1
|
Qiu M, Ye C, Bao L, Wu K, Zhao Y, Zhao X, Tang R, Shang R, Shang S, Yuan C, Hu X, Zhang N, Fu Y, Wang J, Zhao C. Elevated muramyl dipeptide by sialic acid-facilitated postantibiotic pathobiont expansion contributes to gut dysbiosis-induced mastitis in mice. J Adv Res 2024:S2090-1232(24)00425-9. [PMID: 39374734 DOI: 10.1016/j.jare.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
INTRODUCTION In responses to antibiotics exposure, gut dysbiosis is a risk factor not only for pathogen infection but also for facilitating pathobiont expansion, resulting in increased inflammatory responses in the gut and distant organs. However, how this process is regulated has not been fully elucidated. OBJECTIVES In this study, we investigated the role of sialic acid, a host-derived carbohydrate, in the pathogenesis of gut dysbiosis-derived inflammation in distant organs. METHODS Ampicillin (Amp)-induced gut dysbiotic mice were treated with N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) for three weeks to assess the role of sialic acids in mastitis. The underlying mechanism by which sialic acids regulate mastitis was explored using 16S rRNA sequencing, transcriptomics and employed multiple molecular approaches. RESULTS Administration of Neu5Ac and Neu5Gc exacerbated gut dysbiosis-induced mastitis and systemic inflammation. The gut dysbiosis caused by Amp was also aggravated by sialic acid. Notably, increased Enterococcus expansion, which was positively correlated with inflammatory markers, was observed in both Neu5Ac- and Neu5Gc-treated gut dysbiotic mice. Treatment of mice with Enterococcus cecorum (E. cecorum) aggravated gut dysbiosis-induced mastitis. Mechanically, sialic acid-facilitated E. cecorum expansion promoted muramyl dipeptide (MDP) release, which induced inflammatory responses by activating the NOD2-RIP2-NF-κB axis. CONCLUSIONS Collectively, our data reveal a role of sialic acid-facilitated postantibiotic pathobiont expansion in gut dysbiosis-associated inflammation, highlighting a potential strategy for disease prevention by regulating the MDP-NOD2-RIP2 axis.
Collapse
Affiliation(s)
- Min Qiu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Cong Ye
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Xiaotong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Ruibo Tang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Ruping Shang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Shan Shang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Chongshan Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China.
| | - Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin Province, China.
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China.
| |
Collapse
|
2
|
Paurević M, Maršavelski A, Ivanković S, Stojković R, Ribić R. Di-mannosylation enhances the adjuvant properties of adamantane-containing desmuramyl peptides in vivo. Org Biomol Chem 2024; 22:6506-6519. [PMID: 38884368 DOI: 10.1039/d4ob00592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Muramyl dipeptide (MDP) is the smallest essential peptidoglycan substructure capable of promoting both innate and adaptive immune responses. Herein, we report on the design, synthesis, and in vivo study of the adjuvant properties of two novel MDP analogs containing an achiral adamantyl moiety attached to the desmuramyl dipeptide (DMP) pharmacophore and additionally modified by one mannosyl subunit (derivative 7) or two mannosyl subunits (derivative 11). Mannose substructures were introduced in order to assess how the degree of mannosylation affects the immune response and nucleotide-binding oligomerization-domain-containing protein 2 (NOD2) binding affinity, compared to the reference compound ManAdDMP. Both mannosylated MDP analogs showed improved immunomodulating properties, while the di-mannosylated derivative 11 displayed the highest, statistically significant increase in anti-OVA IgG production. In this study, for the first time, the di-mannosylated DMP derivative was synthesized and immunologically evaluated. Derivative 11 stimulates a Th-2-polarized type of immune reaction, similar to the reference compound ManAdDMP and MDP. Molecular dynamics (MD) simulations demonstrate that 11 has a higher NOD2 binding affinity than 7, indicating that introducing the second mannose significantly contributes to the binding affinity. Mannose interacts with key amino acid residues from the LRR hydrophobic pocket of the NOD2 receptor and loop 2.
Collapse
Affiliation(s)
- Marija Paurević
- Department of Chemistry, Josip Juraj Strossmayer University Osijek, HR-31000 Osijek, Croatia.
| | - Aleksandra Maršavelski
- Department of Chemistry, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia.
| | - Siniša Ivanković
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia.
| | - Ranko Stojković
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia.
| | - Rosana Ribić
- University Center Varaždin, University North, HR-42000 Varaždin, Croatia.
| |
Collapse
|
3
|
Zhang Z, Leng Z, Kang L, Yan X, Shi J, Ji Y, Guo C, Fang K, Wang Z, Li Z, Sun M, Zhao Z, Feng A, Chen Z, Zhang S, Wan D, Chen T, Xu M. Alcohol inducing macrophage M2b polarization in colitis by modulating the TRPV1-MAPK/NF-κB pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155580. [PMID: 38810558 DOI: 10.1016/j.phymed.2024.155580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Macrophages exhibit different phenotypes in inflammatory bowel disease (IBD) and promote inflammation or tissue repair depending on their polarization state. Alcohol is a widely used solvent in pharmaceutical formulations, and its consumption is associated with an increased risk of colitis; however, its effects on macrophages in IBD remain poorly understood. PURPOSE This study aimed to investigate the effect of alcohol on macrophages in dextran sodium sulfate (DSS)-induced colitis and understand the underlying mechanisms. METHODS DSS-treated C57BL/6 mice were exposed to varying concentrations of alcohol, transient receptor potential vanilloid 1 (TRPV1) antagonist, and 5-aminosalicylic acid. The distal colon was resected, fixed, stained, and histologically analyzed, through hematoxylin and eosin (H&E) staining and immunofluorescence staining. Ratio [Ca2+]i measurements, western blotting, quantitative polymerase chain reaction, cytokine measurements, and RNA sequencing analyses were also performed. Peritoneal macrophages and RAW264.7 cells were used for in vitro experiments, and various assays were performed to evaluate cellular responses, gene expression, and signaling pathways. RESULTS Alcohol exacerbated DSS-treated mice colitis and promoted the secretion of various inflammatory cytokines from colonic macrophages. Alcohol enhances the calcium ion influx induced by lipopolysaccharide (LPS) in peritoneal macrophages, while the TRPV1 antagonist capsazepine (CPZ) inhibits LPS- and/or alcohol- induced calcium influx in macrophages. Alcohol and LPS activate the MAPK/P38, MAPK/ERK, and NF-κB signaling pathways and induce the macrophage M2b polarization, resulting in the increased expression level of inflammatory cytokines such as Tnf, Il1b, and Il10. Additionally, CPZ can inhibit the facilitatory effects of alcohol or LPS on the abovementioned pathways and inflammatory factors, reversing macrophage M2b polarization and promoting alcohol-induced colitis. The inhibition of nucleotide binding oligomerization domain containing 2 (NOD2) partially suppressed the alcohol and LPS effects on macrophages. CONCLUSION Alcohol exacerbates experimental colitis and induces M2b polarization of macrophage via TRPV1-MAPK/NF-κB. Our study provides new insights into the potential therapeutic targets for IBD treatment by elucidating the role of TRPV1 in alcohol-exacerbated colitis, using CPZ as a potential therapeutic option. The identification of transient receptor potential ankyrin subtype 1 (TRPA1) as a therapeutic target expands the scope of future research.
Collapse
Affiliation(s)
- Zehua Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuyun Leng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Le Kang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaohan Yan
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianing Shi
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingjie Ji
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Guo
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kang Fang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zeyu Wang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhaoxing Li
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mingchuang Sun
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ziying Zhao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Anqi Feng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhukai Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shihan Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong Wan
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Meidong Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
DeWolf SE, Hawkes AA, Kurian SM, Gorial DE, Hepokoski ML, Almeida SS, Posner IR, McKay DB. Human pulmonary microvascular endothelial cells respond to DAMPs from injured renal tubular cells. Pulm Circ 2024; 14:e12379. [PMID: 38962184 PMCID: PMC11220341 DOI: 10.1002/pul2.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 07/05/2024] Open
Abstract
Acute kidney injury (AKI) causes distant organ dysfunction through yet unknown mechanisms, leading to multiorgan failure and death. The lungs are one of the most common extrarenal organs affected by AKI, and combined lung and kidney injury has a mortality as high as 60%-80%. One mechanism that has been implicated in lung injury after AKI involves molecules released from injured kidney cells (DAMPs, or damage-associated molecular patterns) that promote a noninfectious inflammatory response by binding to pattern recognition receptors (PRRs) constitutively expressed on the pulmonary endothelium. To date there are limited data investigating the role of PRRs and DAMPs in the pulmonary endothelial response to AKI. Understanding these mechanisms holds great promise for therapeutics aimed at ameliorating the devastating effects of AKI. In this study, we stimulate primary human microvascular endothelial cells with DAMPs derived from injured primary renal tubular epithelial cells (RTECs) as an ex-vivo model of lung injury following AKI. We show that DAMPs derived from injured RTECs cause activation of Toll-Like Receptor and NOD-Like Receptor signaling pathways as well as increase human primary pulmonary microvascular endothelial cell (HMVEC) cytokine production, cell signaling activation, and permeability. We further show that cytokine production in HMVECs in response to DAMPs derived from RTECs is reduced by the inhibition of NOD1 and NOD2, which may have implications for future therapeutics. This paper adds to our understanding of PRR expression and function in pulmonary HMVECs and provides a foundation for future work aimed at developing therapeutic strategies to prevent lung injury following AKI.
