1
|
Mierzejewska-Sinner E, Thijs S, Vangronsveld J, Urbaniak M. Towards enhancing phytoremediation: The effect of syringic acid, a plant secondary metabolite, on the presence of phenoxy herbicide-tolerant endophytic bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178414. [PMID: 39808900 DOI: 10.1016/j.scitotenv.2025.178414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Among emerging pollutants, residuals of phenoxy herbicides, including 2-chloro-4-methylphenoxy acid (MCPA), are frequently detected in non-targeted areas. MCPA can be removed from environmental matrices using biological remediation methods including endophyte-assisted phytoremediation. The interactions between selected plants excreting to the rhizosphere plant secondary metabolites (PSMs) and plant-associated bacteria (incl. endophytes) can speed up the removal of organics and increase the plants resistance to pollutants such as MCPA. The role of plant-associated bacteria in endophyte-assisted phytoremediation has been partially described, however neither MCPA-tolerant endophytic bacteria has been isolated nor characterized. So far, promising results were obtained by simultaneous cultivation of Cucurbita pepo (zucchini) and amendment of soil with structurally related PSM syringic acid (SA), which can substantially enhance removal of MCPA from soil. Hence, the main aim of this research was to study the effect of PSM (SA) on the presence of functional MCPA-tolerant endophytic bacteria using a culture-dependent and -independent approach. Comparison between the molecular and microbiological analysis revealed differences between applied methods. However, irrespectively of the genera identification methods, presence of phenolic compounds (MCPA or SA) favorized presence of potential MCPA-degraders. On the basis of MCPA tolerance tests of isolated bacteria, two Pseudomonas endophytic isolates from zucchini roots and three isolates from zucchini leaves i.e. Pseudomonas sp., Paenarthrobacter sp. and Acinetobacter sp. were selected for further screening of plant growth promoting properties (PGPP). MCPA-tolerant endophytic bacteria showed multiple PGPP. Therefore, these isolates can potentially contribute to an improved fitness of plants used for the purpose of enhancing phytoremediation of environments polluted with phenoxy herbicides.
Collapse
Affiliation(s)
- Elżbieta Mierzejewska-Sinner
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033, Lublin, Poland
| | - Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
2
|
Nethmini RT, Zhao H, Pan L, Qin X, Huang J, He Q, Shi X, Jiang G, Hou Q, Chen Q, Li X, Dong K, Xie L, Li N. Thermal sensitivity and niche plasticity of generalist and specialist leaf-endophytic bacteria in Mangrove Kandelia obovata. Commun Biol 2025; 8:5. [PMID: 39753754 PMCID: PMC11699152 DOI: 10.1038/s42003-024-07446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025] Open
Abstract
Leaf endospheres harbor diverse bacterial communities, comprising generalists and specialists, that profoundly affect ecosystem functions. However, the ecological dynamics of generalist and specialist leaf-endophytic bacteria and their responses to climate change remain poorly understood. We investigated the diversity and environmental responses of generalist and specialist bacteria within the leaf endosphere of mangroves across China. Our findings show a predominance of specialists in the mangrove leaf endosphere. Temperature is the key factor driving community dissimilarity in both groups, yet it negatively influences the alpha diversity. Soil nutritional factors, particularly phosphate for generalists and total organic carbon for specialists are critical in shaping the functional profiles. Interestingly, temperature has a limited impact on functional profiles. Stochastic processes govern community assembly in both bacterial groups, altering the β-nearest taxon indices as temperatures increase. Our findings indicate that the halophytic leaf endosphere favors microbial niche specialization, due to its unique microenvironment and discrete niches, showing thermal sensitivity in terms of the microbial community profile. This study provides insights into niche differentiation and environmental adaptation mechanisms of leaf endophytic microbes in woody halophytes in response to environmental perturbations.
Collapse
Affiliation(s)
- Rajapakshalage Thashikala Nethmini
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, China
| | - Lianghao Pan
- Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Sciences, Beihai, Guangxi, China
| | - Xinyi Qin
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, China
| | | | - Qing He
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Xiaofang Shi
- Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Sciences, Beihai, Guangxi, China
| | - Gonglingxia Jiang
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Qinghua Hou
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Qingxiang Chen
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Xiaolei Li
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16227, South Korea, Republic of Korea
| | - Lingling Xie
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Nan Li
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
3
|
Schlechter RO, Remus‐Emsermann MNP. Differential Responses of Methylobacterium and Sphingomonas Species to Multispecies Interactions in the Phyllosphere. Environ Microbiol 2025; 27:e70025. [PMID: 39792582 PMCID: PMC11722692 DOI: 10.1111/1462-2920.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
The leaf surface, known as the phylloplane, presents an oligotrophic and heterogeneous environment due to its topography and uneven distribution of resources. Although it is a challenging environment, leaves support abundant bacterial communities that are spatially structured. However, the factors influencing these spatial distribution patterns are not well understood. To study the changes in population density and spatial distribution of bacteria in synthetic communities, the behaviour of two common bacterial groups in the Arabidopsis thaliana leaf microbiota-Methylobacterium (methylobacteria) and Sphingomonas (sphingomonads)-was examined. Using synthetic communities consisting of two or three species, the hypothesis was tested that the presence of a third species affects the density and spatial interaction of the other two species. Results indicated that methylobacteria exhibit greater sensitivity to changes in population densities and spatial patterns, with higher intra-genus competition and lower densities and aggregation compared to sphingomonads. Pairwise comparisons were insufficient to explain the shifts observed in three-species communities, suggesting that higher-order interactions influence the structuring of complex communities. This emphasises the role of multispecies interactions in determining spatial patterns and community dynamics on the phylloplane.
Collapse
Affiliation(s)
- R. O. Schlechter
- Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
- School of Biological Sciences and Biomolecular Interaction Centre and Bioprotection Research CoreUniversity of CanterburyChristchurchNew Zealand
| | - M. N. P. Remus‐Emsermann
- Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
- School of Biological Sciences and Biomolecular Interaction Centre and Bioprotection Research CoreUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
4
|
Peng W, Zheng Y, Wei M, Wang Y, Wang Y, Xiao M, Zhang R. Effects of rumen fluid and molasses on the nutrient composition, fermentation quality, and microflora of Caragana korshinskii Kom. silage. Sci Rep 2024; 14:31763. [PMID: 39738286 DOI: 10.1038/s41598-024-82621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The aim of this experiment was to investigate the effects of rumen fluid and molasses on the nutrient composition, fermentation quality, and microflora of Caragana korshinskii Kom. The trial included four treatments: a control group (CK) without additives and experimental groups supplemented with 7% rumen fluid (R), 4% molasses (M), and 7% rumen fluid + 4% molasses (RM). 15 days and 60 days of ensiling. The results showed that the addition of R, M, and RM reduced the contents of neutral detergent fibre (NDF) and acid detergent fibre (ADF). The addition of M and RM increased the content of water soluble carbohydrates (WSC) but increased the loss of DM. The addition of M and RM promoted rapid pH reduction below 4.2. At 60 days of ensiling, the addition of R alone promoted the production of lactic acid (LA). The addition of R and RM increased microbial diversity. The addition of RM slowed the rate at which Lactobacillus became the dominant genus and improved the ability of Enterobacter to compete for fermentable substrates. M and RM could increase microbial activity and promote metabolism. In general, the addition of M or RM improved the fermentation quality and nutritional value of C. korshinskii silage.
Collapse
Affiliation(s)
- Wen Peng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Yongjie Zheng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Manlin Wei
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Yajing Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100091, China
| | - Yuxiang Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Ming Xiao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Runze Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| |
Collapse
|
5
|
Jia Y, Huan H, Zhang W, Wan B, Sun J, Tu Z. Soil infiltration mechanisms under plant root disturbance in arid and semi-arid grasslands and the response of solute transport in rhizosphere soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177633. [PMID: 39579890 DOI: 10.1016/j.scitotenv.2024.177633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The symbiotic relationship between plant roots and soil infiltration is of great significance for sustainable development of the agriculture and forestry. Through detailed summary of the relationship between root morphological parameters and soil infiltration rates in arid and semi-arid grasslands mainly with leguminous herbs, gramineous herbs and shrubs, the mechanisms that key parameters (root length density, surface area density, diameter, biomass density, architecture, secretion and decay rate) disturb soil infiltration through affecting soil structure such as porosity, soil bulk density and soil organic matter (SOM) are elucidated. Furthermore, the degree of root disturbance on soil structure and infiltration rates are partially clarified by constructing quantitatively structural equation modeling path diagrams. The results show roots have the most significant effect to increase soil infiltration rates through increasing non-capillary pores, contributing to >50 % of the positive effect. In contrast, the increased SOM influenced by roots can obstruct soil infiltration and offset about 25 % of the positive effects. In addition, the impact of root disturbance on transport of nutrients, pesticide and pathogenic microorganisms in rhizosphere soil is also discussed to analyze the potential influence on food and water environmental safety. The presence of roots reduces the amount of leachate-prone nutrients, but their disturbance increases the rate of soil infiltration thus accelerates transport of solutes into deeper soil. Meanwhile, the rhizosphere alters the environmental behavior of pesticides and pathogenic microorganisms, increasing risk of plant roots exposure to them. At present, systematically quantifying the interference of plant roots on soil structure and soil infiltration capacity remains a major challenge. It is necessary to further improve the research methodology and strengthen the study of root soil interaction mechanisms, providing scientific basis and technical support for sustainable agricultural development and ecological environment protection.
Collapse
Affiliation(s)
- Yuanyuan Jia
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Huan Huan
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Bo Wan
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Jiaming Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Zhipeng Tu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| |
Collapse
|
6
|
Azeez AA, Esiegbuya DO, Lateef AA, Asiegbu FO. Mycobiome analysis of leaf, root, and soil of symptomatic oil palm trees ( Elaeis guineensis Jacq.) affected by leaf spot disease. Front Microbiol 2024; 15:1422360. [PMID: 39712899 PMCID: PMC11659247 DOI: 10.3389/fmicb.2024.1422360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/31/2024] [Indexed: 12/24/2024] Open
Abstract
Recently, attention has been shifting toward the perspective of the existence of plants and microbes as a functioning ecological unit. However, studies highlighting the impacts of the microbial community on plant health are still limited. In this study, fungal community (mycobiome) of leaf, root, and soil of symptomatic leaf-spot diseased (SS) oil palm were compared against asymptomatic (AS) trees using ITS2 rRNA gene metabarcoding. A total of 3,435,417 high-quality sequences were obtained from 29 samples investigated. Out of the 14 phyla identified, Ascomycota and Basidiomycota were the most dominant accounting for 94.2 and 4.7% of the total counts in AS, and 75 and 21.2% in SS, respectively. Neopestalotiopsis is the most abundant genus for AS representing 8.0% of the identified amplicons compared to 2.0% in SS while Peniophora is the most abundant with 8.6% of the identified amplicons for SS compared to 0.1% in AS. The biomarker discovery algorithm LEfSe revealed different taxa signatures for the sample categories, particularly soil samples from asymptomatic trees, which were the most enriched. Network analysis revealed high modularity across all groups, except in root samples. Additionally, a large proportion of the identified keystone species consisted of rare taxa, suggesting potential role in ecosystem functions. Surprisingly both AS and SS leaf samples shared taxa previously associated with oil palm leaf spot disease. The significant abundance of Trichoderma asperellum in the asymptomatic root samples could be further explored as a potential biocontrol agent against oil palm disease.
Collapse
Affiliation(s)
- Abiodun Abeeb Azeez
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Rainforest Research Station, Forestry Research Institute of Nigeria, Ibadan, Nigeria
| | | | - Adebola Azeez Lateef
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Boisseaux M, Troispoux V, Bordes A, Cazal J, Cazal SO, Coste S, Stahl C, Schimann H. Are plant traits drivers of endophytic communities in seasonally flooded tropical forests? AMERICAN JOURNAL OF BOTANY 2024; 111:e16366. [PMID: 39010811 DOI: 10.1002/ajb2.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/17/2024]
Abstract
PREMISE In the Amazon basin, seasonally flooded (SF) forests offer varying water constraints, providing an excellent way to investigate the role of habitat selection on microbial communities within plants. However, variations in the microbial community among host plants cannot solely be attributed to environmental factors, and how plant traits contribute to microbial assemblages remains an open question. METHODS We described leaf- and root-associated microbial communities using ITS2 and 16 S high-throughput sequencing and investigated the stochastic-deterministic balance shaping these community assemblies using two null models. Plant ecophysiological functioning was evaluated by focusing on 10 leaf and root traits in 72 seedlings, belonging to seven tropical SF tree species in French Guiana. We then analyzed how root and leaf traits drove the assembly of endophytic communities. RESULTS While both stochastic and deterministic processes governed the endophyte assembly in the leaves and roots, stochasticity prevailed. Discrepancies were found between fungi and bacteria, highlighting that these microorganisms have distinct ecological strategies within plants. Traits, especially leaf traits, host species and spatial predictors better explained diversity than composition, but they were modest predictors overall. CONCLUSIONS This study widens our knowledge about tree species in SF forests, a habitat sensitive to climate change, through the combined analyses of their associated microbial communities with functional traits. We emphasize the need to investigate other plant traits to better disentangle the drivers of the relationship between seedlings and their associated microbiomes, ultimately enhancing their adaptive capacities to climate change.
