1
|
Yang LC, Lee YT, Kumaran A, Huang SQ, Su CH, Wu DR, Yen TH, Chiu CH. Target and non-target analysis with molecular network strategies for identifying potential index compounds from Momordica charantia L. for alleviating non-alcoholic fatty liver. INDUSTRIAL CROPS AND PRODUCTS 2024; 219:119014. [DOI: 10.1016/j.indcrop.2024.119014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
|
2
|
Xiao X, Huang S, Yang Z, Zhu Y, Zhu L, Zhao Y, Bai J, Kim KH. Momordica charantia Bioactive Components: Hypoglycemic and Hypolipidemic Benefits Through Gut Health Modulation. J Med Food 2024; 27:589-600. [PMID: 38770678 DOI: 10.1089/jmf.2024.k.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Momordica charantia (MC), a member of the Cucurbitaceae family, is well known for its pharmacological activities that exhibit hypoglycemic and hypolipidemic properties. These properties are largely because of its abundant bioactive compounds and phytochemicals. Over the years, numerous studies have confirmed the regulatory effects of MC extract on glycolipid metabolism. However, there is a lack of comprehensive reviews on newly discovered MC-related components, such as insulin receptor-binding protein-19, adMc1, and MC protein-30 and triterpenoids 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al, and the role of MC in gut microbiota and bitter taste receptors. This review offers an up-to-date overview of the recently reported chemical compositions of MC, including polysaccharides, saponins, polyphenolics, peptides, and their beneficial effects. It also provides the latest updates on the role of MC in the regulation of gut microbiota and bitter taste receptor signaling pathways. As a result, this review will serve as a theoretical basis for potential applications in the creation or modification of MC-based nutrient supplements.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shiting Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zihan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Marasinghe CK, Jung WK, Je JY. Phloroglucinol possesses anti-inflammatory activities by regulating AMPK/Nrf2/HO-1 signaling pathway in LPS-stimulated RAW264.7 murine macrophages. Immunopharmacol Immunotoxicol 2023; 45:571-580. [PMID: 36988555 DOI: 10.1080/08923973.2023.2196602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Inflammation is closely related to the pathogenesis of chronic illnesses. Secondary metabolites of marine seaweeds are recognized as reliable sources of bioactive compounds due to their health benefits besides their nutritional value. The objective of this study was to determine the potential anti-inflammatory effect of phloroglucinol (Phl) in RAW264.7 murine macrophages after lipopolysaccharides (LPS) stimulation. METHODS MTT, nitric oxide (NO), and DCFH-DA assays were conducted to determine cell viability, NO production, and reactive oxygen species (ROS) generation respectively. Pro-inflammatory cytokines and prostaglandin E2 (PGE2) levels were measured using ELISA assay kits. Protein expression levels were determined by western blot analysis. RESULTS Phl treatment showed a promising anti-inflammatory effect by reducing NO production, secretion of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), PGE2 production, protein expression levels of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), and ROS generation in LPS-stimulated RAW264.7 murine macrophages. Phl treatment upregulated heme oxygenase-1 (HO-1) expression by inducing nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and activating AMPK. However, Zinc protoporphyrin (ZnPP), an inhibitor of HO-1, partially reversed these effects, including NO production, pro-inflammatory cytokine secretion, iNOS, COX-2 and HO-1 expression, and ROS generation. CONCLUSION Phl has potential anti-inflammatory activities by regulating AMPK/Nrf2/HO-1 pathway in LPS-stimulated RAW264.7 murine macrophages.
Collapse
Affiliation(s)
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, Pukyong National University, Busan, Republic of Korea
- Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Quercetin induces autophagy-associated death in HL-60 cells through CaMKKβ/AMPK/mTOR signal pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1244-1256. [PMID: 36148953 PMCID: PMC9827794 DOI: 10.3724/abbs.2022117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common malignancies of the hematopoietic progenitor cell in adults. Quercetin has gained recognition over the years because of its anti-cancer effect with minimal toxicity. Herein, we aim to investigate the anti-leukemia mechanism of quercetin and to decipher the signaling pathway of quercetin in HL-60 leukemic cells. We observed that quercetin induces apoptosis and autophagic cell death, in which both pathways play an important role in suppressing the viability of leukemia cells. Phosphorylated AMPK (p-AMPK) protein expressions are lower in primary AML cells, HL-60 cells, KG-1 and THP-1 cells than in peripheral blood monocular cells. After quercetin treatment, the expression of p-AMPK is increased while the expression of p-mTOR is decreased in a dose-dependent manner. Mechanistically, compound C, an AMPK phosphorylation inhibitor, upregulates the phosphorylation of mTOR and inhibits autophagy and apoptosis in quercetin-induced HL-60 cells, while silencing of CaMKKβ inhibits the quercetin-induced phosphorylation of AMPK, resulting in increased mTOR phosphorylation. Furthermore, silencing of CaMKKβ inhibits the autophagy in HL-60 cells. Taken together, our data delineate that quercetin plays its anti-leukemia role by inhibiting cell viability and inducing apoptosis and autophagy in leukemia cells. Quercetin inhibits the phosphorylation of mTOR by regulating the activity of AMPK, thus playing a role in the regulation of autophagy and apoptosis. CaMKKβ is a potential upstream molecule for AMPK/mTOR signaling pathway, through which quercetin induces autophagy in HL-60 cells.
Collapse
|
5
|
Anti-Diabetic Effects of Cucurbitacins from Ibervillea lindheimeri on Induced Mouse Diabetes. J CHEM-NY 2022. [DOI: 10.1155/2022/3379557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mexico has a great tradition of using medicinal plants against diabetes. For example, species from the genus Ibervillea traditionally known as “wereque” in Mexican popular medicine have a long ethnobotanical history as anti-diabetic agents. Previous studies by our group indicated that ethyl acetate extract from Ibervillea lindheimeri (I. lindheimeri) roots reduced glucose in mice with chemically induced diabetes. In this work, the primary metabolites of the ethyl acetate extract of I. lindheimeri; 23,24-dihydrocucurbitacin D (1); 2-O-β glucopyranosyl-23,24-dihydrocucurbitacin D (2), and acetylated compounds (3) and (4) obtained from 1 and 2, respectively, were evaluated as anti-hyperglycemic agents in a murine model of chemically induced diabetes. Our results showed that cucurbitacins 1, 2, and 4 reduced glycemia in diabetic CD1 mice compared to the control diabetic group. In addition, the results suggest that compounds 1, 2, and 4 promote glucose transporter type 4 (Glut4) translocation to the plasma membrane (PM) mainly in epididymal adipose tissue (EAT), AMP-activated protein kinase (AMPK) activation in soleus muscle (SM) or dual activation of AMPK, and protein kinase B (AKT) in EAT in an insulin-independent manner when compared to controls. All results together indicate that the isolated cucurbitacins are responsible for the anti-diabetic properties of I. lindheimeri acting predominantly on adipose tissue and call attention to this species as a new source of anti-diabetic compounds.
Collapse
|
6
|
McCarty MF, Lewis Lujan L, Iloki Assanga S. Targeting Sirt1, AMPK, Nrf2, CK2, and Soluble Guanylate Cyclase with Nutraceuticals: A Practical Strategy for Preserving Bone Mass. Int J Mol Sci 2022; 23:4776. [PMID: 35563167 PMCID: PMC9104509 DOI: 10.3390/ijms23094776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
There is a vast pre-clinical literature suggesting that certain nutraceuticals have the potential to aid the preservation of bone mass in the context of estrogen withdrawal, glucocorticoid treatment, chronic inflammation, or aging. In an effort to bring some logical clarity to these findings, the signaling pathways regulating osteoblast, osteocyte, and osteoclast induction, activity, and survival are briefly reviewed in the present study. The focus is placed on the following factors: the mechanisms that induce and activate the RUNX2 transcription factor, a key driver of osteoblast differentiation and function; the promotion of autophagy and prevention of apoptosis in osteoblasts/osteoclasts; and the induction and activation of NFATc1, which promotes the expression of many proteins required for osteoclast-mediated osteolysis. This analysis suggests that the activation of sirtuin 1 (Sirt1), AMP-activated protein kinase (AMPK), the Nrf2 transcription factor, and soluble guanylate cyclase (sGC) can be expected to aid the maintenance of bone mass, whereas the inhibition of the serine kinase CK2 should also be protective in this regard. Fortuitously, nutraceuticals are available to address each of these targets. Sirt1 activation can be promoted with ferulic acid, N1-methylnicotinamide, melatonin, nicotinamide riboside, glucosamine, and thymoquinone. Berberine, such as the drug metformin, is a clinically useful activator of AMPK. Many agents, including lipoic acid, melatonin, thymoquinone, astaxanthin, and crucifera-derived sulforaphane, can promote Nrf2 activity. Pharmacological doses of biotin can directly stimulate sGC. Additionally, certain flavonols, notably quercetin, can inhibit CK2 in high nanomolar concentrations that may be clinically relevant. Many, though not all, of these agents have shown favorable effects on bone density and structure in rodent models of bone loss. Complex nutraceutical regimens providing a selection of these nutraceuticals in clinically meaningful doses may have an important potential for preserving bone health. Concurrent supplementation with taurine, N-acetylcysteine, vitamins D and K2, and minerals, including magnesium, zinc, and manganese, plus a diet naturally high in potassium, may also be helpful in this regard.
