1
|
Mallamaci R, Barbarossa A, Carocci A, Meleleo D. Evaluation of the Potential Protective Effect of Ellagic Acid against Heavy Metal (Cadmium, Mercury, and Lead) Toxicity in SH-SY5Y Neuroblastoma Cells. Foods 2024; 13:419. [PMID: 38338554 PMCID: PMC10855963 DOI: 10.3390/foods13030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Ellagic acid (EA), a polyphenolic constituent of plant origin, has been thoroughly investigated for its hypothesised pharmacological properties among which antioxidant and neuroprotective activities are included. The present study was designed to explore whether EA could attenuate heavy metal (cadmium, mercury, and lead)-induced neurotoxicity in SH-SY5Y cells, which were utilized as a model system for brain cells. MTT and LDH assays were performed to examine the viability of the SH-SY5Y cells after exposure to Cd, Hg, and Pb (either individually or in combination with EA) as well as the effects of necrotic cell death, respectively. Furthermore, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), a cell-based assay, was performed to determine whether EA could protect SH-SY5Y from heavy metal-induced oxidative stress. Results allowed us to assess the capability of EA to enhance the number of viable SH-SY5Y cells after exposure to heavy metal toxicity. Pre-treatment with EA showed a considerable, concentration-dependent, cytoprotective effect, particularly against Cd2+-induced toxicity. This effect was confirmed through the reduction of LDH release after the simultaneous cell treatment with Cd2+ and EA compared with Cd2+-treated cells. Furthermore, a significant, concentration-dependent decrease in reactive oxygen species (ROS) production, induced by H2O2 or heavy metals, was observed in the same model. Overall, the obtained results provide further insight into the protective role of EA against heavy metal-induced neurotoxicity and oxidative stress, thus indicating the potential beneficial effects of the consumption of EA-rich foods. However, to confirm its effects, well-designed human randomized controlled trials are needed to fill the existing gap between experimental and clinical research.
Collapse
Affiliation(s)
- Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Alexia Barbarossa
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Alessia Carocci
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Daniela Meleleo
- Department of Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
2
|
Rohr P, Campanelli Dos Santos I, van Helvoort Lengert A, Alves de Lima M, Manuel Reis R, Barbosa F, Cesar Santejo Silveira H. Absolute telomere length in peripheral blood lymphocytes of workers exposed to construction environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:949-957. [PMID: 35466826 DOI: 10.1080/09603123.2022.2066069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Construction environment is composed of various substances classified as carcinogens. Thus, workers exposed in this environment can be susceptible to genomic instability that can be evaluated by absolute telomere length (TL). In this work, we evaluated TL in construction workers compared to a non-exposed group performed by qPCR assay. The TL was evaluated in 59 men exposed to the construction environment (10 years of exposure) and 49 men non-exposed. Our data showed that individuals exposed to the construction environment exhibited a significantly lower TL in relation to non-exposed group (p = 0.009). Also, on the multiple linear regression model, we observed that TL was significantly influenced by the construction environment exposure (p ≤ 0.001). Additionally, the arsenic exposure is associated to a shortening telomere (p ≤ 0.001), and the lead exposure caused an increase in TL (p ≤ 0.001). Thus, our findings suggest a modulation in TL by construction environment exposure, mainly by arsenic and lead exposure.
Collapse
Affiliation(s)
- Paula Rohr
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | | | | | - Marcos Alves de Lima
- Epidemiology and Biostatistics Nucleus, Barretos Cancer Hospital, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Barbosa
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Ooi TC, Singh DKA, Shahar S, Sharif R, Rivan NFM, Meramat A, Rajab NF. Higher Lead and Lower Calcium Levels Are Associated with Increased Risk of Mortality in Malaysian Older Population: Findings from the LRGS-TUA Longitudinal Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19126955. [PMID: 35742205 PMCID: PMC9223054 DOI: 10.3390/ijerph19126955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022]
Abstract
The main objective of this study is to determine the association of various trace elements’ status with the 5-year mortality rate among community-dwelling older adults in Malaysia. This study was part of the Long-term Research Grant Scheme—Towards Useful Ageing (LRGS-TUA). The participants were followed up for five years, and their mortality status was identified through the Mortality Data Matching Service provided by the National Registration Department, Malaysia. Of the 303 participants included in this study, 34 (11.2%) participants had died within five years after baseline data collection. As compared to the survivors, participants who died earlier were more likely (p < 0.05) to be men, smokers, have a lower intake of total dietary fiber and molybdenum, higher intake of manganese, lower zinc levels in toenail samples, lower calcium and higher lead levels in hair samples during baseline. Following the multivariate Cox proportional hazard analysis, lower total dietary fiber intake (HR: 0.681; 0.532−0.871), lower calcium (HR: 0.999; 95% CI: 0.999−1.000) and higher lead (HR: 1.309; 95% CI: 1.061−1.616) levels in hair samples appeared as the predictors of mortality. In conclusion, higher lead and lower calcium levels are associated with higher risk of mortality among community-dwelling older adults in Malaysia. Our current findings provide a better understanding of how the trace elements’ status may affect older populations’ well-being and mortality rate.
Collapse
Affiliation(s)
- Theng Choon Ooi
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (T.C.O.); (D.K.A.S.); (S.S.); (R.S.); (N.F.M.R.)
| | - Devinder Kaur Ajit Singh
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (T.C.O.); (D.K.A.S.); (S.S.); (R.S.); (N.F.M.R.)
| | - Suzana Shahar
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (T.C.O.); (D.K.A.S.); (S.S.); (R.S.); (N.F.M.R.)
| | - Razinah Sharif
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (T.C.O.); (D.K.A.S.); (S.S.); (R.S.); (N.F.M.R.)
| | - Nurul Fatin Malek Rivan
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (T.C.O.); (D.K.A.S.); (S.S.); (R.S.); (N.F.M.R.)
| | - Asheila Meramat
- Faculty of Health Sciences, Gong Badak Campus, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia;
| | - Nor Fadilah Rajab
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (T.C.O.); (D.K.A.S.); (S.S.); (R.S.); (N.F.M.R.)
