarkably, cluster B T1DM individuals, who exhibit increased expression of a set of 14q32 miRNAs, show better glycemic control and display a different blood immunomics profile. Our findings suggest that this set of circulating miRNAs can identify two different T1DM subgroups with distinct blood immunomics at baseline and clinical outcomes during follow-up.
Collapse
Affiliation(s)
- Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Marco Bruttini
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Stefano Auddino
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Alessia Mori
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Mattia Toniolli
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | | | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lut Overbergh
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Boston, MA, USA
| | - Chantal Mathieu
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy.
| |
Collapse
|
5
|
Carr ER, Higgins PB, McClenaghan NH, Flatt PR, McCloskey AG. MicroRNA regulation of islet and enteroendocrine peptides: Physiology and therapeutic implications for type 2 diabetes. Peptides 2024; 176:171196. [PMID: 38492669 DOI: 10.1016/j.peptides.2024.171196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The pathogenesis of type 2 diabetes (T2D) is associated with dysregulation of glucoregulatory hormones, including both islet and enteroendocrine peptides. Microribonucleic acids (miRNAs) are short noncoding RNA sequences which post transcriptionally inhibit protein synthesis by binding to complementary messenger RNA (mRNA). Essential for normal cell activities, including proliferation and apoptosis, dysregulation of these noncoding RNA molecules have been linked to several diseases, including diabetes, where alterations in miRNA expression within pancreatic islets have been observed. This may occur as a compensatory mechanism to maintain beta-cell mass/function (e.g., downregulation of miR-7), or conversely, lead to further beta-cell demise and disease progression (e.g., upregulation of miR-187). Thus, targeting miRNAs has potential for novel diagnostic and therapeutic applications in T2D. This is reinforced by the success seen to date with miRNA-based therapeutics for other conditions currently in clinical trials. In this review, differential expression of miRNAs in human islets associated with T2D will be discussed along with further consideration of their effects on the production and secretion of islet and incretin hormones. This analysis further unravels the therapeutic potential of miRNAs and offers insights into novel strategies for T2D management.
Collapse
Affiliation(s)
- E R Carr
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland; Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P B Higgins
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland
| | - N H McClenaghan
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - A G McCloskey
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland.
| |
Collapse
|
6
|
Agnihotri R, Gaur S, Bhat SG. Role of microRNAs in Diabetes-Associated Periodontitis: A Scoping Review. J Int Soc Prev Community Dent 2024; 14:180-191. [PMID: 39055291 PMCID: PMC11268527 DOI: 10.4103/jispcd.jispcd_3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 07/27/2024] Open
Abstract
Aim Diabetes mellitus (DM), a metabolic disorder, exhibits a bidirectional relationship with periodontitis (PD), and recently, microRNAs (miRNAs) were associated with their progression. This review aims to assess the role of miRNAs in the pathogenesis of DM-associated PD and their plausible application as a biomarker for PD in individuals with DM. Materials and Methods The search conducted until September 2023 on Medline (Pubmed), Scopus, Embase, and Web of Science using the keywords "microRNA," "miRNA," or "miR," combined with "Diabetes" and "PD" yielded 100 articles. Only research focusing on the role of miRNAs in the pathogenesis of DM-associated PD and their potential application as biomarkers for both conditions were included. Finally, 14 studies were assessed for any bias, and the collected data included study design, sample size, participant groups, age, sample obtained, PD severity, miRNAs examined, clinical and biochemical parameters related to DM and PD, and primary outcomes. Results In vivo studies indicated altered expression of miRNAs-146a, -146b, -155, -200b, -203, and -223, specifically in the comorbid subjects with both conditions. Animal, ex vivo, and in vitro studies demonstrated altered expression of miRNAs-126, -147, -31, -25-3p, -508-3p, -214, 124-3p, -221, -222, and the SIRT6-miR-216/217 axis. These miRNAs impact innate and adaptive immune mechanisms, oxidative stress, hyperglycemia, and insulin sensitivity, thereby promoting periodontal destruction in DM. miRNA-146a emerges as a reliable biomarker of PD in DM, whereas miRNA-155 is a consistent predictor of PD in subjects without DM. Conclusions miRNAs exert influence on immuno-inflammation in DM-associated PD. Although they can be biomarkers of PD and DM, their clinical utility is hindered by the absence of standardized tests to evaluate their sensitivity and specificity. Moreover, there has been limited exploration of the role of miRNAs in DM-associated PD through human studies. Future clinical trials are warranted to address this gap, focusing on standardizing sample collection, miRNA sources, and detection methods. This approach will enable the identification of specific miRNAs for DM-associated PD.
Collapse
Affiliation(s)
- Rupali Agnihotri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Subraya Giliyar Bhat
- Department of Preventive Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
7
|
Sira J, Zhang X, Gao L, Wabo TMC, Li J, Akiti C, Zhang W, Sun D. Effects of Inorganic Arsenic on Type 2 Diabetes Mellitus In Vivo: the Roles and Mechanisms of miRNAs. Biol Trace Elem Res 2024; 202:111-121. [PMID: 37131019 DOI: 10.1007/s12011-023-03669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Accumulating studies have shown that chronic exposure to iAs correlates with an increased incidence of diabetes. In recent years, miRNA dysfunction has emerged both as a response to iAs exposure and independently as candidate drivers of metabolic phenotypes such as T2DM. However, few miRNAs have been profiled during the progression of diabetes after iAs exposure in vivo. In the present study, high iAs (10 mg/L NaAsO2) exposure mice models of C57BKS/Leprdb (db/db) and C57BLKS/J (WT) were established through the drinking water, the exposure duration was 14 weeks. The results showed that high iAs exposure induced no significant changes in FBG levels in either db/db or WT mice. FBI levels, C-peptide content, and HOMA-IR levels were significantly increased, and glycogen levels in the livers were significantly lower in arsenic-exposed db/db mice. HOMA-β% was decreased significantly in WT mice exposed to high iAs. In addition, more different metabolites were found in the arsenic-exposed group than the control group in db/db mice, mainly involved in the lipid metabolism pathway. Highly expressed glucose, insulin, and lipid metabolism-related miRNAs were selected, including miR-29a-3p, miR-143-3p, miR-181a-3p, miR-122-3p, miR-22-3p, and miR-16-3p. And a series of target genes were chosen for analysis, such as ptp1b, irs1, irs2, sirt1, g6pase, pepck and glut4. The results showed that, the axles of miR-181a-3p-irs2, miR-181a-3p-sirt1, miR-22-3p-sirt1, and miR-122-3p-ptp1b in db/db mice, and miR-22-3p-sirt1, miR-16-3p-glut4 in WT mice could be considered promising targets to explore the mechanisms and therapeutic aspects of T2DM after exposure to high iAs.
Collapse
Affiliation(s)
- Jackson Sira
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, 150081, China
- Department of Biomedical Sciences, Faculty of Sciences, University of Ngaoundéré, P.O Box 454, Ngaoundéré, Cameroon
| | - Xiaodan Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, 150081, China
| | - Lin Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, 150081, China
| | - Therese Martin Cheteu Wabo
- Department of Biomedical Sciences, Faculty of Sciences, University of Ngaoundéré, P.O Box 454, Ngaoundéré, Cameroon
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, 150081, China
| | - Jinyu Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, 150081, China
| | - Caselia Akiti
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, 150081, China
| | - Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, 150081, China.
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, 150081, China.
| |
Collapse
|
8
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Natalicchio A, Montagnani M, Gallo M, Marrano N, Faggiano A, Zatelli MC, Mazzilli R, Argentiero A, Danesi R, D'Oronzo S, Fogli S, Giuffrida D, Gori S, Ragni A, Renzelli V, Russo A, Franchina T, Tuveri E, Sciacca L, Monami M, Cirino G, Di Cianni G, Colao A, Avogaro A, Cinieri S, Silvestris N, Giorgino F. MiRNA dysregulation underlying common pathways in type 2 diabetes and cancer development: an Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Diabetology (SID)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary critical view. ESMO Open 2023; 8:101573. [PMID: 37263082 PMCID: PMC10245125 DOI: 10.1016/j.esmoop.2023.101573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Increasing evidence suggests that patients with diabetes, particularly type 2 diabetes (T2D), are characterized by an increased risk of developing different types of cancer, so cancer could be proposed as a new T2D-related complication. On the other hand, cancer may also increase the risk of developing new-onset diabetes, mainly caused by anticancer therapies. Hyperinsulinemia, hyperglycemia, and chronic inflammation typical of T2D could represent possible mechanisms involved in cancer development in diabetic patients. MicroRNAs (miRNAs) are a subset of non-coding RNAs, ⁓22 nucleotides in length, which control the post-transcriptional regulation of gene expression through both translational repression and messenger RNA degradation. Of note, miRNAs have multiple target genes and alteration of their expression has been reported in multiple diseases, including T2D and cancer. Accordingly, specific miRNA-regulated pathways are involved in the pathogenesis of both conditions. In this review, a panel of experts from the Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), Italian Society of Endocrinology (SIE), and Italian Society of Pharmacology (SIF) provide a critical view of the evidence about the involvement of miRNAs in the pathophysiology of both T2D and cancer, trying to identify the shared miRNA signature and pathways able to explain the strong correlation between the two conditions, as well as to envision new common pharmacological approaches.
Collapse
Affiliation(s)
- A Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - M Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - M Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - N Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - M C Zatelli
- Section of Endocrinology, Geriatrics, and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - R Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - A Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - R Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S D'Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - S Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - D Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, Catania, Italy
| | - S Gori
- Oncologia Medica, IRCCS Ospedale Don Calabria-Sacro Cuore di Negrar, Verona, Italy
| | - A Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - V Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists, Rome, Italy
| | - A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - T Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - E Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, Carbonia, Sardinia, Italy
| | - L Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, Catania, Italy
| | - M Monami
- Diabetology, Careggi Hospital and University of Florence, Firenze, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G Di Cianni
- Diabetes Unit, Livorno Hospital, Livorno, Italy
| | - A Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy; UNESCO Chair, Education for Health and Sustainable Development, Federico II University, Naples, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, Padua, Italy
| | - S Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - N Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - F Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
10
|
Sun G, Qi M, Kim AS, Lizhar EM, Sun OW, Al-Abdullah IH, Riggs AD. Reassessing the Abundance of miRNAs in the Human Pancreas and Rodent Cell Lines and Its Implication. Noncoding RNA 2023; 9:ncrna9020020. [PMID: 36960965 PMCID: PMC10037588 DOI: 10.3390/ncrna9020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
miRNAs are critical for pancreas development and function. However, we found that there are discrepancies regarding pancreatic miRNA abundance in published datasets. To obtain a more relevant profile that is closer to the true profile, we profiled small RNAs from human islets cells, acini, and four rodent pancreatic cell lines routinely used in diabetes and pancreatic research using a bias reduction protocol for small RNA sequencing. In contrast to the previous notion that miR-375-3p is the most abundant pancreatic miRNA, we found that miR-148a-3p and miR-7-5p were also abundant in islets. In silico studies using predicted and validated targets of these three miRNAs revealed that they may work cooperatively in endocrine and exocrine cells. Our results also suggest, compared to the most-studied miR-375, that both miR-148a-3p and miR-7-5p may play more critical roles in the human pancreas. Moreover, according to in silico-predicted targets, we found that miR-375-3p had a much broader target spectrum by targeting the coding sequence and the 5' untranslated region, rather than the conventional 3' untranslated region, suggesting additional unexplored roles of miR-375-3p beyond the pancreas. Our study provides a valuable new resource for studying miRNAs in pancreata.