Collapse
Affiliation(s)
- Marion Boisseaux
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Valérie Troispoux
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Alice Bordes
- Université Grenoble Alpes, INRAE, URLESSEM, Saint-Martin-d'Hères, France, Grenoble, France
| | - Jocelyn Cazal
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Saint-Omer Cazal
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Sabrina Coste
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Clément Stahl
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Heidy Schimann
- INRAE, Université de Bordeaux, BIOGECO, Cestas, 33610, France
| |
Collapse
|
8
|
Luo C, He Y, Chen Y. Rhizosphere microbiome regulation: Unlocking the potential for plant growth. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100322. [PMID: 39678067 PMCID: PMC11638623 DOI: 10.1016/j.crmicr.2024.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Rhizosphere microbial communities are essential for plant growth and health maintenance, but their recruitment and functions are affected by their interactions with host plants. Finding ways to use the interaction to achieve specific production purposes, so as to reduce the use of chemical fertilizers and pesticides, is an important research approach in the development of green agriculture. To demonstrate the importance of rhizosphere microbial communities and guide practical production applications, this review summarizes the outstanding performance of rhizosphere microbial communities in promoting plant growth and stress tolerance. We also discuss the effect of host plants on their rhizosphere microbes, especially emphasizing the important role of host plant species and genes in the specific recruitment of beneficial microorganisms to improve the plants' own traits. The aim of this review is to provide valuable insights into developing plant varieties that can consistently recruit specific beneficial microorganisms to improve crop adaptability and productivity, and thus can be applied to green and sustainable agriculture in the future.
Collapse
Affiliation(s)
- Chenghua Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yijun He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaping Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| |
Collapse
|
9
|
Tiemblo-Martín M, Pistorio V, Saake P, Mahdi L, Campanero-Rhodes MA, Di Girolamo R, Di Carluccio C, Marchetti R, Molinaro A, Solís D, Zuccaro A, Silipo A. Structure and properties of the exopolysaccharide isolated from Flavobacterium sp. Root935. Carbohydr Polym 2024; 343:122433. [PMID: 39174078 DOI: 10.1016/j.carbpol.2024.122433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 08/24/2024]
Abstract
Flavobacterium strains exert a substantial influence on roots and leaves of plants. However, there is still limited understanding of how the specific interactions between Flavobacterium and their plant hosts are and how these bacteria thrive in this competitive environment. A crucial step in understanding Flavobacterium - plant interactions is to unravel the structure of bacterial envelope components and the molecular features that facilitate initial contact with the host environment. Here, we have revealed structure and properties of the exopolysaccharides (EPS) produced by Flavobacterium sp. Root935. Chemical analyses revealed a complex and interesting branched heptasaccharidic repeating unit, containing a variety of sugar moieties, including Rha, Fuc, GlcN, Fuc4N, Gal, Man and QuiN and an important and extended substitution pattern, including acetyl and lactyl groups. Additionally, conformational analysis using molecular dynamics simulation showed an extended hydrophobic interface and a distinctly elongated, left-handed helicoidal arrangement. Furthermore, properties of the saccharide chain, and likely the huge substitution pattern prevented interaction and recognition by host lectins and possessed a low immunogenic potential, highlighting a potential role of Flavobacterium sp. Root935 in plant-microbial crosstalk.
Collapse
Affiliation(s)
- Marta Tiemblo-Martín
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Valeria Pistorio
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Pia Saake
- University of Cologne Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, D-50674 Cologne, Germany
| | - Lisa Mahdi
- University of Cologne Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, D-50674 Cologne, Germany
| | - María Asunción Campanero-Rhodes
- Instituto de Química Física Blas Cabrera, CSIC, Serrano 119, 28006 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Rocco Di Girolamo
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Cristina Di Carluccio
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Roberta Marchetti
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Dolores Solís
- Instituto de Química Física Blas Cabrera, CSIC, Serrano 119, 28006 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Alga Zuccaro
- University of Cologne Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, D-50674 Cologne, Germany
| | - Alba Silipo
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.
| |
Collapse
|
10
|
Malakshahi Kurdestani A, Francioli D, Ruser R, Piccolo A, Maywald NJ, Chen X, Müller T. Optimizing nitrogen fertilization in maize: the impact of nitrification inhibitors, phosphorus application, and microbial interactions on enhancing nutrient efficiency and crop performance. FRONTIERS IN PLANT SCIENCE 2024; 15:1451573. [PMID: 39416481 PMCID: PMC11479917 DOI: 10.3389/fpls.2024.1451573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Despite the essential role of nitrogen fertilizers in achieving high crop yields, current application practices often exhibit low efficiency. Optimizing nitrogen (N) fertilization in agriculture is, therefore, critical for enhancing crop productivity while ensuring sustainable food production. This study investigates the effects of nitrification inhibitors (Nis) such as Dimethyl Pyrazole Phosphate (DMPP) and Dimethyl Pyrazole Fulvic Acid (DMPFA), plant growth-promoting bacteria inoculation, and phosphorus (P) application on the soil-plant-microbe system in maize. DMPFA is an organic nitrification inhibitor that combines DMP and fulvic acid for the benefits of both compounds as a chelator. A comprehensive rhizobox experiment was conducted, employing varying levels of P, inoculant types, and Nis, to analyze the influence of these factors on various soil properties, maize fitness, and phenotypic traits, including root architecture and exudate profile. Additionally, the experiment examined the effects of treatments on the bacterial and fungal communities within the rhizosphere and maize roots. Our results showed that the use of Nis improved plant nutrition and biomass. For example, the use of DMPFA as a nitrification inhibitor significantly improved phosphorus use efficiency by up to 29%, increased P content to 37%, and raised P concentration in the shoot by 26%, compared to traditional ammonium treatments. The microbial communities inhabiting maize rhizosphere and roots were also highly influenced by the different treatments. Among them, the N treatment was the major driver in shaping bacterial and fungal communities in both plant compartments. Notably, Nis reduced significantly the abundance of bacterial groups involved in the nitrification process. Moreover, we observed that each experimental treatment employed in this investigation could select, promote, or reduce specific groups of beneficial or detrimental soil microorganisms. Overall, our results highlight the intricate interplay between soil amendments, microbial communities, and plant nutrient dynamics, suggesting that Nis, particularly DMPFA, could be pivotal in bolstering agricultural sustainability by optimizing nutrient utilization.
Collapse
Affiliation(s)
| | - Davide Francioli
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Geisenheim, Germany
| | - Reiner Ruser
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Alessandro Piccolo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, Italy
| | | | - Xinping Chen
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Torsten Müller
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
11
|
Karasov TL, Neumann M, Leventhal L, Symeonidi E, Shirsekar G, Hawks A, Monroe G, Exposito-Alonso M, Bergelson J, Weigel D, Schwab R. Continental-scale associations of Arabidopsis thaliana phyllosphere members with host genotype and drought. Nat Microbiol 2024; 9:2748-2758. [PMID: 39242816 PMCID: PMC11457713 DOI: 10.1038/s41564-024-01773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/02/2024] [Indexed: 09/09/2024]
Abstract
Plants are colonized by distinct pathogenic and commensal microbiomes across different regions of the globe, but the factors driving their geographic variation are largely unknown. Here, using 16S ribosomal DNA and shotgun sequencing, we characterized the associations of the Arabidopsis thaliana leaf microbiome with host genetics and climate variables from 267 populations in the species' native range across Europe. Comparing the distribution of the 575 major bacterial amplicon variants (phylotypes), we discovered that microbiome composition in A. thaliana segregates along a latitudinal gradient. The latitudinal clines in microbiome composition are predicted by metrics of drought, but also by the spatial genetics of the host. To validate the relative effects of drought and host genotype we conducted a common garden field study, finding 10% of the core bacteria to be affected directly by drought and 20% to be affected by host genetic associations with drought. These data provide a valuable resource for the plant microbiome field, with the identified associations suggesting that drought can directly and indirectly shape genetic variation in A. thaliana via the leaf microbiome.
Collapse
Affiliation(s)
- Talia L Karasov
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| | - Manuela Neumann
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Robert Bosch GmbH, Renningen, Germany
| | - Laura Leventhal
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Plant Biology, Carnegie Institution for Plant Science, Stanford, CA, USA
| | - Efthymia Symeonidi
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN, USA
| | - Aubrey Hawks
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Grey Monroe
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Moisés Exposito-Alonso
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Plant Biology, Carnegie Institution for Plant Science, Stanford, CA, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Joy Bergelson
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Ventorino V, Chouyia FE, Romano I, Mori M, Pepe O. Water retting process with hemp pre-treatment: effect on the enzymatic activities and microbial populations dynamic. Appl Microbiol Biotechnol 2024; 108:464. [PMID: 39269645 PMCID: PMC11399178 DOI: 10.1007/s00253-024-13300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Proper retting process of hemp stems, in which efficient separation of cellulose fiber from the rest of the stem is promoted by indigenous microorganisms able to degrade pectin, is essential for fiber production and quality. This research aimed to investigate the effect of a pre-treatment dew retting in field of hemp stalks on the pectinolytic enzymatic activity and microbiota dynamic during lab-scale water retting process. A strong increase in the pectinase activity as well as in the aerobic and anaerobic pectinolytic concentration was observed from 14 to 21 days, especially using hemp stalks that were not subjected to a pre-retting treatment on field (WRF0 0.690 ± 0.05 U/mL). Results revealed that the microbial diversity significantly varied over time during the water retting and the development of microbiota characterizing the water retting of hemp stalks of different biosystems used in this study was affected by pre-treatment conditions in the field and water retting process and by an interaction between the two methods. Although at the beginning of the experiment a high biodiversity was recorded in all biosystems, the water retting led to a selection of microbial populations in function of the time of pre-treatment in field, especially in bacterial populations. The use of hemp stems did not subject to a field pre-treatment seems to help the development of a homogeneous and specific pectinolytic microbiota with a higher enzymatic activity in respect to samples exposed to uncontrolled environmental conditions for 10, 20, or 30 days before the water retting process. KEY POINTS: • Microbial diversity significantly varied over time during water retting. • Water retting microbiota was affected by dew pre-treatment in the field. • Retting of no pretreated hemp allows the development of specific microbiota with high enzymatic activity.
Collapse
Affiliation(s)
- Valeria Ventorino
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy.
- Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Fatima Ezzahra Chouyia
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
| | - Ida Romano
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
| | - Mauro Mori
- Department of Agricultural Sciences, Division of Plant Biology and Crop Science, University of Naples Federico II, Naples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
- Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Fracchia F, Guinet F, Engle NL, Tschaplinski TJ, Veneault-Fourrey C, Deveau A. Microbial colonisation rewires the composition and content of poplar root exudates, root and shoot metabolomes. MICROBIOME 2024; 12:173. [PMID: 39267187 PMCID: PMC11395995 DOI: 10.1186/s40168-024-01888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Trees are associated with a broad range of microorganisms colonising the diverse tissues of their host. However, the early dynamics of the microbiota assembly microbiota from the root to shoot axis and how it is linked to root exudates and metabolite contents of tissues remain unclear. Here, we characterised how fungal and bacterial communities are altering root exudates as well as root and shoot metabolomes in parallel with their establishment in poplar cuttings (Populus tremula x tremuloides clone T89) over 30 days of growth. Sterile poplar cuttings were planted in natural or gamma irradiated soils. Bulk and rhizospheric soils, root and shoot tissues were collected from day 1 to day 30 to track the dynamic changes of fungal and bacterial communities in the different habitats by DNA metabarcoding. Root exudates and root and shoot metabolites were analysed in parallel by gas chromatography-mass spectrometry. RESULTS Our study reveals that microbial colonisation triggered rapid and substantial alterations in both the composition and quantity of root exudates, with over 70 metabolites exclusively identified in remarkably high abundances in the absence of microorganisms. Noteworthy among these were lipid-related metabolites and defence compounds. The microbial colonisation of both roots and shoots exhibited a similar dynamic response, initially involving saprophytic microorganisms and later transitioning to endophytes and symbionts. Key constituents of the shoot microbiota were also discernible at earlier time points in the rhizosphere and roots, indicating that the soil constituted a primary source for shoot microbiota. Furthermore, the microbial colonisation of belowground and aerial compartments induced a reconfiguration of plant metabolism. Specifically, microbial colonisation predominantly instigated alterations in primary metabolism in roots, while in shoots, it primarily influenced defence metabolism. CONCLUSIONS This study highlighted the profound impact of microbial interactions on metabolic pathways of plants, shedding light on the intricate interplay between plants and their associated microbial communities. Video Abstract.
