1
|
Rout-Pitt N, Boog B, McCarron A, Reyne N, Parsons D, Donnelley M. Insights into epithelial-mesenchymal transition from cystic fibrosis rat models. J Cyst Fibros 2024:S1569-1993(24)01711-9. [PMID: 39266334 DOI: 10.1016/j.jcf.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Molecular pathways contributing to Cystic Fibrosis pathogenesis remain poorly understood. Epithelial-mesenchymal transition (EMT) has been recently observed in CF lungs and certain CFTR mutation classes may be more susceptible than others. No investigations of EMT processes in CF animal models have been reported. AIM The aim of this study was to assess the expression of EMT-related markers in Phe508del and knockout (CFTR-KO) rat lung tissue and tracheal-derived basal epithelial stem cells, to determine whether CFTR dysfunction can produce an EMT state. METHOD The expression of EMT-related markers in lung tissue and cultured tracheal basal epithelial stem cells from wildtype (WT), Phe508del, and CFTR-KO rats were assessed using qPCR and Western blots. Cell responses were evaluated in the presence of Rho-associated protein kinase (ROCK) inhibitor Y27632, which blocks EMT-pathways, or after treatment with TGFβ1 to stimulate EMT. RESULTS Different gene expression profiles were observed between Phe508del and CFTR-KO rat models compared to wild type. There was lower expression of type 1 collagen in KO lungs and primary cell cultures, while Phe508del lungs and cells had higher expression, particularly when treated with TGFβ1. The addition of Y27632 rescued changes in EMT related genes in Phe508del cells but not in KO cells. CONCLUSION Our findings show the first evidence of upregulated EMT pathways in the lungs and airway cells of any CF animal model. Differences in the regulation of the EMT genes and proteins in the Phe508del and CFTR-KO cells suggest that the signalling pathways underlying EMT are CFTR mutation dependent.
Collapse
Affiliation(s)
- Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Bernadette Boog
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Alexandra McCarron
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Nicole Reyne
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - David Parsons
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| |
Collapse
|
2
|
Guo X, Adeyanju O, Olajuyin AM, Mandlem V, Sunil C, Adewumi J, Huang S, Tucker TA, Idell S, Qian G. MARCH8 downregulation modulates profibrotic responses including myofibroblast differentiation. Am J Physiol Cell Physiol 2023; 325:C1190-C1200. [PMID: 37661917 PMCID: PMC10854817 DOI: 10.1152/ajpcell.00166.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Interstitial lung diseases can result in poor patient outcomes, especially in idiopathic pulmonary fibrosis (IPF), a severe interstitial lung disease with unknown causes. The lack of treatment options requires further understanding of the pathological process/mediators. Membrane-associated RING-CH 8 (MARCH8) has been implicated in immune function regulation and inflammation, however, its role in the development of pulmonary fibrosis and particularly the fibroblast to myofibroblast transition (FMT) remains a gap in existing knowledge. In this study, we demonstrated decreased MARCH8 expression in patients with IPF compared with non-PF controls and in bleomycin-induced PF. TGF-β dose- and time-dependently decreased MARCH8 expression in normal and IPF human lung fibroblast (HLFs), along with induction of FMT markers α-SMA, collagen type I (Col-1), and fibronectin (FN). Interestingly, overexpression of MARCH8 significantly suppressed TGF-β-induced expression of α-SMA, Col-1, and FN. By contrast, the knockdown of MARCH8 using siRNA upregulated basal expression of α-SMA/Col-1/FN. Moreover, MARCH8 knockdown enhanced TGF-β-induced FMT marker expression. These data clearly show that MARCH8 is a critical "brake" for FMT and potentially affects PF. We further found that TGF-β suppressed MARCH8 mRNA expression and the proteasome inhibitor MG132 failed to block MARCH8 decrease induced by TGF-β. Conversely, TGF-β decreases mRNA levels of MARCH8 in a dose- and time-dependent manner, suggesting the transcriptional regulation of MARCH8 by TGF-β. Mechanistically, MARCH8 overexpression suppressed TGF-β-induced Smad2/3 phosphorylation, which may account for the observed effects. Taken together, this study demonstrated an unrecognized role of MARCH8 in negatively regulating FMT and profibrogenic responses relevant to interstitial lung diseases.NEW & NOTEWORTHY MARCH8 is an important modulator of inflammation, immunity, and other cellular processes. We found that MARCH8 expression is downregulated in the lungs of patients with idiopathic pulmonary fibrosis (IPF) and experimental models of pulmonary fibrosis. Furthermore, TGF-β1 decreases MARCH8 transcriptionally in human lung fibroblasts (HLFs). MARCH8 overexpression blunts TGF-β1-induced fibroblast to myofibroblast transition while knockdown of MARCH8 drives this profibrotic change in HLFs. The findings support further exploration of MARCH8 as a novel target in IPF.