- Correspondence: ; Tel.: +60-3-9289-7002
| |
Collapse
|
4
|
Herrera-Moreno JF, Estrada-Gutierrez G, Wu H, Bloomquist TR, Rosa MJ, Just AC, Lamadrid-Figueroa H, Téllez-Rojo MM, Wright RO, Baccarelli AA. Prenatal lead exposure, telomere length in cord blood, and DNA methylation age in the PROGRESS prenatal cohort. ENVIRONMENTAL RESEARCH 2022; 205:112577. [PMID: 34921825 DOI: 10.1016/j.envres.2021.112577] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lead is a ubiquitous pollutant with deleterious effects on human health and remains a major current public health concern in developing countries. This heavy metal may interfere with nucleic acids via oxidative stress or epigenetic changes that affect biological markers of aging, e.g., telomere length and DNA methylation (DNAm). Telomere shortening associates with biological age in newborns, and DNA methylation at specific CpG sites can be used to calculate "epigenetic clocks". OBJECTIVE The aim of this study was to examine the associations of prenatal lead exposures with telomere length and DNA-methylation-based predictors of age in cord blood. DESIGN The study included 507 mother-child pairs from the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) study, a birth cohort in Mexico City. Maternal blood (second trimester, third trimester and at delivery) and bone lead levels (one month postpartum) were measured using inductively coupled plasma-mass spectrometry and X-ray fluorescence, respectively. Cord blood leukocyte telomere length was measured using quantitative PCR and apparent age by DNA methylation biomarkers, i.e., Horvath's DNA methylation age and the Knight's predictor of gestational age. RESULTS Average maternal age was 28.5 ± 5.5 years, and 51.5% reported low socioeconomic status. Children's mean telomere length was 1.2 ± 1.3 relative units, and mean DNA methylation ages using the Horvath's and Knight's clocks were -2.6 ± 0.1 years and 37.9 ± 1.4 weeks (mean ± SD), respectively. No significant associations were found between maternal blood and bone lead concentrations with telomere length and DNAm age in newborns. CONCLUSION We found no associations of prenatal lead exposure with telomere length and DNA methylation age biomarkers.
Collapse
Affiliation(s)
- José F Herrera-Moreno
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Tessa R Bloomquist
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hector Lamadrid-Figueroa
- Department of Perinatal Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Kahl VFS, da Silva J. Inorganic elements in occupational settings: A review on the effects on telomere length and biology. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503418. [PMID: 34798938 DOI: 10.1016/j.mrgentox.2021.503418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The past decades have shown that telomere crisis is highly affected by external factors. Effects of human exposure to xenobiotics on telomere length (TL), particularly in their workplace, have been largely studied. TL has been shown to be an efficient biomarker in occupational risk assessment. This is the first review focusing on studies about the effects on TL from occupational exposures to metals (lead [Pb] and mixtures), and particulate matter (PM) related to inorganic elements. Data from 15 studies were evaluated regarding occupational exposure to metals and PM-associated inorganic elements and impact on TL. Potential complementary analyses and subjects' background (age, length of employment and gender) were also assessed. There was limited information on the correlations between work length and TL dynamics, and that was also true for the correlation between age and TL. Results indicated that TL is affected differently across the types of occupational exposure investigated in this review, and even within the same exposure, a variety of effects can be observed. Fifty-three percent of the studies observed decreased TL in occupational exposure among welding fumes, open-cast coal mine, Pb and PM industries workers. Two studies focused particularly on the levels of metals and association with TL, and both linear and non-linear associations were found. Interestingly, TL modifications were accompanied by increase in DNA damage in 7 out of 8 studies that investigated it, measured either by Cytokinesis-block Micronucleus Assay or Comet assay. Five studies also investigated oxidative stress parameters, and 4 of them found increased levels of oxidative damage along with TL impairment. Oxidative stress is one of the main mechanisms by which telomeres are affected due to their high guanine content. Our review highlights the need of further studies accessing TL in simultaneous occupational exposure to mixtures of xenobiotics.
Collapse
Affiliation(s)
- Vivian F Silva Kahl
- The University of Queensland Diamantina Institute, The University of Queensland, Faculty of Medicine, 37 Kent Street, Woolloongabba, Queensland 4102, Australia; Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia.
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Post Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil, Av Farroupilha 8001, Canoas, Rio Grande do Sul, 92425-900, Brazil; LaSalle University (UniLaSalle), Av Victor Barreto 2288, Canoas, Rio Grande do Sul, 92010-000, Brazil.
| |
Collapse
|
6
|
DNA Double-Strand Breaks Induced in Human Cells by Twelve Metallic Species: Quantitative Inter-Comparisons and Influence of the ATM Protein. Biomolecules 2021; 11:biom11101462. [PMID: 34680095 PMCID: PMC8533583 DOI: 10.3390/biom11101462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 01/25/2023] Open
Abstract
Despite a considerable amount of data, the molecular and cellular bases of the toxicity due to metal exposure remain unknown. Recent mechanistic models from radiobiology have emerged, pointing out that the radiation-induced nucleo-shuttling of the ATM protein (RIANS) initiates the recognition and the repair of DNA double-strand breaks (DSB) and the final response to genotoxic stress. In order to document the role of ATM-dependent DSB repair and signalling after metal exposure, we applied twelve different metal species representing nine elements (Al, Cu, Zn Ni, Pd, Cd, Pb, Cr, and Fe) to human skin, mammary, and brain cells. Our findings suggest that metals may directly or indirectly induce DSB at a rate that depends on the metal properties and concentration, and tissue type. At specific metal concentration ranges, the nucleo-shuttling of ATM can be delayed which impairs DSB recognition and repair and contributes to toxicity and carcinogenicity. Interestingly, as observed after low doses of ionizing radiation, some phenomena equivalent to the biological response observed at high metal concentrations may occur at lower concentrations. A general mechanistic model of the biological response to metal exposure based on the nucleo-shuttling of ATM is proposed to describe the metal-induced stress response and to define quantitative endpoints for toxicity and carcinogenicity.
Collapse
|
7
|
Bolzán AD. Mutagen-induced telomere instability in human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 868-869:503387. [PMID: 34454696 DOI: 10.1016/j.mrgentox.2021.503387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 11/27/2022]
Abstract
Telomere instability is one of the main sources of genome instability and may result from chromosome end loss (due to chromosome breakage at one or both ends) or, more frequently, telomere dysfunction. Dysfunctional telomeres arise when they lose their end-capping function or become critically short, which causes chromosomal termini to behave like a DNA double-strand break. Telomere instability may occur at the chromosomal or at the molecular level, giving rise, respectively, to telomere-related chromosomal aberrations or the loss or modification of any of the components of the telomere (telomere DNA, telomere-associated proteins, or telomere RNA). Since telomeres play a fundamental role in maintaining genome stability, the study of telomere instability in cells exposed to mutagens is of great importance to understand the telomere-driven genomic instability present in those cells. In the present review, we will focus on the current knowledge about telomere instability induced by physical, chemical, and biological mutagens in human cells.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CONICET-CICPBA-UNLP), calle 526 y Camino General Belgrano, B1906APO La Plata, Buenos Aires, Argentina; Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, calle 60 y 122, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
8
|
The effects of the exposure to neurotoxic elements on Italian schoolchildren behavior. Sci Rep 2021; 11:9898. [PMID: 33972598 PMCID: PMC8110539 DOI: 10.1038/s41598-021-88969-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
Neurodevelopmental disorders are constantly increasing on a global scale. Some elements like heavy metals are known to be neurotoxic. In this cross-sectional study we assessed the neurobehavioral effect of the exposure to trace elements including lead, mercury, cadmium, manganese, arsenic and selenium and their interactions among 299 schoolchildren residing in the heavily polluted Taranto area in Italy. Whole blood, urine and hair were collected for metal analyses, while the Child Behavior Checklist and the Social Responsiveness Scale, administered to the main teacher and the mothers were considered to identify behavioral problems in children. Blood lead mainly influenced social problems, aggressive behavior, externalizing and total problems. Urinary arsenic showed an impact on anxiety and depression, somatic problems, attention problems and rule breaking behavior. A significant interaction between lead and arsenic was observed, with a synergistic effect of the two metals increasing the risk of attention problems, aggressive behavior, externalizing problems and total problems. Overall, we were able to test that higher blood lead, urinary arsenic concentrations and their interaction increase the risk of neurobehavioral problems. This is in line with the U.S. Environmental Protection Agency’s priority list of hazardous substances where arsenic and lead are ranked as first and second respectively.