Collapse
Affiliation(s)
- Sean E. DeWolf
- Department of Pulmonary and Critical Care MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
- Department of ImmunologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Alana A. Hawkes
- Department of ImmunologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Sunil M. Kurian
- Scripps Clinic Bio‐Repository & Bio‐Informatics Core, Scripps HealthLa JollaCaliforniaUSA
- Department of SurgeryScripps Clinic and Green HospitalLa JollaCaliforniaUSA
| | - Diana E. Gorial
- Department of ImmunologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Mark L. Hepokoski
- Department of Pulmonary and Critical Care MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
- Department of Pulmonary and Critical Care MedicineVeterans AdministrationSan DiegoCaliforniaUSA
| | | | - Isabella R. Posner
- Department of ImmunologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Dianne B. McKay
- Department of ImmunologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- Department of SurgeryScripps Clinic and Green HospitalLa JollaCaliforniaUSA
| |
Collapse
|
5
|
Ma RY, Deng ZL, Du QY, Dai MQ, Luo YY, Liang YE, Dai XZ, Guo SM, Zhao WH. Enterococcus faecalis Extracellular Vesicles Promote Apical Periodontitis. J Dent Res 2024; 103:672-682. [PMID: 38679731 DOI: 10.1177/00220345241230867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Enterococcus faecalis is an important contributor to the persistence of chronic apical periodontitis. However, the mechanism by which E. faecalis infection in the root canals and dentinal tubules affects periapical tissue remains unclear. Bacterial extracellular vesicles (EVs) act as natural carriers of microbe-associated molecular patterns (MAMPs) and have recently attracted considerable attention. In this study, we investigated the role of EVs derived from E. faecalis in the pathogenesis of apical periodontitis. We observed that E. faecalis EVs can induce inflammatory bone destruction in the periapical areas of mice. Double-labeling immunofluorescence indicated that M1 macrophage infiltration was increased by E. faecalis EVs in apical lesions. Moreover, in vitro experiments demonstrated the internalization of E. faecalis EVs into macrophages. Macrophages tended to polarize toward the M1 profile after treatment with E. faecalis EVs. Pattern recognition receptors (PRRs) can recognize MAMPs of bacterial EVs and, in turn, trigger inflammatory responses. Thus, we performed further mechanistic exploration, which showed that E. faecalis EVs considerably increased the expression of NOD2, a cytoplasmic PRR, and that inhibition of NOD2 markedly reduced macrophage M1 polarization induced by E. faecalis EVs. RIPK2 ubiquitination is a major downstream of NOD2. We also observed increased RIPK2 ubiquitination in macrophages treated with E. faecalis EVs, and E. faecalis EV-induced macrophage M1 polarization was notably alleviated by the RIPK2 ubiquitination inhibitor. Our study revealed the potential for EVs to be considered a virulence factor of E. faecalis and found that E. faecalis EVs can promote macrophage M1 polarization via NOD2/RIPK2 signaling. To our knowledge, this is the first report to investigate apical periodontitis development from the perspective of bacterial vesicles and demonstrate the role and mechanism of E. faecalis EVs in macrophage polarization. This study expands our understanding of the pathogenic mechanism of E. faecalis and provides novel insights into the pathogenesis of apical periodontitis.
Collapse
Affiliation(s)
- R Y Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Z L Deng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Q Y Du
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - M Q Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y Y Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y E Liang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - X Z Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - S M Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - W H Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Yang Y, Fei Y, Xu X, Yao J, Wang J, Liu C, Ding H. Shikonin attenuates cerebral ischemia/reperfusion injury via inhibiting NOD2/RIP2/NF-κB-mediated microglia polarization and neuroinflammation. J Stroke Cerebrovasc Dis 2024; 33:107689. [PMID: 38527567 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/27/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVES Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, which still lacks effective therapeutic agents. Shikonin possesses anti-inflammatory and neuroprotective properties. However, its underlying mechanism remains elusive. This study aimed to investigate whether Shikonin confers protection against cerebral ischemia/reperfusion (I/R) injury by modulating microglial polarization and elucidate the associated mechanisms. METHODS This study employed an oxygen-glucose deprivation and reoxygenation (OGD/R) BV2 microglial cellular model and a middle cerebral artery occlusion/reperfusion (MCAO/R) animal model to investigate the protection and underlying mechanism of Shikonin against ischemic stroke. RESULTS The results demonstrated that Shikonin treatment significantly reduced brain infarction volume and improved neurological function in MCAO/R rats. Simultaneously, Shikonin treatment significantly reduced microglial proinflammatory phenotype and levels of proinflammatory markers (inducible-NO synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6), increased microglial anti-inflammatory phenotype and levels of anti-inflammatory markers (Arginase-1 (Arg1), transforming growth factor-beta (TGF-β), and IL-10), reversed the expression of Nucleotide-binding oligomerization domain 2 (NOD2) and phosphorylation receptor interacting protein 2 (p-RIP2), and suppressed nuclear factor kappa-B (NF-κB) signaling activation in the ischemic penumbra regions. These effects of Shikonin were further corroborated in OGD/R-treated BV2 cells. Furthermore, overexpression of NOD2 markedly attenuated the neuroprotective effects of Shikonin treatment in MCAO/R rats. NOD2 overexpression also attenuated the regulatory effects of Shikonin on neuroinflammation, microglial polarization, and NF-κB signaling activation. CONCLUSION This study illustrates that Shikonin mitigates inflammation mediated by microglial proinflammatory polarization by inhibiting the NOD2/RIP2/NF-κB signaling pathway, thereby exerting a protective role. The findings uncover a potential molecular mechanism for Shikonin in treating ischemic stroke.
Collapse
Affiliation(s)
- Ya Yang
- College of Pharmacy, Xinjiang Medical University, No. 567 North Shangde Road, Urumqi, Xinjiang 830017, PR China
| | - Yuxiang Fei
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuejiao Xu
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jun Yao
- College of Pharmacy, Xinjiang Medical University, No. 567 North Shangde Road, Urumqi, Xinjiang 830017, PR China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi, Xinjiang 830017, PR China
| | - Jianing Wang
- Department of Pharmacy, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211100, PR China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Haiyan Ding
- College of Pharmacy, Xinjiang Medical University, No. 567 North Shangde Road, Urumqi, Xinjiang 830017, PR China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi, Xinjiang 830017, PR China.
| |
Collapse
|
7
|
Russo C, Russomanno P, D'Amore VM, Alfano AI, Santoro F, Guzelj S, Gobec M, Amato J, Pagano B, Marinelli L, Carotenuto A, Tron GC, Di Leva FS, Jakopin Ž, Brancaccio D, Giustiniano M. Discovery of 2,3-Diaminoindole Derivatives as a Novel Class of NOD Antagonists. J Med Chem 2024; 67:3004-3017. [PMID: 38301029 DOI: 10.1021/acs.jmedchem.3c02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
NOD1 and NOD2 are members of the pattern recognition receptors involved in the innate immune response. Overactivation of NOD1 is implicated in inflammatory disorders, multiple sclerosis, and cancer cell metastases. NOD1 antagonists would represent valuable pharmacological tools to gain further insight into protein roles, potentially leading to new therapeutic strategies. We herein report the expansion of the chemical space of NOD1 antagonists via a multicomponent synthetic approach affording a novel chemotype, namely, 2,3-diaminoindoles. These efforts resulted in compound 37, endowed with low micromolar affinity toward NOD1. Importantly, a proof-of-evidence of direct binding to NOD1 of Noditinib-1 and derivative 37 is provided here for the first time. Additionally, the combination of computational studies and NMR-based displacement assays enabled the characterization of the binding modality of 37 to NOD1, thus providing key unprecedented knowledge for the design of potent and selective NOD1 antagonists.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Pasquale Russomanno
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Vincenzo Maria D'Amore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Antonella Ilenia Alfano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Federica Santoro
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Samo Guzelj
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Jussara Amato
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Gian Cesare Tron
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| | - Francesco Saverio Di Leva
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| |
Collapse
|
8
|
Tsukidate T, Hespen CW, Hang HC. Small molecule modulators of immune pattern recognition receptors. RSC Chem Biol 2023; 4:1014-1036. [PMID: 38033733 PMCID: PMC10685800 DOI: 10.1039/d3cb00096f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023] Open
Abstract
Pattern recognition receptors (PRRs) represent a re-emerging class of therapeutic targets for vaccine adjuvants, inflammatory diseases and cancer. In this review article, we summarize exciting developments in discovery and characterization of small molecule PRR modulators, focusing on Toll-like receptors (TLRs), NOD-like receptors (NLRs) and the cGAS-STING pathway. We also highlight PRRs that are currently lacking small molecule modulators and opportunities for chemical biology and therapeutic discovery.