Collapse
Affiliation(s)
- Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Oluwaseun Adeyanju
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Ayobami Matthew Olajuyin
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Venkatakirankumar Mandlem
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Christudas Sunil
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Joy Adewumi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Steven Huang
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Guoqing Qian
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| |
Collapse
|
3
|
Asif H, Ribeiro Neto M, Culver D. Pulmonary fibrosis in sarcoidosis. SARCOIDOSIS, VASCULITIS, AND DIFFUSE LUNG DISEASES : OFFICIAL JOURNAL OF WASOG 2023; 40:e2023027. [PMID: 37712364 PMCID: PMC10540713 DOI: 10.36141/svdld.v40i3.14830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 09/16/2023]
Abstract
Sarcoidosis may progress to pulmonary fibrosis in 5% of patients with significantly increased mortality. Histopathology shows fibrosis in a lymphangitic pattern surrounding the granulomas. Th1 to Th2 shift in environment along with angiogenesis is implicated in exuberant fibrosis. Clinical features include dyspnea, cough, and frequently with pulmonary function tests showing a mixed ventilatory defect with severely decreased diffusion capacity of carbon monoxide. Serologic markers including soluble interleukin 2 receptor, chitotriosidase and kern von den lunges 6, and chemokine ligand 18 are elevated and implicated in progression of disease. CT imaging shows fibrosis along bronchovascular bundles with reticulations, traction bronchiectasis and honeycombing predominantly in the upper and central distribution. Complications include sarcoidosis-associated pulmonary hypertension (SAPH) and chronic pulmonary aspergillosis. Treatment involves glucocorticoids and steroid-sparing agents in the presence of active granulomas. Anti-fibrotic agents such as pirfenidone and nintedanib have been shown to slow down pulmonary function decline in randomized clinical trials involving sarcoidosis-associated pulmonary fibrosis. Transplant workup is indicated in New York Heart Association class III or IV with similar success rates as in other lung transplant patients.
Collapse
Affiliation(s)
- Huda Asif
- University of South Florida, FL, USA .
| | | | | |
Collapse
|
4
|
Douglas LEJ, Reihill JA, Montgomery BM, Martin SL. Furin as a therapeutic target in cystic fibrosis airways disease. Eur Respir Rev 2023; 32:32/168/220256. [PMID: 37137509 PMCID: PMC10155048 DOI: 10.1183/16000617.0256-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 05/05/2023] Open
Abstract
Clinical management of cystic fibrosis (CF) has been greatly improved by the development of small molecule modulators of the CF transmembrane conductance regulator (CFTR). These drugs help to address some of the basic genetic defects of CFTR; however, no suitable CFTR modulators exist for 10% of people with CF (PWCF). An alternative, mutation-agnostic therapeutic approach is therefore still required. In CF airways, elevated levels of the proprotein convertase furin contribute to the dysregulation of key processes that drive disease pathogenesis. Furin plays a critical role in the proteolytic activation of the epithelial sodium channel; hyperactivity of which causes airways dehydration and loss of effective mucociliary clearance. Furin is also responsible for the processing of transforming growth factor-β, which is increased in bronchoalveolar lavage fluid from PWCF and is associated with neutrophilic inflammation and reduced pulmonary function. Pathogenic substrates of furin include Pseudomonas exotoxin A, a major toxic product associated with Pseudomonas aeruginosa infection and the spike glycoprotein of severe acute respiratory syndrome coronavirus 2, the causative pathogen for coronavirus disease 2019. In this review we discuss the importance of furin substrates in the progression of CF airways disease and highlight selective furin inhibition as a therapeutic strategy to provide clinical benefit to all PWCF.
Collapse
Affiliation(s)
- Lisa E J Douglas
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
5
|
Chemparathy DT, Sil S, Callen S, Chand HS, Sopori M, Wyatt TA, Acharya A, Byrareddy SN, Fox HS, Buch S. Inflammation-Associated Lung Tissue Remodeling and Fibrosis in Morphine-Dependent SIV-Infected Macaques. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:380-391. [PMID: 37003622 PMCID: PMC10116601 DOI: 10.1016/j.ajpath.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 04/03/2023]
Abstract
With the advent of antiretroviral therapy, improved survival of people with HIV (PWH) is accompanied with increased prevalence of HIV-associated comorbidities. Chronic lung anomalies are recognized as one of the most devastating sequelae in PWH. The limited available data describing the lung complications in PWH with a history of opioid abuse warrants more research to better define the course of disease pathogenesis. The current study was conducted to investigate the progression of lung tissue remodeling in a morphine (Mor)-exposed rhesus macaque model of SIV infection. Pathologic features of lung remodeling, including histopathologic changes, oxidative stress, inflammation, and proliferation of fibroblasts, were investigated in archival lung tissues of SIVmac-251/macaque model with or without Mor dependence. Lungs of Mor-exposed, SIV-infected macaques exhibited significant fibrotic changes and collagen deposition in the alveolar and the bronchiolar region. There was increased oxidative stress, profibrotic transforming growth factor-β, fibroblast proliferation and trans-differentiation, epithelial-mesenchymal transition, and matrix degradation in SIV-infected macaques, which was further exacerbated in the lungs of Mor-exposed macaques. Interestingly, there was decreased inflammation-associated remodeling in Mor-dependent SIV-infected macaques compared with SIV-infected macaques that did not receive Mor. Thus, the current findings suggest that SIV independently induces fibrotic changes in macaque lungs, which is further aggravated by Mor.