Collapse
|
9
|
Liu Y, Wang J, Huang Z, Liang J, Xia Q, Xia Q, Liu X. Environmental pollutants exposure: A potential contributor for aging and age-related diseases. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103575. [PMID: 33385577 DOI: 10.1016/j.etap.2020.103575] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Telomeres are "protective messengers" at the ends of eukaryotic chromosomes that protect them from degradation, end to end fusion and recombination. Admittedly, telomeres progressively shorten with age that can also be significantly accelerated by pathological conditions, which are often considered as potential contributors for cellular senescence. It is commonly believed that constant accumulation of senescent cells may lead to dysfunctional tissues and organs, thereby accelerating aging process and subsequent occurrence of age-related diseases. In particular, epidemiological data has indicated a significant association between environmental pollutants exposure and a high incidence of age-related diseases. Moreover, there is growing evidence that environmental toxicity has a detrimental impact on telomere length. Overall, a consensus is emerging that environmental pollutants exposure could lead to accelerated telomere erosion and further induce premature senescence, which may be responsible for the acceleration of aging and the high morbidity and mortality rates of age-related diseases.
Collapse
Affiliation(s)
- Yaru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, 230022, China
| | - Jiequan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui, 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui, 230000, China
| | - Zhaogang Huang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, 230022, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui, 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui, 230000, China
| | - Qingrong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui, 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui, 230000, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, 230022, China.
| | - Xinhua Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
10
|
Cognitive Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead Neurotoxicity. TOXICS 2021; 9:toxics9020023. [PMID: 33525464 PMCID: PMC7912619 DOI: 10.3390/toxics9020023] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
Lead (Pb) is considered a strong environmental toxin with human health repercussions. Due to its widespread use and the number of people potentially exposed to different sources of this heavy metal, Pb intoxication is recognized as a public health problem in many countries. Exposure to Pb can occur through ingestion, inhalation, dermal, and transplacental routes. The magnitude of its effects depends on several toxicity conditions: lead speciation, doses, time, and age of exposure, among others. It has been demonstrated that Pb exposure induces stronger effects during early life. The central nervous system is especially vulnerable to Pb toxicity; Pb exposure is linked to cognitive impairment, executive function alterations, abnormal social behavior, and fine motor control perturbations. This review aims to provide a general view of the cognitive consequences associated with Pb exposure during early life as well as during adulthood. Additionally, it describes the neurotoxic mechanisms associated with cognitive impairment induced by Pb, which include neurochemical, molecular, and morphological changes that jointly could have a synergic effect on the cognitive performance.
Collapse
|
11
|
Cowell W, Colicino E, Tanner E, Amarasiriwardena C, Andra SS, Bollati V, Kannan S, Ganguri H, Gennings C, Wright RO, Wright RJ. Prenatal toxic metal mixture exposure and newborn telomere length: Modification by maternal antioxidant intake. ENVIRONMENTAL RESEARCH 2020; 190:110009. [PMID: 32777275 PMCID: PMC7530067 DOI: 10.1016/j.envres.2020.110009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Telomere length (TL) predicts the onset of cellular senescence and correlates with longevity and age-related disease risk. While telomeres erode throughout life, adults display fixed ranking and tracking of TL, supporting the importance of the early environment in determining inter-individual variability across the life course. Given their guanine-rich structure, telomeres are highly susceptible to oxidative stress (OS). We examined maternal metal exposure, which can induce OS, in relation to newborn TL. We also considered the modifying role of maternal antioxidant intake. METHODS Analyses included 100 mother-newborn pairs enrolled in the Boston and New York City-based PRogramming of Intergenerational Stress Mechanisms (PRISM) pregnancy cohort. We measured As, Ba, Cd, Ni, and Pb in maternal late-pregnancy urine by ICP-MS and quantified relative leukocyte TL (rLTL) in cord blood using qPCR. We used Weighted Quantile Sum (WQS) regression to estimate the metal mixture - rLTL association and conducted repeated holdout validation to improve the stability of estimates across data partitions. We examined models stratified by high (>median) versus low (≤median) maternal antioxidant intake, estimated from Block98 Food Frequency Questionnaires. We considered urinary creatinine, week of urine collection, maternal age, and race/ethnicity as covariates. RESULTS In adjusted models, urinary metals were inversely associated with newborn rLTL (βWQS = -0.50, 95% CI: -0.78, -0.21). The top metals contributing to the negative association included Ba (weight: 35.4%), Cd (24.5%) and Pb (26.9%). In models stratified by antioxidant intake, the significant inverse association between metals and rLTL remained only among mothers with low antioxidant intake (low: βWQS = -0.92, 95% CI: -1.53, -0.30; high: βWQS = -0.03, 95% CI: -0.58, 0.52). Results were similar in unadjusted models. CONCLUSIONS Relative LTL was shorter among newborns of mothers with higher exposure to metals during pregnancy. Higher maternal antioxidant intake may mitigate the negative influence of metals on newborn rLTL.