Collapse
Affiliation(s)
- Guihua Sun
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Department of Neurodegenerative Diseases, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Meirigeng Qi
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Alexis S Kim
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Elizabeth M Lizhar
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Olivia W Sun
- Department of Diabetes & Cancer Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Ismail H Al-Abdullah
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Arthur D Riggs
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Taylor HJ, Hung YH, Narisu N, Erdos MR, Kanke M, Yan T, Grenko CM, Swift AJ, Bonnycastle LL, Sethupathy P, Collins FS, Taylor DL. Human pancreatic islet microRNAs implicated in diabetes and related traits by large-scale genetic analysis. Proc Natl Acad Sci U S A 2023; 120:e2206797120. [PMID: 36757889 PMCID: PMC9963967 DOI: 10.1073/pnas.2206797120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
Genetic studies have identified ≥240 loci associated with the risk of type 2 diabetes (T2D), yet most of these loci lie in non-coding regions, masking the underlying molecular mechanisms. Recent studies investigating mRNA expression in human pancreatic islets have yielded important insights into the molecular drivers of normal islet function and T2D pathophysiology. However, similar studies investigating microRNA (miRNA) expression remain limited. Here, we present data from 63 individuals, the largest sequencing-based analysis of miRNA expression in human islets to date. We characterized the genetic regulation of miRNA expression by decomposing the expression of highly heritable miRNAs into cis- and trans-acting genetic components and mapping cis-acting loci associated with miRNA expression [miRNA-expression quantitative trait loci (eQTLs)]. We found i) 84 heritable miRNAs, primarily regulated by trans-acting genetic effects, and ii) 5 miRNA-eQTLs. We also used several different strategies to identify T2D-associated miRNAs. First, we colocalized miRNA-eQTLs with genetic loci associated with T2D and multiple glycemic traits, identifying one miRNA, miR-1908, that shares genetic signals for blood glucose and glycated hemoglobin (HbA1c). Next, we intersected miRNA seed regions and predicted target sites with credible set SNPs associated with T2D and glycemic traits and found 32 miRNAs that may have altered binding and function due to disrupted seed regions. Finally, we performed differential expression analysis and identified 14 miRNAs associated with T2D status-including miR-187-3p, miR-21-5p, miR-668, and miR-199b-5p-and 4 miRNAs associated with a polygenic score for HbA1c levels-miR-216a, miR-25, miR-30a-3p, and miR-30a-5p.
Collapse
Affiliation(s)
- Henry J. Taylor
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, CambridgeCB2 0BB, UK
- Heart and Lung Research Institute, University of Cambridge, CambridgeCB2 0BB, UK
| | - Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Michael R. Erdos
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Matthew Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Tingfen Yan
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Caleb M. Grenko
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Amy J. Swift
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Lori L. Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Francis S. Collins
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - D. Leland Taylor
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| |
Collapse
|
12
|
Lin X, Cheng L, Wan Y, Yan Y, Zhang Z, Li X, Wu J, Wang X, Xu M. Ang II Controls the Expression of Mapkap1 by miR-375 and Affects the Function of Islet β Cells. Endocr Metab Immune Disord Drug Targets 2023; 23:1186-1200. [PMID: 36748222 PMCID: PMC10514520 DOI: 10.2174/1871530323666230206121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND The RAS system is involved in the regulation of islet function, but its regulation remains unclear. OBJECTIVE This study investigates the role of an islet-specific miR-375 in the effect of RAS system on islet β-cells. METHODS miR-375 mimics and inhibitors were transfected into insulin-secreting MIN6 cells in the presence or absence of RAS component. RESULTS Compared to control, in Ang II-treated MIN6 cells, miR-375 mimic transfection results in a decrement in cell viability and Akt-Ser levels (0.739±0.05 vs. 0.883±0.06 and 0.40±0.04 vs. 0.79±0.04, respectively), while the opposite occurred in miR-375 inhibitor-transfected cells (1.032±0.11 vs. 0.883±0.06 and 0.98±0.05 vs. 0.79±0.04, respectively, P<0.05). Mechanistically, transfection of miR- 375 mimics into Ang II-treated MIN6 cells significantly reduced the expression of Mapkap1 protein (0.97±0.15 vs. 0.63±0.06, P<0.05); while miR-375 inhibitor-transfected cells elevated Mapkap1 expression level (0.35±0.11 vs. 0.90±0.05, P<0.05), without changes in mRNA expression. Transfection of miR-375 specific inhibitors TSB-Mapkap1 could elevate Mapkap1 (1.62±0.02 vs. 0.68±0.01, P<0.05), while inhibition of Mapkap1 could significantly reduce the level of Akt-Ser473 phosphorylation (0.60±0.14 vs. 1.80±0.27, P<0.05). CONCLUSION The effects of Ang II on mouse islet β cells were mediated by miR-375 through miR- 375/Mapkap 1 axis. This targeted regulation may occur by affecting Akt phosphorylation of β cells. These results may provide new ideas and a scientific basis for further development of miRNA-targeted islet protection measures.
Collapse
Affiliation(s)
- Xiuhong Lin
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Lin Cheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yan Wan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yuerong Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Zhuo Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaohui Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Jiayun Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaoyi Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| |
Collapse
|
13
|
Rashidmayvan M, Sahebi R, Ghayour-Mobarhan M. Long non-coding RNAs: a valuable biomarker for metabolic syndrome. Mol Genet Genomics 2022; 297:1169-1183. [PMID: 35854006 DOI: 10.1007/s00438-022-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become important regulators of gene expression because they affect a wide range of biological processes, such as cell growth, death, differentiation, and aging. More and more evidence suggests that lncRNAs play a role in maintaining metabolic homeostasis. When certain lncRNAs are out of balance, metabolic disorders like diabetes, obesity, and heart disease get worse. In this review, we talk about what we know about how lncRNAs control metabolism, with a focus on diseases caused by long-term inflammation and the characteristics of the metabolic syndrome. We looked at lncRNAs and their molecular targets in the pathogenesis of signaling pathways. We also talked about how lncRNAs are becoming more and more interesting as diagnostic and therapeutic targets for improving metabolic homeostasis.
Collapse
Affiliation(s)
- Mohammad Rashidmayvan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Sahebi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Dalgaard LT, Sørensen AE, Hardikar AA, Joglekar MV. The microRNA-29 family - role in metabolism and metabolic disease. Am J Physiol Cell Physiol 2022; 323:C367-C377. [PMID: 35704699 DOI: 10.1152/ajpcell.00051.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The microRNA-29a family members miR-29a-3p, miR-29b-3p and miR-29c-3p are ubiquitously expressed and consistently increased in various tissues and cell types in conditions of metabolic disease; obesity, insulin resistance and type 2 diabetes. In pancreatic beta cells, miR-29a is required for normal exocytosis, but increased levels are associated with impaired beta cell function. Similarly, in liver miR-29 species are higher in models of insulin resistance and type 2 diabetes, and either knock-out or depletion using a microRNA inhibitor improves hepatic insulin resistance. In skeletal muscle, miR-29 upregulation is associated with insulin resistance and altered substrate oxidation, and similarly, in adipocytes over-expression of miR-29a leads to insulin resistance. Blocking miR-29a using nucleic acid antisense therapeutics show promising results in preclinical animal models of obesity and type 2 diabetes, although the widespread expression pattern of miR-29 family members complicates the exploration of single target tissues. However, in fibrotic diseases, such as in late complications of diabetes and metabolic disease (diabetic kidney disease, non-alcoholic steatohepatitis), miR-29 expression is suppressed by TGFβ allowing increased extracellular matrix collagen to form. In the clinical setting circulating levels of miR-29a and miR-29b are consistently increased in type 2 diabetes and in gestational diabetes, and are also possible prognostic markers for deterioration of glucose tolerance. In conclusion, miR-29 plays an essential role in various organs relevant to intermediary metabolism and its upregulation contribute to impaired glucose metabolism, while it suppresses fibrosis development. Thus, a correct balance of miR-29a levels seems important for cellular and organ homeostasis in metabolism.
Collapse
Affiliation(s)
- Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anja E Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
15
|
Garavelli S, Prattichizzo F, Ceriello A, Galgani M, de Candia P. Type 1 Diabetes and Associated Cardiovascular Damage: Contribution of Extracellular Vesicles in Tissue Crosstalk. Antioxid Redox Signal 2022; 36:631-651. [PMID: 34407376 DOI: 10.1089/ars.2021.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Type 1 diabetes (T1D) is characterized by the autoimmune destruction of the insulin secreting β-cells, with consequent aberrant blood glucose levels. Hyperglycemia is the common denominator for most of the chronic diabetic vascular complications, which represent the main cause of life reduction in T1D patients. For this disease, three interlaced medical needs remain: understanding the underlying mechanisms involved in pancreatic β-cell loss; identifying biomarkers able to predict T1D progression and its related complications; recognizing novel therapeutic targets. Recent Advances: Extracellular vesicles (EVs), released by most cell types, were discovered to contain a plethora of different molecules (including microRNAs) with regulatory properties, which are emerging as mediators of cell-to-cell communication at the paracrine and endocrine level. Recent knowledge suggests that EVs may act as pathogenic factors, and be developed into disease biomarkers and therapeutic targets in the context of several human diseases. Critical Issues: EVs have been recently shown to sustain a dysregulated cellular crosstalk able to exacerbate the autoimmune response in the pancreatic islets of T1D; moreover, EVs were shown to be able to monitor and/or predict the progression of T1D and the insurgence of vasculopathies. Future Directions: More mechanistic studies are needed to investigate whether the dysregulation of EVs in T1D patients is solely reflecting the progression of diabetes and related complications, or EVs also directly participate in the disease process, thus pointing to a potential use of EVs as therapeutic targets/tools in T1D. Antioxid. Redox Signal. 36, 631-651.