Collapse
Affiliation(s)
- F Fracchia
- Université de Lorraine, INRAe, IAM, Nancy, France
| | - F Guinet
- Université de Lorraine, INRAe, IAM, Nancy, France
| | - N L Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6341, USA
| | - T J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6341, USA
| | | | - A Deveau
- Université de Lorraine, INRAe, IAM, Nancy, France.
| |
Collapse
|
14
|
Chantapakul B, Parreira VR, Farber JM. Effect of Bacterial Endophytes Isolated from Tropical Fruits against Listeria monocytogenes and Cronobacter sakazakii in Model Food Products. J Food Prot 2024; 87:100330. [PMID: 39025261 DOI: 10.1016/j.jfp.2024.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Listeria monocytogenes and Cronobacter sakazakii are two important foodborne bacterial pathogens. Bacterial endophytes, which reside in plant cells, can produce antimicrobial compounds to protect the host organism or inhibit pathogens. This study investigated the bacterial community of tropical fruits for their potential to inactivate L. monocytogenes or C. sakazakii in cantaloupe and liquid infant formula, respectively. Tropical fruits including papayas, dragon fruits, and sugar apples, were sourced from several countries. Candidate bacterial endophytes were recovered from these tropical fruits using blood agar and Reasoner's 2A (R2A) agar and tested for potential inhibition against L. monocytogenes and C. sakazakii. A total of 196 bacterial endophytes were recovered from papayas, dragon fruits, and sugar apples. Among these bacterial endophytes, 33 (16.8%) and 13 (6.6%) of them demonstrated an inhibition zone against L. monocytogenes and C. sakazakii, respectively. The inhibitory strains were identified using 16S rRNA sequencing as Bacillus spp., Enterobacter spp., Klebsiella spp., Microbacterium spp., Pantoea spp., and Pseudomonas spp. A cocktail of Pantoea spp. and Enterobacter spp. was used in challenge studies with cantaloupe and significantly reduced the number of L. monocytogenes by approximately 2.5 log10 CFU/g. In addition, P. stewartii demonstrated antagonistic activity against C. sakazakii in liquid infant formula, i.e., it significantly decreased the number of C. sakazakii by at least 1 log10 CFU/mL. Thus, the use of bacterial endophytes recovered from fruits and vegetables could be a promising area of research. Their use as potential biocontrol agents to control bacterial pathogens in ready-to-eat foods warrants further investigation.
Collapse
Affiliation(s)
- Bowornnan Chantapakul
- Canadian Research Institute for Food Safety, Department of Food Science, Ontario Agriculture College, University of Guelph, Ontario, Canada.
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety, Department of Food Science, Ontario Agriculture College, University of Guelph, Ontario, Canada
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety, Department of Food Science, Ontario Agriculture College, University of Guelph, Ontario, Canada
| |
Collapse
|
15
|
Altimira F, Godoy S, Arias-Aravena M, Vargas N, González E, Dardón E, Montenegro E, Viteri I, Tapia E. Reduced fertilization supplemented with Bacillus safensis RGM 2450 and Bacillus siamensis RGM 2529 promotes tomato production in a sustainable way. FRONTIERS IN PLANT SCIENCE 2024; 15:1451887. [PMID: 39239205 PMCID: PMC11374767 DOI: 10.3389/fpls.2024.1451887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
The rising demand for vegetables has driven the adoption of greenhouse cultivation to guarantee high yields and quality of fresh produce year-round. Consequently, this elevates the demand for fertilizers, whose costs are progressively escalating. Bacillus safensis RGM 2450 and Bacillus siamensis RGM 2529 are plant growth-promoting rhizobacteria (PGPR). The combination of these strains exhibited synergistic activity in stimulating the growth and seedling hydration of tomatoes. In this study, the effects of inoculation with a RGM 2450 plus RGM 2529 formulation were evaluated under 66% and 100% fertilization programs in tomato crops under greenhouse conditions. Fertilization programs (66% and 100%) with or without commercial biostimulants were used as control treatments. In this assay, the NPK percentage in the plant tissue, tomato average weight, tomato average weight per harvest, tomato diameter, and changes in the colonization, structure, and diversity of the bacterial rhizosphere were measured. The 100% and 66% fertilization programs supplemented with the RGM 2529 plus RGM 2450 formulation increased the average weight of tomatoes per harvest without statistical difference between them, but with the other treatments. The 66% fertilization with RGM 2450 plus RGM 2529 increased between 1.5 and 2.0 times the average weight of tomatoes per harvest compared to the 66% and 100% fertilizations with and without commercial biostimulant treatments, respectively. This study represents the first report demonstrating that the application of a formulation based on a mixture of B. siamensis and B. safensis in a fertilization program reduced by 33% is equivalent in productivity to a conventional fertilization program for tomato cultivation, achieving an increase in potential plant growth-promoting rizobacteria of the genus Flavobacterium. Therefore, the adoption of a combination of these bacterial strains within the framework of a 66% inorganic fertilization program is a sustainable approach to achieving greater tomato production and reducing the environmental risks associated with the use of inorganic fertilization.
Collapse
Affiliation(s)
- Fabiola Altimira
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Sebastián Godoy
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Matías Arias-Aravena
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Nataly Vargas
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Erick González
- Laboratorio de Biotecnología, Centro de Excelencia Microbiano, El Jocotillo, Guatemala, Guatemala
| | - Elena Dardón
- Laboratorio de Biotecnología, Centro de Excelencia Microbiano, El Jocotillo, Guatemala, Guatemala
| | - Edgar Montenegro
- Laboratorio de Biotecnología, Centro de Excelencia Microbiano, El Jocotillo, Guatemala, Guatemala
| | - Ignacio Viteri
- Laboratorio de Biotecnología, Centro de Excelencia Microbiano, El Jocotillo, Guatemala, Guatemala
| | - Eduardo Tapia
- Laboratorio de Entomología y Biotecnología, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| |
Collapse
|
16
|
Majeed A, Liu J, Knight AJ, Pajerowska-Mukhtar KM, Mukhtar MS. Bacterial Communities Associated with the Leaves and the Roots of Salt Marsh Plants of Bayfront Beach, Mobile, Alabama, USA. Microorganisms 2024; 12:1595. [PMID: 39203436 PMCID: PMC11356468 DOI: 10.3390/microorganisms12081595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Salt marshes are highly dynamic and biologically diverse ecosystems that serve as natural habitats for numerous salt-tolerant plants (halophytes). We investigated the bacterial communities associated with the roots and leaves of plants growing in the coastal salt marshes of the Bayfront Beach, located in Mobile, Alabama, United States. We compared external (epiphytic) and internal (endophytic) communities of both leaf and root plant organs. Using 16S rDNA amplicon sequencing methods, we identified 10 bacterial phyla and 59 different amplicon sequence variants (ASVs) at the genus level. Bacterial strains belonging to the phyla Proteobacteria, Bacteroidetes, and Firmicutes were highly abundant in both leaf and root samples. At the genus level, sequences of the genus Pseudomonas were common across all four sample types, with the highest abundance found in the leaf endophytic community. Additionally, Pantoea was found to be dominant in leaf tissue compared to roots. Our study revealed that plant habitat (internal vs. external for leaves and roots) was a determinant of the bacterial community structure. Co-occurrence network analyses enabled us to discern the intricate characteristics of bacterial taxa. Our network analysis revealed varied levels of ASV complexity in the epiphytic networks of roots and leaves compared to the endophytic networks. Overall, this study advances our understanding of the intricate composition of the bacterial microbiota in habitats (epiphytic and endophytic) and organs (leaf and root) of coastal salt marsh plants and suggests that plants might recruit habitat- and organ-specific bacteria to enhance their tolerance to salt stress.
Collapse
Affiliation(s)
- Aqsa Majeed
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (A.M.); (J.L.); (A.J.K.); (K.M.P.-M.)
- Department of Genetics & Biochemistry, Biosystems Research Complex, Clemson University, 105 Collings St., Clemson, SC 29634, USA
| | - Jinbao Liu
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (A.M.); (J.L.); (A.J.K.); (K.M.P.-M.)
| | - Adelle J. Knight
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (A.M.); (J.L.); (A.J.K.); (K.M.P.-M.)
| | - Karolina M. Pajerowska-Mukhtar
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (A.M.); (J.L.); (A.J.K.); (K.M.P.-M.)
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL 35294, USA; (A.M.); (J.L.); (A.J.K.); (K.M.P.-M.)
- Department of Genetics & Biochemistry, Biosystems Research Complex, Clemson University, 105 Collings St., Clemson, SC 29634, USA
| |
Collapse
|
17
|
Ferreira P, Benabderrahim MA, Hamza H, Marchesini A, Rejili M, Castro J, Tavares RM, Costa D, Sebastiani F, Lino-Neto T. Exploring the Influence of Date Palm Cultivars on Soil Microbiota. MICROBIAL ECOLOGY 2024; 87:103. [PMID: 39088119 PMCID: PMC11294395 DOI: 10.1007/s00248-024-02415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Plants thrive in diverse environments, where root-microbe interactions play a pivotal role. Date palm (Phoenix dactylifera L.), with its genetic diversity and resilience, is an ideal model for studying microbial adaptation to different genotypes and stresses. This study aimed to analyze the bacterial and fungal communities associated with traditional date palm cultivars and the widely cultivated "Deglet Nour" were explored using metabarcoding approaches. The microbial diversity analysis identified a rich community with 13,189 bacterial and 6442 fungal Amplicon Sequence Variants (ASVs). Actinobacteriota, Proteobacteria, and Bacteroidota dominated bacterial communities, while Ascomycota dominated fungal communities. Analysis of the microbial community revealed the emergence of two distinct clusters correlating with specific date palm cultivars, but fungal communities showed higher sensitivity to date palm genotype variations compared to bacterial communities. The commercial cultivar "Deglet Nour" exhibited a unique microbial composition enriched in pathogenic fungal taxa, which was correlated with its genetic distance. Overall, our study contributes to understanding the complex interactions between date palm genotypes and soil microbiota, highlighting the genotype role in microbial community structure, particularly among fungi. These findings suggest correlations between date palm genotype, stress tolerance, and microbial assembly, with implications for plant health and resilience. Further research is needed to elucidate genotype-specific microbial interactions and their role in enhancing plant resilience to environmental stresses.
Collapse
Affiliation(s)
- Pedro Ferreira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Mohamed Ali Benabderrahim
- Faculty of Sciences of Tunis, Department of Biology, University of Tunis EL Manar, 2092, Tunis, Tunisia
- Drylands and Oases Cropping Laboratory. Arid Areas Institute (IRA), 4119, Medenine, Tunisia
| | - Hammadi Hamza
- Drylands and Oases Cropping Laboratory. Arid Areas Institute (IRA), 4119, Medenine, Tunisia
| | - Alexis Marchesini
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
- Research Institute On Terrestrial Ecosystems, National Research Council, Porano, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Mokhtar Rejili
- Department of Life Sciences, Al Imam Mohamed Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Joana Castro
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Rui M Tavares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Daniela Costa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Teresa Lino-Neto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
18
|
Romano I, Ventorino V, Schettino M, Magaraci G, Pepe O. Changes in Soil Microbial Communities Induced by Biodegradable and Polyethylene Mulch Residues Under Three Different Temperatures. MICROBIAL ECOLOGY 2024; 87:101. [PMID: 39083238 PMCID: PMC11291583 DOI: 10.1007/s00248-024-02420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Mulching is a common method increasing crop yield and achieving out-of-season production; nevertheless, their removal poses a significant environmental danger. In this scenario, the use of biodegradable plastic mulches comes up as a solution to increase the sustainability of this practice, as they can be tilled in soil without risk for the environment. In this context, it is important to study the microbial response to this practice, considering their direct involvement in plastic biodegradation. This study evaluated the biodegradation of three commercial mulch residues: one conventional non-biodegradable mulch versus two biodegradable ones (white and black compostable Mater-Bi mulches). The experiment was conducted under three incubation temperatures (room temperature 20-25 °C, 30 °C, and 45 °C) for a 6-month trial using fallow agricultural soil. Soil without plastic mulch residues was used as a control. White mater-bi biodegradable mulch residues showed higher degradation rates up to 88.90% at 30 °C, and up to 69.15% at room temperature. Furthermore, incubation at 45 °C determines the absence of degradation for all types of mulch considered. Moreover, bacterial alpha diversity was primarily influenced by plastic type and temperature, while fungal populations were mainly affected by temperature. Beta diversity was impacted by all experimental variables. Predicted functional genes crucial for degrading complex substrates, including those encoding hydrolases, cutinases, cellobiosidases, and lipases, were derived from 16S rRNA gene sequencing data. Cluster analysis based on predicted enzyme-encoding gene abundance revealed two clusters, mainly linked to sampling time. Finally, core microbiome analysis identified dominant bacterial and fungal taxa in various soil-plastic ecosystems during degradation, pinpointing species potentially involved in plastic breakdown. The present study allows an assessment of how different temperatures affect the degradation of mulch residues in soil, providing important insights for different climatic growing zones. It also fills a gap in the literature by directly comparing the effects of biodegradable and polyethylene mulches on soil microbial communities.