Collapse
Affiliation(s)
- Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Charles W Hespen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
- Department of Immunology and Microbiology and Department of Chemistry, Scripps Research, La Jolla California 92037 USA
| |
Collapse
|
9
|
Zhang X, Yu S, Li X, Wen X, Liu S, Zu R, Ren H, Li T, Yang C, Luo H. Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacol Res 2023; 191:106777. [PMID: 37080257 DOI: 10.1016/j.phrs.2023.106777] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Oxidative stress (OS) is a chemical imbalance between an oxidant and an antioxidant, causing damage to redox signaling and control or causing molecular damage. Unbalanced oxidative metabolism can produce excessive reactive oxygen species (ROS). These excess ROS can cause drastic changes in platelet metabolism and further affect platelet function. It will also lead to an increase in platelet procoagulant phenotype and cell apoptosis, which will increase the risk of thrombosis. The creation of ROS and subsequent platelet activation, adhesion, and recruitment are then further encouraged in an auto-amplifying loop by ROS produced from platelets. Meanwhile, cancer cells produce a higher concentration of ROS due to their fast metabolism and high proliferation rate. However, excessive ROS can result in damage to and modification of cellular macromolecules. The formation of cancer and its progression is strongly associated with oxidative stress and the resulting oxidative damage. In addition, platelets are an important part of the tumor microenvironment, and there is a significant cross-communication between platelets and cancer cells. Cancer cells alter the activation status of platelets, their RNA spectrum, proteome, and other properties. The "cloaking" of cancer cells by platelets providing physical protection,avoiding destruction from shear stress and the attack of immune cells, promoting tumor cell invasion.We explored the vicious circle interaction between ROS, platelets, and cancer in this review, and we believe that ROS can play a stimulative role in tumor growth and metastasis through platelets.
Collapse
Affiliation(s)
- Xingmei Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Sisi Yu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China
| | - Xiaobo Li
- Molecular Diagnostic Laboratory of Department of Microbiology and Immunology, 3201 Hospital Affiliated to Medical College of Xi'an Jiaotong University, Hanzhong 723099, China
| | - Xiaoxia Wen
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Shan Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Ruiling Zu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China
| | - Hanxiao Ren
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Chaoguo Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China.
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China.
| |
Collapse
|
10
|
Selvapandiyan A, Puri N, Kumar P, Alam A, Ehtesham NZ, Griffin G, Hasnain SE. Zooming in on common immune evasion mechanisms of pathogens in phagolysosomes: potential broad-spectrum therapeutic targets against infectious diseases. FEMS Microbiol Rev 2023; 47:6780197. [PMID: 36309472 DOI: 10.1093/femsre/fuac041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 01/19/2023] Open
Abstract
The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes overpower host immunity at various levels including during entry into host cells, phagosome formation, phagosome maturation, phagosome-lysosome fusion forming phagolysosomes, acidification of phagolysosomes, and at times after escape into the cytosol. Phagolysosome is the final organelle in the phagocyte with sophisticated mechanisms to degrade the pathogens. The immune evasion strategies by the pathogens include the arrest of host cell apoptosis, decrease in reactive oxygen species, the elevation of Th2 anti-inflammatory response, avoidance of autophagy and antigen cross-presentation pathways, and escape from phagolysosomal killing. Since the phagolysosome organelle in relation to infection/cure is seldom discussed in the literature, we summarize here the common host as well as pathogen targets manipulated or utilized by the pathogens established in phagosomes and phagolysosomes, to hijack the host immune system for their benefit. These common molecules or pathways can be broad-spectrum therapeutic targets for drug development for intervention against infectious diseases caused by different intracellular pathogens.
Collapse
Affiliation(s)
| | - Niti Puri
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pankaj Kumar
- Department of Biochemistry, Jamia Hamdard, New Delhi, 110062, India.,Centre for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Anwar Alam
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, 110016, India
| | - Nasreen Zafar Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - George Griffin
- Department of Cellular and Molecular Medicine, St. George's University of London, London, SW17 0RE, United Kingdom
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, 110016, India.,Department of Life Science, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, 201310, India
| |
Collapse
|
11
|
Ochando J, Mulder WJM, Madsen JC, Netea MG, Duivenvoorden R. Trained immunity - basic concepts and contributions to immunopathology. Nat Rev Nephrol 2023; 19:23-37. [PMID: 36253509 PMCID: PMC9575643 DOI: 10.1038/s41581-022-00633-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Trained immunity is a functional state of the innate immune response and is characterized by long-term epigenetic reprogramming of innate immune cells. This concept originated in the field of infectious diseases - training of innate immune cells, such as monocytes, macrophages and/or natural killer cells, by infection or vaccination enhances immune responses against microbial pathogens after restimulation. Although initially reported in circulating monocytes and tissue macrophages (termed peripheral trained immunity), subsequent findings indicate that immune progenitor cells in the bone marrow can also be trained (that is, central trained immunity), which explains the long-term innate immunity-mediated protective effects of vaccination against heterologous infections. Although trained immunity is beneficial against infections, its inappropriate induction by endogenous stimuli can also lead to aberrant inflammation. For example, in systemic lupus erythematosus and systemic sclerosis, trained immunity might contribute to inflammatory activity, which promotes disease progression. In organ transplantation, trained immunity has been associated with acute rejection and suppression of trained immunity prolonged allograft survival. This novel concept provides a better understanding of the involvement of the innate immune response in different pathological conditions, and provides a new framework for the development of therapies and treatment strategies that target epigenetic and metabolic pathways of the innate immune system.
Collapse
Affiliation(s)
- Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| | - Willem J. M. Mulder
- grid.6852.90000 0004 0398 8763Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands ,grid.59734.3c0000 0001 0670 2351Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joren C. Madsen
- grid.32224.350000 0004 0386 9924Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA USA ,grid.32224.350000 0004 0386 9924Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA USA
| | - Mihai G. Netea
- grid.10417.330000 0004 0444 9382Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands ,grid.10388.320000 0001 2240 3300Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Raphaël Duivenvoorden
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
The role of NOD2 in intestinal immune response and microbiota modulation: A therapeutic target in inflammatory bowel disease. Int Immunopharmacol 2022; 113:109466. [DOI: 10.1016/j.intimp.2022.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
|
13
|
Godkowicz M, Druszczyńska M. NOD1, NOD2, and NLRC5 Receptors in Antiviral and Antimycobacterial Immunity. Vaccines (Basel) 2022; 10:vaccines10091487. [PMID: 36146565 PMCID: PMC9503463 DOI: 10.3390/vaccines10091487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
The innate immune system recognizes pathogen-associated molecular motifs through pattern recognition receptors (PRRs) that induce inflammasome assembly in macrophages and trigger signal transduction pathways, thereby leading to the transcription of inflammatory cytokine genes. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) represent a family of cytosolic PRRs involved in the detection of intracellular pathogens such as mycobacteria or viruses. In this review, we discuss the role of NOD1, NOD2, and NLRC5 receptors in regulating antiviral and antimycobacterial immune responses by providing insight into molecular mechanisms as well as their potential health and disease implications.
Collapse
Affiliation(s)
- Magdalena Godkowicz
- Lodz Institutes of the Polish Academy of Sciences, The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland
- Correspondence:
| | - Magdalena Druszczyńska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland
| |
Collapse
|
14
|
Modulation of Glycoprotein VI and Its Downstream Signaling Pathways as an Antiplatelet Target. Int J Mol Sci 2022; 23:ijms23179882. [PMID: 36077280 PMCID: PMC9456422 DOI: 10.3390/ijms23179882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Antiplatelet therapy aims to reduce the risk of thrombotic events while maintaining hemostasis. A promising current approach is the inhibition of platelet glycoprotein GPVI-mediated adhesion pathways; pathways that do not involve coagulation. GPVI is a signaling receptor integral for collagen-induced platelet activation and participates in the thrombus consolidation process, being a suitable target for thrombosis prevention. Considering this, the blocking or antibody-mediated depletion of GPVI is a promising antiplatelet therapy for the effective and safe treatment of thrombotic diseases without a significant risk of bleeding and impaired hemostatic plug formation. This review describes the current knowledge concerning pharmaceutical approaches to platelet GPVI modulation and its downstream signaling pathways in this context.