Collapse
Affiliation(s)
| | - Lidianys Lewis Lujan
- Department of Research and Postgraduate in Food Science, Sonoran University, Hermosillo 83200, Mexico;
| | - Simon Iloki Assanga
- Department of Biological Chemical Sciences, Sonoran University, Hermosillo 83200, Mexico;
| |
Collapse
|
7
|
Xu B, Li Z, Zeng T, Zhan J, Wang S, Ho CT, Li S. Bioactives of Momordica charantia as Potential Anti-Diabetic/Hypoglycemic Agents. Molecules 2022; 27:2175. [PMID: 35408574 PMCID: PMC9000558 DOI: 10.3390/molecules27072175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Momordica charantia L., a member of the Curcubitaceae family, has traditionally been used as herbal medicine and as a vegetable. Functional ingredients of M. charantia play important roles in body health and human nutrition, which can be used directly or indirectly in treating or preventing hyperglycemia-related chronic diseases in humans. The hypoglycemic effects of M. charantia have been known for years. In this paper, the research progress of M. charantia phytobioactives and their hypoglycemic effects and related mechanisms, especially relating to diabetes mellitus, has been reviewed. Moreover, the clinical application of M. charantia in treating diabetes mellitus is also discussed, hoping to broaden the application of M. charantia as functional food.
Collapse
Affiliation(s)
- Bilin Xu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Zhiliang Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Ting Zeng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Jianfeng Zhan
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Shuzhen Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Shiming Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| |
Collapse
|
8
|
Shu CH, Jaiswal R, Peng YY, Liu TH. Improving bioactivities of Momordica charantia broth through fermentation using mixed cultures of Lactobacillus plantarum, Gluconacetobacter sp. and Saccharomyces cerevisiae. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Yang YS, Wu NY, Kornelius E, Huang CN, Yang NC. A randomized, double-blind, placebo-controlled trial to evaluate the hypoglycemic efficacy of the mcIRBP-19-containing Momordica charantia L. fruit extracts in the type 2 diabetic subjects. Food Nutr Res 2022; 66:3685. [PMID: 35140559 PMCID: PMC8788657 DOI: 10.29219/fnr.v66.3685] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/24/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background The fruits of Momordica charantia L., also named as bitter gourd or bitter melon in popular, is a common tropical vegetable that is traditionally used to reduce blood glucose. A peptide derived from bitter gourd, Momordica charantia insulin receptor binding peptid-19 (mcIRBP-19), had been demonstrated to possess an insulin-like effect in vitro and in the animal studies. However, the benefit of the mcIRBP-19-containing bitter gourd extracts (mcIRBP-19-BGE) for lowering blood glucose levels in humans is unknown. Objective This aim of this study was to evaluate the hypoglycemic efficacy of mcIRBP-19-BGE in subjects with type 2 diabetes who had taken antidiabetic medications but failed to achieve the treatment goal. Whether glucose lowering efficacy of mcIRBP-19-BGE could be demonstrated when the antidiabetic medications were ineffective was also studied. Design Subjects were randomly assigned to two groups: mcIRBP-19-BGE treatment group (N = 20) and placebo group (N = 20), and were orally administered 600 mg/day investigational product or placebo for 3 months. Subjects whose hemoglobin A1c (HbA1c) continued declining before the trial initiation with the antidiabetic drugs were excluded from the subset analysis to further investigate the efficacy for those who failed to respond to the antidiabetic medications. Results The oral administration of mcIRBP-19-BGE decreased with a borderline significance at fasting blood glucose (FBG; P = 0.057) and HbA1c (P = 0.060). The subgroup analysis (N = 29) showed that mcIRBP-19-BGE had a significant effect on reducing FBG (from 172.5 ± 32.6 mg/dL to 159.4 ± 18.3 mg/dL, P = 0.041) and HbA1c (from 8.0 ± 0.7% to 7.5 ± 0.8%, P = 0.010). Conclusion All of these results demonstrate that mcIRBP-19-BGE possesses a hypoglycemic effect, and can have a significant reduction in FBG and HbA1c when the antidiabetic drugs are ineffective.
Collapse
Affiliation(s)
- Yi-Sun Yang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Nian-Yi Wu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Edy Kornelius
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Ning Huang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Nae-Cherng Yang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
- Nae-Cherng Yang, Department of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan.
| |
Collapse
|
10
|
Chung MY, Choi HK, Hwang JT. AMPK Activity: A Primary Target for Diabetes Prevention with Therapeutic Phytochemicals. Nutrients 2021; 13:nu13114050. [PMID: 34836306 PMCID: PMC8621568 DOI: 10.3390/nu13114050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes is a metabolic syndrome characterized by inadequate blood glucose control and is associated with reduced quality of life and various complications, significantly shortening life expectancy. Natural phytochemicals found in plants have been traditionally used as medicines for the prevention of chronic diseases including diabetes in East Asia since ancient times. Many of these phytochemicals have been characterized as having few side effects, and scientific research into the mechanisms of action responsible has accumulated mounting evidence for their efficacy. These compounds, which may help to prevent metabolic syndrome disorders including diabetes, act through relevant intracellular signaling pathways. In this review, we examine the anti-diabetic efficacy of several compounds and extracts derived from medicinal plants, with a focus on AMP-activated protein kinase (AMPK) activity.
Collapse
Affiliation(s)
- Min-Yu Chung
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju 55365, Korea; (M.-Y.C.); (H.-K.C.)
| | - Hyo-Kyoung Choi
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju 55365, Korea; (M.-Y.C.); (H.-K.C.)
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju 55365, Korea; (M.-Y.C.); (H.-K.C.)
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-63-219-9315; Fax: +82-63-219-9876
| |
Collapse
|
11
|
Neumann NR, Thompson DC, Vasiliou V. AMPK activators for the prevention and treatment of neurodegenerative diseases. Expert Opin Drug Metab Toxicol 2021; 17:1199-1210. [PMID: 34632898 DOI: 10.1080/17425255.2021.1991308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION As the global population ages at an unprecedented rate, the burden of neurodegenerative diseases is expected to grow. Given the profound impact illness like dementia exert on individuals and society writ large, researchers, physicians, and scientific organizations have called for increased investigation into their treatment and prevention. Both metformin and aspirin have been associated with improved cognitive outcomes. These agents are related in their ability to stimulate AMP kinase (AMPK). Momordica charantia, another AMPK activator, is a component of traditional medicines and a novel agent for the treatment of cancer. It is also being evaluated as a nootropic agent. AREAS COVERED This article is a comprehensive review which examines the role of AMPK activation in neuroprotection and the role that AMPK activators may have in the management of dementia and cognitive impairment. It evaluates the interaction of metformin, aspirin, and Momordica charantia, with AMPK, and reviews the literature characterizing these agents' impact on neurodegeneration. EXPERT OPINION We suggest that AMPK activators should be considered for the treatment and prevention of neurodegenerative diseases. We identify multiple areas of future investigation which may have a profound impact on patients worldwide.
Collapse
Affiliation(s)
- Natalie R Neumann
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, USA
| | - David C Thompson
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Sunil C, Irudayaraj SS, Duraipandiyan V, Alrashood ST, Alharbi SA, Ignacimuthu S. Friedelin exhibits antidiabetic effect in diabetic rats via modulation of glucose metabolism in liver and muscle. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113659. [PMID: 33271243 DOI: 10.1016/j.jep.2020.113659] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Demand for plant-based medications and therapeutics is increasing worldwide as of its potential effects and no toxic. Traditionally, so many medicinal plants are used to treat diabetes. Subsequently, investigation on medicinal plants was enduring to discover potential antidiabetic drugs. A. tetracantha is used traditionally to cure diabetes mellitus, cough, dropsy, chronic diarrhea, rheumatism, phthisis and smallpox. Scientifically, A. tetracantha has been reported as an antidiabetic agent. Friedelin, the isolated compound has been reported as hypolipidemic, antioxidant, scavenging of free radicals, antiulcer, anti-inflammatory, analgesic and antipyretic agent. AIM OF THE STUDY To scrutinize the mechanism of antidiabetic activity of friedelin isolated from the leaves of A. tetracantha. MATERIALS AND METHODS A. tetracantha leaves powder (5 kg) was soaked in hexane (15 L) to obtain hexane extract. Using column chromatography, the hexane extract was fractionated using a combination of solvents like hexane and ethyl acetate. 25 fractions were obtained and the fractions 13 and 14 yielded the compound, friedelin. Friedelin at the doses of 20 and 40 mg/kg was used to treated STZ -induced diabetic rats for 28 days. Later 28 days of treatment, the bodyweight changes, levels of blood glucose, insulin, SGOT, SGPT, SALP, liver glycogen and total protein were assessed. RESULTS Friedelin significantly brought these altered levels to near normal. Moreover, friedelin also enhanced the translocation as well as activation of GLUT2 and GLUT4 through PI3K/p-Akt signaling cascade in skeletal muscles and liver on diabetic rats. CONCLUSION This finding proved that friedelin has an anti-diabetic effect through insulin-dependent signaling cascade mechanism, thus it may lead to establishing a drug to treat type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Christudas Sunil
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, 600034, India; Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, 519087, China.