Collapse
Affiliation(s)
- Ida Romano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Mariachiara Schettino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppina Magaraci
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
- Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
19
|
Liu Q, Zhu J, Sun M, Song L, Ke M, Ni Y, Fu Z, Qian H, Lu T. Multigenerational Adaptation Can Enhance the Pathogen Resistance of Plants via Changes in Rhizosphere Microbial Community Assembly. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14581-14591. [PMID: 38957087 DOI: 10.1021/acs.jafc.4c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Plants withstand pathogen attacks by recruiting beneficial bacteria to the rhizosphere and passing their legacy on to the next generation. However, the underlying mechanisms involved in this process remain unclear. In our study, we combined microbiomic and transcriptomic analyses to reveal how the rhizosphere microbiome assembled through multiple generations and defense-related genes expressed in Arabidopsis thaliana under pathogen attack stress. Our results showed that continuous exposure to the pathogen Pseudomonas syringae pv tomato DC3000 led to improved growth and increased disease resistance in a third generation of rps2 mutant Arabidopsis thaliana. It could be attributed to the enrichment of specific rhizosphere bacteria, such as Bacillus and Bacteroides. Pathways associated with plant immunity and growth in A. thaliana, such as MAPK signaling pathways, phytohormone signal transduction, ABC transporter proteins, and flavonoid biosynthesis, were activated under the influence of rhizosphere bacterial communities. Our findings provide a scientific basis for explaining the relationship between beneficial microbes and defense-related gene expression. Understanding microbial communities and the mechanisms involved in plant responses to disease can contribute to better plant management and reduction of pesticide use.
Collapse
Affiliation(s)
- Qiuyun Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jichao Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mengyan Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lin Song
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
20
|
Boyle JA, Frederickson ME, Stinchcombe JR. Genetic architecture of heritable leaf microbes. Microbiol Spectr 2024; 12:e0061024. [PMID: 38842309 PMCID: PMC11218475 DOI: 10.1128/spectrum.00610-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Host-associated microbiomes are shaped by both their environment and host genetics, and often impact host performance. The scale of host genetic variation important to microbes is largely unknown yet fundamental to the community assembly of host-associated microbiomes, with implications for the eco-evolutionary dynamics of microbes and hosts. Using Ipomoea hederacea, ivyleaf morning glory, we generated matrilines differing in quantitative genetic variation and leaf shape, which is controlled by a single Mendelian locus. We then investigated the relative roles of Mendelian and quantitative genetic variation in structuring the leaf microbiome and how these two sources of genetic variation contributed to microbe heritability. We found that despite large effects of the environment, both Mendelian and quantitative genetic host variation contribute to microbe heritability and that the cumulative small effect genomic differences due to matriline explained as much or more microbial variation than a single large effect Mendelian locus. Furthermore, our results are the first to suggest that leaf shape itself contributes to variation in the abundances of some phyllosphere microbes.IMPORTANCEWe investigated how host genetic variation affects the assembly of Ipomoea hederacea's natural microbiome. We found that the genetic architecture of leaf-associated microbiomes involves both quantitative genetic variation and Mendelian traits, with similar contributions to microbe heritability. The existence of Mendelian and quantitative genetic variation for host-associated microbes means that plant evolution at the leaf shape locus or other quantitative genetic loci has the potential to shape microbial abundance and community composition.
Collapse
Affiliation(s)
- Julia A Boyle
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Swedish Collegium for Advanced Study, Uppsala, Sweden
| |
Collapse
|
21
|
Chen H, Song Y, Wang Y, Wang H, Ding Z, Fan K. Zno nanoparticles: improving photosynthesis, shoot development, and phyllosphere microbiome composition in tea plants. J Nanobiotechnology 2024; 22:389. [PMID: 38956645 PMCID: PMC11221027 DOI: 10.1186/s12951-024-02667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Nanotechnology holds revolutionary potential in the field of agriculture, with zinc oxide nanoparticles (ZnO NPs) demonstrating advantages in promoting crop growth. Enhanced photosynthetic efficiency is closely linked to improved vigor and superior quality in tea plants, complemented by the beneficial role of phyllosphere microorganisms in maintaining plant health. However, the effects of ZnO NPs on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms have not been fully investigated. RESULTS This study investigated the photosynthetic physiological parameters of tea plants under the influence of ZnO NPs, the content of key photosynthetic enzymes such as RubisCO, chlorophyll content, chlorophyll fluorescence parameters, transcriptomic and extensive targeted metabolomic profiles of leaves and new shoots, mineral element composition in these tissues, and the epiphytic and endophytic microbial communities within the phyllosphere. The results indicated that ZnO NPs could enhance the photosynthesis of tea plants, upregulate the expression of some genes related to photosynthesis, increase the accumulation of photosynthetic products, promote the development of new shoots, and alter the content of various mineral elements in the leaves and new shoots of tea plants. Furthermore, the application of ZnO NPs was observed to favorably influence the microbial community structure within the phyllosphere of tea plants. This shift in microbial community dynamics suggests a potential for ZnO NPs to contribute to plant health and productivity by modulating the phyllosphere microbiome. CONCLUSION This study demonstrates that ZnO NPs have a positive impact on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms, which can improve the growth condition of tea plants. These findings provide new scientific evidence for the application of ZnO NPs in sustainable agricultural development and contribute to advancing research in nanobiotechnology aimed at enhancing crop yield and quality.
Collapse
Affiliation(s)
- Hao Chen
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yujie Song
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Kai Fan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
22
|
Sommer A, Wenig M, Knappe C, Kublik S, Foesel BU, Schloter M, Vlot AC. A salicylic acid-associated plant-microbe interaction attracts beneficial Flavobacterium sp. to the Arabidopsis thaliana phyllosphere. PHYSIOLOGIA PLANTARUM 2024; 176:e14483. [PMID: 39169536 DOI: 10.1111/ppl.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024]
Abstract
Both above- and below-ground parts of plants are constantly challenged with microbes and interact closely with them. Many plant-growth-promoting rhizobacteria, mostly interacting with the plant's root system, enhance the immunity of plants in a process described as induced systemic resistance (ISR). Here, we characterized local induced resistance (IR) triggered by the model PGPR Pseudomonas simiae WCS417r (WCS417) in Arabidopsis thaliana. Hydroponic application of WCS417 to Arabidopsis roots resulted in propagation of WCS417 in/on leaves and the establishment of local IR. WCS417-triggered local IR was dependent on salicylic acid (SA) biosynthesis and signalling and on functional biosynthesis of pipecolic acid and monoterpenes, which are classically associated with systemic acquired resistance (SAR). WCS417-triggered local IR was further associated with a priming of gene expression changes related to SA signalling and SAR. A metabarcoding approach applied to the leaf microbiome revealed a significant local IR-associated enrichment of Flavobacterium sp.. Co-inoculation experiments using WCS417 and At-LSPHERE Flavobacterium sp. Leaf82 suggest that the proliferation of these bacteria is influenced by both microbial and immunity-related, plant-derived factors. Furthermore, application of Flavobacterium Leaf82 to Arabidopsis leaves induced SAR in an NPR1-dependent manner, suggesting that recruitment of this bacterium to the phyllosphere resulted in propagation of IR. Together, the data highlight the importance of plant-microbe-microbe interactions in the phyllosphere and reveal Flavobacterium sp. Leaf82 as a new beneficial promoter of plant health.
Collapse
Affiliation(s)
- Anna Sommer
- Faculty of Life Sciences: Food, Nutrition and Health, Chair of Crop Plant Genetics, University of Bayreuth, Kulmbach, Germany
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Claudia Knappe
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Susanne Kublik
- Helmholtz Zentrum Muenchen, Institute for Comparative Microbiome Analysis, Neuherberg, Germany
| | - Bärbel U Foesel
- Helmholtz Zentrum Muenchen, Institute for Comparative Microbiome Analysis, Neuherberg, Germany
| | - Michael Schloter
- Helmholtz Zentrum Muenchen, Institute for Comparative Microbiome Analysis, Neuherberg, Germany
- Chair for Environmental Microbiology, Technische Universität München, Freising, Germany
| | - A Corina Vlot
- Faculty of Life Sciences: Food, Nutrition and Health, Chair of Crop Plant Genetics, University of Bayreuth, Kulmbach, Germany
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| |
Collapse
|
23
|
Błońska E, Ważny R, Górski A, Lasota J. Decomposing benefits: Examining the impact of beech deadwood on soil properties and microbial diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172774. [PMID: 38685423 DOI: 10.1016/j.scitotenv.2024.172774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Deadwood is an important element of forest ecosystems that affects many of its components, including the soil environment. Our research is an attempt to determine the role of decaying wood in shaping the properties of forest soils in mountain ecosystems. The aim of our research was to present the influence of beech deadwood on physicochemical properties and microbiological diversity of soils. The research was carried out in the Baba Góra Massif at its northern exposure. The research plots were established in the altitude gradient at 600, 800 and 1000 m above sea level. On each plot, samples were taken from decaying wood, from the soil directly under the decaying log, and a soil sample 1 m from the log as a control. We determined the basic properties of the samples, that is pH, C and N concentration and lignin content. The enzymatic activity and additionally, the taxonomic composition of soil bacterial and fungal communities was determined in the collected samples. Our research indicates the important role of decaying beech wood in shaping the properties of forest soils. We noted a positive effect of decaying wood on the properties of the tested soils. Soils affected by deadwood were characterized by significantly higher pH, C and N concentrations compared to control soils, regardless of their location in the altitude gradient. Additionally, we found that soils affected by decaying wood are characterized by a different composition of microorganisms regardless of their location in the altitude gradient. In control soil the fungal and bacterial alpha diversity were lowest compared with the deadwood and soil under the influence of deadwood. Our results may have practical applications in the management of forest ecosystems. The presented results indicate the possibility of leaving deadwood in order to improve its basic physicochemical properties and increase microbial diversity.
Collapse
Affiliation(s)
- Ewa Błońska
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str., 31-425 Kraków, Poland.
| | - Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Adam Górski
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str., 31-425 Kraków, Poland
| | - Jarosław Lasota
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str., 31-425 Kraków, Poland
| |
Collapse
|
24
|
Ji K, Wei Y, Lan G. Geographic Location Affects the Bacterial Community Composition and Diversity More than Species Identity for Tropical Tree Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:1565. [PMID: 38891373 PMCID: PMC11175100 DOI: 10.3390/plants13111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Microorganisms associated with plants play a crucial role in their growth, development, and overall health. However, much remains unclear regarding the relative significance of tree species identity and spatial variation in shaping the distribution of plant bacterial communities across large tropical regions, as well as how these communities respond to environmental changes. In this study, we aimed to elucidate the characteristics of bacterial community composition in association with two rare and endangered tropical tree species, Dacrydium pectinatum and Vatica mangachapoi, across various geographical locations on Hainan Island. Our findings can be summarized as follows: (1) Significant differences existed in the bacterial composition between D. pectinatum and V. mangachapoi, as observed in the diversity of bacterial populations within the root endosphere. Plant host-related variables, such as nitrogen content, emerged as key drivers influencing leaf bacterial community compositions, underscoring the substantial impact of plant identity on bacterial composition. (2) Environmental factors associated with geographical locations, including temperature and soil pH, predominantly drove changes in both leaf and root-associated bacterial community compositions. These findings underscored the influence of geographical locations on shaping plant-associated bacterial communities. (3) Further analysis revealed that geographical locations exerted a greater influence than tree species identity on bacterial community compositions and diversity. Overall, our study underscores that environmental variables tied to geographical location primarily dictate changes in plant bacterial community composition. These insights contribute to our understanding of microbial biogeography in tropical regions and carry significant implications for the conservation of rare and endangered tropical trees.