Collapse
Affiliation(s)
- Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eva Tanner
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Syam S Andra
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Srimathi Kannan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Harish Ganguri
- Department of Information Systems Security, University of Cumberlands, Williamsburg, KY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Using telomeric chromosomal aberrations to evaluate clastogen-induced genomic instability in mammalian cells. Chromosome Res 2020; 28:259-276. [DOI: 10.1007/s10577-020-09641-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
|
13
|
Louzon M, Coeurdassier M, Gimbert F, Pauget B, de Vaufleury A. Telomere dynamic in humans and animals: Review and perspectives in environmental toxicology. ENVIRONMENT INTERNATIONAL 2019; 131:105025. [PMID: 31352262 DOI: 10.1016/j.envint.2019.105025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Telomeres (TLs) play major roles in stabilizing the genome and are usually shortened with ageing. The maintenance of TLs is ensured by two mechanisms involving telomerase (TA) enzyme and alternative lengthening telomeres (ALT). TL shortening and/or TA inhibition have been related to health effects on organisms (leading to reduced reproductive lifespan and survival), suggesting that they could be key processes in toxicity mechanisms (at molecular and cellular levels) and relevant as an early warning of exposure and effect of chemicals on human health and animal population dynamics. Consequently, a critical analysis of knowledge about relationships between TL dynamic and environmental pollution is essential to highlight the relevance of TL measurement in environmental toxicology. The first objective of this review is to provide a survey on the basic knowledge about TL structure, roles, maintenance mechanisms and causes of shortening in both vertebrates (including humans) and invertebrates. Overall, TL length decreases with ageing but some unexpected exceptions are reported (e.g., in species with different lifespans, such as the nematode Caenorhabditis elegans or the crustacean Homarus americanus). Inconsistent results reported in various biological groups or even between species of the same genus (e.g., the microcrustacean Daphnia sp.) indicate that the relation usually proposed between TL shortening and a decrease in TA activity cannot be generalized and depends on the species, stage of development or lifespan. Although the scientific literature provides evidence of the effect of ageing on TL shortening, much less information on the relationships between shortening, maintenance of TLs, influence of other endogenous and environmental drivers, including exposure to chemical pollutants, is available, especially in invertebrates. The second objective of this review is to connect knowledge on TL dynamic and exposure to contaminants. Most of the studies published on humans rely on correlative epidemiological approaches and few in vitro experiments. They have shown TL attrition when exposed to contaminants, such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), pesticides and metallic elements (ME). In other vertebrates, the studies we found deals mainly with birds and, overall, report a disturbance of TL dynamic consecutively to exposure to chemicals, including metals and organic compounds. In invertebrates, no data are available and the potential of TL dynamic in environmental risk assessment remains to be explored. On the basis of the main gaps identified some research perspectives (e.g., impact of endogenous and environmental drivers, dose response effects, link between TL length, TA activity, longevity and ageing) are proposed to better understand the potential of TL and TA measurements in humans and animals in environmental toxicology.
Collapse
Affiliation(s)
- Maxime Louzon
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Michael Coeurdassier
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Frédéric Gimbert
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Benjamin Pauget
- TESORA, Le Visium, 22 avenue Aristide Briand, 94110 Arcueil, France
| | - Annette de Vaufleury
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France.
| |
Collapse
|
14
|
Ricoul M, Gnana Sekaran TS, Brochard P, Herate C, Sabatier L. γ-H2AX Foci Persistence at Chromosome Break Suggests Slow and Faithful Repair Phases Restoring Chromosome Integrity. Cancers (Basel) 2019; 11:cancers11091397. [PMID: 31546867 PMCID: PMC6770925 DOI: 10.3390/cancers11091397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Many toxic agents can cause DNA double strand breaks (DSBs), which are in most cases quickly repaired by the cellular machinery. Using ionising radiation, we explored the kinetics of DNA lesion signaling and structural chromosome aberration formation at the intra- and inter-chromosomal level. Using a novel approach, the classic Premature Chromosome Condensation (PCC) was combined with γ-H2AX immunofluorescence staining in order to unravel the kinetics of DNA damage signalisation and chromosome repair. We identified an early mechanism of DNA DSB joining that occurs within the first three hours post-irradiation, when dicentric chromosomes and chromosome exchanges are formed. The slower and significant decrease of ”deleted chromosomes” and 1 acentric telomere fragments observed until 24 h post-irradiation, leads to the conclusion that a second and error-free repair mechanism occurs. In parallel, we revealed remaining signalling of γ-H2AX foci at the site of chromosome fusion long after the chromosome rearrangement formation. Moreover there is important signalling of foci on the site of telomere and sub-telomere sequences suggesting either a different function of γ-H2AX signalling in these regions or an extreme sensibility of the telomere sequences to DNA damage that remains unrepaired 24 h post-irradiation. In conclusion, chromosome repair happens in two steps, including a last and hardly detectable one because of restoration of the chromosome integrity.
Collapse
Affiliation(s)
- Michelle Ricoul
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Tamizh Selvan Gnana Sekaran
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Patricia Brochard
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Cecile Herate
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Laure Sabatier
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| |
Collapse
|
15
|
Role of arsenic, lead and cadmium on telomere length and the risk of carcinogenesis: a mechanistic insight. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00280-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Epigenetic Alterations: The Relation Between Occupational Exposure and Biological Effects in Humans. RNA TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-14792-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Møller P, Wils RS, Jensen DM, Andersen MHG, Roursgaard M. Telomere dynamics and cellular senescence: an emerging field in environmental and occupational toxicology. Crit Rev Toxicol 2018; 48:761-788. [DOI: 10.1080/10408444.2018.1538201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Regitze Sølling Wils
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Marie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
He L, Chen Z, Dai B, Li G, Zhu G. Low-level lead exposure and cardiovascular disease: the roles of telomere shortening and lipid disturbance. J Toxicol Sci 2018; 43:623-630. [PMID: 30404996 DOI: 10.2131/jts.43.623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lead exposure contributing to cardiovascular diseases is known and recognized widely. As the deleterious effects of low lead exposure attained increasing attention over the last decades, there have been numerous studies exploring the association of low levels of lead exposure and cardiovascular diseases. Moreover, it has been observed that lead exposure could cause telomere shortening and lipid disturbance, and that telomere shortening and lipid disturbance are closely related with cardiovascular diseases. Hence, telomere shortening and lipid disturbance might play an important role in the pathophysiological process of chronic low levels of lead exposure contributing to cardiovascular diseases. This review is intended to explore views of the rarely mentioned mechanism, telomere shortening and lipid disturbance, and the cardiovascular effects of low levels of lead exposure.