Collapse
Affiliation(s)
- Divya T Chemparathy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hitendra S Chand
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Mohan Sopori
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Todd A Wyatt
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska; Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Howard S Fox
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
6
|
Plant miRNA osa-miR172d-5p suppressed lung fibrosis by targeting Tab1. Sci Rep 2023; 13:2128. [PMID: 36746980 PMCID: PMC9901827 DOI: 10.1038/s41598-023-29188-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Lung fibrosis, including idiopathic pulmonary fibrosis, is an intractable disease accompanied by an irreversible dysfunction in the respiratory system. Its pathogenesis involves the transforming growth factorβ (TGFβ)-induced overproduction of the extracellular matrix from fibroblasts; however, limited countermeasures have been established. In this study, we identified osa-miR172d-5p, a plant-derived microRNA (miR), as a potent anti-fibrotic miR. In silico analysis followed by an in vitro assay based on human lung fibroblasts demonstrated that osa-miR172d-5p suppressed the gene expression of TGF-β activated kinase 1 (MAP3K7) binding protein 1 (Tab1). It also suppressed the TGFβ-induced fibrotic gene expression in human lung fibroblasts. To assess the anti-fibrotic effect of osa-miR172d-5p, we established bleomycin-induced lung fibrosis models to demonstrate that osa-miR172d-5p ameliorated lung fibrosis. Moreover, it suppressed Tab1 expression in the lung tissues of bleomycin-treated mice. In conclusion, osa-miR172d-5p could be a potent candidate for the treatment of lung fibrosis, including idiopathic pulmonary fibrosis.
Collapse
|
7
|
Khodeneva N, Sugimoto MA, Davan-Wetton CSA, Montero-Melendez T. Melanocortin therapies to resolve fibroblast-mediated diseases. Front Immunol 2023; 13:1084394. [PMID: 36793548 PMCID: PMC9922712 DOI: 10.3389/fimmu.2022.1084394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023] Open
Abstract
Stromal cells have emerged as central drivers in multiple and diverse diseases, and consequently, as potential new cellular targets for the development of novel therapeutic strategies. In this review we revise the main roles of fibroblasts, not only as structural cells but also as players and regulators of immune responses. Important aspects like fibroblast heterogeneity, functional specialization and cellular plasticity are also discussed as well as the implications that these aspects may have in disease and in the design of novel therapeutics. An extensive revision of the actions of fibroblasts on different conditions uncovers the existence of numerous diseases in which this cell type plays a pathogenic role, either due to an exacerbation of their 'structural' side, or a dysregulation of their 'immune side'. In both cases, opportunities for the development of innovative therapeutic approaches exist. In this regard, here we revise the existing evidence pointing at the melanocortin pathway as a potential new strategy for the treatment and management of diseases mediated by aberrantly activated fibroblasts, including scleroderma or rheumatoid arthritis. This evidence derives from studies involving models of in vitro primary fibroblasts, in vivo models of disease as well as ongoing human clinical trials. Melanocortin drugs, which are pro-resolving mediators, have shown ability to reduce collagen deposition, activation of myofibroblasts, reduction of pro-inflammatory mediators and reduced scar formation. Here we also discuss existing challenges, both in approaching fibroblasts as therapeutic targets, and in the development of novel melanocortin drug candidates, that may help advance the field and deliver new medicines for the management of diseases with high medical needs.
Collapse
|
8
|
Öz HH, Cheng EC, Di Pietro C, Tebaldi T, Biancon G, Zeiss C, Zhang PX, Huang PH, Esquibies SS, Britto CJ, Schupp JC, Murray TS, Halene S, Krause DS, Egan ME, Bruscia EM. Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis. Cell Rep 2022; 41:111797. [PMID: 36516754 PMCID: PMC9833830 DOI: 10.1016/j.celrep.2022.111797] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Persistent neutrophil-dominated lung inflammation contributes to lung damage in cystic fibrosis (CF). However, the mechanisms that drive persistent lung neutrophilia and tissue deterioration in CF are not well characterized. Starting from the observation that, in patients with CF, c-c motif chemokine receptor 2 (CCR2)+ monocytes/macrophages are abundant in the lungs, we investigate the interplay between monocytes/macrophages and neutrophils in perpetuating lung tissue damage in CF. Here we show that CCR2+ monocytes in murine CF lungs drive pathogenic transforming growth factor β (TGF-β) signaling and sustain a pro-inflammatory environment by facilitating neutrophil recruitment. Targeting CCR2 to lower the numbers of monocytes in CF lungs ameliorates neutrophil inflammation and pathogenic TGF-β signaling and prevents lung tissue damage. This study identifies CCR2+ monocytes as a neglected contributor to the pathogenesis of CF lung disease and as a therapeutic target for patients with CF, for whom lung hyperinflammation and tissue damage remain an issue despite recent advances in CF transmembrane conductance regulator (CFTR)-specific therapeutic agents.