Collapse
Affiliation(s)
- Silvia Garavelli
- Institute for Endocrinology and Experimental Oncology "G. Salvatore," Consiglio Nazionale delle Ricerche (C.N.R.), Naples, Italy
| | | | | | - Mario Galgani
- Institute for Endocrinology and Experimental Oncology "G. Salvatore," Consiglio Nazionale delle Ricerche (C.N.R.), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II," Italy
| | | |
Collapse
|
16
|
Barseem NF, Mahasab MM, Zaed IF, Said AEA, El Gayed EMA. Genetic Indices Relationship to Hyperglycemia-associated Biomarkers: Consistency with miRNA Expression in Egyptian Children with T1DM. J Clin Res Pediatr Endocrinol 2022; 14:76-86. [PMID: 34927407 PMCID: PMC8900082 DOI: 10.4274/jcrpe.galenos.2021.2021.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Micro RNAs (miRNAs) are gaining acceptance as novel biomarkers for the autoimmune disorders. However, miRNA profiles have not been investigated in individuals at risk of or diagnosed with type 1 diabetes mellitus (T1DM). To study the expression pattern of miRNAs in plasma obtained from patients with T1DM and compare with matched healthy controls. METHODS Equal numbers of patients with T1DM (90) and healthy-matched control children (90) were assessed for the expression profile of plasma miRNAs including miRNA-101-5p, miRNA-146-5p, miRNA-21-5p, miRNA-375, miRNA-126, and Let7a-5p using reverse transcriptase polymerase chain reaction methodology and quantitative real-time testing. RESULTS Analysis showed that miRNA-101, miRNA-21 and miRNA-375 were highly expressed, whereas, miRNA-146-5p, miRNA-126, and miRNA-Let7a-5p showed significantly low levels of expression in T1DM patients compared to controls (p<0.05). In addition, miRNA-101 and miRNA-146 correlated with age at diagnosis of T1DM and disease duration, respectively. Furthermore, multivariate analysis showed that miRNA-126 and Let7a-5p had a significant negative correlation with mean hemoglobin A1c (HbA1c) values. CONCLUSION Dysregulation of the six miRNAs analyzed suggested a possible role as biomarkers in T1DM. miRNA-101 was correlated with age at diagnosis while miRNA-146 correlated with disease duration. Two further miRNAs correlated with the existing biomarker, HbA1c.
Collapse
Affiliation(s)
- Naglaa Fathy Barseem
- Menoufia University Faculty of Medicine, Department of Pediatric, Unit of Genetic and Endocrinology, Shebein Elkom, Egypt,* Address for Correspondence: Menoufia University Faculty of Medicine, Department of Pediatric, Unit of Genetic and Endocrinology, Shebein Elkom, Egypt Phone: +00201000314896 E-mail:
| | - Marwa Mohamed Mahasab
- Menoufia University Faculty of Medicine, Department of Family Medicine, Shebein Elkom, Egypt
| | - Ibrahem Fathy Zaed
- Menoufia University Faculty of Sciences, Department of Chemistry, Shebein Elkom, Egypt
| | - Aya Eldesoky A. Said
- Menoufia University Faculty of Sciences, Department of Chemistry, Shebein Elkom, Egypt
| | - Eman Masoud Abd El Gayed
- Menoufia University Faculty of Medicine, Department of Medical Biochemistry and Molecular Biology, Shebein Elkom, Egypt
| |
Collapse
|
17
|
Ji H, Fan L, Shan A, Wang W, Ning G, Cao Y, Jiang X. Let7b-5p inhibits insulin secretion and decreases pancreatic β-cell mass in mice. Mol Cell Endocrinol 2022; 540:111506. [PMID: 34801668 DOI: 10.1016/j.mce.2021.111506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
MicroRNAs are crucial regulators for the development, mass and function of pancreatic β-cells. MiRNA dysregulation is associated with β-cell dysfunction and development of diabetes. The members of let7 family are important players in regulating cellular growth and metabolism. In this study we investigated the functional role of let7b-5p in the mouse pancreatic β-cells. We generated pancreatic β-cell-specific let7b-5p transgenic mouse model and analyzed the glucose metabolic phenotype, β-cells mass and insulin secretion in vivo. Luciferase reporter assay, immunofluorescence staining and western blot were carried out to study the target genes of let7b-5p in β-cells. Let7b-5p overexpression impaired the insulin production and secretion of β-cells and resulted impaired glucose tolerance in mice. The overexpressed let7b-5p inhibited pancreatic β-cell proliferation and decreased the expression of cyclin D1 and cyclin D2. Our findings demonstrated that let7b-5p was critical in regulating the proliferation and insulin secretion of pancreatic β-cells.
Collapse
Affiliation(s)
- He Ji
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Fan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aijing Shan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Research Center for Translational Medicine, National Key Scientific Infrastructure for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Xiuli Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Bartolomé A. Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction. Int J Mol Sci 2022; 23:501. [PMID: 35008927 PMCID: PMC8745644 DOI: 10.3390/ijms23010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β cell dysfunction is a central component of diabetes progression. During the last decades, the genetic basis of several monogenic forms of diabetes has been recognized. Genome-wide association studies (GWAS) have also facilitated the identification of common genetic variants associated with an increased risk of diabetes. These studies highlight the importance of impaired β cell function in all forms of diabetes. However, how most of these risk variants confer disease risk, remains unanswered. Understanding the specific contribution of genetic variants and the precise role of their molecular effectors is the next step toward developing treatments that target β cell dysfunction in the era of personalized medicine. Protocols that allow derivation of β cells from pluripotent stem cells, represent a powerful research tool that allows modeling of human development and versatile experimental designs that can be used to shed some light on diabetes pathophysiology. This article reviews different models to study the genetic basis of β cell dysfunction, focusing on the recent advances made possible by stem cell applications in the field of diabetes research.
Collapse
Affiliation(s)
- Alberto Bartolomé
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
19
|
Maddah R, Shariati P, Arabpour J, Bazireh H, Shadpirouz M, Kafraj AS. Identification of critical genes and pathways associated with hepatocellular carcinoma and type 2 diabetes mellitus using integrated bioinformatics analysis. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Bourgeois BL, Lin HY, Yeh AY, Levitt DE, Primeaux SD, Ferguson TF, Molina PE, Simon L. Unique circulating microRNA associations with dysglycemia in people living with HIV and alcohol use. Physiol Genomics 2022; 54:36-44. [PMID: 34859690 PMCID: PMC8891241 DOI: 10.1152/physiolgenomics.00085.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
People living with HIV (PLWH) have increased prevalence of comorbid conditions including insulin resistance and at-risk alcohol use. Circulating microRNAs (miRs) may serve as minimally invasive indicators of pathophysiological states. We aimed to identify whether alcohol modulates circulating miR associations with measures of glucose/insulin dynamics in PLWH. PLWH (n = 96; 69.8% males) enrolled in the Alcohol & Metabolic Comorbidities in PLWH: Evidence-Driven Interventions (ALIVE-Ex) study were stratified into negative phosphatidylethanol (PEth < 8 ng/mL, n = 42) and positive PEth (PEth ≥ 8 ng/mL, n = 54) groups. An oral glucose tolerance test (OGTT) was administered, and total RNA was isolated from fasting plasma to determine absolute miR expression. Circulating miRs were selected based on their role in skeletal muscle (miR-133a and miR-206), pancreatic β-cell (miR-375), liver (miR-20a), and adipose tissue (miR-let-7b, miR-146a, and miR-221) function. Correlation and multiple regression analyses between miR expression and adiponectin, 2 h glucose, insulin, and C-peptide values were performed adjusting for body mass index (BMI) category, age, sex, and viral load. miR-133a was negatively associated with adiponectin (P = 0.002) in the negative PEth group, and miR-20a was positively associated with 2 h glucose (P = 0.013) in the positive PEth group. Regression analyses combining miRs demonstrated that miR-133a (P < 0.001) and miR-221 (P = 0.010) together predicted adiponectin in the negative PEth group. miR-20a (P < 0.001) and miR-375 (P = 0.002) together predicted 2 h glucose in the positive PEth group. Our results indicate that associations between miRs and measures of glucose/insulin dynamics differed between PEth groups, suggesting that the pathophysiological mechanisms contributing to altered glucose homeostasis in PLWH are potentially modulated by alcohol use.
Collapse
Affiliation(s)
- Brianna L. Bourgeois
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Hui-Yi Lin
- 2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana,3School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Alice Y. Yeh
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Danielle E. Levitt
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Stefany D. Primeaux
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,4Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Tekeda F. Ferguson
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana,5Department of Epidemiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E. Molina
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Liz Simon
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
21
|
Mitochondrial Antioxidant SkQ1 Has a Beneficial Effect in Experimental Diabetes as Based on the Analysis of Expression of microRNAs and mRNAs for the Oxidative Metabolism Regulators. Antioxidants (Basel) 2021; 10:antiox10111749. [PMID: 34829620 PMCID: PMC8615282 DOI: 10.3390/antiox10111749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus and related complications are among the most important problems of the world-leading healthcare systems. Despite their priority, molecular and genetic aspects of diabetes pathogenesis are poorly understood; however, the involvement of oxidative stress in this process is undoubted. Rats with experimental diabetes induced by the intraperitoneal injection of alloxan were subjected to the antioxidant pre-therapy with a series of mitochondria-targeted 10-(6’-plastoquinonyl)decyltriphenylphosphonium (SkQ1) injections and analyzed for the expression of mRNAs and microRNAs by real-time quantitative polymerase chain reaction to identify potential predictors of diabetes. Animals that received SkQ1 before diabetes induction demonstrated lower blood glucose levels compared to the diabetic animals not subjected to the therapy. SkQ1 caused changes in the mRNA levels of genes involved in the cellular defense against free radicals, which indicates a beneficial effect of the pre-therapy. Moreover, similar changes were observed on the epigenetic level, as the microRNA expression patterns not only proved the SkQ1 efficacy but also correlated with the expression levels of their mRNA targets. Oxidative stress and macromolecule damage by free radicals are determining factors in diabetes, which suggests that strategies aimed at restoring the antioxidant status of the cell can be beneficial. Mitochondria-targeted antioxidant SkQ1 demonstrates positive effects on several levels, from the normalization of the blood glucose content to genetic and epigenetic changes. Our results can serve as a basis for the development of novel therapeutic and diagnostic strategies.