Collapse
Affiliation(s)
- Kepeng Ji
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (K.J.); (Y.W.)
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yaqing Wei
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (K.J.); (Y.W.)
- Hainan Danzhou Tropical Agro-Ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Guoyu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (K.J.); (Y.W.)
- Hainan Danzhou Tropical Agro-Ecosystem National Observation and Research Station, Danzhou 571737, China
| |
Collapse
|
25
|
Boutin S, Lussier E, Laforest-Lapointe I. Investigating the spatiotemporal dynamics of apple tree phyllosphere bacterial and fungal communities across cultivars in orchards. Can J Microbiol 2024; 70:238-251. [PMID: 38452350 DOI: 10.1139/cjm-2023-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The phyllosphere, a reservoir of diverse microbial life associated with plant health, harbors microbial communities that are subject to various complex ecological processes acting at multiple scales. In this study, we investigated the determinants of the spatiotemporal variation in bacterial and fungal communities within the apple tree phyllosphere, employing 16S and ITS amplicon sequencing. Our research assessed the impact of key factors-plant compartment, site, time, and cultivar-on the composition and diversity of leaf and flower microbial communities. Our analyses, based on samples collected from three cultivars in three orchards in 2022, revealed that site and time are the strongest drivers of apple tree phyllosphere microbial communities. Conversely, plant compartment and cultivar exhibited minor roles in explaining community composition and diversity. Predominantly, bacterial communities comprised Hymenobacter (25%) and Sphingomonas (10%), while the most relatively abundant fungal genera included Aureobasidium (27%) and Sporobolomyces (10%). Additionally, our results show a gradual decrease in alpha-diversity throughout the growth season. These findings emphasize the necessity to consider local microbial ecology dynamics in orchards, especially as many groups worldwide aim for the development of biocontrol strategies (e.g., by manipulating plant-microbe interactions). More research is needed to improve our understanding of the determinants of time and site-specific disparities within apple tree phyllosphere microbial communities across multiple years, locations, and cultivars.
Collapse
Affiliation(s)
- Sophie Boutin
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Ema Lussier
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Isabelle Laforest-Lapointe
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
26
|
Alam M, Pandit B, Moin A, Iqbal UN. Invisible Inhabitants of Plants and a Sustainable Planet: Diversity of Bacterial Endophytes and their Potential in Sustainable Agriculture. Indian J Microbiol 2024; 64:343-366. [PMID: 39011025 PMCID: PMC11246410 DOI: 10.1007/s12088-024-01225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/07/2024] [Indexed: 07/17/2024] Open
Abstract
Uncontrolled usage of chemical fertilizers, climate change due to global warming, and the ever-increasing demand for food have necessitated sustainable agricultural practices. Removal of ever-increasing environmental pollutants, treatment of life-threatening diseases, and control of drug-resistant pathogens are also the need of the present time to maintain the health and hygiene of nature, as well as human beings. Research on plant-microbe interactions is paving the way to ameliorate all these sustainably. Diverse bacterial endophytes inhabiting the internal tissues of different parts of the plants promote the growth and development of their hosts by different mechanisms, such as through nutrient acquisition, phytohormone production and modulation, protection from biotic or abiotic challenges, assisting in flowering and root development, etc. Notwithstanding, efficient exploitation of endophytes in human welfare is hindered due to scarce knowledge of the molecular aspects of their interactions, community dynamics, in-planta activities, and their actual functional potential. Modern "-omics-based" technologies and genetic manipulation tools have empowered scientists to explore the diversity, dynamics, roles, and functional potential of endophytes, ultimately empowering humans to better use them in sustainable agricultural practices, especially in future harsh environmental conditions. In this review, we have discussed the diversity of bacterial endophytes, factors (biotic as well as abiotic) affecting their diversity, and their various plant growth-promoting activities. Recent developments and technological advancements for future research, such as "-omics-based" technologies, genetic engineering, genome editing, and genome engineering tools, targeting optimal utilization of the endophytes in sustainable agricultural practices, or other purposes, have also been discussed.
Collapse
Affiliation(s)
- Masrure Alam
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Baishali Pandit
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
- Department of Botany, Surendranath College, 24/2 MG Road, Kolkata, West Bengal 700009 India
| | - Abdul Moin
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Umaimah Nuzhat Iqbal
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| |
Collapse
|
27
|
Seo H, Kim JH, Lee SM, Lee SW. The Plant-Associated Flavobacterium: A Hidden Helper for Improving Plant Health. THE PLANT PATHOLOGY JOURNAL 2024; 40:251-260. [PMID: 38835296 PMCID: PMC11162857 DOI: 10.5423/ppj.rw.01.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024]
Abstract
Flavobacterium is a genus within the phylum Bacteroidota that remains relatively unexplored. Recent analyses of plant microbiota have identified the phylum Bacteroidota as a major bacterial group in the plant rhizosphere. While Flavobacterium species within the phylum Bacteroidota have been recognized as pathogens in the aquatic habitats, microbiome analysis and the characterization of novel Flavobacterium species have indicated the great diversity and potential of their presence in various environments. Many Flavobacterium species have positively contribute to plant health and development, including growth promotion, disease control, and tolerance to abiotic stress. Despite the well-described beneficial interactions of the Flavobacterium species with plants, the molecular mechanisms and bacterial determinants underlying these interactions remain unclear. To broaden our understanding of the genus Flavobacterium's role in plant health, we review the recent studies focusing on their ecological niche, functional roles, and determinants in plant-beneficial interactions. Additionally, this review discusses putative mechanisms explaining the interactions between plants and Flavobacterium. We have also introduced the importance of future research on Flavobacterium spp. and its potential applications in agriculture.
Collapse
Affiliation(s)
- Hyojun Seo
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Ju Hui Kim
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Sang-Moo Lee
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| |
Collapse
|
28
|
Awad MA, Hammad SF, El-Mashtoly SF, El-Deeb B, Soliman HSM. Phytochemical and biological assessment of secondary metabolites isolated from a rhizosphere strain, Sphingomonas sanguinis DM of Datura metel. BMC Complement Med Ther 2024; 24:205. [PMID: 38796482 PMCID: PMC11128111 DOI: 10.1186/s12906-024-04482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 04/24/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND The plant roots excrete a large number of organic compounds into the soil. The rhizosphere, a thin soil zone around the roots, is a hotspot for microbial activity, making it a crucial component of the soil ecosystem. Secondary metabolites produced by rhizospheric Sphingomonas sanguinis DM have sparked significant curiosity in investigating their possible biological impacts. METHODS A bacterial strain has been isolated from the rhizosphere of Datura metel. The bacterium's identification, fermentation, and working up have been outlined. The ethyl acetate fraction of the propagated culture media of Sphingomonas sanguinis DM was fractioned and purified using various chromatographic techniques. The characterization of the isolated compounds was accomplished through the utilization of various spectroscopic techniques, such as UV, MS, 1D, and 2D-NMR. Furthermore, the evaluation of their antimicrobial activity was conducted using the agar well diffusion method, while cytotoxicity was assessed using the MTT test. RESULTS The extract from Sphingomonas sanguinis DM provided two distinct compounds: n-dibutyl phthalic acid (1) and Bis (2-methyl heptyl) phthalate (2) within its ethyl acetate fraction. Furthermore, the 16S rRNA gene sequence of Sphingomonas sanguinis DM has been registered under the NCBI GenBank database with the accession number PP422198. The bacterial extract exhibited its effect against gram-positive bacteria, inhibiting Streptococcus mutans (12.6 ± 0.6 mm) and Staphylococcus aureus (10.6 ± 0.6 mm) compared to standard antibiotics. Conversely, compound 1 showed a considerable effect against phytopathogenic fungi such as Alternaria alternate (56.3 ± 10.6 mm) and Fusarium oxysporum (21.3 ± 1.5 mm) with a MIC value of 17.5 µg/mL. However, it was slightly active against Klebsiella pneumonia (11.0 ± 1.0 mm). Furthermore, compound 2 was the most active metabolite, having a significant antimicrobial efficacy against Rhizoctonia solani (63.6 ± 1.1 mm), Pseudomonas aeruginosa (16.7 ± 0.6 mm), and Alternaria alternate (20.3 ± 0.6 mm) with MIC value at 15 µg/mL. In addition, compound 2 exhibited the most potency against hepatocellular (HepG-2) and skin (A-431) carcinoma cell lines with IC50 values of 107.16 µg/mL and 111.36 µg/mL, respectively. CONCLUSION Sphingomonas sanguinis DM, a rhizosphere bacterium of Datura metel, was studied for its phytochemical and biological characteristics, resulting in the identification of two compounds with moderate antimicrobial and cytotoxic activities.
Collapse
Affiliation(s)
- Mohamed A Awad
- Biotechnology Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Sherif F Hammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
- PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Samir F El-Mashtoly
- Biotechnology Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Bahig El-Deeb
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Hesham S M Soliman
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt.
- PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
29
|
Gong F, He C, Li X, Wang K, Li M, Zhou X, Xu M, He X. Impacts of fertilization methods on Salvia miltiorrhiza quality and characteristics of the epiphytic microbial community. FRONTIERS IN PLANT SCIENCE 2024; 15:1395628. [PMID: 38817929 PMCID: PMC11138495 DOI: 10.3389/fpls.2024.1395628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024]
Abstract
Plant epiphytic microorganisms have established a unique symbiotic relationship with plants, which has a significant impact on their growth, immune defense, and environmental adaptation. However, the impact of fertilization methods on the epiphytic microbial community and their correlation with the yield and quality of medicinal plant was still unclear. In current study, we conducted a field fertilization experiment and analyzed the composition of epiphytic bacterial and fungal communities employing high throughput sequencing data in different organs (roots, stems, and leaves) of Salvia miltiorrhiza, as well as their correlation with plant growth. The results showed that fertilization significantly affected the active ingredients and hormone content, soil physicochemical properties, and the composition of epiphytic microbial communities. After fertilization, the plant surface was enriched with a core microbial community mainly composed of bacteria from Firmicutes, Proteobacteria, and Actinobacteria, as well as fungi from Zygomycota and Ascomycota. Additionally, plant growth hormones were the principal factors leading to alterations in the epiphytic microbial community of S. miltiorrhiza. Thus, the most effective method of fertilization involved the application of base fertilizer in combination with foliar fertilizer. This study provides a new perspective for studying the correlation between microbial community function and the quality of S. miltiorrhiza, and also provides a theoretical basis for the cultivation and sustainable development of high-quality medicinal plants.
Collapse
Affiliation(s)
- Feng Gong
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kehan Wang
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Min Li
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Xiangyun Zhou
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Minghui Xu
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| |
Collapse
|
30
|
Wang P, Zhang H, Hu X, Xu L, An X, Jin T, Ma R, Li Z, Chen S, Du S, Wei G, Chen C. Comparing the Potential of Silicon Nanoparticles and Conventional Silicon for Salinity Stress Alleviation in Soybean ( Glycine max L.): Growth and Physiological Traits and Rhizosphere/Endophytic Bacterial Communities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10781-10793. [PMID: 38709780 DOI: 10.1021/acs.jafc.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In this study, 20-day-old soybean plants were watered with 100 mL of 100 mM NaCl solution and sprayed with silica nanoparticles (SiO2 NPs) or potassium silicate every 3 days over 15 days, with a final dosage of 12 mg of SiO2 per plant. We assessed the alterations in the plant's growth and physiological traits, and the responses of bacterial microbiome within the leaf endosphere, rhizosphere, and root endosphere. The result showed that the type of silicon did not significantly impact most of the plant parameters. However, the bacterial communities within the leaf and root endospheres had a stronger response to SiO2 NPs treatment, showing enrichment of 24 and 13 microbial taxa, respectively, compared with the silicate treatment, which led to the enrichment of 9 and 8 taxonomic taxa, respectively. The rhizosphere bacterial communities were less sensitive to SiO2 NPs, enriching only 2 microbial clades, compared to the 8 clades enriched by silicate treatment. Furthermore, SiO2 NPs treatment enriched beneficial genera, such as Pseudomonas, Bacillus, and Variovorax in the leaf and root endosphere, likely enhancing plant growth and salinity stress resistance. These findings highlight the potential of SiO2 NPs for foliar application in sustainable farming by enhancing plant-microbe interactions to improve salinity tolerance.