Collapse
Affiliation(s)
- Hasan H Öz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Ee-Chun Cheng
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | | | - Toma Tebaldi
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Giulia Biancon
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Caroline Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ping-Xia Zhang
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Pamela H Huang
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Sofia S Esquibies
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Clemente J Britto
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jonas C Schupp
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Thomas S Murray
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Diane S Krause
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Marie E Egan
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
de Rooij LPMH, Becker LM, Teuwen LA, Boeckx B, Jansen S, Feys S, Verleden S, Liesenborghs L, Stalder AK, Libbrecht S, Van Buyten T, Philips G, Subramanian A, Dumas SJ, Meta E, Borri M, Sokol L, Dendooven A, Truong ACK, Gunst J, Van Mol P, Haslbauer JD, Rohlenova K, Menter T, Boudewijns R, Geldhof V, Vinckier S, Amersfoort J, Wuyts W, Van Raemdonck D, Jacobs W, Ceulemans LJ, Weynand B, Thienpont B, Lammens M, Kuehnel M, Eelen G, Dewerchin M, Schoonjans L, Jonigk D, van Dorpe J, Tzankov A, Wauters E, Mazzone M, Neyts J, Wauters J, Lambrechts D, Carmeliet P. The pulmonary vasculature in lethal COVID-19 and idiopathic pulmonary fibrosis at single cell resolution. Cardiovasc Res 2022; 119:520-535. [PMID: 35998078 PMCID: PMC9452154 DOI: 10.1093/cvr/cvac139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Aims SARS-CoV-2 infection causes COVID-19, which in severe cases evokes life-threatening acute respiratory distress syndrome (ARDS). Transcriptome signatures and the functional relevance of non-vascular cell types (e.g. immune and epithelial cells) in COVID-19 are becoming increasingly evident. However, despite its known contribution to vascular inflammation, recruitment/invasion of immune cells, vascular leakage and perturbed hemostasis in the lungs of severe COVID-19 patients, an in-depth interrogation of the endothelial cell (EC) compartment in lethal COVID-19 is lacking. Moreover, progressive fibrotic lung disease represents one of the complications of COVID-19 pneumonia and ARDS. Analogous features between idiopathic pulmonary fibrosis (IPF) and COVID-19 suggest partial similarities in their pathophysiology, yet, a head-to-head comparison of pulmonary cell transcriptomes between both conditions has not been implemented to date. Methods and Results We performed single nucleus RNA-seq (snRNA-seq) on frozen lungs from 7 deceased COVID-19 patients, 6 IPF explant lungs and 12 controls. The vascular fraction, comprising 38,794 nuclei, could be subclustered into 14 distinct EC subtypes. Non-vascular cell types, comprising 137,746 nuclei, were subclustered and used for EC-interactome analyses. Pulmonary ECs of deceased COVID-19 patients showed an enrichment of genes involved in cellular stress, as well as signatures suggestive of dampened immunomodulation and impaired vessel wall integrity. In addition, increased abundance of a population of systemic capillary and venous ECs was identified in COVID-19 and IPF. COVID-19 systemic ECs closely resembled their IPF counterparts, and a set of 30 genes was found congruently enriched in systemic ECs across studies. Receptor-ligand interaction analysis of ECs with non-vascular cell types in the pulmonary micro-environment revealed numerous previously unknown interactions specifically enriched/depleted in COVID-19 and/or IPF. Conclusions This study uncovered novel insights into the abundance, expression patterns and interactomes of EC subtypes in COVID-19 and IPF, relevant for future investigations into the progression and treatment of both lethal conditions. Translational perspective While assessing clinical and molecular characteristics of severe and lethal COVID-19 cases, the vasculature’s undeniable role in disease progression has been widely acknowledged. COVID-19 lung pathology moreover shares certain clinical features with late-stage IPF – yet an in-depth interrogation and direct comparison of the endothelium at single-cell level in both conditions is still lacking. By comparing the transcriptomes of ECs from lungs of deceased COVID-19 patients to those from IPF explant and control lungs, we gathered key insights the heterogeneous composition and potential roles of ECs in both lethal diseases, which may serve as a foundation for development of novel therapeutics.