Collapse
|
15
|
Novel Scaffolds for Modulation of NOD2 Identified by Pharmacophore-Based Virtual Screening. Biomolecules 2022; 12:biom12081054. [PMID: 36008948 PMCID: PMC9405794 DOI: 10.3390/biom12081054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an innate immune pattern recognition receptor responsible for the recognition of bacterial peptidoglycan fragments. Given its central role in the formation of innate and adaptive immune responses, NOD2 represents a valuable target for modulation with agonists and antagonists. A major challenge in the discovery of novel small-molecule NOD2 modulators is the lack of a co-crystallized complex with a ligand, which has limited previous progress to ligand-based design approaches and high-throughput screening campaigns. To that end, a hybrid docking and pharmacophore modeling approach was used to identify key interactions between NOD2 ligands and residues in the putative ligand-binding site. Following docking of previously reported NOD2 ligands to a homology model of human NOD2, a structure-based pharmacophore model was created and used to virtually screen a library of commercially available compounds. Two compounds, 1 and 3, identified as hits by the pharmacophore model, exhibited NOD2 antagonist activity and are the first small-molecule NOD2 modulators identified by virtual screening to date. The newly identified NOD2 antagonist scaffolds represent valuable starting points for further optimization.
Collapse
|
16
|
Funes SC, Rios M, Fernández-Fierro A, Di Genaro MS, Kalergis AM. Trained Immunity Contribution to Autoimmune and Inflammatory Disorders. Front Immunol 2022; 13:868343. [PMID: 35464438 PMCID: PMC9028757 DOI: 10.3389/fimmu.2022.868343] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
A dysregulated immune response toward self-antigens characterizes autoimmune and autoinflammatory (AIF) disorders. Autoantibodies or autoreactive T cells contribute to autoimmune diseases, while autoinflammation results from a hyper-functional innate immune system. Aside from their differences, many studies suggest that monocytes and macrophages (Mo/Ma) significantly contribute to the development of both types of disease. Mo/Ma are innate immune cells that promote an immune-modulatory, pro-inflammatory, or repair response depending on the microenvironment. However, understanding the contribution of these cells to different immune disorders has been difficult due to their high functional and phenotypic plasticity. Several factors can influence the function of Mo/Ma under the landscape of autoimmune/autoinflammatory diseases, such as genetic predisposition, epigenetic changes, or infections. For instance, some vaccines and microorganisms can induce epigenetic changes in Mo/Ma, modifying their functional responses. This phenomenon is known as trained immunity. Trained immunity can be mediated by Mo/Ma and NK cells independently of T and B cell function. It is defined as the altered innate immune response to the same or different microorganisms during a second encounter. The improvement in cell function is related to epigenetic and metabolic changes that modify gene expression. Although the benefits of immune training have been highlighted in a vaccination context, the effects of this type of immune response on autoimmunity and chronic inflammation still remain controversial. Induction of trained immunity reprograms cellular metabolism in hematopoietic stem cells (HSCs), transmitting a memory-like phenotype to the cells. Thus, trained Mo/Ma derived from HSCs typically present a metabolic shift toward glycolysis, which leads to the modification of the chromatin architecture. During trained immunity, the epigenetic changes facilitate the specific gene expression after secondary challenge with other stimuli. Consequently, the enhanced pro-inflammatory response could contribute to developing or maintaining autoimmune/autoinflammatory diseases. However, the prediction of the outcome is not simple, and other studies propose that trained immunity can induce a beneficial response both in AIF and autoimmune conditions by inducing anti-inflammatory responses. This article describes the metabolic and epigenetic mechanisms involved in trained immunity that affect Mo/Ma, contraposing the controversial evidence on how it may impact autoimmune/autoinflammation conditions.
Collapse
Affiliation(s)
- Samanta C. Funes
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Mariana Rios
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ayleen Fernández-Fierro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María S. Di Genaro
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Alexis M. Kalergis,
| |
Collapse
|
17
|
Leichtle A, Kurabi A, Leffers D, Därr M, Draf CS, Ryan AF, Bruchhage KL. Immunomodulation as a Protective Strategy in Chronic Otitis Media. Front Cell Infect Microbiol 2022; 12:826192. [PMID: 35433505 PMCID: PMC9005906 DOI: 10.3389/fcimb.2022.826192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction Major features of the pathogenesis in otitis media, the most common disease in childhood, include hyperplasia of the middle ear mucosa and infiltration by leukocytes, both of which typically resolve upon bacterial clearance via apoptosis. Activation of innate immune receptors during the inflammatory process leads to the activation of intracellular transcription factors (such as NF-κB, AP-1), which regulate both the inflammatory response and tissue growth. We investigated these leading signaling pathways in otitis media using mouse models, human samples, and human middle ear epithelial cell (HMEEC) lines for therapeutic immunomodulation. Methods A stable otitis media model in wild-type mice and immunodeficient KO-mice, as well as human tissue samples from chronic otitis media, skin from the external auditory canal and middle ear mucosa removed from patients undergoing ear surgery, were studied. Gene and protein expression of innate immune signaling molecules were evaluated using microarray, qPCR and IHC. In situ apoptosis detection determined the apoptotic rate. The influence of bacterial infection on immunomodulating molecules (TNFα, MDP, Tri-DAP, SB203580, Cycloheximide) in HMEEC was evaluated. HMEEC cells were examined after bacterial stimulation/inhibition for gene expression and cellular growth. Results Persistent mucosal hyperplasia of the middle ear mucosa in chronic otitis media resulted from gene and protein expression of inflammatory and apoptotic genes, including NODs, TNFα, Casp3 and cleaved Casp3. In clinical chronic middle ear samples, these molecules were modulated after a specific stimulation. They also induced a hyposensitive response after bacterial/NOD-/TLR-pathway double stimulation of HMEEC cells in vitro. Hence, they might be suitable targets for immunological therapeutic approaches. Conclusion Uncontrolled middle ear mucosal hyperplasia is triggered by TLRs/NLRs immunoreceptor activation of downstream inflammatory and apoptotic molecules.
Collapse
Affiliation(s)
- Anke Leichtle
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
- *Correspondence: Anke Leichtle,
| | - Arwa Kurabi
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - David Leffers
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| | - Markus Därr
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| | - Clara Sophia Draf
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Allen Frederic Ryan
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
- Research Section, Veterans Affairs (VA) San Diego Healthcare System, La Jolla, CA, United States
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| |
Collapse
|
18
|
Nodosome Inhibition as a Novel Broad-Spectrum Antiviral Strategy against Arboviruses, Enteroviruses, and SARS-CoV-2. Antimicrob Agents Chemother 2021; 65:e0049121. [PMID: 34001511 DOI: 10.1128/aac.00491-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the present report, we describe two small molecules with broad-spectrum antiviral activity. These drugs block the formation of the nodosome. The studies were prompted by the observation that infection of human fetal brain cells with Zika virus (ZIKV) induces the expression of nucleotide-binding oligomerization domain-containing protein 2 (NOD2), a host factor that was found to promote ZIKV replication and spread. A drug that targets NOD2 was shown to have potent broad-spectrum antiviral activity against other flaviviruses, alphaviruses, enteroviruses, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). Another drug that inhibits receptor-interacting serine/threonine protein kinase 2 (RIPK2), which functions downstream of NOD2, also decreased the replication of these pathogenic RNA viruses. The antiviral effect of this drug was particularly potent against enteroviruses. The broad-spectrum action of nodosome-targeting drugs is mediated in part by the enhancement of the interferon response. Together, these results suggest that further preclinical investigation of nodosome inhibitors as potential broad-spectrum antivirals is warranted.