| | - Santiagu Stephen Irudayaraj
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, 600034, India; St. Xavier's College, Maharo, Dumka, 814110, Jharkhand, India
| | - Veeramuthu Duraipandiyan
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, 600034, India.
| | - Sara T Alrashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saudi University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Savarimuthu Ignacimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, 600034, India
| |
Collapse
|
13
|
Gupta P, Taiyab A, Hassan MI. Emerging role of protein kinases in diabetes mellitus: From mechanism to therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:47-85. [PMID: 33632470 DOI: 10.1016/bs.apcsb.2020.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Diabetes mellitus has emerged as a severe burden on the medical health system across the globe. Presently, around 422 million people are suffering from diabetes which is speculated to be expanded to about 600 million by 2035. Patients with type 2 diabetes are at increased risk of developing detrimental metabolic and cardiovascular complications. The scientific understanding of this chronic disease and its underlying root cause is not yet fully unraveled. Protein kinases are well known to regulate almost every cellular process through phosphorylation of target protein in diverse signaling pathways. The important role of several protein kinases including AMP-activated protein kinase, IκB kinase and protein kinase C have been well demonstrated in various animal models. They modulate glucose tolerance, inflammation and insulin resistance in the cells via acting on diverse downstream targets and signaling pathways. Thus, modulating the activity of potential human kinases which are significantly involved in diabetes by targeting with small molecule inhibitors could be an attractive therapeutic strategy to tackle diabetes. In this chapter, we have discussed the potential role of protein kinases in glucose metabolism and insulin sensitivity, and in the pathogenesis of diabetes mellitus. Furthermore, the small molecules reported in the literature that can be potentially used for the treatment of diabetes have been discussed in detail.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
14
|
Zhou J, Pan J, Xiang Z, Wang Q, Tong Q, Fang J, Wan L, Chen J. Xiaokeyinshui extract combination, a berberine-containing agent, exerts anti-diabetic and renal protective effects on rats in multi-target mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113098. [PMID: 32726678 DOI: 10.1016/j.jep.2020.113098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/19/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaokeyinshui (XKYS) formula, an anti-diabetic formula, was recorded in many ancient Chinese medical books. Xiaokeyinshui extract combination (XEC) originated from this ancient formula, consisting extracts of four herbal drugs, namely, Coptidis Rhizoma, Liriopes Radix, bitter melon, and Cassiae Semen. OBJECTIVE Therapeutic effects of Xiaokeyinshui extract combination (XEC) were assessed on diabetic rats. MATERIALS AND METHODS Herb extracts were prepared and mixed, yielding XEC. XEC were intragastrically given at doses of 260, 380 and 500 mg/kg/d to diabetic rats for 60 days. Anti-diabetic effects of XEC were studied, with measurement of body weight, and assessment of both glycemic control and lipid management. Measurement of oxidative stress and inflammatory cytokines were conducted in accordance to protocols of commercial kits. Parameters related to renal functions were also measured. Western blot (WB) analysis was performed to explore the anti-diabetic and renal protective mechanisms of XEC. RESULTS Compared to diabetic control, XEC exhibited significant effects in both glucose-lowering and lipid management (p < 0.01). Both oxidative stress and inflammatory cytokines were reduced after treatment of XEC for two months. In addition, XEC exhibited renal protective effects. WB analysis of liver tissue demonstrated that XEC achieved anti-diabetic effects through up-regulation of InsRα/IRS-1/PI3K/Akt/GLUT4 signaling pathway and phosphorylation of AMPK. In addition, renal protective effects were also achieved with down-regulation of RAGE and VEGF expressions in kidney. CONCLUSIONS XEC exerts promising anti-diabetic and renal protective effects on diabetic rats in multi-target mechanisms. XEC could be a satisfying alternative treating T2DM and preventing diabetic nephropathy.
Collapse
Affiliation(s)
- Jiewen Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Jun Pan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Zhinan Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Qiuyan Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Qilin Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Jinbo Fang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Luosheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China.
| | - Jiachun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
15
|
Chen J, Leong PK, Leung HY, Chan WM, Wong HS, Ko KM. 48Biochemical mechanisms of the anti-obesity effect of a triterpenoid-enriched extract of Cynomorium songaricum in mice with high-fat-diet-induced obesity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:153038. [PMID: 31378503 DOI: 10.1016/j.phymed.2019.153038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND HCY2, a triterpenoid-enriched extract of Cynomorii Herba, has been shown to reduce body weight and adiposity and attenuate manifestations of the associated metabolic syndrome in high-fat-diet (HFD)-fed mice. PURPOSE The current study aimed to investigate the biochemical mechanism underlying the anti-obesity effect produced by HCY2. STUDY DESIGN An HCY2-containing extract was examined for its effects on the regulation of adenosine monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma co-activator-1 (PGC1) pathways and the protein expression related to mitochondrial uncoupling and biogenesis in skeletal muscle using an HFD-induced obese mouse model. METHODS The obese mouse model was produced by providing HFD (60% kcal from fat) ad libitum. The effects and signaling mechanisms of HCY2 were examined using analytical procedures which included enzyme-linked immunosorbent assay kits, Western blot analysis, and the use of a Clark-type oxygen electrode. RESULTS The current study revealed that the weight reduction produced by HCY2 is associated with the activation of the AMPK signaling pathway, with resultant increases in mitochondrial biogenesis and expression of uncoupling protein 3 in skeletal muscle in vivo. The use of a recoupler, ketocholestanol, delineated the precise role of mitochondrial uncoupling in the anti-obesity effect afforded by HCY2 in obese mice. CONCLUSION Our experimental findings offer a promising prospect for the use of HCY2 in the management of obesity through the regulation of AMPK/PGC1 pathways.
Collapse
Affiliation(s)
- Jihang Chen
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Pou Kuan Leong
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| | - Hoi Yan Leung
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| | - Wing Man Chan
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| | - Hoi Shan Wong
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Kam Ming Ko
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China.
| |
Collapse
|
16
|
Probiotics Fermented Bitter Melon Juice as Promising Complementary Agent for Diabetes Type 2: Study on Animal Model. J Nutr Metab 2020; 2020:6369873. [PMID: 32190386 PMCID: PMC7064845 DOI: 10.1155/2020/6369873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/03/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Background and Aim. Bitter melon (Momordica charantia/MC) contains charantin that has antidiabetic properties as an α-glucosidase inhibitor and antioxidative properties. Lactic acid fermentation using Lactobacillus fermentum LLB3 increased its antioxidative properties. The study was aimed to analyse the difference of the treatment that influences blood glucose and SOD level before and after treatment compared to acarbose. Experimental procedure. A total of 24 male Sprague-Dawley rats were used. Diabetes type 2 was induced by a single dose (60 mg/kg) of streptozotocin (STZ) and 120 mg/kg of nicotinamide, intraperitoneally. Following three days of STZ induction, the animals were randomly divided into four groups. Groups 1, 2, 3, and 4 were given acarbose 40 mg/100 g feed, MC 10 ml/kg body weight, fermented MC 10 ml/kg body weight, and distilled water, respectively, for 28 days. Glucose and SOD values were measured by spectrophotometer and ELISA, respectively. The difference between pretest and posttest data was analysed using the pair t-test. Data were analysed using ANOVA and Tukey HSD for post hoc analysis. Level of significance was set at 0.05.