Collapse
Affiliation(s)
- Liyun He
- The First Clinical Medical College of Nanchang University, China
| | - Zhenying Chen
- The Fourth Clinical Medical College of Nanchang University, China
| | - Bo Dai
- The Fourth Clinical Medical College of Nanchang University, China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, China
| | - Gaochun Zhu
- Department of Anatomy, Medical College of Nanchang University, China
| |
Collapse
|
19
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|
20
|
Frenzel M, Ricoul M, Benadjaoud MA, Bellamy M, Lenain A, Haddy N, Diallo I, Mateus C, de Vathaire F, Sabatier L. Retrospective cohort study and biobanking of patients treated for hemangioma in childhood – telomeres as biomarker of aging and radiation exposure. Int J Radiat Biol 2017. [DOI: 10.1080/09553002.2017.1337278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Monika Frenzel
- PROCyTOX (Radiation Oncology, Cytogenetics, and Toxicology Platform), DRF Commissariat à l’Energie Atomique et aux Energies Alternatives CEA, Paris, Saclay, France
| | - Michelle Ricoul
- PROCyTOX (Radiation Oncology, Cytogenetics, and Toxicology Platform), DRF Commissariat à l’Energie Atomique et aux Energies Alternatives CEA, Paris, Saclay, France
| | | | - Marion Bellamy
- PROCyTOX (Radiation Oncology, Cytogenetics, and Toxicology Platform), DRF Commissariat à l’Energie Atomique et aux Energies Alternatives CEA, Paris, Saclay, France
- Radiation Epidemiology Group, INSERM U1018, Villejuif, Université Paris, Saclay, France
| | - Aude Lenain
- PROCyTOX (Radiation Oncology, Cytogenetics, and Toxicology Platform), DRF Commissariat à l’Energie Atomique et aux Energies Alternatives CEA, Paris, Saclay, France
| | - Nadia Haddy
- Radiation Epidemiology Group, INSERM U1018, Villejuif, Université Paris, Saclay, France
| | - Ibrahima Diallo
- Radiation Epidemiology Group, INSERM U1018, Villejuif, Université Paris, Saclay, France
| | - Christine Mateus
- Service de dermatologie, Gustave Roussy, Université Paris-Saclay, Département de Médecine Oncologique, Villejuif, France
| | - Florent de Vathaire
- Radiation Epidemiology Group, INSERM U1018, Villejuif, Université Paris, Saclay, France
| | - Laure Sabatier
- PROCyTOX (Radiation Oncology, Cytogenetics, and Toxicology Platform), DRF Commissariat à l’Energie Atomique et aux Energies Alternatives CEA, Paris, Saclay, France
| |
Collapse
|
21
|
Stauffer J, Panda B, Eeva T, Rainio M, Ilmonen P. Telomere damage and redox status alterations in free-living passerines exposed to metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:841-848. [PMID: 27693158 DOI: 10.1016/j.scitotenv.2016.09.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 04/14/2023]
Abstract
Telomere length may reflect the expected life span and possibly individual quality. Environmental stressors are known to increase oxidative stress and accelerate telomere attrition: however the interactions between redox status and telomere dynamics are not fully understood. We investigated whether exposure to heavy metal pollution is associated with oxidative stress and telomere damage in two insectivorous passerines, the Great tit (Parus major) and the Pied flycatcher (Ficedula hypoleuca). We were also interested to know whether within-brood competition could influence the nestling redox status or telomere length. Breeding females and nestlings were sampled near the point pollution source and compared to birds in non-polluted control zone. We measured heavy metal concentrations, calcium, metallothioneins, telomere lengths and redox status (oxidative damage, and enzymatic and non-enzymatic antioxidants) in liver samples. Great tit nestlings in the polluted zone had significantly shorter telomeres compared to those in the unpolluted control zone. In addition, those great tit nestlings that were lighter than their average siblings, had shorter telomeres compared to the heavier ones. In pied flycatchers neither pollution nor growth stress were associated with telomere length, but adult females had significantly shorter telomeres compared to the nestlings. All the results related to redox status varied remarkably among the species and the age groups. In both species antioxidants were related to pollution. There were no significant associations between redox status and telomere length. Our results suggest that wild birds at a young age are vulnerable to pollution and growth stress induced telomere damage. Redox status seems to interact with pollution and growth, but more studies are needed to clarify the underlying physiological mechanisms of telomere attrition. Our study highlights that all the observed associations and differences between the sampling zones varied depending on the species, age, and degree of exposure to pollution.
Collapse
Affiliation(s)
| | - Bineet Panda
- Department of Biology, University of Turku, Turku, Finland
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, Finland
| | - Miia Rainio
- Department of Biology, University of Turku, Turku, Finland
| | | |
Collapse
|
22
|
Finot F, Kaddour A, Morat L, Mouche I, Zaguia N, Cuceu C, Souverville D, Négrault S, Cariou O, Essahli A, Prigent N, Saul J, Paillard F, Heidingsfelder L, Lafouge P, Al Jawhari M, Hempel WM, El May M, Colicchio B, Dieterlen A, Jeandidier E, Sabatier L, Clements J, M'Kacher R. Genotoxic risk of ethyl-paraben could be related to telomere shortening. J Appl Toxicol 2016; 37:758-771. [DOI: 10.1002/jat.3425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 01/22/2023]
Affiliation(s)
- F. Finot
- Covance Laboratory; 78440 Porcheville France
- Cell Environment; Paris France
| | - A. Kaddour
- Cell Environment; Paris France
- Tunis El Manar University; School of Medicine; Tunis Tunisia
| | - L. Morat
- Radiology and Oncology Laboratory, IRCM, DSV; Commissariat à l'energie atomique (CEA); Fontenay-aux Roses France
| | - I. Mouche
- Covance Laboratory; 78440 Porcheville France
- Cell Environment; Paris France
| | - N. Zaguia
- Radiology and Oncology Laboratory, IRCM, DSV; Commissariat à l'energie atomique (CEA); Fontenay-aux Roses France
| | - C. Cuceu
- Radiology and Oncology Laboratory, IRCM, DSV; Commissariat à l'energie atomique (CEA); Fontenay-aux Roses France
| | | | - S. Négrault
- Covance Laboratory; 78440 Porcheville France
| | - O. Cariou
- Covance Laboratory; 78440 Porcheville France
| | - A. Essahli
- Covance Laboratory; 78440 Porcheville France
| | - N. Prigent
- Covance Laboratory; 78440 Porcheville France
| | - J. Saul
- Covance Laboratories; Yorkshire HG3 1PY UK
| | - F. Paillard
- Covance Laboratory; 78440 Porcheville France
| | | | - P. Lafouge
- Covance Laboratory; 78440 Porcheville France
| | | | - W. M. Hempel
- Radiology and Oncology Laboratory, IRCM, DSV; Commissariat à l'energie atomique (CEA); Fontenay-aux Roses France
| | - M. El May
- Tunis El Manar University; School of Medicine; Tunis Tunisia
| | - B. Colicchio
- Laboratoire MIPS - Groupe IMTI Université de Haute-Alsace; F-68093 Mulhouse France
| | - A. Dieterlen
- Laboratoire MIPS - Groupe IMTI Université de Haute-Alsace; F-68093 Mulhouse France
| | - E. Jeandidier
- Service de génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace; 68070 Mulhouse France
| | - L. Sabatier
- Radiology and Oncology Laboratory, IRCM, DSV; Commissariat à l'energie atomique (CEA); Fontenay-aux Roses France
| | | | - R. M'Kacher
- Cell Environment; Paris France
- Radiology and Oncology Laboratory, IRCM, DSV; Commissariat à l'energie atomique (CEA); Fontenay-aux Roses France
| |
Collapse
|
23
|
Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7825432. [PMID: 27803929 PMCID: PMC5075591 DOI: 10.1155/2016/7825432] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022]
Abstract
With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic) contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1) Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS) damage. (2) Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3) Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4) Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8) and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.