Collapse
|
19
|
Hepatic NOD2 promotes hepatocarcinogenesis via a RIP2-mediated proinflammatory response and a novel nuclear autophagy-mediated DNA damage mechanism. J Hematol Oncol 2021; 14:9. [PMID: 33413510 PMCID: PMC7791875 DOI: 10.1186/s13045-020-01028-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/25/2020] [Indexed: 12/24/2022] Open
Abstract
Background Key hepatic molecules linking gut dysbiosis and hepatocarcinogenesis remain largely unknown. Gut-derived gut microbiota contains pathogen-associated molecular patterns (PAMPs) that may circulate into the liver and, consequently, be recognized by hepatic pattern recognition receptors (PRRs). NOD2, a general intracellular PRR, recognizes muramyl dipeptide (MDP), present in both gram (+) and gram (−) bacteria. Here, we investigated the role of NOD2 as a molecular sensor translating gut dysbiosis signaling into hepatocarcinogenesis. Methods NOD2 expression was measured in clinical hepatocellular carcinoma (HCC) samples using qPCR (80 pairs), western blotting (30 pairs) and immunostaining (141 pairs). The role of NOD2 in hepatocarcinogenesis was examined in the hepatocyte-specific Nod2-knockout (Nod2△hep), Rip2-knockout (Rip2△hep), Lamin A/C-knockout (Lamn△hep) and Rip2/Lamin A/C double-knockout (Rip2/Lamn△hep) mice models of diethylnitrosamine (DEN)/CCl4-induced HCC. Results NOD2 was upregulated and activated in HCC samples, and high NOD2 expression correlated with poor prognosis in HCC patients. Hepatic NOD2 deletion in vivo decreased DEN/CCl4-induced HCC by reducing the inflammatory response, DNA damage and genomic instability. NOD2 activation increased liver inflammation via RIP2-dependent activation of the MAPK, NF-κB and STAT3 pathways. Notably, a novel RIP2-independent mechanism was discovered, whereby NOD2 activation induces the nuclear autophagy pathway. We showed that NOD2 undergoes nuclear transport and directly binds to a component of nuclear laminae, lamin A/C, to promote its protein degradation, leading to impaired DNA damage repair and increased genomic instability. Conclusions We reveal a novel bridge, bacterial sensor NOD2, linking gut-derived microbial metabolites to hepatocarcinogenesis via induction of the inflammatory response and nuclear autophagy. Thus, we propose hepatic NOD2 as a promising therapeutic target against HCC.
Collapse
|
20
|
Jin Y, Ji W, Yang H, Chen S, Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther 2020; 5:293. [PMID: 33361764 PMCID: PMC7758411 DOI: 10.1038/s41392-020-00454-7] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
On 12 March 2020, the outbreak of coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization. As of 4 August 2020, more than 18 million confirmed infections had been reported globally. Most patients have mild symptoms, but some patients develop respiratory failure which is the leading cause of death among COVID-19 patients. Endothelial cells with high levels of angiotensin-converting enzyme 2 expression are major participants and regulators of inflammatory reactions and coagulation. Accumulating evidence suggests that endothelial activation and dysfunction participate in COVID-19 pathogenesis by altering the integrity of vessel barrier, promoting pro-coagulative state, inducing endothelial inflammation, and even mediating leukocyte infiltration. This review describes the proposed cellular and molecular mechanisms of endothelial activation and dysfunction during COVID-19 emphasizing the principal mediators and therapeutic implications.
Collapse
Affiliation(s)
- Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
21
|
Pan G, Chang L, Zhang J, Liu Y, Hu L, Zhang S, Zhang J, Qiao J, Jakopin Ž, Hu H, Dong J, Ding Z. GSK669, a NOD2 receptor antagonist, inhibits thrombosis and oxidative stress via targeting platelet GPVI. Biochem Pharmacol 2020; 183:114315. [PMID: 33152345 DOI: 10.1016/j.bcp.2020.114315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Previously, we discovered that the activation of nucleotide-binding oligomerization domain 2 (NOD2) enhances platelet activation. We here investigated the antiplatelet and antithrombotic potential of GSK669, a NOD2 antagonist. EXPERIMENTAL APPROACH Effects of GSK669 on platelet functions, reactive oxygen species (ROS) and proinflammatory cytokine generation were detected. NOD2-/- platelets were used to confirm GSK669 target. The interaction between GSK669 and glycoprotein VI (GPVI) was detected using surface plasmon resonance (SPR) spectroscopy. GPVI downstream signaling was examined by Western blot. The antithrombotic and antioxidative effects were investigated using mouse mesenteric arteriole thrombosis model and pulmonary embolism model. KEY RESULTS GSK669 significantly inhibits platelet proinflammatory cytokine release induced by muramyl dipeptide, platelet aggregation, ATP release, and ROS generation induced by collagen and collagen related peptide (CRP). Platelet spreading and clot retraction are also inhibited. GSK669 also decreases collagen-induced phosphorylation of Src, Syk, PLCγ2, and Akt. The antiplatelet effect of GSK669 is NOD2-independent and mediated by GPVI antagonism. Consistent with its antiplatelet activity as a GPVI antagonist, GSK669 inhibits platelet adhesion on collagen in flow condition. Notably, GSK669 inhibits mouse mesenteric arteriole thrombosis similarly to aspirin without bleeding. The antithrombotic effect of GSK669 is further confirmed in the pulmonary embolism model; decreased malonaldehyde (MDA) and increased superoxide dismutase (SOD) levels in mouse plasma reveal a significant antioxidant effect of GSK669. CONCLUSION AND IMPLICATIONS Beyond its anti-inflammatory effect as a NOD2 antagonist, GSK669 is also an efficient and safe antiplatelet agent combined with antioxidant effect by targeting GPVI. An antiplatelet agent bearing antioxidative and anti-inflammatory activities without bleeding risk may have therapeutic advantage over current antiplatelet drugs for atherothrombosis.
Collapse
Affiliation(s)
- Guanxing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lin Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianjun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yangyang Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, China
| | - Liang Hu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, China
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jian Zhang
- Department of Pathophysiology, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Jianlin Qiao
- Department of Hematology, Blood Disease Institute, Xuzhou Medical University, Xuzhou 221004, China
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - Hu Hu
- Department of Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310012, China
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, China
| | - Zhongren Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, China
| |
Collapse
|
22
|
Ma Y, Yang J, Wei X, Pei Y, Ye J, Li X, Si G, Tian J, Dong Y, Liu G. Nonpeptidic quinazolinone derivatives as dual nucleotide-binding oligomerization domain-like receptor 1/2 antagonists for adjuvant cancer chemotherapy. Eur J Med Chem 2020; 207:112723. [PMID: 32920426 DOI: 10.1016/j.ejmech.2020.112723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/17/2022]
Abstract
Nucleotide-binding oligomerization domain-containing protein 1 and 2 (NOD1/2) receptors are potential immune checkpoints. In this article, a quinazolinone derivative (36b) as a NOD1/2 dual antagonist was identified that significantly sensitizes B16 tumor-bearing mice to paclitaxel treatment by inhibiting both nuclear factor κB (NF-κB) and mitogen-activated protein kinase inflammatory signaling that mediated by NOD1/2.
Collapse
Affiliation(s)
- Yao Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Rd, Xicheng Dist, Beijing, 100050, PR China
| | - Jingshu Yang
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing, 100084, PR China
| | - Xiduan Wei
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing, 100084, PR China
| | - Yameng Pei
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing, 100084, PR China
| | - Jingjia Ye
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing, 100084, PR China
| | - Xueyuan Li
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing, 100084, PR China
| | - Guangxu Si
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing, 100084, PR China
| | - Jingyuan Tian
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing, 100084, PR China
| | - Yi Dong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Rd, Xicheng Dist, Beijing, 100050, PR China.
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing, 100084, PR China.
| |
Collapse
|
23
|
Identification of benzofused five-membered sultams, potent dual NOD1/NOD2 antagonists in vitro and in vivo. Eur J Med Chem 2020; 204:112575. [PMID: 32731185 DOI: 10.1016/j.ejmech.2020.112575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/28/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
Nucleotide-binding oligomerization domain-containing proteins 1 and 2 play important roles in immune system activation. Recently, a shift has occurred due to the emerging knowledge that preventing nucleotide-binding oligomerization domains (NODs) signaling could facilitate the treatment of some cancers, which warrants the search for dual antagonists of NOD1 and NOD2. Herein, we undertook the synthesis and identification of a new class of derivatives of dual NOD1/NOD2 antagonists with novel benzofused five-membered sultams. Compound 14k was finally demonstrated to be the most potent molecule that inhibits both NOD1-and NOD2-stimulated NF-κB and MAPK signaling in vitro and in vivo.
Collapse
|
24
|
Mulder WJM, Ochando J, Joosten LAB, Fayad ZA, Netea MG. Therapeutic targeting of trained immunity. Nat Rev Drug Discov 2020; 18:553-566. [PMID: 30967658 DOI: 10.1038/s41573-019-0025-4] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immunotherapy is revolutionizing the treatment of diseases in which dysregulated immune responses have an important role. However, most of the immunotherapy strategies currently being developed engage the adaptive immune system. In the past decade, both myeloid (monocytes, macrophages and dendritic cells) and lymphoid (natural killer cells and innate lymphoid cells) cell populations of the innate immune system have been shown to display long-term changes in their functional programme through metabolic and epigenetic programming. Such reprogramming causes these cells to be either hyperresponsive or hyporesponsive, resulting in a changed immune response to secondary stimuli. This de facto innate immune memory, which has been termed 'trained immunity', provides a powerful 'targeting framework' to regulate the delicate balance of immune homeostasis, priming, training and tolerance. In this Opinion article, we set out our vision of how to target innate immune cells and regulate trained immunity to achieve long-term therapeutic benefits in a range of immune-related diseases. These include conditions characterized by excessive trained immunity, such as inflammatory and autoimmune disorders, allergies and cardiovascular disease and conditions driven by defective trained immunity, such as cancer and certain infections.