Collapse
Affiliation(s)
| | | | - Laure-Anne Teuwen
- Present address: Department of Oncology, Antwerp University Hospital (UZA), Edegem 2650, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Sander Jansen
- Laboratory of Virology & Chemotherapy, KU Leuven, Leuven 3000, Belgium
| | - Simon Feys
- Medical Intensive Care Unit, UZ Gasthuisberg & Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven 3000, Belgium
| | - Stijn Verleden
- Present address: Department of Antwerp Surgical Training, Anatomy and Research Centre, Division of Thoracic and Vascular Surgery, University of Antwerp, Wilrijk, Belgium
| | | | - Anna K Stalder
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Sasha Libbrecht
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Tina Van Buyten
- Laboratory of Virology & Chemotherapy, KU Leuven, Leuven 3000, Belgium
| | - Gino Philips
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Abhishek Subramanian
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Sébastien J Dumas
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Elda Meta
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Mila Borri
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Liliana Sokol
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Amélie Dendooven
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
- University of Antwerp, Faculty of Medicine, Wilrijk 2610, Belgium
| | - Anh-Co K Truong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Jan Gunst
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Pierre Van Mol
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Jasmin D Haslbauer
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Katerina Rohlenova
- Present address: Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 252 50, Czech Republic
| | - Thomas Menter
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | | | - Vincent Geldhof
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Jacob Amersfoort
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Wim Wuyts
- Department of Respiratory Medicine, Unit for Interstitial Lung Diseases, UZ Gasthuisberg, Leuven 3000, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven 3000, Belgium
| | - Werner Jacobs
- Medical CBRNe unit, Queen Astrid Military Hospital, Belgian Defense, Neder-Over-Heembeek 1120, Belgium
- Department of Forensic Pathology, ASTARC Antwerp University Hospital and University of Antwerp, Antwerp 2610, Belgium
| | - Laurens J Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven 3000, Belgium
| | - Birgit Weynand
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Martin Lammens
- Department of Pathology Antwerp University Hospital, Edegem 2560, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp 2000, Belgium
| | - Mark Kuehnel
- Medizinische Hochschule Hannover (MHH), Institut für Pathologie, D-30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Centre for Lung research (DZL), Hannover 30625, Germany
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Danny Jonigk
- Medizinische Hochschule Hannover (MHH), Institut für Pathologie, D-30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Centre for Lung research (DZL), Hannover 30625, Germany
| | - Jo van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven 3000, Belgium
- Respiratory Oncology Unit, University Hospital KU Leuven, Leuven 3000, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven 3000, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Johan Neyts
- Laboratory of Virology & Chemotherapy, KU Leuven, Leuven 3000, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, UZ Gasthuisberg & Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven 3000, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | | |
Collapse
|
10
|
Quaresma MC, Botelho HM, Pankonien I, Rodrigues CS, Pinto MC, Costa PR, Duarte A, Amaral MD. Exploring YAP1-centered networks linking dysfunctional CFTR to epithelial-mesenchymal transition. Life Sci Alliance 2022; 5:5/9/e202101326. [PMID: 35500936 PMCID: PMC9060002 DOI: 10.26508/lsa.202101326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022] Open
Abstract
In this work, a systems biology approach identifies potentially dysregulated EMT signaling in CF (including the Hippo, Wnt, TGF-β, p53, and MYC pathways), integrated by YAP1 and TEAD4. Mutations in the CFTR anion channel cause cystic fibrosis (CF) and have also been related to higher cancer incidence. Previously we proposed that this is linked to an emerging role of functional CFTR in protecting against epithelial–mesenchymal transition (EMT). However, the pathways bridging dysfunctional CFTR to EMT remain elusive. Here, we applied systems biology to address this question. Our data show that YAP1 is aberrantly active in the presence of mutant CFTR, interacting with F508del, but not with wt-CFTR, and that YAP1 knockdown rescues F508del-CFTR processing and function. Subsequent analysis of YAP1 interactors and roles in cells expressing either wt- or F508del-CFTR reveal that YAP1 is an important mediator of the fibrotic/EMT processes in CF. Alongside, five main pathways emerge here as key in linking mutant CFTR to EMT, namely, (1) the Hippo pathway; (2) the Wnt pathway; (3) the TGFβ pathway; (4) the p53 pathway; and (5) MYC signaling. Several potential hub proteins which mediate the crosstalk among these pathways were also identified, appearing as potential therapeutic targets for both CF and cancer.