Collapse
|
17
|
Noor HB, Mou NA, Salem L, Shimul MF, Biswas S, Akther R, Khan S, Raihan S, Mohib MM, Sagor MA. Anti-inflammatory Property of AMP-activated Protein Kinase. Antiinflamm Antiallergy Agents Med Chem 2020; 19:2-41. [PMID: 31530260 PMCID: PMC7460777 DOI: 10.2174/1871523018666190830100022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND One of the many debated topics in inflammation research is whether this scenario is really an accelerated form of human wound healing and immunityboosting or a push towards autoimmune diseases. The answer requires a better understanding of the normal inflammatory process, including the molecular pathology underlying the possible outcomes. Exciting recent investigations regarding severe human inflammatory disorders and autoimmune conditions have implicated molecular changes that are also linked to normal immunity, such as triggering factors, switching on and off, the influence of other diseases and faulty stem cell homeostasis, in disease progression and development. METHODS We gathered around and collected recent online researches on immunity, inflammation, inflammatory disorders and AMPK. We basically searched PubMed, Scopus and Google Scholar to assemble the studies which were published since 2010. RESULTS Our findings suggested that inflammation and related disorders are on the verge and interfere in the treatment of other diseases. AMPK serves as a key component that prevents various kinds of inflammatory signaling. In addition, our table and hypothetical figures may open a new door in inflammation research, which could be a greater therapeutic target for controlling diabetes, obesity, insulin resistance and preventing autoimmune diseases. CONCLUSION The relationship between immunity and inflammation becomes easily apparent. Yet, the essence of inflammation turns out to be so startling that the theory may not be instantly established and many possible arguments are raised for its clearance. However, this study might be able to reveal some possible approaches where AMPK can reduce or prevent inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Md A.T. Sagor
- Address correspondence to this author at the Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; Tel: +8801719130130; E-mail:
| |
Collapse
|
18
|
Network Pharmacology Analysis of Traditional Chinese Medicine Formula Xiao Ke Yin Shui Treating Type 2 Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4202563. [PMID: 31583009 PMCID: PMC6754917 DOI: 10.1155/2019/4202563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/20/2019] [Indexed: 01/09/2023]
Abstract
Xiao Ke Yin Shui (XKYS) formula is a traditional Chinese medicine formula treating type 2 diabetes mellitus (T2DM). XKYS formula consists of four herbs, i.e., Coptidis rhizoma, Liriopes radix, bitter melon, and Cassiae semen. Herein, the chemical profiles of four herb extracts were investigated, and further analysis of the underlying mechanism of XKYS formula treating T2DM was performed using network pharmacology. The main components were selected for our network-based research. Targets of XKYS formula were mainly collected from two databases, SwissTargetPrediction and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the text-mining method was also implemented. T2DM relating genes and therapeutic targets were collected from five databases. Subsequently, STRING and Cytoscape were employed for the analysis of protein-protein interaction (PPI) networks. Functional annotation and pathway analysis were conducted to investigate the functions and relating pathways of target genes. The content of 12 compounds in the herb extracts was determined. With the analysis of PPI networks, a total of 76 genes were found to be important nodes and could be defined as the main target genes regulated by XKYS formula in the treatment of T2DM and its complications. Components in XKYS formula mainly regulate proteins including protein kinase B (Akt), phosphatidylinositol 3-kinase (PI3K), insulin receptor substrate (IRS), and tumor necrosis factor (TNF). XKYS formula exerts therapeutic effects in a synergetic manner and exhibits antidiabetic effect mainly via reducing insulin resistance. These findings could be guidelines in the further investigation of this formula.
Collapse
|
19
|
The Role of Momordica charantia in Resisting Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183251. [PMID: 31487939 PMCID: PMC6765959 DOI: 10.3390/ijerph16183251] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
Momordica charantia (M. charantia), commonly known as bitter gourd, bitter melon, kugua, balsam pear, or karela, is a tropical and sub-tropical vine belonging to the Cucurbitaceae family. It has been used to treat a variety of diseases in the traditional medicine of China, India, and Sri Lanka. Here, we review the anti-obesity effects of various bioactive components of M. charantia established at the cellular and organismal level. We aim to provide links between various bioactive components of M. charantia and their anti-obesity mechanism. An advanced search was conducted on the worldwide accepted scientific databases via electronic search (Google Scholar, Web of Science, ScienceDirect, ACS Publications, PubMed, Wiley Online Library, SciFinder, CNKI) database with the query TS = “Momordica charantia” and “obesity”. Information was also obtained from International Plant Names Index, Chinese Pharmacopoeia, Chinese herbal classic books, online databases, PhD and MSc dissertations, etc. First, studies showing the anti-obesity effects of M. charantia on the cells and on animals were classified. The major bioactive components that showed anti-obesity activities included proteins, triterpenoids, saponins, phenolics, and conjugated linolenic acids. Their mechanisms included inhibition of fat synthesis, promotion of glucose utilization, and stimulation of auxiliary lipid-lowering activity. Finally, we summarized the risks of excessive consumption of M. charantia and the application. Although further research is necessary to explore various issues, this review establishes the therapeutic potential of M. charantia and it is highly promising candidate for the development of anti-obesity health products and medicines.
Collapse
|
20
|
Zhou S, Allard PM, Wolfrum C, Ke C, Tang C, Ye Y, Wolfender JL. Identification of chemotypes in bitter melon by metabolomics: a plant with potential benefit for management of diabetes in traditional Chinese medicine. Metabolomics 2019; 15:104. [PMID: 31321563 DOI: 10.1007/s11306-019-1565-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/06/2019] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Bitter melon (Momordica charantia, Cucurbitaceae) is a popular edible medicinal plant, which has been used as a botanical dietary supplement for the treatment of diabetes and obesity in Chinese folk medicine. Previously, our team has proved that cucurbitanes triterpenoid were involved in bitter melon's anti-diabetic effects as well as on increasing energy expenditure. The triterpenoids composition can however be influenced by changes of varieties or habitats. OBJECTIVES To clarify the significance of bioactive metabolites diversity among different bitter melons and to provide a guideline for selection of bitter melon varieties, an exploratory study was carried out using a UHPLC-HRMS based metabolomic study to identify chemotypes. METHODS Metabolites of 55 seed samples of bitter melon collected in different parts of China were profiled by UHPLC-HRMS. The profiling data were analysed with multivariate (MVA) statistical methods. Principle component analysis (PCA) and hierarchical cluster analysis (HCA) were applied for sample differentiation. Marker compounds were identified by comparing spectroscopic data with isolated compounds, and additional triterpenes were putatively identified by propagating annotations through a molecular network (MN) generated from UHPLC-HRMS & MS/MS metabolite profiling. RESULTS PCA and HCA provided a good discrimination between bitter melon samples from various origins in China. This study revealed for the first time the existence of two chemotypes of bitter melon. Marker compounds of those two chemotypes were identified at different MSI levels. The combined results of MN and MVA demonstrated that the two chemotypes mainly differ in their richness in cucurbitane versus oleanane triterpenoid glycosides (CTGs vs. OTGs). CONCLUSION Our finding revealed a clear chemotype distribution of bioactive components across bitter melon varieties. While bioactivities of individual CTGs and OTGs still need to be investigated in more depth, our results could help in future the selection of bitter melon varieties with optimised metabolites profile for an improved management of diabetes with this popular edible Chinese folk medicine.
Collapse
Affiliation(s)
- Shuaizhen Zhou
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet 1, CH-1206, Geneva 4, Switzerland
- State Key Laboratory of Drug Research, & SIMM/CUHK Joint Research Laboratory of Promoting of Traditional Chinese Medicines, Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang High-Tech Park, Shanghai, 201203, People's Republic of China
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet 1, CH-1206, Geneva 4, Switzerland
| | - Christian Wolfrum
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Food Nutrition and Health, Schorenstr. 16, 8603, Schwerzenbach, Switzerland
| | - Changqiang Ke
- State Key Laboratory of Drug Research, & SIMM/CUHK Joint Research Laboratory of Promoting of Traditional Chinese Medicines, Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang High-Tech Park, Shanghai, 201203, People's Republic of China
| | - Chunping Tang
- State Key Laboratory of Drug Research, & SIMM/CUHK Joint Research Laboratory of Promoting of Traditional Chinese Medicines, Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang High-Tech Park, Shanghai, 201203, People's Republic of China
| | - Yang Ye
- State Key Laboratory of Drug Research, & SIMM/CUHK Joint Research Laboratory of Promoting of Traditional Chinese Medicines, Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang High-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet 1, CH-1206, Geneva 4, Switzerland.
| |
Collapse
|
21
|
Nerurkar PV, Orias D, Soares N, Kumar M, Nerurkar VR. Momordica charantia (bitter melon) modulates adipose tissue inflammasome gene expression and adipose-gut inflammatory cross talk in high-fat diet (HFD)-fed mice. J Nutr Biochem 2019; 68:16-32. [PMID: 31005847 DOI: 10.1016/j.jnutbio.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Systemic and tissue-specific inflammation has a profound influence on regulation of metabolism, and therefore, strategies to reduce inflammation are of special interest in prevention and treatment of obesity and type 2 diabetes (T2D). Antiobesity and antidiabetic properties of Momordica charantia (bitter melon, BM) have been linked to its protective effects on inflammation and gut microbial dysbiosis. We investigated the mechanisms by which freeze-dried BM juice reduces adipose inflammation in mice fed a 60% high-fat diet (HFD) for 16 weeks. Although earlier studies indicated that BM inhibited recruitment of macrophages (Mφ) infiltration in adipose tissue of rodents and reduced NF-kB and IL-1β secretions, the mechanisms remain unknown. We demonstrate that freeze-dried BM juice inhibits recruitment of Mφ into adipose tissue and its polarization to inflammatory phenotype possibly due to reduction of sphingokinase 1 (SPK1) mRNA in HFD-fed mice. Furthermore, reduction of IL-1β secretion by freeze-dried BM juice in the adipose tissue of HFD-fed mice is correlated to alleviation of NLRP3 inflammasome components and their downstream signaling targets. We confirm previous observations that BM inhibited inflammation of colon and gut microbial dysbiosis in HFD-fed mice, which in part may be associated with the observed anti-inflammatory effects in adipose tissue if HFD-fed mice. Overall, functional foods such as BM may offer potential dietary interventions that may impact sterile inflammatory diseases such as obesity and T2D.