Collapse
|
22
|
Homayoonfal M, Asemi Z, Yousefi B. Targeting microRNAs with thymoquinone: a new approach for cancer therapy. Cell Mol Biol Lett 2021; 26:43. [PMID: 34627167 PMCID: PMC8502376 DOI: 10.1186/s11658-021-00286-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is a global disease involving transformation of normal cells into tumor types via numerous mechanisms, with mortality among all generations, in spite of the breakthroughs in chemotherapy, radiotherapy and/or surgery for cancer treatment. Since one in six deaths is due to cancer, it is one of the overriding priorities of world health. Recently, bioactive natural compounds have been widely recognized due to their therapeutic effects for treatment of various chronic disorders, notably cancer. Thymoquinone (TQ), the most valuable constituent of black cumin seeds, has shown anti-cancer characteristics in a wide range of animal models. The revolutionary findings have revealed TQ's ability to regulate microRNA (miRNA) expression, offering a promising approach for cancer therapy. MiRNAs are small noncoding RNAs that modulate gene expression by means of variation in features of mRNA. MiRNAs manage several biological processes including gene expression and cellular signaling pathways. Accordingly, miRNAs can be considered as hallmarks for cancer diagnosis, prognosis and therapy. The purpose of this study was to review the various molecular mechanisms by which TQ exerts its potential as an anti-cancer agent through modulating miRNAs.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Mohanty A, Rajendran V. Mammalian host microRNA response to plasmodial infection: role as therapeutic target and potential biomarker. Parasitol Res 2021; 120:3341-3353. [PMID: 34423387 DOI: 10.1007/s00436-021-07293-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
The appearance of increasing drug resistance in apicomplexan intracellular Plasmodium falciparum presents a significant challenge. P. falciparum infection results in cerebral malaria (CM), causing irreversible damage to the brain leading to high mortality cases. To enhance the clinical outcome of the disease, further research is required to identify new molecular targets involved in disease manifestations. Presently, the role of non-coding microRNAs (miRNAs) derived from different cells implicated in CM pathogenesis is still barely understood. Despite the absence of miRNA machinery in Plasmodium, host-parasite interactions can lead to disease severity or impart resistance to malaria. Cytoadherence and sequestration of parasitized RBCs dysregulate the miRNA profile of brain endothelial cells, leukocytes, monocytes, and platelets, disrupting blood-brain barrier integrity and activating inflammatory signaling pathways. The abundance of miRNA in blood plasma samples of CM patients directly correlates to cerebral symptoms compared to non-CM patients and healthy individuals. Moreover, the differential host-miRNA signatures distinguish P. falciparum from P. vivax infection. Here, we review the diverse functions of host-miRNA, either protective, pathogenic, or a combination of the two, which may act as prognostic markers and novel antimalarial drug targets.
Collapse
Affiliation(s)
- Abhinab Mohanty
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
24
|
The MicroRNA Landscape of Acute Beta Cell Destruction in Type 1 Diabetic Recipients of Intraportal Islet Grafts. Cells 2021; 10:cells10071693. [PMID: 34359863 PMCID: PMC8304265 DOI: 10.3390/cells10071693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 01/12/2023] Open
Abstract
Ongoing beta cell death in type 1 diabetes (T1D) can be detected using biomarkers selectively discharged by dying beta cells into plasma. microRNA-375 (miR-375) ranks among the top biomarkers based on studies in animal models and human islet transplantation. Our objective was to identify additional microRNAs that are co-released with miR-375 proportionate to the amount of beta cell destruction. RT-PCR profiling of 733 microRNAs in a discovery cohort of T1D patients 1 h before/after islet transplantation indicated increased plasma levels of 22 microRNAs. Sub-selection for beta cell selectivity resulted in 15 microRNAs that were subjected to double-blinded multicenter analysis. This led to the identification of eight microRNAs that were consistently increased during early graft destruction: besides miR-375, these included miR-132/204/410/200a/429/125b, microRNAs with known function and enrichment in beta cells. Their potential clinical translation was investigated in a third independent cohort of 46 transplant patients by correlating post-transplant microRNA levels to C-peptide levels 2 months later. Only miR-375 and miR-132 had prognostic potential for graft outcome, and none of the newly identified microRNAs outperformed miR-375 in multiple regression. In conclusion, this study reveals multiple beta cell-enriched microRNAs that are co-released with miR-375 and can be used as complementary biomarkers of beta cell death.
Collapse
|
25
|
Wong WK, Joglekar MV, Saini V, Jiang G, Dong CX, Chaitarvornkit A, Maciag GJ, Gerace D, Farr RJ, Satoor SN, Sahu S, Sharangdhar T, Ahmed AS, Chew YV, Liuwantara D, Heng B, Lim CK, Hunter J, Januszewski AS, Sørensen AE, Akil AS, Gamble JR, Loudovaris T, Kay TW, Thomas HE, O'Connell PJ, Guillemin GJ, Martin D, Simpson AM, Hawthorne WJ, Dalgaard LT, Ma RC, Hardikar AA. Machine learning workflows identify a microRNA signature of insulin transcription in human tissues. iScience 2021; 24:102379. [PMID: 33981968 PMCID: PMC8082091 DOI: 10.1016/j.isci.2021.102379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Dicer knockout mouse models demonstrated a key role for microRNAs in pancreatic β-cell function. Studies to identify specific microRNA(s) associated with human (pro-)endocrine gene expression are needed. We profiled microRNAs and key pancreatic genes in 353 human tissue samples. Machine learning workflows identified microRNAs associated with (pro-)insulin transcripts in a discovery set of islets (n = 30) and insulin-negative tissues (n = 62). This microRNA signature was validated in remaining 261 tissues that include nine islet samples from individuals with type 2 diabetes. Top eight microRNAs (miR-183-5p, -375-3p, 216b-5p, 183-3p, -7-5p, -217-5p, -7-2-3p, and -429-3p) were confirmed to be associated with and predictive of (pro-)insulin transcript levels. Use of doxycycline-inducible microRNA-overexpressing human pancreatic duct cell lines confirmed the regulatory roles of these microRNAs in (pro-)endocrine gene expression. Knockdown of these microRNAs in human islet cells reduced (pro-)insulin transcript abundance. Our data provide specific microRNAs to further study microRNA-mRNA interactions in regulating insulin transcription.
Collapse
Affiliation(s)
- Wilson K.M. Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Mugdha V. Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Vijit Saini
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, and Hong Kong Institute of Diabetes and Obesity, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Special Administrative Region, China
| | - Charlotte X. Dong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Alissa Chaitarvornkit
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Grzegorz J. Maciag
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Dario Gerace
- School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Ryan J. Farr
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Sarang N. Satoor
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Subhshri Sahu
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Tejaswini Sharangdhar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Asma S. Ahmed
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Yi Vee Chew
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - David Liuwantara
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Benjamin Heng
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Chai K. Lim
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Julie Hunter
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, University of Sydney Medical School, Locked Bag #6, Newtown, NSW 2042, Australia
| | - Andrzej S. Januszewski
- NHMRC Clinical Trials Centre, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Anja E. Sørensen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Ammira S.A. Akil
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Jennifer R. Gamble
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, University of Sydney Medical School, Locked Bag #6, Newtown, NSW 2042, Australia
| | - Thomas Loudovaris
- St Vincent's Institute and The University of Melbourne Department of Medicine, 9 Princes Street, Fitzroy, VIC, Australia
| | - Thomas W. Kay
- St Vincent's Institute and The University of Melbourne Department of Medicine, 9 Princes Street, Fitzroy, VIC, Australia
| | - Helen E. Thomas
- St Vincent's Institute and The University of Melbourne Department of Medicine, 9 Princes Street, Fitzroy, VIC, Australia
| | - Philip J. O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Gilles J. Guillemin
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - David Martin
- Upper GI Surgery, Strathfield Hospital, 2/3 Everton Road, Strathfield, NSW 2135, Australia
| | - Ann M. Simpson
- School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Wayne J. Hawthorne
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Louise T. Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Ronald C.W. Ma
- Department of Medicine and Therapeutics, and Hong Kong Institute of Diabetes and Obesity, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Special Administrative Region, China
| | - Anandwardhan A. Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| |
Collapse
|
26
|
Expression profiling of miRNA-196a biomarker in naïve hepatitis C virus-infected and Sofosbuvir plus Daclatasvir-treated patients. Arch Microbiol 2021; 203:2365-2371. [PMID: 33660021 DOI: 10.1007/s00203-021-02233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/31/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Micro-RNA (miRNA) is a short stretch of nucleotides that can regulate many genes associated with the various stages of the hepatitis C virus (HCV) life cycle and disease progression. This study evaluates the expression profiling of miRNA-196a in naïve HCV-infected, and Sofosbuvir plus Daclatasvir-treated patients. MiRNA-196a can inhibit HCV replication by silencing the HCV NS5A protein or downregulating the human BACH-I mRNA. The expression level of miRNA-196a was determined by quantitative reverse transcription PCR (RT-qPCR) using the whole RNA extracted from the recruited participant's serum. Results showed a 0.83-fold decrease in the miRNA-196a level in naïve HCV-infected than controls. On the contrary, an increase in the expression level by 0.06-fold was observed in Sofosbuvir plus Daclatasvir-treated patients. A negative but significant correlation was recorded between the HCV-RNA load and miRNA-196a expression level in the naïve-infected patients. Serum miRNA-196a ROC curve analysis revealed an area under the curve of 0.8278 (95% CI 0.7033-0.9524, p < 0.0001) with 82.05% sensitivity and 76.19% specificity in discriminating the healthy controls from the HCV-infected samples. In conclusion, our study explored the comparative expression levels of miRNA-196a in HCV-infected and Sofosbuvir plus Daclatasvir patients. Further studies are needed to examine the possible role of miR-196a as a therapeutic agent for treating HCV-infected patients.
Collapse
|
27
|
Ren FJ, Yao Y, Cai XY, Fang GY. Emerging Role of MiR-192-5p in Human Diseases. Front Pharmacol 2021; 12:614068. [PMID: 33708127 PMCID: PMC7940509 DOI: 10.3389/fphar.2021.614068] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNAs that play an essential role in numerous biological processes by regulating the post-transcriptional expression of target genes. Recent studies have demonstrated that miR-192-5p, a member of the miR-192 family, partakes in several human diseases, especially various cancers, including cancers of the lung, liver, and breast. Importantly, the levels of miR-192-5p are abundant in biofluids, including the serum and urine, and the exosomal levels of miR-192-5p in circulation can aid in the diagnosis and prognosis of various diseases, such as chronic hepatitis B (CHB) infection disease. Notably, recent studies suggest that miR-192-5p is regulated by long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there are no comprehensive overviews on the role of miR-192-5p in human diseases. This review discusses the significant studies on the role of miR-192-5p in various human diseases, with special emphasis on the diseases of the respiratory and digestive systems.