Collapse
Affiliation(s)
- Margarida C Quaresma
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Hugo M Botelho
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Ines Pankonien
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Cláudia S Rodrigues
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Madalena C Pinto
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Pau R Costa
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Aires Duarte
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Margarida D Amaral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Gao J, Hao Y, Piao X, Gu X. Aldehyde Dehydrogenase 2 as a Therapeutic Target in Oxidative Stress-Related Diseases: Post-Translational Modifications Deserve More Attention. Int J Mol Sci 2022; 23:ijms23052682. [PMID: 35269824 PMCID: PMC8910853 DOI: 10.3390/ijms23052682] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) has both dehydrogenase and esterase activity; its dehydrogenase activity is closely related to the metabolism of aldehydes produced under oxidative stress (OS). In this review, we recapitulate the enzyme activity of ALDH2 in combination with its protein structure, summarize and show the main mechanisms of ALDH2 participating in metabolism of aldehydes in vivo as comprehensively as possible; we also integrate the key regulatory mechanisms of ALDH2 participating in a variety of physiological and pathological processes related to OS, including tissue and organ fibrosis, apoptosis, aging, and nerve injury-related diseases. On this basis, the regulatory effects and application prospects of activators, inhibitors, and protein post-translational modifications (PTMs, such as phosphorylation, acetylation, S-nitrosylation, nitration, ubiquitination, and glycosylation) on ALDH2 are discussed and prospected. Herein, we aimed to lay a foundation for further research into the mechanism of ALDH2 in oxidative stress-related disease and provide a basis for better use of the ALDH2 function in research and the clinic.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
- Correspondence:
| |
Collapse
|
12
|
Jeong J, Choi J. Advancing the Adverse Outcome Pathway for PPARγ Inactivation Leading to Pulmonary Fibrosis Using Bradford-Hill Consideration and the Comparative Toxicogenomics Database. Chem Res Toxicol 2022; 35:233-243. [PMID: 35143163 DOI: 10.1021/acs.chemrestox.1c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulmonary fibrosis is regulated by transforming growth factor-β (TGF-β) and peroxisome proliferator-activated receptor-gamma (PPARγ). An adverse outcome pathway (AOP) for PPARγ inactivation leading to pulmonary fibrosis has been previously developed. To advance the development of this AOP, the confidence of the overall AOP was assessed using the Bradford-Hill considerations as per the recommendations from the Organisation for Economic Co-operation and Development (OECD) Users' Handbook. Overall, the essentiality of key events (KEs) and the biological plausibility of key event relationships (KERs) were rated high. In contrast, the empirical support of KERs was found to be moderate. To experimentally evaluate the KERs from the molecular initiating event (MIE) and KE1, PPARγ (MIE) and TGF-β (KE1) inhibitors were used to examine the effects of downstream events following inhibition of their upstream events. PPARγ inhibition (MIE) led to TGF-β activation (KE1), upregulation in vimentin expression (KE3), and an increase in the fibronectin level (KE4). Similarly, activated TGF-β (KE1) led to an increase in vimentin (KE3) and fibronectin expression (KE4). In the database analysis using the Comparative Toxicogenomics Database, 31 genes related to each KE were found to be highly correlated with pulmonary fibrosis, and the top 21 potential stressors were suggested. The AOP for pulmonary fibrosis evaluated in this study will be the basis for the screening of inhaled toxic substances in the environment.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
13
|
Rai V, Moellmer R, Agrawal DK. The role of CXCL8 in chronic nonhealing diabetic foot ulcers and phenotypic changes in fibroblasts: a molecular perspective. Mol Biol Rep 2022; 49:1565-1572. [PMID: 35044539 DOI: 10.1007/s11033-022-07144-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION A persistent inflammation is perpetuated by infiltrating immune cells and cytokines secreted from these immune cells. Additionally, apoptotic keratinocytes and adipocytes in diabetes causes diabetic foot ulcer (DFU) to arrest in an inflammatory phase without progressing to the resolution phase. This leads to a nonhealing DFU and, despite advanced treatments consisting of wound debridement, off-loading the ulcer of necrotic tissue, wound dressings to keep it moist and control exudate, medication, and preventing infection, DFUs remain a clinical problem. Nonhealing DFUs pose not only an economic burden but also increased morbidity and mortality in the form of psychological stress with and increased chance of amputation, and even death. Thus, investigating the complicated underlying molecular mechanism responsible for nonhealing patterns and designing better therapeutics is warranted. This review article focuses on the role of IL-8-mediated persistent inflammation and phenotypic change of fibroblasts due to this inflammatory cascade. We have discussed various sources of interleukin (IL)-8 secretion and the possible association of IL8-fibroblast plasticity as a cause of nonhealing DFUs. MATERIAL AND METHODS A literature search on PubMed, Google Scholar, and PMC was done including the terms diabetic foot ulcer, diabetes, diabetic ulcer, chronic inflammation, interleukin 8, diabetic wound, and nonhealing diabetic foot ulcers. The articles in the English language and published in last 10 years were selected. From the pool of these, the articles describing the relationship between IL-8 and nonhealing diabetic foot ulcer and diabetic ulcer were used sorted out and used for this review article following PRISMA guidelines. CONCLUSION Increased infiltration of inflammatory immune cells, secretion of pro-inflammatory cytokines, altered keratinocyte-fibroblast function, and phenotypic changes of fibroblasts in DFUs seem to be critical to the nonhealing of DFUs. Thus, inhibiting IL-8 secretion and downstream signaling seems to be a goal of potential therapeutics.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| | - Rebecca Moellmer