Collapse
|
24
|
Pawlas N, Płachetka A, Kozłowska A, Mikołajczyk A, Kasperczyk A, Dobrakowski M, Kasperczyk S. Telomere length, telomerase expression, and oxidative stress in lead smelters. Toxicol Ind Health 2016; 32:1961-1970. [DOI: 10.1177/0748233715601758] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The negative health effects caused by lead (Pb) exposure are widely recognized; however, the molecular mechanisms remain unknown. The aim of this study was to assess the effect of occupational Pb exposure on telomere length and to investigate the potential mechanisms leading to telomere shortening. A cohort of 334 male Pb smelters (exposed group) and 60 age-adjusted males unexposed to Pb (control group) were examined. Assessments of relative telomere length (rTL) and telomerase reverse transcriptase (TERT) gene expression were performed using quantitative real-time polymerase chain reactions. Assessments of whole blood Pb (B-Pb) and whole blood cadmium (B-Cd) concentrations and serum selenium concentration (S-Se) were performed using graphite furnace atomic absorption spectrometry. We analyzed total oxidation status (TOS), lipid hydroperoxides (LHPs), malonylodialdehyde levels in serum (MDA) and in erythrocyte hemolysates (MDA-hgb), and 8-hydroxy-deoxy-guanosine (8-OHdG). The Pb-exposed group had higher B-Pb values and shorter rTL than the control group. The arithmetic mean values calculated for B-Pb were 33 µg/dL versus 2.2 µg/dL ( p < 0.0001), and the rTL values were 0.928 and 1.126 relative units ( p = 0.001), respectively, for the Pb-exposed and control groups. The rTL was found to gradually shorten in response to the increasing levels of Pb exposure. The Pb-exposed group also demonstrated a higher level of oxidative stress than the control group, which was indicated by increased TOS and MDA-hgb values. rTL was negatively associated with parameters that indicated increased oxidative stress, including TOS (Spearman’s rank coefficient ( rS) = −0.16; p < 0.01) and MDA-hgb ( rS = −0.17; p < 0.001). No correlations were found between rTL and B-Cd and S-Se or smoking and MDA and LHP levels. Univariate analysis indicated that B-Pb was associated with decreased rTL ( β =−0.0041; p = 0.0063) and that the association between B-Pb and rTL remained significant, even when adjusting for age ( β = −0.0041; p = 0.0065) and in multivariable-adjusted model ( β = −0.0042; p = 0.0063). In conclusion, occupational Pb exposure resulted in decreased rTL and may represent a mechanism that contributes to Pb-related diseases.
Collapse
Affiliation(s)
- Natalia Pawlas
- Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
| | - Anna Płachetka
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Agnieszka Kozłowska
- Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
| | | | - Aleksandra Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Michał Dobrakowski
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
25
|
Goodson WH, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, Lasfar A, Carnero A, Azqueta A, Amedei A, Charles AK, Collins AR, Ward A, Salzberg AC, Colacci A, Olsen AK, Berg A, Barclay BJ, Zhou BP, Blanco-Aparicio C, Baglole CJ, Dong C, Mondello C, Hsu CW, Naus CC, Yedjou C, Curran CS, Laird DW, Koch DC, Carlin DJ, Felsher DW, Roy D, Brown DG, Ratovitski E, Ryan EP, Corsini E, Rojas E, Moon EY, Laconi E, Marongiu F, Al-Mulla F, Chiaradonna F, Darroudi F, Martin FL, Van Schooten FJ, Goldberg GS, Wagemaker G, Nangami GN, Calaf GM, Williams G, Wolf GT, Koppen G, Brunborg G, Lyerly HK, Krishnan H, Ab Hamid H, Yasaei H, Sone H, Kondoh H, Salem HK, Hsu HY, Park HH, Koturbash I, Miousse IR, Scovassi AI, Klaunig JE, Vondráček J, Raju J, Roman J, Wise JP, Whitfield JR, Woodrick J, Christopher JA, Ochieng J, Martinez-Leal JF, Weisz J, Kravchenko J, Sun J, Prudhomme KR, Narayanan KB, Cohen-Solal KA, Moorwood K, Gonzalez L, Soucek L, Jian L, D'Abronzo LS, Lin LT, Li L, Gulliver L, McCawley LJ, Memeo L, Vermeulen L, Leyns L, Zhang L, Valverde M, Khatami M, Romano MF, Chapellier M, Williams MA, Wade M, Manjili MH, Lleonart ME, Xia M, Gonzalez MJ, Karamouzis MV, Kirsch-Volders M, Vaccari M, Kuemmerle NB, Singh N, Cruickshanks N, Kleinstreuer N, van Larebeke N, Ahmed N, Ogunkua O, Krishnakumar PK, Vadgama P, Marignani PA, Ghosh PM, Ostrosky-Wegman P, Thompson PA, Dent P, Heneberg P, Darbre P, Sing Leung P, Nangia-Makker P, Cheng QS, Robey RB, Al-Temaimi R, Roy R, Andrade-Vieira R, Sinha RK, Mehta R, Vento R, Di Fiore R, Ponce-Cusi R, Dornetshuber-Fleiss R, Nahta R, Castellino RC, Palorini R, Abd Hamid R, Langie SAS, Eltom SE, Brooks SA, Ryeom S, Wise SS, Bay SN, Harris SA, Papagerakis S, Romano S, Pavanello S, Eriksson S, Forte S, Casey SC, Luanpitpong S, Lee TJ, Otsuki T, Chen T, Massfelder T, Sanderson T, Guarnieri T, Hultman T, Dormoy V, Odero-Marah V, Sabbisetti V, Maguer-Satta V, Rathmell WK, Engström W, Decker WK, Bisson WH, Rojanasakul Y, Luqmani Y, Chen Z, Hu Z. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis 2015; 36 Suppl 1:S254-96. [PMID: 26106142 PMCID: PMC4480130 DOI: 10.1093/carcin/bgv039] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Low-dose exposures to common environmental chemicals that are deemed safe individually may be combining to instigate carcinogenesis, thereby contributing to the incidence of cancer. This risk may be overlooked by current regulatory practices and needs to be vigorously investigated. Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.