Collapse
Affiliation(s)
- Fu-Jia Ren
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Guo-Ying Fang
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
28
|
Sabouri E, Rajabzadeh A, Enderami SE, Saburi E, Soleimanifar F, Barati G, Rahmati M, Khamisipour G, Enderami SE. The Role of MicroRNAs in the Induction of Pancreatic Differentiation. Curr Stem Cell Res Ther 2021; 16:145-154. [PMID: 32564764 DOI: 10.2174/1574888x15666200621173607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Stem cell-based therapy is one of the therapeutic options with promising results in the treatment of diabetes. Stem cells from various sources are expanded and induced to generate the cells capable of secreting insulin. These insulin-producing cells [IPCs] could be used as an alternative to islets in the treatment of patients with diabetes. Soluble growth factors, small molecules, geneencoding transcription factors, and microRNAs [miRNAs] are commonly used for the induction of stem cell differentiation. MiRNAs are small non-coding RNAs with 21-23 nucleotides that are involved in the regulation of gene expression by targeting multiple mRNA targets. Studies have shown the dynamic expression of miRNAs during pancreatic development and stem cell differentiation. MiR- 7 and miR-375 are the most abundant miRNAs in pancreatic islet cells and play key roles in pancreatic development as well as islet cell functions. Some studies have tried to use these small RNAs for the induction of pancreatic differentiation. This review focuses on the miRNAs used in the induction of stem cells into IPCs and discusses their functions in pancreatic β-cells.
Collapse
Affiliation(s)
- Elham Sabouri
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Rajabzadeh
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Elnaz Enderami
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology [NIGEB], Tehran, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Gholamreza Khamisipour
- Department of Hematology, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Ehsan Enderami
- Diabetes Research Center, Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
29
|
Ding Y, Zhong J, Wang Y, Xie W. Proteomic and microRNA-omic profiles and potential mechanisms of dysfunction in pancreatic islet cells primed by inflammation. Exp Ther Med 2020; 21:122. [PMID: 33335585 PMCID: PMC7739849 DOI: 10.3892/etm.2020.9554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes is an inflammatory disease that induces pancreatic islet dysfunction. However, to the best of our knowledge, the potential underlying molecular mechanisms of this inflammatory process remains unknown. The present study investigated microRNA (miRNA/miR) and protein expression profiles through proteomics and miRNA-omics. Lipopolysaccharide-induced macrophage cell medium (LRM) was used to stimulate inflammation in mouse Beta-TC-6 islet cells. Protein analysis revealed that 87 proteins were upregulated and 42 proteins were downregulated in LRM-treated Beta-TC-6 cells compared with control cells. Additionally, miRNA analysis revealed that 11 miRNAs were upregulated, while 28 miRNAs were downregulated in LRM-treated Beta-TC-6 cells compared with control cells. Islet cells exposed to inflammation exhibited markedly downregulated protein levels of transcription factor MafA, pancreatic and duodenal homeobox 1, paired box 6, homeobox protein Nkx-2.2, synaptosomal-associated protein 25, glucagon and insulin-2, while the expression of miR-146a-5p and miR-21a-5p were upregulated. It was also determined that upregulated miR-146a-5p and miR-21a-5p levels may be mediated by NF-κB activation. The downregulation of islet functional factor mRNA was partially reversed by treating islet cells with an inhibitor of miR-21a-5p. However, treatment with an miR-146a-5p inhibitor did not exert the same effect. Overall, the present study determined the molecular profiles of islet cell inflammation based on proteomics and miRNA-omics, and indicated that the proteins and miRNAs with altered expressions may form a large network that serves a role in islet dysfunction. Particularly, miR-21a-5p upregulation in response to inflammation may contribute to islet cell dysfunction. However, how these miRNAs regulated the expression of certain mRNAs and proteins in islet cell inflammation requires further investigation.
Collapse
Affiliation(s)
- Yipei Ding
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Jin Zhong
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| | - Yangyang Wang
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| | - Weidong Xie
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
30
|
Garavelli S, Bruzzaniti S, Tagliabue E, Di Silvestre D, Prattichizzo F, Mozzillo E, Fattorusso V, La Sala L, Ceriello A, Puca AA, Mauri P, Strollo R, Marigliano M, Maffeis C, Petrelli A, Bosi E, Franzese A, Galgani M, Matarese G, de Candia P. Plasma circulating miR-23~27~24 clusters correlate with the immunometabolic derangement and predict C-peptide loss in children with type 1 diabetes. Diabetologia 2020; 63:2699-2712. [PMID: 32728892 DOI: 10.1007/s00125-020-05237-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS We aimed to analyse the association between plasma circulating microRNAs (miRNAs) and the immunometabolic profile in children with type 1 diabetes and to identify a composite signature of miRNAs/immunometabolic factors able to predict type 1 diabetes progression. METHODS Plasma samples were obtained from children at diagnosis of type 1 diabetes (n = 88) and at 12 (n = 32) and 24 (n = 30) months after disease onset and from healthy control children with similar sex and age distribution (n = 47). We quantified 60 robustly expressed plasma circulating miRNAs by quantitative RT-PCR and nine plasma immunometabolic factors with a recognised role at the interface of metabolic and immune alterations in type 1 diabetes. Based on fasting C-peptide loss over time, children with type 1 diabetes were stratified into the following groups: those who had lost >90% of C-peptide compared with diagnosis level; those who had lost <10% of C-peptide; those showing an intermediate C-peptide loss. To evaluate the modulation of plasma circulating miRNAs during the course of type 1 diabetes, logistic regression models were implemented and the correlation between miRNAs and immunometabolic factors was also assessed. Results were then validated in an independent cohort of children with recent-onset type 1 diabetes (n = 18). The prognostic value of the identified plasma signature was tested by a neural network-based model. RESULTS Plasma circulating miR-23~27~24 clusters (miR-23a-3p, miR-23b-3p, miR-24-3p, miR-27a-3p and miR-27b-3p) were upmodulated upon type 1 diabetes progression, showed positive correlation with osteoprotegerin (OPG) and were negatively correlated with soluble CD40 ligand, resistin, myeloperoxidase and soluble TNF receptor in children with type 1 diabetes but not in healthy children. The combination of plasma circulating miR-23a-3p, miR-23b-3p, miR-24-3p, miR-27b-3p and OPG, quantified at disease onset, showed a significant capability to predict the decline in insulin secretion 12 months after disease diagnosis in two independent cohorts of children with type 1 diabetes. CONCLUSIONS/INTERPRETATIONS We have pinpointed a novel miR-23a-3p/miR-23b-3p/miR-24-3p/miR-27b-3p/OPG plasma signature that may be developed into a novel blood-based method to better stratify patients with type 1 diabetes and predict C-peptide loss.
Collapse
Affiliation(s)
- Silvia Garavelli
- IRCCS MultiMedica, via G. Fantoli 16/15, 20138, Milan, Italy
- Institute for Endocrinology and Experimental Oncology 'G. Salvatore', C.N.R, via Pansini 5, 80131, Naples, Italy
| | - Sara Bruzzaniti
- Institute for Endocrinology and Experimental Oncology 'G. Salvatore', C.N.R, via Pansini 5, 80131, Naples, Italy
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Elena Tagliabue
- IRCCS MultiMedica, via G. Fantoli 16/15, 20138, Milan, Italy
| | | | | | - Enza Mozzillo
- Centre of Paediatric Diabetology, Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Valentina Fattorusso
- Centre of Paediatric Diabetology, Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Lucia La Sala
- IRCCS MultiMedica, via G. Fantoli 16/15, 20138, Milan, Italy
| | | | - Annibale A Puca
- IRCCS MultiMedica, via G. Fantoli 16/15, 20138, Milan, Italy
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Pierluigi Mauri
- Institute of Biomedical Technologies, C. N. R, Segrate, Milan, Italy
| | - Rocky Strollo
- Department of Medicine, Unit of Endocrinology & Diabetes, Università Campus Bio-Medico, Rome, Italy
| | - Marco Marigliano
- Paediatric Diabetes and Metabolic Disorders Unit, University of Verona, Verona, Italy
| | - Claudio Maffeis
- Paediatric Diabetes and Metabolic Disorders Unit, University of Verona, Verona, Italy
| | - Alessandra Petrelli
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Emanuele Bosi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Adriana Franzese
- Centre of Paediatric Diabetology, Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Mario Galgani
- Institute for Endocrinology and Experimental Oncology 'G. Salvatore', C.N.R, via Pansini 5, 80131, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II', via Pansini 5, 80131, Naples, Italy.
| | - Giuseppe Matarese
- Institute for Endocrinology and Experimental Oncology 'G. Salvatore', C.N.R, via Pansini 5, 80131, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II', via Pansini 5, 80131, Naples, Italy.
| | - Paola de Candia
- IRCCS MultiMedica, via G. Fantoli 16/15, 20138, Milan, Italy.
| |
Collapse
|
31
|
S.V. A, Pratibha M, Kapil B, M.K. S. Identification of circulatory miRNAs as candidate biomarkers in prediabetes - A systematic review and bioinformatics analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Ma Q, Mo G, Tan Y. Micro RNAs and the biological clock: a target for diseases associated with a loss of circadian regulation. Afr Health Sci 2020; 20:1887-1894. [PMID: 34394254 PMCID: PMC8351835 DOI: 10.4314/ahs.v20i4.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Circadian clocks are self-sustaining oscillators that coordinate behavior and physiology over a 24 hour period, achieving time-dependent homeostasis with the external environment. The molecular clocks driving circadian rhythmic changes are based on intertwined transcriptional/translational feedback loops that combine with a range of environmental and metabolic stimuli to generate daily internal programing. Understanding how biological rhythms are generated throughout the body and the reasons for their dysregulation can provide avenues for temporally directed therapeutics. Summary In recent years, microRNAs have been shown to play important roles in the regulation of the circadian clock, particularly in Drosophila, but also in some small animal and human studies. This review will summarize our current understanding of the role of miRNAs during clock regulation, with a particular focus on the control of clock regulated gene expression.
Collapse
Affiliation(s)
- Qianwen Ma
- Gynecology department, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang, China
- Reproductive medicine department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Genlin Mo
- Advanced manufacturing institution, Jiangsu University, Zhenjiang, China
| | - Yong Tan
- Reproductive medicine department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
33
|
Cheng X, Huang Y, Yang P, Bu L. miR-383 ameliorates high glucose-induced β-cells apoptosis and hyperglycemia in high-fat induced diabetic mice. Life Sci 2020; 263:118571. [PMID: 33058915 DOI: 10.1016/j.lfs.2020.118571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 12/13/2022]
Abstract
Islet beta-cell dysfunction is an important condition leading to the development of diabetes. Numerous studies have found that miRNA regulates islet β-cell function. In our previous research, the aberrant expression of miR-383 was revealed in type 2 diabetes mellitus (T2DM) serum. Herein, we aimed to assess the function and underlying mechanism of miR-383 in β-cells through in vitro and in vivo experiments. Using high glucose media, the β-cell injury was induced and transfected miR-383 overexpression vector to detect cell function in MIN6. Moreover, miR-383 overexpression lentivirus was administrated into high-fat induced diabetes mice to assess the in vivo effect. Results showed that overexpressing miR-383 reversed the cell apoptosis and oxidative stress, induced by high glucose which targets Toll-like receptors (TLR4) and Apolipoprotein C3 (ApoC3) genes. Furthermore, mechanistic studies demonstrated that miR-383 targeted the TLR4 and ApoC3 3' UTR consequently inhibiting TLR4 and ApoC3 expression in MIN6 cells. Besides, overexpression of miR-383 ameliorated hyperglycemia and pancreatic apoptosis in high-fat induced diabetic mice. Conclusively, miR-383 potentially alleviate pancreatic β-cell injury induced by high glucose and ameliorates high-fat induced diabetes by suppressing TLR4 and ApoC3 expression.