Collapse
Affiliation(s)
- Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands. .,Department of Medical Biochemistry, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, Netherlands.
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Transplant Immunology Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands. .,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
25
|
Guzelj S, Gobec M, Urbančič D, Mlinarič-Raščan I, Corsini E, Jakopin Ž. Structural features and functional activities of benzimidazoles as NOD2 antagonists. Eur J Med Chem 2020; 190:112089. [PMID: 32014680 DOI: 10.1016/j.ejmech.2020.112089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
NOD1 and NOD2 are pattern recognition receptors that have important roles in innate immune responses. Although their overactivation has been linked to a number of diseases, NOD2 in particular remains a virtually unexploited target in this respect, with only one structural class of antagonist reported. To gain insight into the structure-activity relationships of NOD2 antagonists, a series of novel analogs was designed and synthesized, and then screened for antagonist activity versus NOD2, and counter-screened versus NOD1. Compounds 32 and 38 were identified as potent and moderately selective NOD2 antagonists, and 33 and 42 as dual NOD1/NOD2 antagonists, with balanced activities against both targets in the low micromolar range. These data enable in-depth exploration of their structure-activity relationships and provide deeper understanding of the structural features required for NOD2 antagonism.
Collapse
Affiliation(s)
- Samo Guzelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Dunja Urbančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Environmental Science and Policy, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
26
|
McKernan DP. Pattern recognition receptors as potential drug targets in inflammatory disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:65-109. [PMID: 31997773 DOI: 10.1016/bs.apcsb.2019.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pattern recognition receptors (PRRs) are a key part of the innate immune system, the body's first line of defense against infection and tissue damage. This superfamily of receptors including Toll-like receptors (TLRs), NOD-like receptors (NLRs), C-type lectin-like receptors (CLRs) and RIG-like receptors (RLRs) are responsible for initiation of the inflammatory response by their recognition of molecular patterns present in invading microorganisms (such as bacteria, viruses or fungi) during infection or in molecules released following tissue damage during acute or chronic disease states (such as sepsis or arthritis). These receptors are widely expressed and located on the cell surface, in intracellular compartments or in the cytoplasm can detect a single or subset of molecules including lipoproteins, carbohydrates or nucleic acids. In response, they initiate an intracellular signaling cascade that culminates in the synthesis and release of cytokines, chemokines and vasoactive molecules. These steps are necessary to maintain tissue homeostasis and remove potentially dangerous pathogens. However, during extreme or acute responses or during chronic disease, this can be damaging and even lead to death. Therefore, it is thought that targeting such receptors may offer a therapeutic approach in chronic inflammatory diseases or in cases of acute infection leading to sepsis. Herein, the current knowledge on the molecular biology of PRRs is reviewed along with their association with inflammatory and infectious diseases. Finally, the testing of therapeutic compounds and their future merit as targets is discussed.
Collapse
|
27
|
Jakopin Ž, Corsini E. THP-1 Cells and Pro-inflammatory Cytokine Production: An in Vitro Tool for Functional Characterization of NOD1/NOD2 Antagonists. Int J Mol Sci 2019; 20:ijms20174265. [PMID: 31480368 PMCID: PMC6747088 DOI: 10.3390/ijms20174265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
THP-1 cells express high levels of native functional nucleotide-binding oligomerization domain 1 (NOD1), NOD2, and Toll-like receptor 4 (TLR4) receptors, and have often been used for investigating the immunomodulatory effects of small molecules. We postulated that they would represent an ideal cell-based model for our study, the aim of which was to develop a new in vitro tool for functional characterization of NOD antagonists. NOD antagonists were initially screened for their effect on NOD agonist-induced interleukin-8 (IL-8) release. Next, we examined the extent to which the selected NOD antagonists block the NOD-TLR4 synergistic crosstalk by measuring the effect of NOD antagonism on tumor necrosis factor-α (TNF-α) secretion from doubly activated THP-1 cells. Overall, the results obtained indicate that pro-inflammatory cytokine secretion from THP-1 provides a valuable, simple and reproducible in vitro tool for functional characterization of NOD antagonists.
Collapse
Affiliation(s)
- Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
28
|
Tharmalingam N, Khader R, Fuchs BB, Mylonakis E. The Anti-virulence Efficacy of 4-(1,3-Dimethyl-2,3-Dihydro-1H-Benzimidazol-2-yl)Phenol Against Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2019; 10:1557. [PMID: 31379761 PMCID: PMC6653400 DOI: 10.3389/fmicb.2019.01557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial drug discovery against drug-resistant bacteria is an urgent need. Beyond agents with direct antibacterial activity, anti-virulent molecules may also be viable compounds to defend against bacterial pathogenesis. Using a high throughput screen (HTS) that utilized Caenorhabditis elegans infected with methicillin-resistant Staphylococcus aureus (MRSA) strain of MW2, we identified 4-(1,3-dimethyl-2,3-dihydro-1H-benzimidazol-2-yl)phenol (BIP). Interestingly, BIP had no in vitro inhibition activity against MW2, at least up to 64 μg/ml. The lack of direct antimicrobial activity suggests that BIP could inhibit bacterial virulence factors. To explore the possible anti-virulence effect of the identified molecule, we first performed real-time PCR to examine changes in virulence expression. BIP was highly active against MRSA virulence factors at sub-lethal concentrations and down-regulated virulence regulator genes, such as agrA and codY. However, the benzimidazole derivatives omeprazole and pantoprazole did not down-regulate virulence genes significantly, compared to BIP. Moreover, the BIP-pretreated MW2 cells were more vulnerable to macrophage-mediated killing, as confirmed by intracellular killing and live/dead staining assays, and less efficient in establishing a lethal infection in the invertebrate host Galleria mellonella (p = 0.0131). We tested the cytotoxicity of BIP against human red blood cells (RBCs), and it did not cause hemolysis at the highest concentration tested (64 μg/ml). Taken together, our findings outline the potential anti-virulence activity of BIP that was identified through a C. elegans-based, whole animal based, screen.
Collapse
Affiliation(s)
| | | | | | - Eleftherios Mylonakis
- Department of Medicine, Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
29
|
Pashenkov MV, Murugina NE, Budikhina AS, Pinegin BV. Synergistic interactions between NOD receptors and TLRs: Mechanisms and clinical implications. J Leukoc Biol 2018; 105:669-680. [PMID: 30517768 DOI: 10.1002/jlb.2ru0718-290r] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/23/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Interactions between pattern recognition receptors (PRRs) shape innate immune responses to particular classes of pathogens. Here, we review interactions between TLRs and nucleotide-binding oligomerization domain 1 and 2 (NOD1 and NOD2) receptors, two major groups of PRRs involved in innate recognition of bacteria. Most of experimental data both in vitro and in vivo suggest that NODs and TLRs synergize with each other at inducing the production of cytokines and antimicrobial peptides. Molecular mechanisms of this synergy remain poorly understood, although several scenarios can be proposed: (i) direct interactions of signaling pathways downstream of NODs and TLRs; (ii) mutual transcriptional regulation of unique components of NOD-dependent and TLR-dependent signaling pathways; and (iii) interactions at the post-transcriptional level. Potential practical implications of NOD-TLR synergy are dual. In sepsis, where synergistic effects probably contribute to excessive proinflammatory cytokine production, blockade of NOD1, and/or NOD2 in addition to TLR4 blockade may be required to achieve therapeutic benefit. On the other hand, synergistic combinations of relatively small doses of NOD and TLR agonists administered before infection could be used to boost innate resistance against bacterial pathogens.
Collapse
Affiliation(s)
- Mikhail V Pashenkov
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Nina E Murugina
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Anna S Budikhina
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Boris V Pinegin
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
30
|
Gobec M, Tomašič T, Štimac A, Frkanec R, Trontelj J, Anderluh M, Mlinarič-Raščan I, Jakopin Ž. Discovery of Nanomolar Desmuramylpeptide Agonists of the Innate Immune Receptor Nucleotide-Binding Oligomerization Domain-Containing Protein 2 (NOD2) Possessing Immunostimulatory Properties. J Med Chem 2018. [PMID: 29543461 DOI: 10.1021/acs.jmedchem.7b01052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan, has long been known as the smallest fragment possessing adjuvant activity, on the basis of its agonistic action on the nucleotide-binding oligomerization domain-containing protein 2 (NOD2). There is a pressing need for novel adjuvants, and NOD2 agonists provide an untapped source of potential candidates. Here, we report the design, synthesis, and characterization of a series of novel acyl tripeptides. A pivotal structural element for molecular recognition by NOD2 has been identified, culminating in the discovery of compound 9, the most potent desmuramylpeptide NOD2 agonist to date. Compound 9 augmented pro-inflammatory cytokine release from human peripheral blood mononuclear cells in synergy with lipopolysaccharide. Furthermore, it was able to induce ovalbumin-specific IgG titers in a mouse model of adjuvancy. These findings provide deeper insights into the structural requirements of desmuramylpeptides for NOD2-activation and highlight the potential use of NOD2 agonists as adjuvants for vaccines.