Collapse
Affiliation(s)
- William H Goodson
- California Pacific Medical Center Research Institute, 2100 Webster Street #401, San Francisco, CA 94115, USA, Getting to Know Cancer, Room 229A, 36 Arthur Street, Truro, Nova Scotia B2N 1X5, Canada, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK, Institute for Health and the Environment, University at Albany, 5 University Pl., Rensselaer, NY 12144, USA, Getting to Know Cancer, Guelph N1G 1E4, Canada, School of Biotechnology, Faculty of Agriculture Biotechnology and Food Sciences, Sultan Zainal Abidin University, Tembila Campus, 22200 Besut, Terengganu, Malaysia, Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31008, Spain, Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA, Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas. Hospital Universitario Virgen del Rocio, Univ. de Sevilla., Avda Manuel Siurot sn. 41013 Sevilla, Spain, Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy, School of Biological Sciences, University of Reading, Hopkins Building, Reading, Berkshire RG6 6UB, UK, Department of Nutrition, University of Oslo, Oslo, Norway, Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK, Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy, Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway, Planet Biotechnologies Inc., St Albert, Alberta T8N 5K4, Canada, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA, Spanish National Cancer Research Centre, CNI
| | - Leroy Lowe
- Getting to Know Cancer, Room 229A, 36 Arthur Street, Truro, Nova Scotia B2N 1X5, Canada, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Pl., Rensselaer, NY 12144, USA
| | | | - Abdul Manaf Ali
- School of Biotechnology, Faculty of Agriculture Biotechnology and Food Sciences, Sultan Zainal Abidin University, Tembila Campus, 22200 Besut, Terengganu, Malaysia
| | | | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas. Hospital Universitario Virgen del Rocio, Univ. de Sevilla., Avda Manuel Siurot sn. 41013 Sevilla, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31008, Spain
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amelia K Charles
- School of Biological Sciences, University of Reading, Hopkins Building, Reading, Berkshire RG6 6UB, UK
| | | | - Andrew Ward
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Anna C Salzberg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - Arthur Berg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Barry J Barclay
- Planet Biotechnologies Inc., St Albert, Alberta T8N 5K4, Canada
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Carmen Blanco-Aparicio
- Spanish National Cancer Research Centre, CNIO, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Chenfang Dong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Chia-Wen Hsu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Colleen S Curran
- Department of Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Daniel C Koch
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Danielle J Carlin
- Superfund Research Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27560, USA
| | - Dean W Felsher
- Department of Medicine, Oncology and Pathology, Stanford University, Stanford, CA 94305, USA
| | - Debasish Roy
- Department of Natural Science, The City University of New York at Hostos Campus, Bronx, NY 10451, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA
| | - Edward Ratovitski
- Department of Head and Neck Surgery/Head and Neck Cancer Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Emilio Rojas
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Firouz Darroudi
- Human Safety and Environmental Research, Department of Health Sciences, College of North Atlantic, Doha 24449, State of Qatar
| | - Francis L Martin
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - Frederik J Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht 6200, The Netherlands
| | - Gary S Goldberg
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Gerard Wagemaker
- Hacettepe University, Center for Stem Cell Research and Development, Ankara 06640, Turkey
| | - Gladys N Nangami
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Gloria M Calaf
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA, Instituto de Alta Investigacion, Universidad de Tarapaca, Arica, Chile
| | - Graeme Williams
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | - Gregory T Wolf
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gudrun Koppen
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - H Kim Lyerly
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Harini Krishnan
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Hasiah Ab Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hemad Yasaei
- Department of Life Sciences, College of Health and Life Sciences and the Health and Environment Theme, Institute of Environment, Health and Societies, Brunel University Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK
| | - Hideko Sone
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibraki 3058506, Japan
| | - Hiroshi Kondoh
- Department of Geriatric Medicine, Kyoto University Hospital 54 Kawaharacho, Shogoin, Sakyo-ku Kyoto, 606-8507, Japan
| | - Hosni K Salem
- Department of Urology, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 11559, Egypt
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien 970, Taiwan
| | - Hyun Ho Park
- School of Biotechnology, Yeungnam University, Gyeongbuk 712-749, South Korea
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - A Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - James E Klaunig
- Department of Environmental Health, Indiana University, School of Public Health, Bloomington, IN 47405, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA, Robley Rex VA Medical Center, Louisville, KY 40202, USA
| | - John Pierce Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Jonathan R Whitfield
- Mouse Models of Cancer Therapies Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Joseph A Christopher
- Cancer Research UK. Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | | - Judith Weisz
- Departments of Obstetrics and Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| | - Julia Kravchenko
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, IL 60612, USA
| | - Kalan R Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | | | - Karine A Cohen-Solal
- Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Kim Moorwood
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Laura Soucek
- Mouse Models of Cancer Therapies Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain, Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Le Jian
- School of Public Health, Curtin University, Bentley, WA 6102, Australia, Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Leandro S D'Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lin Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People's Republic of China
| | - Linda Gulliver
- Faculty of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Lisa J McCawley
- Department of Biomedical Engineering and Cancer Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Louis Vermeulen
- Center for Experimental Molecular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Mahara Valverde
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Mahin Khatami
- Inflammation and Cancer Research, National Cancer Institute (NCI) (Retired), National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Marion Chapellier
- Centre De Recherche En Cancerologie, De Lyon, Lyon, U1052-UMR5286, France
| | - Marc A Williams
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milano, Italy
| | - Masoud H Manjili
- Department of Microbiology and Immunology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23298, USA
| | - Matilde E Lleonart
- Institut De Recerca Hospital Vall D'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Michael J Gonzalez
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan 00921, Puerto Rico
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Institute of Molecular Medicine and Biomedical Research, 10676 Athens, Greece
| | | | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Nancy B Kuemmerle
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh 226 003, India
| | - Nichola Cruickshanks
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, RTP, NC 27709, USA
| | - Nik van Larebeke
- Analytische, Milieu en Geochemie, Vrije Universiteit Brussel, Brussel B1050, Belgium
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynecology, University of Melbourne, Victoria 3052, Australia
| | - Olugbemiga Ogunkua
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - P K Krishnakumar
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 3126, Saudi Arabia
| | - Pankaj Vadgama
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Paola A Marignani
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paramita M Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Patricia A Thompson
- Department of Pathology, Stony Brook School of Medicine, Stony Brook University, The State University of New York, Stony Brook, NY 11794-8691, USA
| | - Paul Dent
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, CZ-100 00 Prague 10, Czech Republic
| | - Philippa Darbre
- School of Biological Sciences, The University of Reading, Whiteknights, Reading RG6 6UB, England
| | - Po Sing Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People's Republic of China
| | | | - Qiang Shawn Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - R Brooks Robey
- White River Junction Veterans Affairs Medical Center, White River Junction, VT 05009, USA, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Rabeah Al-Temaimi
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya 13110, Kuwait
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Rafaela Andrade-Vieira
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ranjeet K Sinha
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Renza Vento
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy , Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Riccardo Di Fiore
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy
| | | | - Rita Dornetshuber-Fleiss
- Department of Pharmacology and Toxicology, University of Vienna, Vienna A-1090, Austria, Institute of Cancer Research, Department of Medicine, Medical University of Vienna, Wien 1090, Austria
| | - Rita Nahta
- Departments of Pharmacology and Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Robert C Castellino