Collapse
Affiliation(s)
- Xiaoyun Cheng
- Department of Endocrinology, Shanghai 10th People Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yueye Huang
- Department of Endocrinology, Shanghai 10th People Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Yang
- Department of Endocrinology, Shanghai 10th People Hospital, Tongji University School of Medicine, Shanghai, China
| | - Le Bu
- Department of Endocrinology, Shanghai 10th People Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Aljaibeji H, Elemam NM, Mohammed AK, Hasswan H, Thahyabat MA, Alkhayyal N, Sulaiman N, Taneera J. Let7b-5p is Upregulated in the Serum of Emirati Patients with Type 2 Diabetes and Regulates Insulin Secretion in INS-1 Cells. Exp Clin Endocrinol Diabetes 2020; 130:22-29. [PMID: 33036033 DOI: 10.1055/a-1261-5282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Let7b-5p is a member of the Let-7 miRNA family and one of the top expressed miRNAs in human islets that implicated in glucose homeostasis. The levels of Let7b-5p in type 2 diabetes (T2DM) patients or its role in β-cell function is still unclear. In the current study, we measured the serum levels of let7b-5p in Emirati patients with T2DM (with/without complications) and control subjects. Overexpression or silencing of let7b-5p in INS-1 (832/13) cells was performed to investigate the impact on insulin secretion, content, cell viability, apoptosis, and key functional genes. We found that serum levels of let7b-5p are significantly (p<0.05) higher in T2DM-patients or T2DM with complications compared to control subjects. Overexpression of let7b-5p increased insulin content and decreased glucose-stimulated insulin secretion, whereas silencing of let7b-5p reduced insulin content and secretion. Modulation of the expression levels of let7b-5p did not influence cell viability nor apoptosis. Analysis of mRNA and protein expression of hallmark genes in let7b-5p transfected cells revealed a marked dysregulation of Insulin, Pancreatic And Duodenal Homeobox 1 (PDX1), glucokinase (GCK), glucose transporter 2 (GLUT2), and INSR. In conclusion, an appropriate level of let7b-5p is essential to maintain β-cell function and may be regarded as a biomarker for T2DM.
Collapse
Affiliation(s)
- Hayat Aljaibeji
- Sharjah Institute for Medical Research, University of Sharjah
| | | | | | - Hind Hasswan
- Sharjah Institute for Medical Research, University of Sharjah
| | | | - Noura Alkhayyal
- Sharjah Institute for Medical Research, University of Sharjah
| | - Nabil Sulaiman
- Department of Family Medicine, College of Medicine, University of Sharjah.,Baker/IDI Heart and Diabetes Institute, Melbourne, Victoria
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah.,Department of Basic Medical Sciences, College of Medicine, University of Sharjah
| |
Collapse
|
35
|
Rahmani S, Vakhshiteh F, Hodjat M, Sahranavardfard P, Hassani S, Ghafour Broujerdi E, Rahimifard M, Gholami M, Baeeri M, Abdollahi M. Gene-Environmental Interplay in Bisphenol A Subchronic Animal Exposure: New Insights into the Epigenetic Regulation of Pancreatic Islets. Chem Res Toxicol 2020; 33:2338-2350. [PMID: 32701268 DOI: 10.1021/acs.chemrestox.0c00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) such as bisphenol A (BPA), which is widely used in the plastic industry, have recently been considered to be involved in the pathogenesis of metabolic disorders, including obesity and diabetes. The present study aimed to examine the potentially detrimental effects of BPA on glucose and energy metabolism at the epigenetic level. The blood glucose profile of Wistar rats receiving different oral doses of BPA over 28 days was assessed. At the end of the treatment, the islets of Langerhans were isolated and purified, and their RNA content was extracted. MicroRNA (miRNA) profiling was evaluated using the next generation sequencing (NGS) method. After performing bioinformatic analysis of the NGS data, the gene ontology and data enrichment in terms of significantly disturbed miRNAs were evaluated through different databases, including Enrichr and DIANA tools. Additionally, the DNA methylation and the level of expression of two critical genes in glucose metabolism (PPARγ, Pdx1) were assessed. Subchronic BPA exposure (406 mg/kg/day) disturbed the blood glucose profile (fasting blood glucose and oral glucose tolerance) of Wistar rats and resulted in considerable cytotoxicity. NGS data analyses revealed that the expression of some crucial miRNAs involved in β-cell metabolism and diabetes occurrence and development, including miR-375, miR-676, miR-126-a, and miR-340-5p, was significantly disrupted. According to the DNA methylation evaluation, both PPARγ and Pdx1 genes underwent changes in the methylation level at particular loci on the gene's promoter. The expression levels of these genes were upregulated and downregulated, respectively. Overall, subchronic BPA exposure could cause epigenetic dysregulation at the gene level and interfere with the expression of key miRNAs and the methylation process of genes involved in glucose homeostasis. Understanding the exact underlying mechanisms by which BPA and other EDCs induce endocrine disturbance could be of great importance in the way of finding new preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Soheila Rahmani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Faezeh Vakhshiteh
- Nanotechnology Research Centre, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Parisa Sahranavardfard
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Elmira Ghafour Broujerdi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahdi Gholami
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
36
|
Guan CY, Tian S, Cao JL, Wang XQ, Ma X, Xia HF. Down-Regulated miR-21 in Gestational Diabetes Mellitus Placenta Induces PPAR-α to Inhibit Cell Proliferation and Infiltration. Diabetes Metab Syndr Obes 2020; 13:3009-3034. [PMID: 32943895 PMCID: PMC7455759 DOI: 10.2147/dmso.s253920] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This study aimed to investigate the role of miR-21 expression in the reduction of placental function in GDM patients. MATERIALS AND METHODS qRT-PCR was used to detect the differential expression of miR-21 in the serum of gestational diabetes mellitus (GDM) and normal pregnant women, and to verify the functional target gene PPAR-α of miR-21 by double fluorescence experiments. Cellular experiments were performed to verify the effect of PPAR-α on cell function. RESULTS miR-21 is down-regulated in the serum and placenta of GDM patients compared to normal pregnant women. In the case of insulin resistance, miR-21-5p knockdown promoted glucose uptake, but no significant effect was found under physiological condition. Functional studies have shown that reduced PPAR-α expression can restore miR-21 knockdown-mediated cell growth and metastasis inhibition. Additionally, decreased expression of miR-21 but increased expression of -PPAR-α was observed in patients with GDM and GDM rats. CONCLUSION The expression of the placental miR-21-5p, which inhibits cell growth and infiltration by up-regulating PPAR-α, is downregulated in pregnant GDM patients, which in turn may affect the placental function.
Collapse
Affiliation(s)
- Chun-Yi Guan
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing100081, People’s Republic of China
- Graduate School, Peking Union Medical College, Beijing Province100005, People’s Republic of China
| | - Shi Tian
- Haidian Maternal & Child Health Hospital, Beijing100080, People’s Republic of China
| | - Jing-Li Cao
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing100081, People’s Republic of China
- Graduate School, Peking Union Medical College, Beijing Province100005, People’s Republic of China
| | - Xue-Qin Wang
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing100081, People’s Republic of China
- Graduate School, Peking Union Medical College, Beijing Province100005, People’s Republic of China
| | - Xu Ma
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing100081, People’s Republic of China
- Graduate School, Peking Union Medical College, Beijing Province100005, People’s Republic of China
| | - Hong-Fei Xia
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing100081, People’s Republic of China
- Graduate School, Peking Union Medical College, Beijing Province100005, People’s Republic of China
| |
Collapse
|
37
|
Kaur P, Kotru S, Singh S, Behera BS, Munshi A. Role of miRNAs in the pathogenesis of T2DM, insulin secretion, insulin resistance, and β cell dysfunction: the story so far. J Physiol Biochem 2020; 76:485-502. [PMID: 32749641 DOI: 10.1007/s13105-020-00760-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/29/2020] [Indexed: 01/24/2023]
Abstract
Diabetes, the most common endocrine disorder, also known as a silent killer disease, is characterized by uncontrolled hyperglycemia. According to the International Diabetes Federation, there were 451 million people with diabetes mellitus worldwide in 2017. It is a multifactorial syndrome caused by genetic as well as environmental factors. Noncoding RNAs, especially the miRNAs, play a significant role in the development as well as the progression of the disease. This is on account of insulin resistance or defects in β cell function. Various miRNAs including miR-7, miR-9, miR-16, miR-27, miR-24, miR-29, miR-124a, miR-135, miR-130a, miR-144, miR-181a, and miR-375 and many more have been associated with insulin resistance and other pathogenic conditions leading to the development of the disease. These miRNAs play significant roles in various pathways underlying insulin resistance such as PI3K, AKT/GSK, and mTOR. The main target genes of these miRNAs are FOXO1, FOXA2, STAT3, and PTEN. The miRNAs carry out important functions in insulin target tissues like the adipose tissue, liver, and muscle. MiRNAs miR-9, miR-375, and miR-124a, are also associated with the secretion of insulin from pancreatic cells. There is an interplay between the miRNAs and pancreatic cell growth, especially the miRNAs affecting development and proliferation of these cells. Most of the miRNAs target more than one gene which not only justifies their use as biomarkers but also their therapeutic potential. The current review has been compiled with an aim to discuss the role of various miRNAs involved in various pathogenic mechanisms including insulin resistance, insulin secretion, and the β cell dysfunction.