Collapse
Affiliation(s)
- Pan Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Leilei Xu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin An
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Ruixue Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhefei Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sen Du
- National Agro-Tech Extension and Service Center, Beijing 100125, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chun Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
31
|
Chen X, Li L, He Y. Epiphytic and endophytic bacteria on Camellia oleifera phyllosphere: exploring region and cultivar effect. BMC Ecol Evol 2024; 24:62. [PMID: 38735962 PMCID: PMC11089727 DOI: 10.1186/s12862-024-02240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
The epiphytic and endophytic bacteria play an important role in the healthy growth of plants. Both plant species and growth environmental influence the bacterial population diversity, yet it is inconclusive whether it is the former or the latter that has a greater impact. To explore the communities of the epiphytic and endophytic microbes in Camellia oleifera, this study assessed three representative C. oleifera cultivars from three areas in Hunan, China by Illumina high-throughput sequencing. The results showed that the diversity and species richness of endophytic microbial community in leaves were significantly higher than those of microbial community in the epiphytic. The diversity and species richness of epiphytic and endophytic microbes are complex when the same cultivar was grown in different areas. The C. oleifera cultivars grown in Youxian had the highest diversity of epiphytic microbial community, but the lowest abundance, while the cultivars grown in Changsha had the highest diversity and species richness of endophytic microbes in leaves. It was concluded that the dominant phylum mainly included Proteobacteria, Actinobacteriota and Firmicutes through the analysis of the epiphytic and endophytic microbial communities of C. oleifera. The species and relative abundances of epiphytic and endophytic microbial community were extremely different at the genus level. The analysis of NMDS map and PERMANOVA shows that the species richness and diversity of microbial communities in epiphytes are greatly influenced by region. However, the community structure of endophytic microorganisms in leaves is influenced by region and cultivated varieties, but the influence of cultivars is more significant. Molecular ecological network analysis showed that the symbiotic interaction of epiphytic microbial community was more complex.
Collapse
Affiliation(s)
- Xiaolin Chen
- Key Laboratory of National Forestry and Grassland Administration On Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Ordos Forestry and Grassland Development Center, Ordos, China
| | - Lili Li
- Key Laboratory of National Forestry and Grassland Administration On Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yuanhao He
- Key Laboratory of National Forestry and Grassland Administration On Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, College of Forestry, Central South University of Forestry and Technology, Changsha, China.
| |
Collapse
|
32
|
Gong W, Li Q, Tu Y, Yang D, Lai Y, Tang W, Mao W, Feng Y, Liu L, Ji X, Li H. Diversity and functional traits of seed endophytes of Dysphania ambrosioides from heavy metal contaminated and non-contaminated areas. World J Microbiol Biotechnol 2024; 40:191. [PMID: 38702442 DOI: 10.1007/s11274-024-04003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Seed endophytes played a crucial role on host plants stress tolerance and heavy metal (HM) accumulation. Dysphania ambrosioides is a hyperaccumulator and showed strong tolerance and extraordinary accumulation capacities of multiple HMs. However, little is known about its seed endophytes response to field HM-contamination, and its role on host plants HM tolerance and accumulation. In this study, the seed endophytic community of D. ambrosioides from HM-contaminated area (H) and non-contaminated area (N) were investigated by both culture-dependent and independent methods. Moreover, Cd tolerance and the plant growth promoting (PGP) traits of dominant endophytes from site H and N were evaluated. The results showed that in both studies, HM-contamination reduced the diversity and richness of endophytic community and changed the most dominant endophyte, but increased resistant species abundance. By functional trait assessments, a great number of dominant endophytes displayed multiple PGP traits and Cd tolerance. Interestingly, soil HM-contamination significantly increased the percentage of Cd tolerance isolates of Agrobacterium and Epicoccum, but significantly decreased the ration of Agrobacterium with the siderophore production ability. However, the other PGP traits of isolates from site H and N showed no significant difference. Therefore, it was suggested that D. ambrosioides might improve its HM tolerance and accumulation through harboring more HM-resistant endophytes rather than PGP endophytes, but to prove this, more work need to be conducted in the future.
Collapse
Affiliation(s)
- Weijun Gong
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiaohong Li
- The First People's Hospital of Yunnan Province, Kunming, 650500, China
| | - Yungui Tu
- The First People's Hospital of Anning, Kunming, 650300, China
| | - Dian Yang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yibin Lai
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wenting Tang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wenqin Mao
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yue Feng
- The First People's Hospital of Anning, Kunming, 650300, China
| | - Li Liu
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Li
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
33
|
Yue C, Du C, Wang X, Tan Y, Liu X, Fan H. Powdery mildew-induced changes in phyllosphere microbial community dynamics of cucumber. FEMS Microbiol Ecol 2024; 100:fiae050. [PMID: 38599637 PMCID: PMC11062426 DOI: 10.1093/femsec/fiae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/22/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024] Open
Abstract
As an important habitat for microorganisms, the phyllosphere has a great impact on plant growth and health, and changes in phyllosphere microorganisms are closely related to the occurrence of leaf diseases. However, there remains a limited understanding regarding alterations to the microbial community in the phyllosphere resulting from pathogen infections. Here, we analyzed and compared the differences in phyllosphere microorganisms of powdery mildew cucumber from three disease severity levels (0% < L1 < 30%, 30% ≤ L2 < 50%, L3 ≥ 50%, the number represents the lesion coverage rate of powdery mildew on leaves). There were significant differences in α diversity and community structure of phyllosphere communities under different disease levels. Disease severity altered the community structure of phyllosphere microorganisms, Rosenbergiella, Rickettsia, and Cladosporium accounted for the largest proportion in the L1 disease grade, while Bacillus, Pantoea, Kocuria, and Podosphaera had the highest relative abundance in the L3 disease grade. The co-occurrence network analysis of the phyllosphere microbial community indicated that the phyllosphere bacterial community was most affected by the severity of disease. Our results suggested that with the development of cucumber powdery mildew, the symbiotic relationship between species was broken, and the entire bacterial community tended to compete.
Collapse
Affiliation(s)
- Cong Yue
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Xiaodan Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Yinqing Tan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Xingchen Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
34
|
Vashist M, Kumar TV, Singh SK. A comprehensive review of urban vegetation as a Nature-based Solution for sustainable management of particulate matter in ambient air. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26480-26496. [PMID: 38570430 DOI: 10.1007/s11356-024-33089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Air pollution is one of the most pressing environmental threats worldwide, resulting in several health issues such as cardiovascular and respiratory disorders, as well as premature mortality. The harmful effects of air pollution are particularly concerning in urban areas, where mismanaged anthropogenic activities, such as growth in the global population, increase in the number of vehicles, and industrial activities, have led to an increase in the concentration of pollutants in the ambient air. Among air pollutants, particulate matter is responsible for most adverse impacts. Several techniques have been implemented to reduce particulate matter concentrations in the ambient air. However, despite all the threats and awareness, efforts to improve air quality remain inadequate. In recent years, urban vegetation has emerged as an efficient Nature-based Solution for managing environmental air pollution due to its ability to filter air, thereby reducing the atmospheric concentrations of particulate matter. This review characterizes the various mitigation mechanisms for particulate matter by urban vegetation (deposition, dispersion, and modification) and identifies key areas for further improvements within each mechanism. Through a systematic assessment of existing literature, this review also highlights the existing gaps in the present literature that need to be addressed to maximize the utility of urban vegetation in reducing particulate matter levels. In conclusion, the review emphasizes the urgent need for proper air pollution management through urban vegetation by integrating different fields, multiple stakeholders, and policymakers to support better implementation.
Collapse
Affiliation(s)
- Mallika Vashist
- Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, India, 110042.
| | | | - Santosh Kumar Singh
- Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, India, 110042
- Rajasthan Technical University, Kota (Rajasthan), India
| |
Collapse
|
35
|
Tamang A, Kaur A, Thakur D, Thakur A, Thakur BK, Shivani, Swarnkar M, Pal PK, Hallan V, Pandey SS. Unraveling endophytic diversity in dioecious Siraitia grosvenorii: implications for mogroside production. Appl Microbiol Biotechnol 2024; 108:247. [PMID: 38427084 PMCID: PMC10907472 DOI: 10.1007/s00253-024-13076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Host and tissue-specificity of endophytes are important attributes that limit the endophyte application on multiple crops. Therefore, understanding the endophytic composition of the targeted crop is essential, especially for the dioecious plants where the male and female plants are different. Here, efforts were made to understand the endophytic bacterial composition of the dioecious Siraitia grosvenorii plant using 16S rRNA amplicon sequencing. The present study revealed the association of distinct endophytic bacterial communities with different parts of male and female plants. Roots of male and female plants had a higher bacterial diversity than other parts of plants, and the roots of male plants had more bacterial diversity than the roots of female plants. Endophytes belonging to the phylum Proteobacteria were abundant in all parts of male and female plants except male stems and fruit pulp, where the Firmicutes were most abundant. Class Gammaproteobacteria predominated in both male and female plants, with the genus Acinetobacter as the most dominant and part of the core microbiome of the plant (present in all parts of both, male and female plants). The presence of distinct taxa specific to male and female plants was also identified. Macrococcus, Facklamia, and Propionibacterium were the distinct genera found only in fruit pulp, the edible part of S. grosvenorii. Predictive functional analysis revealed the abundance of enzymes of secondary metabolite (especially mogroside) biosynthesis in the associated endophytic community with predominance in roots. The present study revealed bacterial endophytic communities of male and female S. grosvenorii plants that can be further explored for monk fruit cultivation, mogroside production, and early-stage identification of male and female plants. KEY POINTS: • Male and female Siraitia grosvenorii plants had distinct endophytic communities • The diversity of endophytic communities was specific to different parts of plants • S. grosvenorii-associated endophytes may be valuable for mogroside biosynthesis and monk fruit cultivation.
Collapse
Affiliation(s)
- Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amanpreet Kaur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
| | - Deepali Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
| | - Ankita Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Babit Kumar Thakur
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivani
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
| | - Probir K Pal
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
36
|
Wang Y, Xue D, Chen X, Qiu Q, Chen H. Structure and Functions of Endophytic Bacterial Communities Associated with Sphagnum Mosses and Their Drivers in Two Different Nutrient Types of Peatlands. MICROBIAL ECOLOGY 2024; 87:47. [PMID: 38407642 PMCID: PMC10896819 DOI: 10.1007/s00248-024-02355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Sphagnum mosses are keystone plant species in the peatland ecosystems that play a crucial role in the formation of peat, which shelters a broad diversity of endophytic bacteria with important ecological functions. In particular, methanotrophic and nitrogen-fixing endophytic bacteria benefit Sphagnum moss hosts by providing both carbon and nitrogen. However, the composition and abundance of endophytic bacteria from different species of Sphagnum moss in peatlands of different nutrient statuses and their drivers remain unclear. This study used 16S rRNA gene amplicon sequencing to examine endophytic bacterial communities in Sphagnum mosses and measured the activity of methanotrophic microbial by the 13C-CH4 oxidation rate. According to the results, the endophytic bacterial community structure varied among Sphagnum moss species and Sphagnum capillifolium had the highest endophytic bacterial alpha diversity. Moreover, chlorophyll, phenol oxidase, carbon contents, and water retention capacity strongly shaped the communities of endophytic bacteria. Finally, Sphagnum palustre in Hani (SP) had a higher methane oxidation rate than S. palustre in Taishanmiao. This result is associated with the higher average relative abundance of Methyloferula an obligate methanotroph in SP. In summary, this work highlights the effects of Sphagnum moss characteristics on the endophytic bacteriome. The endophytic bacteriome is important for Sphagnum moss productivity, as well as for carbon and nitrogen cycles in Sphagnum moss peatlands.
Collapse
Affiliation(s)
- Yue Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Xue
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
| | - Xuhui Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Qiu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
| |
Collapse
|
37
|
Liang J, Wei C, Song X, Wang R, Shi H, Tan J, Cheng D, Wang W, Wang X. Bacterial wilt affects the structure and assembly of microbial communities along the soil-root continuum. ENVIRONMENTAL MICROBIOME 2024; 19:6. [PMID: 38229154 PMCID: PMC10792853 DOI: 10.1186/s40793-024-00548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND Beneficial root-associated microbiomes play crucial roles in enhancing plant growth and suppressing pathogenic threats, and their application for defending against pathogens has garnered increasing attention. Nonetheless, the dynamics of microbiome assembly and defense mechanisms during pathogen invasion remain largely unknown. In this study, we aimed to investigate the diversity and assembly of microbial communities within four niches (bulk soils, rhizosphere, rhizoplane, and endosphere) under the influence of the bacterial plant pathogen Ralstonia solanacearum. RESULTS Our results revealed that healthy tobacco plants exhibited more diverse community compositions and more robust co-occurrence networks in root-associated niches compared to diseased tobacco plants. Stochastic processes (dispersal limitation and drift), rather than determinism, dominated the assembly processes, with a higher impact of drift observed in diseased plants than in healthy ones. Furthermore, during the invasion of R. solanacearum, the abundance of Fusarium genera, a known potential pathogen of Fusarium wilt, significantly increased in diseased plants. Moreover, the response strategies of the microbiomes to pathogens in diseased and healthy plants diverged. Diseased microbiomes recruited beneficial microbial taxa, such as Streptomyces and Bacilli, to mount defenses against pathogens, with an increased presence of microbial taxa negatively correlated with the pathogen. Conversely, the potential defense strategies varied across niches in healthy plants, with significant enrichments of functional genes related to biofilm formation in the rhizoplane and antibiotic biosynthesis in the endosphere. CONCLUSION Our study revealed the varied community composition and assembly mechanism of microbial communities between healthy and diseased tobacco plants along the soil-root continuum, providing new insights into niche-specific defense mechanisms against pathogen invasions. These findings may underscore the potential utilization of different functional prebiotics to enhance plants' ability to fend off pathogens.