Collapse
Affiliation(s)
- Pratibha V Nerurkar
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Daniella Orias
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Natasha Soares
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Vivek R Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology; Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
22
|
Zeng Y, Guan M, Li C, Xu L, Zheng Z, Li J, Xue Y. Bitter melon (Momordica charantia) attenuates atherosclerosis in apo-E knock-out mice possibly through reducing triglyceride and anti-inflammation. Lipids Health Dis 2018; 17:251. [PMID: 30400958 PMCID: PMC6220495 DOI: 10.1186/s12944-018-0896-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bitter melon (BM, Momordica charantia) has been accepted as an effective complementary treatment of metabolic disorders such as diabetes, hypertension, dyslipidemia and etc. However it is unclear whether BM can prevent the progression of atherosclerosis. To confirm the effects of BM on atherosclerosis and explore its underlying mechanisms, we design this study. METHODS Twenty four male apolipoprotein E knock-out (ApoE-/-) mice aged 8 weeks were randomly divided into control group fed with high fat diet (HFD) only and BM group fed with HFD mixed with 1.2%w/w BM. After 16 weeks, body weight, food intake, blood glucose, serum lipids were measured and the atherosclerotic plaque area and its histological composition were analyzed. The expression of vascular cell adhesive molecules and inflammatory cytokines in the aortas were determined using quantitative polymerase chain reaction. RESULTS Body weight gain and serum triglycerides (TG) significantly decreased in BM group. BM reduced not only the atherosclerotic plaque area and the contents of collagen fibers in atherosclerotic plaques but also the serum soluble vascular cell adhesion molecule (VCAM)-1 and P-selectin levels, as well as the expressions of monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-6 in aortas. CONCLUSION Our study indicates that dietary BM can attenuate the development of atherosclerosis in ApoeE-/- mice possibly through reducing triglyceride and anti-inflammation mechanism.
Collapse
Affiliation(s)
- Yanmei Zeng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, No.1838, Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| | - Meiping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, No.1838, Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Chenzhong Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, No.1838, Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Lingling Xu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, No.1838, Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zhongji Zheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, No.1838, Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Jimin Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, No.1838, Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, No.1838, Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
23
|
Mabhida SE, Dludla PV, Johnson R, Ndlovu M, Louw J, Opoku AR, Mosa RA. Protective effect of triterpenes against diabetes-induced β-cell damage: An overview of in vitro and in vivo studies. Pharmacol Res 2018; 137:179-192. [PMID: 30315968 DOI: 10.1016/j.phrs.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022]
Abstract
Accumulative evidence shows that chronic hyperglycaemia is a major factor implicated in the development of pancreatic β-cell dysfunction in diabetic patients. Furthermore, most of these patients display impaired insulin signalling that is responsible for accelerated pancreatic β-cell damage. Indeed, prominent pathways involved in glucose metabolism such as phosphatidylinositol 3-kinase/ protein kinase B (PI3-K/AKT) and 5' AMP-activated protein kinase (AMPK) are impaired in an insulin resistant state. The impairment of this pathway is associated with over production of reactive oxygen species and pro-inflammatory factors that supersede pancreatic β-cell damage. Although several antidiabetic drugs can improve β-cell function by modulating key regulators such as PI3-K/AKT and AMPK, evidence of their β-cell regenerative and protective effect is scanty. As a result, there has been continued exploration of novel antidiabetic therapeutics with abundant antioxidant and antiinflammatory properties that are essential in protecting against β-cell damage. Such therapies include triterpenes, which have displayed robust effects to improve glycaemic tolerance, insulin secretion, and pancreatic β-cell function. This review summarises most relevant effects of various triterpenes on improving pancreatic β-cell function in both in vitro and in vivo experimental models. A special focus falls on studies reporting on the ameliorative properties of these compounds against insulin resistance, oxidative stress and inflammation, the well-known factors involved in hyperglycaemia associated tissue damage.
Collapse
Affiliation(s)
- Sihle E Mabhida
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa.
| | - Phiwayinkosi V Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60121, Italy; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Stellenbosch, South Africa
| | - Musawenkosi Ndlovu
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Johan Louw
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Andy R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Rebamang A Mosa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
24
|
Jayasooriya RGPT, Dilshara MG, Karunarathne WAHM, Molagoda IMN, Choi YH, Kim GY. Camptothecin enhances c-Myc-mediated endoplasmic reticulum stress and leads to autophagy by activating Ca 2+-mediated AMPK. Food Chem Toxicol 2018; 121:648-656. [PMID: 30266318 DOI: 10.1016/j.fct.2018.09.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
Abstract
Camptothecin (CPT) from Camptotheca acuminate was discovered for anticancer drugs, which targets topoisomease I. However, whether CPT regulates c-Myc expression has not been understood in endoplasmic reticulum (ER) stress and autophagy. In this study, we found that CPT enhanced c-Myc expression and that the transient knockdown of c-Myc abrogated reactive oxygen species (ROS) generation, which resulted in the accumulation of ER stress-regulating proteins, such as PERK, eIF2α, ATF4, and CHOP. Moreover, the transfection of eIF2α-targeted siRNA attenuated CPT-induced autophagy and decreased the levels of Beclin-1 and Atg7, which indicated that CPT upregulated ER stress-mediated autophagy. In addition, CPT phosphorylated AMPK in response to intracellular Ca2+ release. Ca2+ chelators, ethylene glycol tetraacetic acid and a CaMKII inhibitor, K252a, decreased CPT-induced Beclin-1 and Atg7, and downregulated AMPK phosphorylation, which suggested that CPT-induced Ca2+ release leads to the activation of autophagy through CaMKII-mediated AMPK phosphorylation. CPT also phosphorylated JNK and activated the DNA-binding activity of AP-1; furthermore, knockdown of JNK abolished the expression level of Beclin-1 and Atg7, which implied that the JNK-AP-1 pathway was a potent mediator of CPT-induced autophagy. Our findings indicated that CPT promoted c-Myc-mediated ER stress and ROS generation, which enhances autophagy via the Ca2+-AMPK and JNK-AP-1 pathways.
Collapse
Affiliation(s)
- Rajapaksha Gedara Prasad Tharanga Jayasooriya
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea; Department of Bioprocess Technology, Faculty of Technology, University of Rajarata, Mihintale, 50300, Sri Lanka
| | | | | | | | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
25
|
Kim KH, Lee IS, Park JY, Kim Y, An EJ, Jang HJ. Cucurbitacin B Induces Hypoglycemic Effect in Diabetic Mice by Regulation of AMP-Activated Protein Kinase Alpha and Glucagon-Like Peptide-1 via Bitter Taste Receptor Signaling. Front Pharmacol 2018; 9:1071. [PMID: 30298009 PMCID: PMC6161541 DOI: 10.3389/fphar.2018.01071] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
Taste receptors exist in several organs from tongue to colon and have diverse functions dependent on specific cell type. In enteroendocrine L-cells, stimulation of taste receptor signaling induces incretin hormones. Among incretin hormones, glucagon-like peptide-1 (GLP-1) induces insulinotropic action by activating GLP-1 receptor of pancreatic β-cells. However, GLP-1 mimetic medicines have reported clinical side effects, such as autoimmune hepatitis, acute kidney injury, pancreatitis, and pancreatic cancer. Here, we hypothesized that if natural components in ethnomedicines can activate agonistic action of taste receptor; they may stimulate GLP-1 and therefore, could be developed as safe and applicable medicines to type 2 diabetes mellitus (T2DM) with minimal side effects. Cucurbitacin B (CuB) is composed of triterpenoid structure and its structural character, that represents bitterness, can stimulate AMP-activated protein kinase (AMPK) pathway. CuB ameliorated hyperglycemia by activating intestinal AMPK levels and by inducing plasma GLP-1 and insulin release in diabetic mice. This hypoglycemic action was decreased in dorsomorphin-injected mice and α-gustducin null mice. Moreover, systemic inhibition study in differentiated NCI-H716 cell line showed that CuB-mediated GLP-1 secretion was involved in activation of AMPK through α-gustducin and Gβγ-signaling of taste receptors. In summary, we conclude that, CuB represents novel hypoglycemic agents by activation of AMPK and stimulation of GLP-1 in differentiated enteroendocrine L-cells. These results suggest that taste receptor signaling-based therapeutic agents within tremendously diverse ethnomedicines, could be applied to developing therapeutics for T2DM patients.