Collapse
Affiliation(s)
- Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Sushil Kotru
- Max Endocrinology, Diabetes and Obesity Care Centre, Max Superspeciality Hospital, Bathinda, 151001, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Bidwan Sekhar Behera
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
38
|
Thymoquinone potentiates miR-16 and miR-375 expressions in hepatocellular carcinoma. Life Sci 2020; 254:117794. [DOI: 10.1016/j.lfs.2020.117794] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/27/2022]
|
39
|
Avgeris M, Kokkinopoulou I, Maratou E, Mitrou P, Boutati E, Scorilas A, Fragoulis EG, Christodoulou MI. Blood-based analysis of 84 microRNAs identifies molecules deregulated in individuals with type-2 diabetes, risk factors for the disease or metabolic syndrome. Diabetes Res Clin Pract 2020; 164:108187. [PMID: 32360711 DOI: 10.1016/j.diabres.2020.108187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 01/26/2023]
Abstract
AIM Micro-RNAs (miRNAs) are implicated in insulin-signaling and the development of type-2 diabetes (T2D). Their deregulated expression is mostly described in the pancreas, liver, skeletal muscle, or adipose tissue of diabetic animals. Relevant studies in humans are limited due to difficulties in accessing tissue-biopsies. Though, circulating miRNAs are indicators of organ-specific pathophysiological events and could potentially serve as disease biomarkers. We explored the profile of 84 T2D-related miRNAs in peripheral blood of subjects with or without the disease. METHODS An RT-qPCR array screening 84 T2D-related miRNAs was applied in samples of T2D (n = 6) versus non-T2D (n = 6) subjects. The deregulated miRNAs were thereafter analyzed in peripheral blood samples of a validation cohort of 40 T2D and 37 non-T2D individuals [16 controls and 21 subjects with metabolic syndrome (Met-S) and/or T2D risk factors (T2D-RF)], using specific RT-qPCR assays. Correlations with clinicopathological parameters and risk factors were evaluated. RESULTS Subjects with the disease displayed decreased levels of miR-214-3p, miR-24-3p and let-7f-5p, compared to those without. MiRNA levels correlated with serum insulin and HbA1c levels in individuals with T2D or Met-S/T2D-RF, and with higher BMI, dyslipidemia and family history in controls. CONCLUSIONS Blood levels of miR-214-3p, miR-24-3p and let-7f-5p are down-regulated in T2D- and Met-S/T2D-RF subjects. Future studies are needed to evaluate their potential as disease biomarkers and elucidate the associated tissue-specific pathogenetic mechanisms.
Collapse
Affiliation(s)
- Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Kokkinopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eirini Maratou
- Second Department of Internal Medicine, School of Medicine, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Eleni Boutati
- Second Department of Internal Medicine, School of Medicine, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanuel G Fragoulis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Ioanna Christodoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
40
|
Spracklen CN, Horikoshi M, Kim YJ, Lin K, Bragg F, Moon S, Suzuki K, Tam CHT, Tabara Y, Kwak SH, Takeuchi F, Long J, Lim VJY, Chai JF, Chen CH, Nakatochi M, Yao J, Choi HS, Iyengar AK, Perrin HJ, Brotman SM, van de Bunt M, Gloyn AL, Below JE, Boehnke M, Bowden DW, Chambers JC, Mahajan A, McCarthy MI, Ng MCY, Petty LE, Zhang W, Morris AP, Adair LS, Akiyama M, Bian Z, Chan JCN, Chang LC, Chee ML, Chen YDI, Chen YT, Chen Z, Chuang LM, Du S, Gordon-Larsen P, Gross M, Guo X, Guo Y, Han S, Howard AG, Huang W, Hung YJ, Hwang MY, Hwu CM, Ichihara S, Isono M, Jang HM, Jiang G, Jonas JB, Kamatani Y, Katsuya T, Kawaguchi T, Khor CC, Kohara K, Lee MS, Lee NR, Li L, Liu J, Luk AO, Lv J, Okada Y, Pereira MA, Sabanayagam C, Shi J, Shin DM, So WY, Takahashi A, Tomlinson B, Tsai FJ, van Dam RM, Xiang YB, Yamamoto K, Yamauchi T, Yoon K, Yu C, Yuan JM, Zhang L, Zheng W, Igase M, Cho YS, Rotter JI, Wang YX, Sheu WHH, Yokota M, Wu JY, Cheng CY, Wong TY, Shu XO, Kato N, Park KS, Tai ES, Matsuda F, Koh WP, Ma RCW, Maeda S, Millwood IY, Lee J, Kadowaki T, Walters RG, Kim BJ, Mohlke KL, Sim X. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 2020; 582:240-245. [PMID: 32499647 PMCID: PMC7292783 DOI: 10.1038/s41586-020-2263-3] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes-NKX6-3 and ANK1-in different tissues4-6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.
Collapse
Affiliation(s)
- Cassandra N Spracklen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Momoko Horikoshi
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
| | - Young Jin Kim
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Fiona Bragg
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sanghoon Moon
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Ken Suzuki
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Soo-Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Victor J Y Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Masahiro Nakatochi
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hyeok Sun Choi
- Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Apoorva K Iyengar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah J Perrin
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah M Brotman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martijn van de Bunt
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
- Stanford University, Stanford, CA, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Anubha Mahajan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Maggie C Y Ng
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Genomics and Personalized Medicine Research, Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
| | - Andrew P Morris
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Statistical Analysis, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, China
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Miao-Li Chee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Lee-Ming Chuang
- Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Preventive Medicine, School of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Sohee Han
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Annie-Green Howard
- Department of Biostatistics, Carolina Population Center, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Mi Yeong Hwang
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hye-Mi Jang
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chiea-Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Katsuhiko Kohara
- Department of Regional Resource Management, Ehime University Faculty of Collaborative Regional Innovation, Ehime, Japan
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nanette R Lee
- Department of Anthropology, Sociology and History, University of San Carlos, Cebu City, Philippines
| | - Liming Li
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Andrea O Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
| | - Mark A Pereira
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jinxiu Shi
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Dong Mun Shin
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Atsushi Takahashi
- Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Fuu-Jen Tsai
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyungheon Yoon
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liang Zhang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michiya Igase
- Department of Anti-aging Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yoon Shin Cho
- Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ya-Xing Wang
- Beijing Institute of Ophthalmology, Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wayne H H Sheu
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kyong-Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shiro Maeda
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Juyoung Lee
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK.
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea.
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
| |
Collapse
|
41
|
MicroRNA-127 inhibits cell proliferation via targeting Kif3b in pancreatic β cells. Aging (Albany NY) 2020; 11:1342-1355. [PMID: 30822278 PMCID: PMC6428088 DOI: 10.18632/aging.101835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/17/2019] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) have been implicated in β cells dysfunction. Previous studies indicated that miR-127 was specifically abundant in β cells and one of its target genes, Kif3b, promoted cell proliferation. However, the impact of the miR-127-Kif3b axis on β cells remains unknown. In this study, we revealed that miR-127 level was declined both in islets from the mice with a high-fat diet and in MIN6 cells with elevated glucose treatment. The elevated level of miR-127 attenuated β cell proliferation by repressing Kif3b expression without affecting apoptosis and cell cycle, and it dampened insulin secretion. Moreover, β cell-derived miR-127 could also affect the islet endothelial cell-line, MS1, in vitro via the transfer of extracellular vesicles (EVs). Treating MS1 cells with the EVs secreted by MIN6 cells exhibited a higher ability in cell migration and tube formation. However, this effect was abolished by the miR-127 inhibitor co-cultured with EVs-treated MS1 cells. Thus, we define that miR-127 is a crucial regulator of insulin secretion and cell proliferation in pancreatic β cells as well as a potential functional regulation factor in islet endothelial cells.
Collapse
|
42
|
Lawlor N, Márquez EJ, Orchard P, Narisu N, Shamim MS, Thibodeau A, Varshney A, Kursawe R, Erdos MR, Kanke M, Gu H, Pak E, Dutra A, Russell S, Li X, Piecuch E, Luo O, Chines PS, Fuchbserger C, Sethupathy P, Aiden AP, Ruan Y, Aiden EL, Collins FS, Ucar D, Parker SCJ, Stitzel ML. Multiomic Profiling Identifies cis-Regulatory Networks Underlying Human Pancreatic β Cell Identity and Function. Cell Rep 2020; 26:788-801.e6. [PMID: 30650367 PMCID: PMC6389269 DOI: 10.1016/j.celrep.2018.12.083] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/26/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
EndoC-βH1 is emerging as a critical human β cell model to study the genetic and environmental etiologies of β cell (dys)function and diabetes. Comprehensive knowledge of its molecular landscape is lacking, yet required, for effective use of this model. Here, we report chromosomal (spectral karyotyping), genetic (genotyping), epigenomic (ChIP-seq and ATAC-seq), chromatin interaction (Hi-C and Pol2 ChIA-PET), and transcriptomic (RNA-seq and miRNA-seq) maps of EndoC-βH1. Analyses of these maps define known (e.g., PDX1 and ISL1) and putative (e.g., PCSK1 and mir-375) β cell-specific transcriptional cis-regulatory networks and identify allelic effects on cis-regulatory element use. Importantly, comparison with maps generated in primary human islets and/or β cells indicates preservation of chromatin looping but also highlights chromosomal aberrations and fetal genomic signatures in EndoC-βH1. Together, these maps, and a web application we created for their exploration, provide important tools for the design of experiments to probe and manipulate the genetic programs governing β cell identity and (dys)function in diabetes. EndoC-βH1 is becoming an important cellular model to study genes and pathways governing human β cell identity and function, but its (epi)genomic similarity to primary human islets is unknown. Lawlor et al. complete and compare extensive EndoC and primary human islet multiomic maps to identify shared and distinct genomic circuitry.
Collapse
Affiliation(s)
- Nathan Lawlor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Eladio J Márquez
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Narisu Narisu
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Muhammad Saad Shamim
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Asa Thibodeau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Arushi Varshney
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael R Erdos
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Huiya Gu
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Evgenia Pak
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Amalia Dutra
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Sheikh Russell
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77030, USA
| | - Xingwang Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Emaly Piecuch
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT 06032, USA
| | - Oscar Luo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter S Chines
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Christian Fuchbserger
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Aviva Presser Aiden
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Erez Lieberman Aiden
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francis S Collins
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT 06032, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT 06032, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| |
Collapse
|
43
|
Tian F, Tang P, Sun Z, Zhang R, Zhu D, He J, Liao J, Wan Q, Shen J. miR-210 in Exosomes Derived from Macrophages under High Glucose Promotes Mouse Diabetic Obesity Pathogenesis by Suppressing NDUFA4 Expression. J Diabetes Res 2020; 2020:6894684. [PMID: 32258168 PMCID: PMC7106924 DOI: 10.1155/2020/6894684] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is featured by insulin resistance and lipid metabolism dysregulation. A large number of miRNAs were identified in exosomes derived from adipose tissue macrophages associated with T2DM pathogenesis, but its pathogenic roles remain unknown. This study is aimed at investigating the function of miR-210 in diabetic obesity. METHODS Exosomes from mouse macrophage RAW264.7 cells were characterized by electron microscopy, combined with biomarker expression by western blot. Expression of miR-210 was determined by quantitative RT-PCR. Glucose uptake was measured by a fluorometric method, and the mitochondrial respiratory chain activity was evaluated by ELISA. The target gene of miR-210 was validated by dual-luciferase reporter and pull-down assays. A mouse obese diabetic model was established by a high-fat diet and streptozocin treatment. RESULTS miR-210 was highly expressed in exosomes derived from high glucose-induced macrophage RAW264.7 cells. Macrophage-derived exosomes impaired glucose uptake and mitochondrial CIV complex activity and suppressed NADH dehydrogenase ubiquinone 1 alpha subcomplex 4 (NDUFA4) expression in 3T3-L1 adipocytes. miR-210 directly bind with mRNA sequences of NDUFA4 gene. Inhibition of miR-210 mitigated the effects of macrophage-derived exosomes on the glucose uptake and complex IV (CIV) activity in 3T3-L1 adipocytes, and NDUFA4 overexpression offset the inhibition of glucose uptake and CIV activity by macrophage-derived exosomes. Furthermore, mice with miR-210 knockout showed greatly repressed diabetic obesity development. CONCLUSION miR-210 derived from adipose tissue macrophages promotes mouse obese diabetes pathogenesis by regulating glucose uptake and mitochondrial CIV activity through targeting NDUFA4 gene expression.