- Western University College of Podiatric Medicine, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| |
Collapse
|
14
|
Manti S, Parisi GF, Papale M, Marseglia GL, Licari A, Leonardi S. Type 2 inflammation in cystic fibrosis: New insights. Pediatr Allergy Immunol 2022; 33 Suppl 27:15-17. [PMID: 35080292 PMCID: PMC9305411 DOI: 10.1111/pai.13619] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/17/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Recently, type 2 inflammation has been recognized as one of the most critical factors participating in the pathogenesis of cystic fibrosis (CF). On the one hand, type 2 inflammation restores tissue homeostasis and contributes to the resolution of inflammation following an injury. On the other hand, type 2 response-activated immune cells may become dysregulated or chronically activated, causing tissue fibrosis. Among the type 2 cytokine-driven inflammatory pathways, the transforming growth factor β (TGFβ), interleukin (IL)-17, IL-33, and IL-13 have been identified as essential mediators in patients suffering from CF. Given their critical role, we firmly believe that an adequate comprehension of the type 2-mediated pathways can identify attractive targets to decrease pharmacologically the inflammation and fibrosis occurring in the pulmonary tissue of patients suffering from CF.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Catania, Italy
| | - Giuseppe Fabio Parisi
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Catania, Italy
| | - Maria Papale
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Catania, Italy
| | - Gian Luigi Marseglia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Amelia Licari
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Salvatore Leonardi
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Proteomic analysis of serum samples of paracoccidioidomycosis patients with severe pulmonary sequel. PLoS Negl Trop Dis 2021; 15:e0009714. [PMID: 34424905 PMCID: PMC8425554 DOI: 10.1371/journal.pntd.0009714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/08/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022] Open
Abstract
Background Pulmonary sequelae (PS) in patients with chronic paracoccidioidomycosis (PCM) typically include pulmonary fibrosis and emphysema. Knowledge of the molecular pathways involved in PS of PCM is required for treatment and biomarker identification. Methodology/Principal findings This non-concurrent cohort study included 29 patients with pulmonary PCM that were followed before and after treatment. From this group, 17 patients evolved to mild/ moderate PS and 12 evolved severe PS. Sera from patients were evaluated before treatment and at clinical cure, serological cure, and apparent cure. A nanoACQUITY UPLC-Xevo QT MS system and PLGS software were used to identify serum differentially expressed proteins, data are available via ProteomeXchange with identifier PXD026906. Serum differentially expressed proteins were then categorized using Cytoscape software and the Reactome pathway database. Seventy-two differentially expressed serum proteins were identified in patients with severe PS compared with patients with mild/moderate PS. Most proteins altered in severe PS were involved in wound healing, inflammatory response, and oxygen transport pathways. Before treatment and at clinical cure, signaling proteins participating in wound healing, complement cascade, cholesterol transport and retinoid metabolism pathways were downregulated in patients with severe PS, whereas signaling proteins in gluconeogenesis and gas exchange pathways were upregulated. At serological cure, the pattern of protein expression reversed. At apparent cure pathways related with tissue repair (fibrosis) became downregulated, and pathway related oxygen transport became upregulated. Additionally, we identified 15 proteins as candidate biomarkers for severe PS. Conclusions/Significance Development of severe PS is related to increased expression of proteins involved in glycolytic pathway and oxygen exchange), indicative of the greater cellular activity and replication associated with early dysregulation of wound healing and aberrant tissue repair. Our findings provide new targets to study mechanisms of PS in PCM, as well as potential biomarkers. Pulmonary fibrosis is the main sequel of paracoccidioidomycosis (PCM), a fungal disease that affects mainly men, rural workers. The development of pulmonary fibrosis is complex and involves several mechanisms that culminate in aberrant collagen production and deposition in the lungs making it became stiff and blocking the air passages. These changes lead to difficulty in breathing and in PCM patients dyspnea in response to high or low levels of exertion is common. Therefore, these patients show incapacity to work and the decreased quality of life. With the possibility of identifying some marker, for example, it could help the indication of respiratory physiotherapy, professional rehabilitation, or therapeutic intervention. This is the first study to examine the pulmonary sequelae (PS) in patients with paracoccidioidomycosis using an approach combining proteomics with bioinformatics. Here, we identify the specific proteome pattern found in PCM patients with severe sequelae that distinguishes these patients from that with mild/moderate sequelae. Our results showed that time points immediately before treatment and at clinical cure are key moments at which PS can progress to severe PS due a dysregulation in wound healing with consequent delayed in the healing processes resulting in an aberrant scar. As such, we suggest that the prognoses for severe PS should be considered as soon as possible and as early as diagnosis of PCM. Furthermore, we used proteomics to identify possible serum biomarkers with which to predict the likely development of severe PS, to be validated in future studies.