Collapse
Affiliation(s)
- Kang-Hoon Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Biochemistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - In-Seung Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Biochemistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ji Young Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Biochemistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Yumi Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Biochemistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Eun-Jin An
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Biochemistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyeung-Jin Jang
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Biochemistry, Graduate School, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
26
|
Protein extract from the fruit pulp of Momordica charantia potentiate glucose uptake by up-regulating GLUT4 and AMPK. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
A Lanosteryl Triterpene from Protorhus longifolia Improves Glucose Tolerance and Pancreatic Beta Cell Ultrastructure in Type 2 Diabetic Rats. Molecules 2017; 22:molecules22081252. [PMID: 28933769 PMCID: PMC6152316 DOI: 10.3390/molecules22081252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023] Open
Abstract
Type 2 diabetes remains one of the leading causes of death worldwide. Persistent hyperglycemia within a diabetic state is implicated in the generation of oxidative stress and aggravated inflammation that is responsible for accelerated modification of pancreatic beta cell structure. Here we investigated whether a lanosteryl triterpene, methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA-3), isolated from Protorhus longifolia can improve glucose tolerance and pancreatic beta cell ultrastructure by reducing oxidative stress and inflammation in high fat diet and streptozotocin-induced type 2 diabetes in rats. In addition to impaired glucose tolerance, the untreated diabetic rats showed increased fasting plasma glucose and C-peptide levels. These untreated diabetic rats further demonstrated raised cholesterol, interleukin-6 (IL-6), and lipid peroxidation levels as well as a destroyed beta cell ultrastructure. Treatment with RA-3 was as effective as metformin in improving glucose tolerance and antioxidant effect in the diabetic rats. Interestingly, RA-3 displayed a slightly more enhanced effect than metformin in reducing elevated IL-6 levels and in improving beta cell ultrastructure. Although the involved molecular mechanisms remain to be established, RA-3 demonstrates a strong potential to improve pancreatic beta cell ultrastructure by attenuating impaired glucose tolerance, reducing oxidative stress and inflammation.
Collapse
|
28
|
Deng Y, Tang Q, Zhang Y, Zhang R, Wei Z, Tang X, Zhang M. Protective effect of Momordica charantia water extract against liver injury in restraint-stressed mice and the underlying mechanism. Food Nutr Res 2017; 61:1348864. [PMID: 28747868 PMCID: PMC5510204 DOI: 10.1080/16546628.2017.1348864] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/23/2017] [Indexed: 12/20/2022] Open
Abstract
Background: Momordica charantia is used in China for its jianghuo (heat-clearing and detoxifying) effects. The concept of shanghuo (the antonym of jianghuo, excessive internal heat) in traditional Chinese medicine is considered a type of stress response of the body. The stress process involves internal organs, especially the liver. Objective: We hypothesized that Momordica charantia water extract (MWE) has a hepatoprotective effect and can protect the body from stress. The aim of this study was to investigate the possible effects of MWE against liver injury in restraint-stressed mice. Design: The mice were intragastrically administered with MWE (250, 500 and 750 mg/kg bw) daily for 7 days. The Normal Control (NC) and Model groups were administered distilled water. A positive control group was intragastrically administered vitamin C 250 mg/kg bw. After the last administration, mice were restrained for 20 h. Results: MWE reduced the serum AST and ALT, reduced the NO content and the protein expression level of iNOSin the liver; significantly reduced the mitochondrial ROS content, increased the mitochondrial membrane potential and the activities of mitochondrial respiratory chain complexes I and II in restraint-stressed mice. Conclusions: The results indicate that MWE has a protective effect against liver injury in restraint-stressed mice. Abbreviations: MWE: Momordica charantia water extract; M. charantia: Momordica charantia L.; ROS: reactive oxygen species; NO: nitric oxide; iNOS: inducible nitric oxide synthase; IL-1β: interleukin-1 beta; TNF-α: tumor necrosis factor alpha; IL-6: interleukin 6; IFN-γ: interferon gamma; VC: vitamin C; ALT: alanine transaminase; AST: aspartate aminotransferase; GSH: glutathione; GSH-PX: glutathione peroxidase; MDA: malondialdehyde; BCA: bicinchoninic acid; TBARS: thiobarbituric acid reactive substances; Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid; JC-B: Janus Green B; DW: dry weight; FC: Folin-Ciocalteu; GAE: gallic acid equivalents; bw: body weight; NC: normal control group; Model: restraint stress model group; VC: positive control vitamin C group, 250 mg/kg bw; MWEL: Momordica charantia water extract low-dose group, 250 mg/kg bw; MWEM: Momordica charantia water extract middle-dose group, 500 mg/kg bw; MWEH: Momordica charantia water extract high-dose group, 750 mg/kg bw; HE: hematoxylin and eosin; ORAC: total oxygen radical absorbance capacity; ABAP: dihydrochloride; ATP: adenosine triphosphate.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - Qin Tang
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - Yan Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - Ruifen Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - Zhencheng Wei
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - Xiaojun Tang
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - Mingwei Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| |
Collapse
|
29
|
Lo HY, Li TC, Yang TY, Li CC, Chiang JH, Hsiang CY, Ho TY. Hypoglycemic effects of Trichosanthes kirilowii and its protein constituent in diabetic mice: the involvement of insulin receptor pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:53. [PMID: 28100206 PMCID: PMC5242006 DOI: 10.1186/s12906-017-1578-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Diabetes is a serious chronic metabolic disorder. Trichosanthes kirilowii Maxim. (TK) is traditionally used for the treatment of diabetes in traditional Chinese medicine (TCM). However, the clinical application of TK on diabetic patients and the hypoglycemic efficacies of TK are still unclear. METHODS A retrospective cohort study was conducted to analyze the usage of Chinese herbs in patients with type 2 diabetes in Taiwan. Glucose tolerance test was performed to analyze the hypoglycemic effect of TK. Proteomic approach was performed to identify the protein constituents of TK. Insulin receptor (IR) kinase activity assay and glucose tolerance tests in diabetic mice were further used to elucidate the hypoglycemic mechanisms and efficacies of TK. RESULTS By a retrospective cohort study, we found that TK was the most frequently used Chinese medicinal herb in type 2 diabetic patients in Taiwan. Oral administration of aqueous extract of TK displayed hypoglycemic effects in a dose-dependent manner in mice. An abundant novel TK protein (TKP) was further identified by proteomic approach. TKP interacted with IR by docking analysis and activated the kinase activity of IR. In addition, TKP enhanced the clearance of glucose in diabetic mice in a dose-dependent manner. CONCLUSIONS In conclusion, this study applied a bed-to-bench approach to elucidate the hypoglycemic efficacies and mechanisms of TK on clinical usage. In addition, we newly identified a hypoglycemic protein TKP from TK. Our findings might provide a reasonable explanation of TK on the treatment of diabetes in TCM.
Collapse
Affiliation(s)
- Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Tsai-Chung Li
- Graduate Institute of Biostatistics, China Medical University, Taichung, 40402, Taiwan
| | - Tse-Yen Yang
- Molecular and Genomic Epidemiology Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chia-Cheng Li
- Graduate Institute of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Jen-Huai Chiang
- Management Office for Health Data, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
30
|
Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 2016; 426:27-45. [PMID: 27868170 DOI: 10.1007/s11010-016-2878-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
Collapse
Affiliation(s)
- Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, 601 N. 30th Street, Suite # 3700, Omaha, NE, 68131, USA.
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA.
| | - Saravanan Subramanian
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| |
Collapse
|
31
|
Gupta P, Bala M, Gupta S, Dua A, Dabur R, Injeti E, Mittal A. Efficacy and risk profile of anti-diabetic therapies: Conventional vs traditional drugs—A mechanistic revisit to understand their mode of action. Pharmacol Res 2016; 113:636-674. [DOI: 10.1016/j.phrs.2016.09.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
|
32
|
Jiang B, Ji M, Liu W, Chen L, Cai Z, Zhao Y, Bi X. Antidiabetic activities of a cucurbitane‑type triterpenoid compound from Momordica charantia in alloxan‑induced diabetic mice. Mol Med Rep 2016; 14:4865-4872. [PMID: 27748816 DOI: 10.3892/mmr.2016.5800] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/12/2016] [Indexed: 11/06/2022] Open
Abstract
Momordica charantia has been used to treat a variety of diseases, including inflammation, diabetes and cancer. A cucurbitane‑type triterpenoid [(19R,23E)‑5β, 19‑epoxy‑19‑methoxy‑cucurbita‑6,23,25‑trien‑3 β‑o‑l] previously isolated from M. charantia was demonstrated to possess significant cytotoxicity against cancer cells. The current study investigated the effects of this compound (referred to as compound K16) on diabetes using an alloxan‑induced diabetic mouse model. C57BL/6J mice were intraperitoneally injected with alloxan (10 mg/kg body weight), and those with blood glucose concentration higher than 10 mM were selected for further experiments. Diabetic C57BL/6J mice induced by alloxan were administered 0.9% saline solution, metformine (10 mg/kg body weight), or K16 (25 or 50 mg/kg body weight) by gavage for 4 weeks, followed by analysis of blood glucose level, glucose tolerance, serum lipid levels and organ indexes. The results demonstrated that compound K16 significantly reduced blood glucose (31‑48.6%) and blood lipids (13.5‑42.8%; triglycerides and cholesterol), while improving glucose tolerance compared with diabetic mice treated with saline solution, suggesting a positive improvement in glucose and lipid metabolism following K16 treatment. Furthermore, similarly to metformine, compound K16 markedly upregulated the expression of a number of insulin signaling pathway‑associated proteins, including insulin receptor, insulin receptor substrate 1, glycogen synthase kinase 3β, Akt serine/threonine kinase, and the transcript levels of glucose transporter type 4 and AMP‑activated protein kinase α1. The results of the current study demonstrated that compound K16 alleviated diabetic metabolic symptoms in alloxan‑induced diabetic mice, potentially by affecting genes and proteins involved in insulin metabolism signaling.