Collapse
Affiliation(s)
- Feng Tian
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Ping Tang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Zhilian Sun
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Ruifen Zhang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Danhua Zhu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Junying He
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Jixing Liao
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Qinghua Wan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
A Comprehensive Molecular Characterization of the Pancreatic Neuroendocrine Tumor Cell Lines BON-1 and QGP-1. Cancers (Basel) 2020; 12:cancers12030691. [PMID: 32183367 PMCID: PMC7140066 DOI: 10.3390/cancers12030691] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023] Open
Abstract
Experimental models of neuroendocrine tumor disease are scarce, with only a few existing neuroendocrine tumor cell lines of pancreatic origin (panNET). Their molecular characterization has so far focused on the neuroendocrine phenotype and cancer-related mutations, while a transcription-based assessment of their developmental origin and malignant potential is lacking. In this study, we performed immunoblotting and qPCR analysis of neuroendocrine, epithelial, developmental endocrine-related genes as well as next-generation sequencing (NGS) analysis of microRNAs (miRs) on three panNET cell lines, BON-1, QGP-1, and NT-3. All three lines displayed a neuroendocrine and epithelial phenotype; however, while insulinoma-derived NT-3 cells preferentially expressed markers of mature functional pancreatic β-cells (i.e., INS, MAFA), both BON-1 and QGP-1 displayed high expression of genes associated with immature or non-functional β/δ-cells genes (i.e., NEUROG3), or pancreatic endocrine progenitors (i.e., FOXA2). NGS-based identification of miRs in BON-1 and QGP-1 cells revealed the presence of all six members of the miR-17–92 cluster, which have been implicated in β-cell function and differentiation, but also have roles in cancer being both oncogenic or tumor suppressive. Notably, both BON-1 and QGP-1 cells expressed several miRs known to be negatively associated with epithelial–mesenchymal transition, invasion or metastasis. Moreover, both cell lines failed to exhibit migratory activity in vitro. Taken together, NT-3 cells resemble mature functional β-cells, while both BON-1 and QGP-1 are more similar to immature/non-functional pancreatic β/δ-cells or pancreatic endocrine progenitors. Based on the recent identification of three transcriptional subtypes in panNETs, NT-3 cells resemble the “islet/insulinoma tumors” (IT) subtype, while BON-1 and QGP-1 cells were tentatively classified as “metastasis-like/primary” (MLP). Our results provide a comprehensive characterization of three panNET cell lines and demonstrate their relevance as neuroendocrine tumor models.
Collapse
|
45
|
Micro(RNA) Management and Mismanagement of the Islet. J Mol Biol 2020; 432:1419-1428. [DOI: 10.1016/j.jmb.2019.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023]
|
46
|
Hossan T, Kundu S, Alam SS, Nagarajan S. Epigenetic Modifications Associated with the Pathogenesis of Type 2 Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2020; 19:775-786. [PMID: 30827271 DOI: 10.2174/1871530319666190301145545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 12/28/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder. Pancreatic β-cell dysfunction and insulin resistance are the most common and crucial events of T2DM. Increasing evidence suggests the association of epigenetic modifications with the pathogenesis of T2DM through the changes in important biological processes including pancreatic β- cell differentiation, development and maintenance of normal β-cell function. Insulin sensitivity by the peripheral glucose uptake tissues is also changed by the altered epigenetic mechanisms. In this review, we discussed the major epigenetic alterations and their effects on β-cell function, insulin secretion and insulin resistance in context of T2DM. METHODS We investigated the presently available epigenetic modifications including DNA methylation, posttranslational histone modifications, ATP-dependent chromatin remodeling and non-coding RNAs related to the pathogenesis of T2DM. Published literatures on this topic were searched both on Google Scholar and Pubmed with related keywords and investigated for relevant information. RESULTS The epigenetic modifications introduce changes in gene expression which are essential for appropriate β-cell development and functions, insulin secretion and sensitivity resulting in the pathogenesis of T2DM. Interestingly, T2DM could also be a prominent reason for the mentioned epigenetic alterations. CONCLUSION This review article emphasized on the epigenetic modifications associated with T2DM and discussed the consequences in deterioration of the disease condition.
Collapse
Affiliation(s)
- Tareq Hossan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Shoumik Kundu
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Sayeda Sadia Alam
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Sankari Nagarajan
- Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| |
Collapse
|
47
|
Werneck-de-Castro JP, Blandino-Rosano M, Hilfiker-Kleiner D, Bernal-Mizrachi E. Glucose stimulates microRNA-199 expression in murine pancreatic β-cells. J Biol Chem 2020; 295:1261-1270. [PMID: 31882540 PMCID: PMC6996880 DOI: 10.1074/jbc.ra119.010356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNA 199 (miR-199) negatively impacts pancreatic β-cell function and its expression is highly increased in islets from diabetic mice as well as in plasma of diabetic patients. Here we investigated how miR-199 expression is regulated in β-cells by assessing expression of miR-199 precursors (primiR-199a1, primiR-199a2, and primiR-199b) and mature miR-199 (miR-199-3p and miR-199-5p) and promoter transcriptional activity assays in mouse islets and mouse insulinoma cells (MIN6) under different stimuli. We found that mouse islets equally express miR-199-3p and miR-199-5p. However, the primiRNA expression levels differed; although primiR-199a1 expression was about 30% greater than that of primiR-199a2, primiR-199b is barely detected in islets. We observed a 2-fold increase in primiR-199a1 and primiR-199a2 mRNA levels in mouse islets cultured in 10 mm glucose compared with 5.5 mm glucose. Similar responses to glucose were observed in MIN6 cells. Exposure to 30 mm KCl to induce membrane depolarization and calcium influx increased expression of primiR-199a2 but not of primiR-199a1 in MIN6 cells, indicating that calcium influx was involved. Transcriptional activity studies in MIN6 cells also revealed that primiR-199a2 promoter activity was enhanced by glucose and reduced by 2-deoxy-D-glucose-induced starvation. KCl and the potassium channel blocker tolbutamide also stimulated primiR-199a2 promoter activity. Calcium channel blockade by nifedipine reduced primiR-199a2 promoter activity in MIN6 cells, and diazoxide-mediated calcium influx inhibition blunted glucose up-regulation of miR-199-3p in islets. In conclusion, we uncover that glucose acutely up-regulates miR-199 family expression in β-cells. Glucose metabolism and calcium influx are involved in primiR-199a2 expression but not primiR-199a1 expression.
Collapse
Affiliation(s)
- Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami, Miller School of Medicine, Miami, Florida 33136,Miami Veterans Affairs Health Care System, Miami, Florida 33136
| | - Manuel Blandino-Rosano
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami, Miller School of Medicine, Miami, Florida 33136
| | | | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami, Miller School of Medicine, Miami, Florida 33136 .,Miami Veterans Affairs Health Care System, Miami, Florida 33136
| |
Collapse
|
48
|
Werneck-de-Castro JP, Blandino-Rosano M, Hilfiker-Kleiner D, Bernal-Mizrachi E. Glucose stimulates microRNA-199 expression in murine pancreatic β-cells. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49884-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
49
|
Fan L, Shan A, Su Y, Cheng Y, Ji H, Yang Q, Lei Y, Liu B, Wang W, Ning G, Cao Y, Jiang X. MiR-221/222 Inhibit Insulin Production of Pancreatic β-Cells in Mice. Endocrinology 2020; 161:5639771. [PMID: 31761936 DOI: 10.1210/endocr/bqz027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/23/2019] [Indexed: 11/19/2022]
Abstract
Microribonucleic acids (miRNAs) are essential for the regulation of development, proliferation, and functions of pancreatic β-cells. The conserved miR-221/222 cluster is an important regulator in multiple cellular processes. Here we investigated the functional role of miR-221/222 in the regulation of β-cell proliferation and functions in transgenic mouse models. We generated 2 pancreatic β-cell-specific-miR-221/222 transgenic mouse models on a C57BL/6J background. The glucose metabolic phenotypes, β-cell mass, and β-cell functions were analyzed in the mouse models. Adenovirus-mediated overexpression of miR-221/222 was performed on β-cells and mouse insulinoma 6 (MIN6) cells to explore the effect and mechanisms of miR-221/222 on β-cell proliferation and functions. Luciferase reporter assay, histological analysis, and quantitative polymerase chain reaction (PCR) were carried out to study the direct target genes of miR-221/222 in β-cells. The expression of miR-221/222 was significantly upregulated in β-cells from the high-fat diet (HFD)-fed mice and db/db mice. Overexpression of miR-221/222 impaired the insulin production and secretion of β-cells and resulted in glucose intolerance in vivo. The β-cell mass and proliferation were increased by miR-221/222 expression via Cdkn1b and Cdkn1c. MiR-221/222 repressed insulin transcription activity through targeting Nfatc3 and lead to reduction of insulin in β-cells. Our findings demonstrate that miR-221/222 are important regulators of β-cell proliferation and insulin production. The expression of miR-221/222 in β-cells could regulate glucose metabolism in physiological and pathological processes.
Collapse
Affiliation(s)
- Liwen Fan
- National Clinical Research Centre for Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Aijing Shan
- National Clinical Research Centre for Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yutong Su
- National Clinical Research Centre for Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yulong Cheng
- National Clinical Research Centre for Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - He Ji
- National Clinical Research Centre for Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qi Yang
- National Clinical Research Centre for Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ying Lei
- National Clinical Research Centre for Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bei Liu
- National Clinical Research Centre for Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- National Clinical Research Centre for Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- National Clinical Research Centre for Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yanan Cao
- National Clinical Research Centre for Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xiuli Jiang
- National Clinical Research Centre for Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Iacomino G, Lauria F, Venezia A, Iannaccone N, Russo P, Siani A. microRNAs in Obesity and Metabolic Diseases. OBESITY AND DIABETES 2020:71-95. [DOI: 10.1007/978-3-030-53370-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|