Collapse
Affiliation(s)
- Jinchang Liang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Chengjian Wei
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
- College of Agriculture, Guangxi University, 530004, Nanning, China
| | - Xueru Song
- Engineering Center for Biological Control of Diseases and Pests in Tobacco Industry, 653100, Yuxi, China
| | - Rui Wang
- Enshi Tobacco Science and Technology Center, 445000, Enshi, China
| | - Heli Shi
- Enshi Tobacco Science and Technology Center, 445000, Enshi, China
| | - Jun Tan
- Enshi Tobacco Science and Technology Center, 445000, Enshi, China
| | - Dejie Cheng
- College of Agriculture, Guangxi University, 530004, Nanning, China
| | - Wenjing Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Xiaoqiang Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China.
| |
Collapse
|
38
|
He C, Zhang M, Li X, He X. Seasonal dynamics of phyllosphere epiphytic microbial communities of medicinal plants in farmland environment. FRONTIERS IN PLANT SCIENCE 2024; 14:1328586. [PMID: 38239215 PMCID: PMC10794659 DOI: 10.3389/fpls.2023.1328586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024]
Abstract
Introduction The phyllosphere of plants is inhabited by various microorganisms, which play a crucial role in plant physiological metabolism. Currently, there is limited research on the dynamic effects of species and seasons on plant phyllosphere microbial community diversity and microbial interactions. Methods In this study, high-throughput sequencing technology was used to sequence the leaf surface parasitic microorganisms of five medicinal plants (Bupleurum chinense, Atractylodes lancea, Salvia miltiorrhiza, Astragalus membranaceus, and Lonicera japonica). Results The results showed that bacteria and fungi clustered into 3,898 and 1,572 operational taxonomic units (OTUs), respectively. Compared to host species, seasons had a more significant impact on the a diversity of bacteria and fungi. The heterogeneity of phyllosphere microbial communities was greater in winter compared to summer. Key species analysis at the OTU level and Spearman correlation analysis demonstrated significant preferences in microbial interactions under plant and seasonal backgrounds. The network connections between bacterial and fungal communities significantly increased during seasonal transitions compared to connections with plants. Discussion This study enhances our understanding of the composition and ecological roles of plant-associated microbial communities in small-scale agricultural environments. Additionally, it provides valuable insights for assessing the biodiversity of medicinal plants.
Collapse
Affiliation(s)
- Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Man Zhang
- College of Life Sciences, Hebei University, Baoding, China
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
39
|
Meyer KM, Muscettola IE, Vasconcelos ALS, Sherman JK, Metcalf CJE, Lindow SE, Koskella B. Conspecific versus heterospecific transmission shapes host specialization of the phyllosphere microbiome. Cell Host Microbe 2023; 31:2067-2079.e5. [PMID: 38029741 DOI: 10.1016/j.chom.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
In disease ecology, pathogen transmission among conspecific versus heterospecific hosts is known to shape pathogen specialization and virulence, but we do not yet know if similar effects occur at the microbiome level. We tested this idea by experimentally passaging leaf-associated microbiomes either within conspecific or across heterospecific plant hosts. Although conspecific transmission results in persistent host-filtering effects and more within-microbiome network connections, heterospecific transmission results in weaker host-filtering effects but higher levels of interconnectivity. When transplanted onto novel plants, heterospecific lines are less differentiated by host species than conspecific lines, suggesting a shift toward microbiome generalism. Finally, conspecific lines from tomato exhibit a competitive advantage on tomato hosts against those passaged on bean or pepper, suggesting microbiome-level host specialization. Overall, we find that transmission mode and previous host history shape microbiome diversity, with repeated conspecific transmission driving microbiome specialization and repeated heterospecific transmission promoting microbiome generalism.
Collapse
Affiliation(s)
- Kyle M Meyer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Isabella E Muscettola
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ana Luisa S Vasconcelos
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Soil Science, College of Agriculture "Luiz de Queiroz", Universidade de São Paulo, Piracicaba 13418-900, Brazil
| | - Julia K Sherman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
40
|
Li D, Li Y, Wang X, Zhang W, Wen X, Liu Z, Feng Y, Zhang X. Engineered pine endophytic Bacillus toyonensis with nematocidal and colonization abilities for pine wilt disease control. Front Microbiol 2023; 14:1240984. [PMID: 38125565 PMCID: PMC10731049 DOI: 10.3389/fmicb.2023.1240984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The pinewood nematode (PWN) is responsible for causing pine wilt disease (PWD), which has led to the significant decline of conifer species in Eurasian forests and has become a globally invasive quarantine pest. Manipulating plant-associated microbes to control nematodes is an important strategy for sustainable pest management. However, it has proven difficult to find pine-associated bacteria that possess both nematocidal activity and the ability to colonize pine tissues. Methods The stress experiments with turpentine and pine tissue extract were carried out to screen for the desired target strain that could adapt to the internal environment of pine trees. This strain was used to construct an engineered nematocidal strain. Additionally, a fluorescent strain was constructed to determine its dispersal ability in Pinus massoniana seedlings through plate separation, PCR detection, and fluorescence microscopy observations. The engineered nematocidal strain was tested in the greenhouse experiment to assess its ability to effectively protect P. massoniana seedlings from nematode infection. Results This study isolated a Bacillus toyonensis strain Bxy19 from the healthy pine stem, which showed exceptional tolerance in stress experiments. An engineered nematocidal strain Bxy19P3C6 was constructed, which expressed the Cry6Aa crystal protein and exhibited nematocidal activity. The fluorescent strain Bxy19GFP was also constructed and used to test its dispersal ability. It was observed to enter the needles of the seedlings through the stomata and colonize the vascular bundle after being sprayed on the seedlings. The strain was observed to colonize and spread in the tracheid after being injected into the stems. The strain could colonize the seedlings and persist for at least 50 days. Furthermore, the greenhouse experiments indicated that both spraying and injecting the engineered strain Bxy19P3C6 had considerable efficacy against nematode infection. Discussion The evidence of the colonization ability and persistence of the strain in pine advances our understanding of the control and prediction of the colonization of exogenously delivered bacteria in pines. This study provides a promising approach for manipulating plant-associated bacteria and using Bt protein to control nematodes.
Collapse
Affiliation(s)
- Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
41
|
Tang L, Zhan L, Han Y, Wang Z, Dong L, Zhang Z. Microbial community assembly and functional profiles along the soil-root continuum of salt-tolerant Suaeda glauca and Suaeda salsa. FRONTIERS IN PLANT SCIENCE 2023; 14:1301117. [PMID: 38046600 PMCID: PMC10691491 DOI: 10.3389/fpls.2023.1301117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
Developing and planting salt-tolerant plants has become a promising way to utilize saline-alkali land resources and ensure food security. Root-associated microbes of salt-tolerant plants have been shown to promote plant growth and alleviate high salt stress, yet very little is known about the salt resistance mechanisms of core microbes in different niches. This study characterized the microbial community structures, assembly processes, and functional profiles in four root-related compartments of two salt-tolerant plants by amplicon and shotgun metagenomic sequencing. The results showed that both plants significantly altered the microbial community structure of saline soils, with greater microbial alpha diversity in the rhizosphere or rhizoplane compared with bulk soils. Stochastic process dominated the microbial assembly processes, and the impact was stronger in Suaeda salsa than in S. glauca, indicating that S. salsa may have stronger resistance abilities to changing soil properties. Keystone species, such as Pseudomonas in the endosphere of S. glauca and Sphingomonas in the endosphere of S. salsa, which may play key roles in helping plants alleviate salt stress, were identified by using microbial co-occurrence network analysis. Furthermore, the microbiomes in the rhizoplane soils had more abundant genes involved in promoting growth of plants and defending against salt stress than those in bulk soils, especially in salt-tolerant S. salsa. Moreover, microbes in the rhizoplane of S. salsa exhibited higher functional diversities, with notable enrichment of genes involved in carbon fixation, dissimilar nitrate reduction to ammonium, and sulfite oxidation. These findings revealed differences and similarities in the microbial community assembly, functional profiles and keystone species closely related to salt alleviation of the two salt-tolerant plants. Overall, our study provides new insights into the ecological functions and varied strategies of rhizosphere microbes in different plants under salt stress and highlights the potential use of keystone microbes for enhancing salt resistance of plants.
Collapse
Affiliation(s)
- Luyao Tang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Le Zhan
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Yanan Han
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Key Laboratory of Antibody Medicines, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, China
| | - Zhengran Wang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Lei Dong
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Zhong Zhang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Key Laboratory of Antibody Medicines, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
42
|
Xiong Q, Yang J, Ni S. Microbiome-Mediated Protection against Pathogens in Woody Plants. Int J Mol Sci 2023; 24:16118. [PMID: 38003306 PMCID: PMC10671361 DOI: 10.3390/ijms242216118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens, especially invasive species, have caused significant global ecological, economic, and social losses in forests. Plant disease research has traditionally focused on direct interactions between plants and pathogens in an appropriate environment. However, recent research indicates that the microbiome can interact with the plant host and pathogens to modulate plant resistance or pathogen pathogenicity, thereby altering the outcome of plant-pathogen interactions. Thus, this presents new opportunities for studying the microbial management of forest diseases. Compared to parallel studies on human and crop microbiomes, research into the forest tree microbiome and its critical role in forest disease progression has lagged. The rapid development of microbiome sequencing and analysis technologies has resulted in the rapid accumulation of a large body of evidence regarding the association between forest microbiomes and diseases. These data will aid the development of innovative, effective, and environmentally sustainable methods for the microbial management of forest diseases. Herein, we summarize the most recent findings on the dynamic structure and composition of forest tree microbiomes in belowground and aboveground plant tissues (i.e., rhizosphere, endosphere, and phyllosphere), as well as their pleiotropic impact on plant immunity and pathogen pathogenicity, highlighting representative examples of biological control agents used to modulate relevant tree microbiomes. Lastly, we discuss the potential application of forest tree microbiomes in disease control as well as their future prospects and challenges.
Collapse
Affiliation(s)
- Qin Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (J.Y.); (S.N.)
| | | | | |
Collapse
|
43
|
Oldstone-Jackson C, Huang F, Bergelson J. Microbe-associated molecular pattern recognition receptors have little effect on endophytic Arabidopsis thaliana microbiome assembly in the field. FRONTIERS IN PLANT SCIENCE 2023; 14:1276472. [PMID: 38023837 PMCID: PMC10663345 DOI: 10.3389/fpls.2023.1276472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Plant microbiome structure affects plant health and productivity. A limited subset of environmental microbes successfully establishes within plant tissues, but the forces underlying this selectivity remain poorly characterized. Transmembrane pattern recognition receptors (PRRs), used by plants to detect microbe-associated molecular patterns (MAMPs), are strong candidates for achieving this selectivity because PRRs can potentially interact with many members of the microbiome. Indeed, MAMPs found in many microbial taxa, including beneficials and commensals, can instigate a robust immune response that affects microbial growth. Surprisingly, we found that MAMP-detecting PRRs have little effect on endophytic bacterial and fungal microbiome structure in the field. We compared the microbiomes of four PRR knockout lines of Arabidopsis thaliana to wild-type plants in multiple tissue types over several developmental stages and detected only subtle shifts in fungal, but not bacterial, β-diversity in one of the four PRR mutants. In one developmental stage, lore mutants had slightly altered fungal β-diversity, indicating that LORE may be involved in plant-fungal interactions in addition to its known role in detecting certain bacterial lipids. No other effects of PRRs on α-diversity, microbiome variability, within-individual homogeneity, or microbial load were found. The general lack of effect suggests that individual MAMP-detecting PRRs are not critical in shaping the endophytic plant microbiome. Rather, we suggest that MAMP-detecting PRRs must either act in concert and/or are individually maintained through pleiotropic effects or interactions with coevolved mutualists or pathogens. Although unexpected, these results offer insights into the role of MAMP-detecting PRRs in plant-microbe interactions and help direct future efforts to uncover host genetic elements that control plant microbiome assembly.