Collapse
Affiliation(s)
- Bowen Jiang
- College of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Mingli Ji
- Department of Physiology, College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Wei Liu
- College of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Lili Chen
- College of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Zhiyu Cai
- College of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Yuqing Zhao
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| |
Collapse
|
33
|
Yung MMH, Ross FA, Hardie DG, Leung THY, Zhan J, Ngan HYS, Chan DW. Bitter Melon (Momordica charantia) Extract Inhibits Tumorigenicity and Overcomes Cisplatin-Resistance in Ovarian Cancer Cells Through Targeting AMPK Signaling Cascade. Integr Cancer Ther 2016; 15:376-89. [PMID: 26487740 PMCID: PMC5689379 DOI: 10.1177/1534735415611747] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Objective Acquired chemoresistance is a major obstacle in the clinical management of ovarian cancer. Therefore, searching for alternative therapeutic modalities is urgently needed. Bitter melon (Momordica charantia) is a traditional dietary fruit, but its extract also shows potential medicinal values in human diabetes and cancers. Here, we sought to investigate the extract of bitter melon (BME) in antitumorigenic and cisplatin-induced cytotoxicity in ovarian cancer cells. METHODS Three varieties of bitter melon were used to prepare the BME. Ovarian cancer cell lines, human immortalized epithelial ovarian cells (HOSEs), and nude mice were used to evaluate the cell cytotoxicity, cisplatin resistance, and tumor inhibitory effect of BME. The molecular mechanism of BME was examined by Western blotting. RESULTS Cotreatment with BME and cisplatin markedly attenuated tumor growth in vitro and in vivo in a mouse xenograft model, whereas there was no observable toxicity in HOSEs or in nude mice in vivo Interestingly, the antitumorigenic effects of BME varied with different varieties of bitter melon, suggesting that the amount of antitumorigenic substances may vary. Studies of the molecular mechanism demonstrated that BME activates AMP-activated protein kinase (AMPK) in an AMP-independent but CaMKK (Ca(2+)/calmodulin-dependent protein kinase)-dependent manner, exerting anticancer effects through activation of AMPK and suppression of the mTOR/p70S6K and/or the AKT/ERK/FOXM1 (Forkhead Box M1) signaling cascade. CONCLUSION BME functions as a natural AMPK activator in the inhibition of ovarian cancer cell growth and might be useful as a supplement to improve the efficacy of cisplatin-based chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David W Chan
- The University of Hong Kong, Hong Kong SAR, P R China
| |
Collapse
|
34
|
Nishida M, Kondo M, Shimizu T, Saito T, Sato S, Hirayama M, Konishi T, Nishida H. Antihyperlipidemic effect of Acanthopanax senticosus (Rupr. et Maxim) Harms leaves in high-fat-diet fed mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3717-3722. [PMID: 26676315 DOI: 10.1002/jsfa.7557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/28/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Metabolic syndrome is a major risk factor for a variety of obesity-related diseases. Recently, the effects of functional foods have been investigated on lipid metabolism as a means to reduce lipid content in the blood, liver and adipose tissues associated with carnitine O-palmitoyltransferase (CPT) activity. Acanthopanax senticosus (Rupr. et Maxim) Harms (AS) is a medicinal herb possessing a wide spectra of functions including antioxidant, anti-inflammatory and anti-fatigue actions. Despite much research being focused on the cortical roots of AS, little information is available regarding its leaves, which are also expected to promote human health, for example by improving abnormal lipid metabolism. Here, we explored whether AS leaves affect lipid metabolism in mice fed a high-fat diet. RESULTS The administration of AS to BALB/c mice fed a high-fat diet significantly decreased plasma triglycerides (TG). CPT activity in the liver of these mice was significantly enhanced by AS treatment. CONCLUSION These findings indicate that AS leaves have the potential to alleviate increase in plasma TG levels due to high-fat diet intake in mice, possibly by increasing mitochondrial fatty acid β-oxidation, especially via CPT activation. Consequently, daily intake of AS leaves could promote beneficial health effects including the prevention of metabolic syndrome. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miyako Nishida
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, 956-8063, Japan
| | - Momoko Kondo
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, 956-8063, Japan
| | - Taro Shimizu
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, 956-8063, Japan
| | - Tetsuo Saito
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, 956-8063, Japan
| | - Shinji Sato
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, 956-8063, Japan
| | - Masao Hirayama
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, 956-8063, Japan
| | - Tetsuya Konishi
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, 956-8063, Japan
| | - Hiroshi Nishida
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, 956-8063, Japan
| |
Collapse
|
35
|
Raina K, Kumar D, Agarwal R. Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy. Semin Cancer Biol 2016; 40-41:116-129. [PMID: 27452666 DOI: 10.1016/j.semcancer.2016.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023]
Abstract
Recently, there is a paradigm shift that the whole food-derived components are not 'idle bystanders' but actively participate in modulating aberrant metabolic and signaling pathways in both healthy and diseased individuals. One such whole food from Cucurbitaceae family is 'bitter melon' (Momordica charantia, also called bitter gourd, balsam apple, etc.), which has gained an enormous attention in recent years as an alternative medicine in developed countries. The increased focus on bitter melon consumption could in part be due to several recent pre-clinical efficacy studies demonstrating bitter melon potential to target obesity/type II diabetes-associated metabolic aberrations as well as its pre-clinical anti-cancer efficacy against various malignancies. The bioassay-guided fractionations have also classified the bitter melon chemical constituents based on their anti-diabetic or cytotoxic effects. Thus, by definition, these bitter melon constituents are at cross roads on the bioactivity parameters; they either have selective efficacy for correcting metabolic aberrations or targeting cancer cells, or have beneficial effects in both conditions. However, given the vast, though dispersed, literature reports on the bioactivity and beneficial attributes of bitter melon constituents, a comprehensive review on the bitter melon components and the overlapping beneficial attributes is lacking; our review attempts to fulfill these unmet needs. Importantly, the recent realization that there are common risk factors associated with obesity/type II diabetes-associated metabolic aberrations and cancer, this timely review focuses on the dual efficacy of bitter melon against the risk factors associated with both diseases that could potentially impact the course of malignancy to advanced stages. Furthermore, this review also addresses a significant gap in our knowledge regarding the bitter melon drug-drug interactions which can be predicted from the available reports on bitter melon effects on metabolism enzymes and drug transporters. This has important implications, given that a large proportion of individuals, taking bitter melon based supplements/phytochemical extracts/food based home-remedies, are also likely to be taking conventional therapeutic drugs at the same time. Accordingly, the comprehensively reviewed information here could be prudently translated to the clinical implications associated with any potential concerns regarding bitter melon consumption by cancer patients.
Collapse
Affiliation(s)
- Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
36
|
Turner N, Zeng XY, Osborne B, Rogers S, Ye JM. Repurposing Drugs to Target the Diabetes Epidemic. Trends Pharmacol Sci 2016; 37:379-389. [PMID: 26900045 DOI: 10.1016/j.tips.2016.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 01/07/2023]
|
37
|
Arkwright RT, Deshmukh R, Adapa N, Stevens R, Zonder E, Zhang Z, Farshi P, Ahmed RSI, El-Banna HA, Chan TH, Dou QP. Lessons from Nature: Sources and Strategies for Developing AMPK Activators for Cancer Chemotherapeutics. Anticancer Agents Med Chem 2016; 15:657-71. [PMID: 25511514 DOI: 10.2174/1871520615666141216145417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/17/2014] [Accepted: 11/17/2014] [Indexed: 12/31/2022]
Abstract
Adenosine Monophosphate-Activated Protein Kinase or AMPK is a highly-conserved master-regulator of numerous cellular processes, including: Maintaining cellular-energy homeostasis, modulation of cytoskeletaldynamics, directing cell growth-rates and influencing cell-death pathways. AMPK has recently emerged as a promising molecular target in cancer therapy. In fact, AMPK deficiencies have been shown to enhance cell growth and proliferation, which is consistent with enhancement of tumorigenesis by AMPK-loss. Conversely, activation of AMPK is associated with tumor growth suppression via inhibition of the Mammalian Target of Rapamycin Complex-1 (mTORC1) or the mTOR signal pathway. The scientific communities' recognition that AMPK-activating compounds possess an anti-neoplastic effect has contributed to a rush of discoveries and developments in AMPK-activating compounds as potential anticancer-drugs. One such example is the class of compounds known as Biguanides, which include Metformin and Phenformin. The current review will showcase natural compounds and their derivatives that activate the AMPK-complex and signaling pathway. In addition, the biology and history of AMPK-signaling and AMPK-activating compounds will be overviewed, their anticancer-roles and mechanisms-of-actions will be discussed, and potential strategies for the development of novel, selective AMPK-activators with enhanced efficacy and reduced toxicity will be proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute and Department of Oncology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI 48201- 2013.