Collapse
Affiliation(s)
- Martina Gobec
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , SI-1000 Ljubljana , Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , SI-1000 Ljubljana , Slovenia
| | - Adela Štimac
- Centre for Research and Knowledge Transfer in Biotechnology , University of Zagreb , Rockefellerova 10 , 10000 Zagreb , Croatia
| | - Ruža Frkanec
- Centre for Research and Knowledge Transfer in Biotechnology , University of Zagreb , Rockefellerova 10 , 10000 Zagreb , Croatia
| | - Jurij Trontelj
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , SI-1000 Ljubljana , Slovenia
| | - Marko Anderluh
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , SI-1000 Ljubljana , Slovenia
| | - Irena Mlinarič-Raščan
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , SI-1000 Ljubljana , Slovenia
| | - Žiga Jakopin
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
31
|
Corridoni D, Chapman T, Ambrose T, Simmons A. Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease. Front Med (Lausanne) 2018. [PMID: 29515999 PMCID: PMC5825991 DOI: 10.3389/fmed.2018.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation.
Collapse
Affiliation(s)
- Daniele Corridoni
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Thomas Chapman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tim Ambrose
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
NOD1 and NOD2: Molecular targets in prevention and treatment of infectious diseases. Int Immunopharmacol 2017; 54:385-400. [PMID: 29207344 DOI: 10.1016/j.intimp.2017.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Nucleotide-binding oligomerization domain (NOD) 1 and NOD2 are pattern-recognition receptors responsible for sensing fragments of bacterial peptidoglycan known as muropeptides. Stimulation of innate immunity by systemic or local administration of NOD1 and NOD2 agonists is an attractive means to prevent and treat infectious diseases. In this review, we discuss novel data concerning structural features of selective and non-selective (dual) NOD1 and NOD2 agonists, main signaling pathways and biological effects induced by NOD1 and NOD2 stimulation, including induction of pro-inflammatory cytokines, type I interferons and antimicrobial peptides, induction of autophagy, alterations of metabolism. We also discuss interactions between NOD1/NOD2 and Toll-like receptor agonists in terms of synergy and cross-tolerance. Finally, we review available animal data on the role of NOD1 and NOD2 in protection against infections, and discuss how these data could be applied in human infectious diseases.
Collapse
|
33
|
Synthetic agonists of NOD-like, RIG-I-like, and C-type lectin receptors for probing the inflammatory immune response. Future Med Chem 2017; 9:1345-1360. [PMID: 28776416 DOI: 10.4155/fmc-2017-0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synthetic agonists of innate immune cells are of interest to immunologists due to their synthesis from well-defined materials, optimized activity, and monodisperse chemical purity. These molecules are used in both prophylactic and therapeutic contexts from vaccines to cancer immunotherapies. In this review we highlight synthetic agonists that activate innate immune cells through three classes of pattern recognition receptors: NOD-like receptors, RIG-I-like receptors, and C-type lectin receptors. We classify these agonists by the receptor they activate and present them from a chemical perspective, focusing on structural components that define agonist activity. We anticipate this review will be useful to the medicinal chemist as a guide to chemical motifs that activate each receptor, ultimately illuminating a chemical space ripe for exploration.
Collapse
|
34
|
Wang S, Yang J, Li X, Liu Z, Wu Y, Si G, Tao Y, Zhao N, Hu X, Ma Y, Liu G. Discovery of 1,4-Benzodiazepine-2,5-dione (BZD) Derivatives as Dual Nucleotide Binding Oligomerization Domain Containing 1/2 (NOD1/NOD2) Antagonists Sensitizing Paclitaxel (PTX) To Suppress Lewis Lung Carcinoma (LLC) Growth in Vivo. J Med Chem 2017; 60:5162-5192. [DOI: 10.1021/acs.jmedchem.7b00608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Suhua Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, P. R. China
| | - Jingshu Yang
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Xueyuan Li
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Zijie Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, P. R. China
| | - Youzhen Wu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Guangxu Si
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Yiran Tao
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Nan Zhao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, P. R. China
| | - Xiao Hu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, P. R. China
| | - Yao Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, P. R. China
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| |
Collapse
|
35
|
Charnley AK, Convery MA, Lakdawala Shah A, Jones E, Hardwicke P, Bridges A, Ouellette M, Totoritis R, Schwartz B, King BW, Wisnoski DD, Kang J, Eidam PM, Votta BJ, Gough PJ, Marquis RW, Bertin J, Casillas L. Crystal structures of human RIP2 kinase catalytic domain complexed with ATP-competitive inhibitors: Foundations for understanding inhibitor selectivity. Bioorg Med Chem 2015; 23:7000-6. [PMID: 26455654 DOI: 10.1016/j.bmc.2015.09.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/09/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023]
Abstract
Receptor interacting protein 2 (RIP2) is an intracellular kinase and key signaling partner for the pattern recognition receptors NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins 1 and 2). As such, RIP2 represents an attractive target to probe the role of these pathways in disease. In an effort to design potent and selective inhibitors of RIP2 we established a crystallographic system and determined the structure of the RIP2 kinase domain in an apo form and also in complex with multiple inhibitors including AMP-PCP (β,γ-Methyleneadenosine 5'-triphosphate, a non-hydrolysable adenosine triphosphate mimic) and structurally diverse ATP competitive chemotypes identified via a high-throughput screening campaign. These structures represent the first set of diverse RIP2-inhibitor co-crystal structures and demonstrate that the protein possesses the ability to adopt multiple DFG-in as well as DFG-out and C-helix out conformations. These structures reveal key protein-inhibitor structural insights and serve as the foundation for establishing a robust structure-based drug design effort to identify both potent and highly selective inhibitors of RIP2 kinase.
Collapse
Affiliation(s)
- Adam K Charnley
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA.
| | - Máire A Convery
- Platform Technology & Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK.
| | - Ami Lakdawala Shah
- Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Emma Jones
- Platform Technology & Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Philip Hardwicke
- Platform Technology & Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Angela Bridges
- Platform Technology & Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Michael Ouellette
- Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Rachel Totoritis
- Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Benjamin Schwartz
- Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Bryan W King
- Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - David D Wisnoski
- Platform Technology & Science, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - James Kang
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Patrick M Eidam
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Bartholomew J Votta
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Robert W Marquis
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Linda Casillas
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| |
Collapse
|
36
|
Kao WP, Yang CY, Su TW, Wang YT, Lo YC, Lin SC. The versatile roles of CARDs in regulating apoptosis, inflammation, and NF-κB signaling. Apoptosis 2015; 20:174-95. [PMID: 25420757 DOI: 10.1007/s10495-014-1062-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CARD subfamily is the second largest subfamily in the DD superfamily that plays important roles in regulating various signaling pathways, including but not limited to NF-kB activation signaling, apoptosis signaling and inflammatory signaling. The CARD subfamily contains 33 human CARD-containing proteins, regulating the assembly of many signaling complexes, including apoptosome, inflammsome, nodosome, the CBM complex, PIDDosome, the TRAF2 complex, and the MAVS signalosome, by homotypic CARD-CARD interactions. The mechanism of how CARDs find the right binding partner to form a specific complex remains unclear. This review uses different classification schemes to update the classification of CARD-containing proteins. Combining the classification based on domain structures, functions, associated signaling complexes, and roles would help better understand the structural and function diversity of CARD-containing proteins. This review also summarizes recent structural studies on CARDs. Especially, the CARD-containing complexes can be divided into the homodimeric, heterodimeric, oligomeric, filamentous CARD complexes and the CARD-ubiquitin complex. This review will give an overview of the versatile roles of CARDs in regulating signaling transduction, as well as the therapeutic drugs targeting CARD-containing proteins.