Collapse
Affiliation(s)
| | - Feng Huang
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, United States
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Joy Bergelson
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, United States
- Center for Genomics and Systems Biology, Department of Biology, College of Arts and Science, New York University, New York, NY, United States
| |
Collapse
|
44
|
Lin C, Li WJ, Li LJ, Neilson R, An XL, Zhu YG. Movement of protistan trophic groups in soil-plant continuums. Environ Microbiol 2023; 25:2641-2652. [PMID: 37547979 DOI: 10.1111/1462-2920.16477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Protists, functionally divided into consumers, phototrophs, and parasites act as integral components and vital regulators of microbiomes in soil-plant continuums. However, the drivers of community structure, assembly mechanisms, co-occurrence patterns, and the associations with human pathogens and different protistan trophic groups remain unknown. Here, we characterized the phyllosphere and soil protistan communities associated with three vegetables under different fertilization treatments (none and organic fertilization) at five growth stages. In this study, consumers were the most diverse soil protist group, had the role of inter-kingdom connector, and were the primary biomarker for rhizosphere soils which were subjected to decreasing deterministic processes during plant growth. In contrast, phototrophs had the greatest niche breadth and formed soil protistan hubs, and were the primary biomarkers for both bulk soils and the phyllosphere. Parasites had minimal input to microbial co-occurrence networks. Organic fertilization increased the relative abundance (RA) of pathogenic protists and the number of pathogen-consumer connections in rhizosphere soils but decreased protistan richness and the number of internal protistan links. This study advances our understanding of the ecological roles and potential links between human pathogens and protistan trophic groups associated with soil-plant continuums, which is fundamental to the regulation of soil-plant microbiomes and maintenance of environmental and human health.
Collapse
Affiliation(s)
- Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Jing Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Juan Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, Scotland, UK
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Bai X, Ya R, Tang X, Cai M. Role and interaction of bacterial sphingolipids in human health. Front Microbiol 2023; 14:1289819. [PMID: 37937219 PMCID: PMC10626005 DOI: 10.3389/fmicb.2023.1289819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Sphingolipids, present in both higher animals and prokaryotes, involving in cell differentiation, pathogenesis and apoptosis in human physiological health. With increasing attention on the gut microbiome and its impact on wellbeing, there is a renewed focus on exploring bacterial sphingolipids. This review aims to consolidate the current understanding of bacterial sphingolipids and their impact on host health. Compared to mammalian sphingolipids, bacterial sphingolipids are characterized by odd chain lengths due to the presence of branched alkyl chains. Additionally, intestinal microbial sphingolipids can migrate from the gut to various host organs, affecting the immune system and metabolism. Furthermore, the intricate interplay between dietary sphingolipids and the gut microbiota is explored, shedding light on their complex relationship. Despite limited knowledge in this area, this review aims to raise awareness about the importance of bacterial sphingolipids and further our understanding of more uncharacterized bacterial sphingolipids and their significant role in maintaining host health.
Collapse
Affiliation(s)
- Xiaoye Bai
- School of Medicine, Sun Yat-sen University, Shenzhen, China
- Shenzhen Bay Laboratory, Institute of Chemical Biology, Shenzhen, China
| | - Ru Ya
- Inner Mongolia Academy of Science and Technology, Hohhot, China
| | - Xiaoyu Tang
- Shenzhen Bay Laboratory, Institute of Chemical Biology, Shenzhen, China
| | - Mingwei Cai
- Shenzhen Bay Laboratory, Institute of Chemical Biology, Shenzhen, China
| |
Collapse
|
46
|
Russ D, Fitzpatrick CR, Teixeira PJPL, Dangl JL. Deep discovery informs difficult deployment in plant microbiome science. Cell 2023; 186:4496-4513. [PMID: 37832524 DOI: 10.1016/j.cell.2023.08.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023]
Abstract
Plant-associated microbiota can extend plant immune system function, improve nutrient acquisition and availability, and alleviate abiotic stresses. Thus, naturally beneficial microbial therapeutics are enticing tools to improve plant productivity. The basic definition of plant microbiota across species and ecosystems, combined with the development of reductionist experimental models and the manipulation of plant phenotypes with microbes, has fueled interest in its translation to agriculture. However, the great majority of microbes exhibiting plant-productivity traits in the lab and greenhouse fail in the field. Therapeutic microbes must reach détente, the establishment of uneasy homeostasis, with the plant immune system, invade heterogeneous pre-established plant-associated communities, and persist in a new and potentially remodeled community. Environmental conditions can alter community structure and thus impact the engraftment of therapeutic microbes. We survey recent breakthroughs, challenges, and opportunities in translating beneficial microbes from the lab to the field.
Collapse
Affiliation(s)
- Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paulo J P L Teixeira
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
47
|
Calvert J, McTaggart A, Carvalhais LC, Rensink S, Dennis PG, Drenth A, Shivas R. Divergent rainforest tree microbiomes between phases of the monsoon cycle, host plants and tissues. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:860-870. [PMID: 37647418 DOI: 10.1111/plb.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
The Australian Monsoon Tropics (AMT) contain some of the most biodiverse forests on the continent. Little is known about the dynamics of rainforest plant microbiomes in general, and there have been no community-level studies on Australian rainforest endophytes, their seasonality, tissue and host specificity. We tested whether community composition of tropical tree endophytes (fungi and bacteria) differs: (i) at different points during a monsoon cycle, (ii) between leaf and stem tissues, (iii) between forest microclimates (gully/ridge), and between (iv) host plant species, and (v) host plant clade, using amplicon sequencing of the bacterial 16S and fungal ITS2 gene regions. Results indicated that the composition of rainforest plant microbiomes differs between wet and dry seasons, which may be explained by physiological shifts in host plants due to annual climate fluctuations from mesic to xeric. Endophyte microbiomes differed between leaves and stems. Distinct fungal communities were associated with host species and clades, with some trees enriched in a number of fungal taxa compared to host plants in other clades. Diversity of bacterial endophytes in plant stems increased in the dry season. We conclude that the microbiomes of tropical plants are responsive to monsoonal climate variation, are highly compartmentalised between plant tissues, and may be partly shaped by the relatedness of their host plants.
Collapse
Affiliation(s)
- J Calvert
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, QLD, Australia
| | - A McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, QLD, Australia
| | - L C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, QLD, Australia
| | - S Rensink
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, QLD, Australia
| | - P G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - A Drenth
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, QLD, Australia
| | - R Shivas
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, QLD, Australia
| |
Collapse
|
48
|
Xu F, Liao H, Yang J, Zhang Y, Yu P, Cao Y, Fang J, Chen S, Li L, Sun L, Du C, Wang K, Dang X, Feng Z, Cao Y, Li Y, Zhang J, Xu W. Auxin-producing bacteria promote barley rhizosheath formation. Nat Commun 2023; 14:5800. [PMID: 37726263 PMCID: PMC10509245 DOI: 10.1038/s41467-023-40916-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
The rhizosheath, or the layer of soil closely adhering to roots, can help plants to tolerate drought under moderate soil drying conditions. Rhizosheath formation is the result of poorly understood interactions between root exudates, microbes, and soil conditions. Here, we study the roles played by the soil microbiota in rhizosheath formation in barley (a dry crop). We show that barley rhizosheath formation is greater in acid soil than in alkaline soil, and inoculation with microbiota from acid soil enhances rhizosheath formation in alkaline soil. The rhizosheath-promoting activity is associated with the presence of Flavobacteriaceae and Paenibacillaceae bacteria that express genes for biosynthesis of indole-3-acetic acid (IAA, a common auxin), as determined by metagenomics and metatranscriptomics. Two bacterial strains isolated from rhizosheath (Chryseobacterium culicis and Paenibacillus polymyxa) produce IAA and enhance barley rhizosheath formation, while their IAA-defective mutants are unable to promote rhizosheath formation. Co-inoculation with the IAA-producing strains enhances barley grain yield in field experiments through an increase in spike number. Our findings contribute to our understanding of barley rhizosheath formation, and suggest potential strategies for crop improvement.
Collapse
Affiliation(s)
- Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinyong Yang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yingjiao Zhang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Yiying Cao
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ju Fang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shu Chen
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liang Li
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Leyun Sun
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chongxuan Du
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ke Wang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolin Dang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiwei Feng
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yifan Cao
- College of Agriculture, Yangzhou University, Yangzhou, 225000, China
| | - Ying Li
- College of Agriculture, Yangzhou University, Yangzhou, 225000, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
49
|
Lin C, Li LJ, Ren K, Zhou SYD, Isabwe A, Yang LY, Neilson R, Yang XR, Cytryn E, Zhu YG. Phagotrophic protists preserve antibiotic-resistant opportunistic human pathogens in the vegetable phyllosphere. ISME COMMUNICATIONS 2023; 3:94. [PMID: 37660098 PMCID: PMC10475086 DOI: 10.1038/s43705-023-00302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Food safety of leafy greens is an emerging public health issue as they can harbor opportunistic human pathogens (OHPs) and expose OHPs to consumers. Protists are an integral part of phyllosphere microbial ecosystems. However, our understanding of protist-pathogen associations in the phyllosphere and their consequences on public health remains poor. Here, we examined phyllosphere protists, human pathogen marker genes (HPMGs), and protist endosymbionts from four species of leafy greens from major supermarkets in Xiamen, China. Our results showed that Staphylococcus aureus and Klebsiella pneumoniae were the dominant human pathogens in the vegetable phyllosphere. The distribution of HPMGs and protistan communities differed between vegetable species, of which Chinese chive possessed the most diverse protists and highest abundance of HPMGs. HPMGs abundance positively correlated with the diversity and relative abundance of phagotrophic protists. Whole genome sequencing further uncovered that most isolated phyllosphere protists harbored multiple OHPs which carried antibiotic resistance genes, virulence factors, and metal resistance genes and had the potential to HGT. Colpoda were identified as key phagotrophic protists which positively linked to OHPs and carried diverse resistance and virulence potential endosymbiont OHPs including Pseudomonas nitroreducens, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. We highlight that phyllosphere protists contribute to the transmission of resistant OHPs through internalization and thus pose risks to the food safety of leafy greens and human health. Our study provides insights into the protist-OHP interactions in the phyllosphere, which will help in food safety surveillance and human health.
Collapse
Affiliation(s)
- Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Li-Juan Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Kexin Ren
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Alain Isabwe
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agriculture Research Organization, 7528809, Rishon Lezion, Israel
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
50
|
Wei TL, Zheng YP, Wang ZH, Shang YX, Pei MS, Liu HN, Yu YH, Shi QF, Jiang DM, Guo DL. Comparative microbiome analysis reveals the variation in microbial communities between 'Kyoho' grape and its bud mutant variety. PLoS One 2023; 18:e0290853. [PMID: 37647311 PMCID: PMC10468054 DOI: 10.1371/journal.pone.0290853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Microbes are an important part of the vineyard ecosystem, which significantly influence the quality of grapes. Previously, we identified a bud mutant variety (named 'Fengzao') from 'Kyoho' grapes. The variation of microbial communities in grape and its bud mutant variety has not been studied yet. So, in this study, with the samples of both 'Fengzao' and 'Kyoho', we conducted high-throughput microbiome sequencing and investigated their microbial communities in different tissues. Obvious differences were observed in the microbial communities between 'Fengzao' and 'Kyoho'. The fruit and the stem are the tissues with relatively higher abundance of microbes, while the leaves contained less microbes. The fruit and the stem of 'Kyoho' and the stem of 'Fengzao' had relatively higher species diversity based on the alpha diversity analysis. Proteobacteria, Enterobacteriaceae and Rhodobacteraceae had significantly high abundance in 'Fengzao'. Firmicutes and Pseudomonas were highly abundant in the stems of 'Kyoho', and family of Spirochaetaceae, Anaplasmataceae, Chlorobiaceae, and Sphingomonadaceae, and genera of Spirochaeta, Sphingomonas, Chlorobaculum and Wolbachia were abundant in the fruits of 'Kyoho'. These identified microbes are main components of the microbial communities, and could be important regulators of grapevine growth and development. This study revealed the differences in the microbial compositions between 'Kyoho' and its bud mutant, and these identified microbes will be significant resources for the future researches on the quality regulation and disease control of grapevines.
Collapse
Affiliation(s)
- Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Yu-Ping Zheng
- Library, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ze-Hang Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Ya-Xin Shang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Yi-He Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Qiao-Fang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Dong-Ming Jiang
- Jiangsu Red Sun Wine Industry Limited Company, Xuzhou, 221000, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| |
Collapse
|