| |
Collapse
|
38
|
Hu L, Zhou L, Wu X, Liu C, Fan Y, Li Q. Hypoxic preconditioning protects cardiomyocytes against hypoxia/reoxygenation injury through AMPK/eNOS/PGC-1α signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7378-7388. [PMID: 25550773 PMCID: PMC4270574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE AMP-activated protein kinase (AMPK) is an important regulator of multiple cellular pathways in the setting of energetic stress. Whether AMPK plays a critical role in hypoxic preconditioning (HPC), protecting cardiomyocytes against hypoxia reoxygenation (H/R) injury remains uncertain. METHODS H9c2 cells were preconditioned by exposing to 10 min of hypoxia and 30 min of reoxygenation. Then, the preconditioned and non-preconditioned cardiomyocytes were exposed to 90 min of hypoxia followed by 120 min of reoxygenation. RESULTS HPC protected H9c2 cells against H/R injury, the AMPK inhibitor or eNOS inhibitor abolished the effect of HPC. Compared with H/R group, HPC significantly increased the expression of p-AMPK (Thr172). HPC also markedly increased p-eNOS (Ser1177) expression, which was abolished by AMPK inhibition. HPC significantly increased PGC-1α expression, which were nullified by AMPK inhibition or eNOS inhibition. HPC attenuated the oxidative stress by increasing the SOD activity and decreasing the MDA and ROS level, which were abolished by AMPK inhibition or eNOS inhibition. Interestingly, the AMPK activator metformin mimicked the effects of HPC in part. CONCLUSIONS These results indicated that HPC protects H9c2 cells against H/R injury by reducing oxidative stress partly via AMPK/eNOS/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Liang Hu
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing 210029, P. R. China
| | - Lu Zhou
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing 210029, P. R. China
| | - Xiaowei Wu
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing 210029, P. R. China
| | - Chao Liu
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing 210029, P. R. China
| | - Yue Fan
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing 210029, P. R. China
| | - Qingping Li
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing 210029, P. R. China
| |
Collapse
|
39
|
Zhou X, Zeng XY, Wang H, Li S, Jo E, Xue CCL, Tan M, Molero JC, Ye JM. Hepatic FoxO1 acetylation is involved in oleanolic acid-induced memory of glycemic control: novel findings from Study 2. PLoS One 2014; 9:e107231. [PMID: 25222566 PMCID: PMC4164604 DOI: 10.1371/journal.pone.0107231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/08/2014] [Indexed: 12/13/2022] Open
Abstract
Our recent study (referred as Study 1) showed that the triterpenoid oleanolic acid (OA) was able to produce a sustained correction of hyperglycemia beyond treatment period in type 2 diabetes (T2D) mice with liver as a responsible site. To follow up the previous observations, the present study (referred as Study 2) investigated the possible role of acetylation of FoxO1 and associated events in this therapeutic memory by characterizing the pathways regulating the acetylation status during and post-OA treatments. OA treatment (100 mg/kg/day for 4 weeks, during OA treatment) reduced hyperglycemia in T2D mice by ∼87% and this effect was largely (∼70%) maintained even 4 weeks after the cessation of OA administration (post-OA treatment). During OA treatment, the acetylation and phosphorylation of FoxO1 were markedly increased (1.5 to 2.5-fold) while G6Pase expression was suppressed by ∼80%. Consistent with this, OA treatment reversed pyruvate intolerance in high-fat fed mice. Histone acetyltransferase 1 (HAT1) content was increased (>50%) and histone deacetylases (HDACs) 4 and 5 (not HDAC1) were reduced by 30–50%. The OA-induced changes in FoxO1, G6Pase, HAT1 and HDACs persisted during the post-OA treatment period when the increased phosphorylation of AMPK, SIRT1 content and reduced liver triglyceride had subsided. These results confirmed the ability of OA to control hyperglycemia far beyond treatment period in T2D mice. Most importantly, in the present study we demonstrated acetylation of FoxO1 in the liver is involved in OA-induced memory for the control of hyperglycemia. Our novel findings suggest that acetylation of the key regulatory proteins of hepatic gluconeogenesis is a plausible mechanism by the triterpenoid to achieve a sustained glycemic control for T2D.
Collapse
Affiliation(s)
- Xiu Zhou
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Xiao-Yi Zeng
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Hao Wang
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Songpei Li
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Eunjung Jo
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Charlie C. L. Xue
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Juan C. Molero
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Ji-Ming Ye
- Molecular Pharmacology for Diabetes, Health Innovations Research Institute and School of Health Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
40
|
Momordica charantia (Bitter Melon) reduces obesity-associated macrophage and mast cell infiltration as well as inflammatory cytokine expression in adipose tissues. PLoS One 2013; 8:e84075. [PMID: 24358329 PMCID: PMC3866167 DOI: 10.1371/journal.pone.0084075] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/19/2013] [Indexed: 01/09/2023] Open
Abstract
Obesity is a world-wide epidemic disease that correlates closely with type 2 diabetes and cardiovascular diseases. Obesity-induced chronic adipose tissue inflammation is now considered as a critical contributor to the above complications. Momordica charantia (bitter melon, BM) is a traditional Chinese food and well known for its function of reducing body weight gain and insulin resistance. However, it is unclear whether BM could alleviate adipose tissue inflammation caused by obesity. In this study, C57BL/6 mice were fed high fat diet (HFD) with or without BM for 12 weeks. BM-contained diets ameliorated HFD-induced obesity and insulin resistance. Histological and real-time PCR analysis demonstrated BM not only reduced macrophage infiltration into epididymal adipose tissues (EAT) and brown adipose tissues (BAT). Flow cytometry show that BM could modify the M1/M2 phenotype ratio of macrophages in EAT. Further study showed that BM lowered mast cell recruitments in EAT, and depressed pro-inflammatory cytokine monocyte chemotactic protein-1 (MCP-1) expression in EAT and BAT as well as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression in EAT. Finally, ELISA analysis showed BM-contained diets also normalized serum levels of the cytokines. In summary, in concert with ameliorated insulin resistance and fat deposition, BM reduced adipose tissue inflammation in diet-induced obese (DIO) mice.
Collapse
|
41
|
Kim MS, Lee KT, Iseli TJ, Hoy AJ, George J, Grewal T, Roufogalis BD. Compound K modulates fatty acid-induced lipid droplet formation and expression of proteins involved in lipid metabolism in hepatocytes. Liver Int 2013; 33:1583-93. [PMID: 23998390 DOI: 10.1111/liv.12287] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 07/24/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS A key factor in the development of type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) is hepatic steatosis. Incubation of human hepatic cells with free fatty acids (FFAs) causes accumulation of neutral lipids in lipid droplets (LDs) and serves as a model for hepatic steatosis. Ginsenosides, active constituents of ginsengs, have demonstrated beneficial effects in various pharmacological areas, including diabetes, however their effect on lipid accumulation in hepatocytes remains unclear. Here, we examine the effect of compound K (ComK), an active metabolite of ginsenosides, on the regulation of LD formation and on the expression of proteins involved in lipid homeostasis in hepatocytes. METHODS HuH7 cells were pretreated with ComK, followed by lipid loading with FFA. LDs were visualized using Oil Red O staining and immunohistochemistry for the LD-related protein PLIN2. Triglyceride levels were determined in isolated LDs. The expression of proteins involved in lipid homeostasis was examined by Western blotting. RESULTS Treatment with ComK significantly decreased LD formation in FFA-loaded HuH7 cells and increased phosphorylation levels of AMPK, and its substrate ACC. ComK also increased protein expression of peroxisome proliferator-activated receptor-α (PPAR-α) and acyl-CoA oxidase (ACOX1) together with elevated activity of a PPAR-α response element reporter construct. These effects were inhibited by the PPAR-α antagonist MK886. CONCLUSIONS ComK reduced LD formation and TG accumulation in FFA-loaded hepatocytes, in part by up-regulating AMPK activity and PPAR-α related pathways. These results suggest that ComK may have efficacy for the treatment of hepatic steatosis and associated diseases.
Collapse
Affiliation(s)
- Moon-Sun Kim
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|