Collapse
Affiliation(s)
- Wen-Pin Kao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Caruso R, Warner N, Inohara N, Núñez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 2014; 41:898-908. [PMID: 25526305 DOI: 10.1016/j.immuni.2014.12.010] [Citation(s) in RCA: 560] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 12/11/2022]
Abstract
The nucleotide-binding oligomerization domain (NOD) proteins NOD1 and NOD2, the founding members of the intracellular NOD-like receptor family, sense conserved motifs in bacterial peptidoglycan and induce proinflammatory and antimicrobial responses. Here, we discuss recent developments about the mechanisms by which NOD1 and NOD2 are activated by bacterial ligands, the regulation of their signaling pathways, and their role in host defense and inflammatory disease. Several routes for the entry of peptidoglycan ligands to the host cytosol to trigger activation of NOD1 and NOD2 have been elucidated. Furthermore, genetic screens and biochemical analyses have revealed mechanisms that regulate NOD1 and NOD2 signaling. Finally, recent studies have suggested several mechanisms to account for the link between NOD2 variants and susceptibility to Crohn's disease. Further understanding of NOD1 and NOD2 should provide new insight into the pathogenesis of disease and the development of new strategies to treat inflammatory and infectious disorders.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Neil Warner
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
38
|
Cheng T, Pan Y, Hao M, Wang Y, Bryant SH. PubChem applications in drug discovery: a bibliometric analysis. Drug Discov Today 2014; 19:1751-1756. [PMID: 25168772 DOI: 10.1016/j.drudis.2014.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/17/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022]
Abstract
A bibliometric analysis of PubChem applications is presented by reviewing 1132 research articles. The massive volume of chemical structure and bioactivity data in PubChem and its online services have been used globally in various fields including chemical biology, medicinal chemistry and informatics research. PubChem supports drug discovery in many aspects such as lead identification and optimization, compound-target profiling, polypharmacology studies and unknown chemical identity elucidation. PubChem has also become a valuable resource for developing secondary databases, informatics tools and web services. The growing PubChem resource with its public availability offers support and great opportunities for the interrogation of pharmacological mechanisms and the genetic basis of diseases, which are vital for drug innovation and repurposing.
Collapse
Affiliation(s)
- Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Yongmei Pan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Ming Hao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Yanli Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.
| | - Stephen H Bryant
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.
| |
Collapse
|
39
|
Bacterial peptidoglycan stimulates adipocyte lipolysis via NOD1. PLoS One 2014; 9:e97675. [PMID: 24828250 PMCID: PMC4020832 DOI: 10.1371/journal.pone.0097675] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 04/23/2014] [Indexed: 01/07/2023] Open
Abstract
Obesity is associated with inflammation that can drive metabolic defects such as hyperlipidemia and insulin resistance. Specific metabolites can contribute to inflammation, but nutrient intake and obesity are also associated with altered bacterial load in metabolic tissues (i.e. metabolic endotoxemia). These bacterial cues can contribute to obesity-induced inflammation. The specific bacterial components and host receptors that underpin altered metabolic responses are emerging. We previously showed that Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) activation with bacterial peptidoglycan (PGN) caused insulin resistance in mice. We now show that PGN induces cell-autonomous lipolysis in adipocytes via NOD1. Specific bacterial PGN motifs stimulated lipolysis in white adipose tissue (WAT) explants from WT, but not NOD1−/− mice. NOD1-activating PGN stimulated mitogen activated protein kinases (MAPK),protein kinase A (PKA), and NF-κB in 3T3-L1 adipocytes. The NOD1-mediated lipolysis response was partially reduced by inhibition of ERK1/2 or PKA alone, but not c-Jun N-terminal kinase (JNK). NOD1-stimulated lipolysis was partially dependent on NF-κB and was completely suppressed by inhibiting ERK1/2 and PKA simultaneously or hormone sensitive lipase (HSL). Our results demonstrate that bacterial PGN stimulates lipolysis in adipocytes by engaging a stress kinase, PKA, NF-κB-dependent lipolytic program. Bacterial NOD1 activation is positioned as a component of metabolic endotoxemia that can contribute to hyperlipidemia, systemic inflammation and insulin resistance by acting directly on adipocytes.
Collapse
|
40
|
Identification of selective small molecule inhibitors of the nucleotide-binding oligomerization domain 1 (NOD1) signaling pathway. PLoS One 2014; 9:e96737. [PMID: 24806487 PMCID: PMC4013053 DOI: 10.1371/journal.pone.0096737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/10/2014] [Indexed: 12/28/2022] Open
Abstract
NOD1 is an intracellular pattern recognition receptor that recognizes diaminopimelic acid (DAP), a peptidoglycan component in gram negative bacteria. Upon ligand binding, NOD1 assembles with receptor-interacting protein (RIP)-2 kinase and initiates a signaling cascade leading to the production of pro-inflammatory cytokines. Increased NOD1 signaling has been associated with a variety of inflammatory disorders suggesting that small-molecule inhibitors of this signaling complex may have therapeutic utility. We utilized a cell-based screening approach with extensive selectivity profiling to search for small molecule inhibitors of the NOD1 signaling pathway. Via this process we identified three distinct chemical series, xanthines (SB711), quinazolininones (GSK223) and aminobenzothiazoles (GSK966) that selectively inhibited iE-DAP-stimulated IL-8 release via the NOD1 signaling pathway. All three of the newly identified compound series failed to block IL-8 secretion in cells following stimulation with ligands for TNF receptor, TLR2 or NOD2 and, in addition, none of the compound series directly inhibited RIP2 kinase activity. Our initial exploration of the structure-activity relationship and physicochemical properties of the three series directed our focus to the quinazolininone biarylsulfonamides (GSK223). Further investigation allowed for the identification of significantly more potent analogs with the largest boost in activity achieved by fluoro to chloro replacement on the central aryl ring. These results indicate that the NOD1 signaling pathway, similarly to activation of NOD2, is amenable to modulation by small molecules that do not target RIP2 kinase. These compounds should prove useful tools to investigate the importance of NOD1 activation in various inflammatory processes and have potential clinical utility in diseases driven by hyperactive NOD1 signaling.
Collapse
|
41
|
Jakopin Ž. Nucleotide-binding oligomerization domain (NOD) inhibitors: a rational approach toward inhibition of NOD signaling pathway. J Med Chem 2014; 57:6897-918. [PMID: 24707857 DOI: 10.1021/jm401841p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of nucleotide-binding oligomerization domains 1 and 2 (NOD1 and NOD2) has been implicated in the pathology of various inflammatory disorders, rendering them and their downstream signaling proteins potential therapeutic targets. Selective inhibition of NOD1 and NOD2 signaling could be advantageous in treating many acute and chronic diseases; therefore, harnessing the full potential of NOD inhibitors is a key topic in medicinal chemistry. Although they are among the best studied NOD-like receptors (NLRs), the therapeutic potential of pharmacological modulation of NOD1 and NOD2 is largely unexplored. This review is focused on the scientific progress in the field of NOD inhibitors over the past decade, including the recently reported selective inhibitors of NOD1 and NOD2. In addition, the potential approaches to inhibition of NOD signaling as well as the advantages and disadvantages linked with inhibition of NOD signaling are discussed. Finally, the potential directions for drug discovery are also discussed.
Collapse
Affiliation(s)
- Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Liu TC, Gao F, McGovern DPB, Stappenbeck TS. Spatial and temporal stability of paneth cell phenotypes in Crohn's disease: implications for prognostic cellular biomarker development. Inflamm Bowel Dis 2014; 20:646-51. [PMID: 24552829 PMCID: PMC4180521 DOI: 10.1097/01.mib.0000442838.21040.d7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND We previously demonstrated that morphologic defects of ileal Paneth cells correlate with multiple susceptible genetic variants, the presence of granuloma, and clinical outcome in Crohn's disease. These studies were performed using uninvolved areas of resection specimens. To develop Paneth cell phenotype as a prognostic biomarker in Crohn's disease, further characterization is necessary. Specifically, effects of disease activity, phenotype duration, and the minimal crypt number that would allow for accurate Paneth cell phenotyping are unknown. METHODS We compared Paneth cell phenotypes in (1) 46 cases with paired involved and uninvolved sections; (2) 36 cases with multiple ileal resections over time; (3) "virtual biopsies" by randomly selecting 10 to 60 crypts from 85 surgical cases where 250 crypts had been analyzed; and (4) 26 cases with resection and biopsy performed within 1 year. RESULTS In paired resection specimens, the Paneth cell phenotypes in the uninvolved areas correlated with those seen in involved areas (P < 0.0001) and also predicted the presence of granuloma (P = 0.042). Importantly, the Paneth cell phenotype remained stable over time (P < 0.0001). By mathematical analyses, a minimum of 40 crypts was required to generate results equivalent to those using resection specimens. Finally, there was good correlation in Paneth cell phenotypes in biopsy specimens and resection specimens obtained within 1 year (P = 0.0004). CONCLUSIONS Accurate Paneth cell phenotypes can be assessed using biopsy materials with the caveat that sufficient well-oriented crypts exist in the specimen. This advance will extend the potential clinical application of this novel stratification platform.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Feng Gao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Dermot P. B. McGovern
- The F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California,Medical Genetics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Thaddeus S. Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|