- Division of Hematology and Oncology, Department of Pediatrics, Children's Healthcare of Atlanta, GA 30322, USA, Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Roslida Abd Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sabine A S Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Sakina E Eltom
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Samira A Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra S Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Sarah N Bay
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Shelley A Harris
- Population Health and Prevention, Research, Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, M5G 2L7, Canada, Departments of Epidemiology and Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
| | - Silvana Papagerakis
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, PO Box 7011, VHC, Almas Allé 4, SE-756 51, Uppsala, Sweden
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Stephanie C Casey
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Thierry Massfelder
- INSERM U1113, team 3 'Cell Signalling and Communication in Kidney and Prostate Cancer', University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France
| | - Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Tiziana Guarnieri
- Department of Biology, Geology and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi, 3, 40126 Bologna, Italy, Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Via Massarenti, 9, 40126 Bologna, Italy, National Institute of Biostructures and Biosystems, Viale Medaglie d' Oro, 305, 00136 Roma, Italy
| | - Tove Hultman
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | - Valérian Dormoy
- INSERM U1113, team 3 'Cell Signalling and Communication in Kidney and Prostate Cancer', University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France, Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Valerie Odero-Marah
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Venkata Sabbisetti
- Harvard Medical School/Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Veronique Maguer-Satta
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Wilhelm Engström
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | | | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Yunus Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait and
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Zhiwei Hu
- Department of Surgery, The Ohio State University College of Medicine, The James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Langie SAS, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, Azqueta A, Bisson WH, Brown DG, Brunborg G, Charles AK, Chen T, Colacci A, Darroudi F, Forte S, Gonzalez L, Hamid RA, Knudsen LE, Leyns L, Lopez de Cerain Salsamendi A, Memeo L, Mondello C, Mothersill C, Olsen AK, Pavanello S, Raju J, Rojas E, Roy R, Ryan EP, Ostrosky-Wegman P, Salem HK, Scovassi AI, Singh N, Vaccari M, Van Schooten FJ, Valverde M, Woodrick J, Zhang L, van Larebeke N, Kirsch-Volders M, Collins AR. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 2015; 36 Suppl 1:S61-88. [PMID: 26106144 DOI: 10.1093/carcin/bgv031] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Collapse
Affiliation(s)
- Sabine A S Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium, Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy, Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain, Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway, Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia, University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark, Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy, Medical Phys
| | - Gudrun Koppen
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium, Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy, Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain, Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway, Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia, University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark, Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy, Medical Phys
| | - Daniel Desaulniers
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Amelia K Charles
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Firouz Darroudi
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
| | - Lisbeth E Knudsen
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | | | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Carmel Mothersill
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Emilio Rojas
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Hosni K Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Frederik J Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
| | - Mahara Valverde
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Nik van Larebeke
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium, Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
| | | | | |
Collapse
|
27
|
Pawlas N, Płachetka A, Kozłowska A, Broberg K, Kasperczyk S. Telomere length in children environmentally exposed to low-to-moderate levels of lead. Toxicol Appl Pharmacol 2015; 287:111-118. [DOI: 10.1016/j.taap.2015.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 01/12/2023]
|
28
|
Detection and Automated Scoring of Dicentric Chromosomes in Nonstimulated Lymphocyte Prematurely Condensed Chromosomes After Telomere and Centromere Staining. Int J Radiat Oncol Biol Phys 2015; 91:640-9. [DOI: 10.1016/j.ijrobp.2014.10.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/27/2014] [Accepted: 10/24/2014] [Indexed: 12/24/2022]
|
29
|
Zota AR, Needham BL, Blackburn EH, Lin J, Park SK, Rehkopf DH, Epel ES. Associations of cadmium and lead exposure with leukocyte telomere length: findings from National Health and Nutrition Examination Survey, 1999-2002. Am J Epidemiol 2015; 181:127-36. [PMID: 25504027 DOI: 10.1093/aje/kwu293] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cadmium and lead are ubiquitous environmental contaminants that might increase risks of cardiovascular disease and other aging-related diseases, but their relationships with leukocyte telomere length (LTL), a marker of cellular aging, are poorly understood. In experimental studies, they have been shown to induce telomere shortening, but no epidemiologic study to date has examined their associations with LTL in the general population. We examined associations of blood lead and cadmium (n = 6,796) and urine cadmium (n = 2,093) levels with LTL among a nationally representative sample of US adults from the National Health and Nutrition Examination Survey (1999-2002). The study population geometric mean concentrations were 1.67 µg/dL (95% confidence interval (CI): 1.63, 1.70) for blood lead, 0.44 µg/L (95% CI: 0.42, 0.47) for blood cadmium, and 0.28 µg/L (95% CI: 0.27, 0.30) for urine cadmium. After adjustment for potential confounders, the highest (versus lowest) quartiles of blood and urine cadmium were associated with -5.54% (95% CI: -8.70, -2.37) and -4.50% (95% CI: -8.79, -0.20) shorter LTLs, respectively, with evidence of dose-response relationship (P for trend < 0.05). There was no association between blood lead concentration and LTL. These findings provide further evidence of physiological impacts of cadmium at environmental levels and might provide insight into biological pathways underlying cadmium toxicity and chronic disease risks.
Collapse
|
30
|
M'kacher R, Maalouf EEL, Ricoul M, Heidingsfelder L, Laplagne E, Cuceu C, Hempel WM, Colicchio B, Dieterlen A, Sabatier L. New tool for biological dosimetry: reevaluation and automation of the gold standard method following telomere and centromere staining. Mutat Res 2014; 770:45-53. [PMID: 25771869 DOI: 10.1016/j.mrfmmm.2014.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/05/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The dicentric chromosome (dicentric) assay is the international gold-standard method for biological dosimetry and classification of genotoxic agents. The introduction of telomere and centromere (TC) staining offers the potential to render dicentric scoring more efficient and robust. In this study, we improved the detection of dicentrics and all unstable chromosomal aberrations (CA) leading to a significant reevaluation of the dose-effect curve and developed an automated approach following TC staining. MATERIAL AND METHODS Blood samples from 16 healthy donors were exposed to (137)Cs at 8 doses from 0.1 to 6Gy. CA were manually and automatically scored following uniform (Giemsa) or TC staining. The detection of centromeric regions and telomeric sequences using PNA probes allowed the detection of all unstable CA: dicentrics, centric and acentric rings, and all acentric fragments (with 2, 4 or no telomeres) leading to the precise quantification of estimated double strand breaks (DSB). RESULTS Manual scoring following TC staining revealed a significantly higher frequency of dicentrics (p<10(-3)) (up to 30%) and estimated DSB (p<10(-4)) compared to uniform staining due to improved detection of dicentrics with centromeres juxtaposed with other centromeres or telomeres. This improvement permitted the development of the software, TCScore, that detected 95% of manually scored dicentrics compared to 50% for the best currently available software (DCScore™). CONCLUSION The use of TC staining has permitted a reevaluation of the dose-response curve and the highly efficient automation of the scoring process, marking a new step in the management and follow-up of populations exposed to genotoxic agents including ionizing radiation.
Collapse
Affiliation(s)
- Radhia M'kacher
- Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l'Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Elie E L Maalouf
- Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l'Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses, France; Laboratoire MIPS - Groupe TIIM3D, Université de Haute-Alsace, F-68093 Mulhouse, France
| | - Michelle Ricoul
- Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l'Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses, France
| | | | | | - Corina Cuceu
- Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l'Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - William M Hempel
- Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l'Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Bruno Colicchio
- Laboratoire MIPS - Groupe TIIM3D, Université de Haute-Alsace, F-68093 Mulhouse, France
| | - Alain Dieterlen
- Laboratoire MIPS - Groupe TIIM3D, Université de Haute-Alsace, F-68093 Mulhouse, France
| | - Laure Sabatier
- Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l'Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|