Collapse
|
16
|
Eapen MS, Lu W, Hackett TL, Singhera GK, Mahmood MQ, Hardikar A, Ward C, Walters EH, Sohal SS. Increased myofibroblasts in the small airways, and relationship to remodelling and functional changes in smokers and COPD patients: potential role of epithelial-mesenchymal transition. ERJ Open Res 2021; 7:00876-2020. [PMID: 34109247 PMCID: PMC8181830 DOI: 10.1183/23120541.00876-2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Previous reports have shown epithelial-mesenchymal transition (EMT) as an active process that contributes to small airway fibrotic pathology. Myofibroblasts are highly active pro-fibrotic cells that secrete excessive and altered extracellular matrix (ECM). Here we relate small airway myofibroblast presence with airway remodelling, physiology and EMT activity in smokers and COPD patients. Methods Lung resections from nonsmoker controls, normal lung function smokers and COPD current and ex-smokers were stained with anti-human α-smooth muscle actin (SMA), collagen 1 and fibronectin. αSMA+ cells were computed in reticular basement membrane (Rbm), lamina propria and adventitia and presented per mm of Rbm and mm2 of lamina propria. Collagen-1 and fibronectin are presented as a percentage change from normal. All analyses including airway thickness were measured using Image-pro-plus 7.0. Results We found an increase in subepithelial lamina propria (especially) and adventitia thickness in all pathological groups compared to nonsmoker controls. Increases in αSMA+ myofibroblasts were observed in subepithelial Rbm, lamina propria and adventitia in both the smoker and COPD groups compared to nonsmoker controls. Furthermore, the increase in the myofibroblast population in the lamina propria was strongly associated with decrease in lung function, lamina propria thickening, increase in ECM protein deposition, and finally EMT activity in epithelial cells. Conclusions This is the first systematic characterisation of small airway myofibroblasts in COPD based on their localisation, with statistically significant correlations between them and other pan-airway structural, lung function and ECM protein changes. Finally, we suggest that EMT may be involved in such changes.
Collapse
Affiliation(s)
- Mathew Suji Eapen
- Respiratory Translational Research Group, Dept of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Dept of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Tillie L Hackett
- Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Gurpreet Kaur Singhera
- UBC Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Malik Q Mahmood
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Ashutosh Hardikar
- Respiratory Translational Research Group, Dept of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia.,Dept of Cardiothoracic Surgery, Royal Hobart Hospital, Hobart, Australia
| | - Chris Ward
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Eugene Haydn Walters
- School of Medicine, and Menzies Institute of Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.,These authors contributed equally
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Dept of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia.,These authors contributed equally
| |
Collapse
|
17
|
Patel SS, Sandur A, El-Kebir M, Gaba RC, Schook LB, Schachtschneider KM. Transcriptional Profiling of Porcine HCC Xenografts Provides Insights Into Tumor Cell Microenvironment Signaling. Front Genet 2021; 12:657330. [PMID: 33995488 PMCID: PMC8118521 DOI: 10.3389/fgene.2021.657330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, representing the most common form of liver cancer. As HCC incidence and mortality continue to increase, there is a growing need for improved translational animal models to bridge the gap between basic HCC research and clinical practice to improve early detection and treatment strategies for this deadly disease. Recently the Oncopig cancer model-a novel transgenic swine model that recapitulates human cancer through Cre recombinase induced expression of KRAS G12D and TP53 R167H driver mutations-has been validated as a large animal translational model for human HCC. Due to the similar size, anatomy, physiology, immunology, genetics, and epigenetics between pigs and humans, the Oncopig has the potential to improve translation of novel diagnostic and therapeutic modalities into clinical practice. Recent studies have demonstrated the importance of tumor cells in shaping its surrounding microenvironment into one that is more proliferative, invasive, and metastatic; however, little is known about the impact of microenvironment signaling on HCC tumor biology and differential gene expression between HCC tumors and its tumor microenvironment (TME). In this study, transcriptional profiling was performed on Oncopig HCC xenograft tumors (n = 3) produced via subcutaneous injection of Oncopig HCC cells into severe combined immunodeficiency (SCID) mice. To differentiate between gene expression in the tumor and surrounding tumor microenvironment, RNA-seq reads originating from porcine (HCC tumor) and murine (microenvironment) cells were bioinformatically separated using Xenome. Principle component analysis (PCA) demonstrated clustering by group based on the expression of orthologous genes. Genes contributing to each principal component were extracted and subjected to functional analysis to identify alterations in pathway signaling between HCC cells and the microenvironment. Altered expression of genes associated with hepatic fibrosis deposition, immune response, and neo angiogenesis were observed. The results of this study provide insights into the interplay between HCC and microenvironment signaling in vivo, improving our understanding of the interplay between HCC tumor cells, the surrounding tumor microenvironment, and the impact on HCC development and progression.
Collapse
Affiliation(s)
- Shovik S. Patel
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Amitha Sandur
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mohammed El-Kebir
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ron C. Gaba
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kyle M. Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Page LK, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. Influence of Hypoxia on the Epithelial-Pathogen Interactions in the Lung: Implications for Respiratory Disease. Front Immunol 2021; 12:653969. [PMID: 33868294 PMCID: PMC8044850 DOI: 10.3389/fimmu.2021.653969] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Under normal physiological conditions, the lung remains an oxygen rich environment. However, prominent regions of hypoxia are a common feature of infected and inflamed tissues and many chronic inflammatory respiratory diseases are associated with mucosal and systemic hypoxia. The airway epithelium represents a key interface with the external environment and is the first line of defense against potentially harmful agents including respiratory pathogens. The protective arsenal of the airway epithelium is provided in the form of physical barriers, and the production of an array of antimicrobial host defense molecules, proinflammatory cytokines and chemokines, in response to activation by receptors. Dysregulation of the airway epithelial innate immune response is associated with a compromised immunity and chronic inflammation of the lung. An increasing body of evidence indicates a distinct role for hypoxia in the dysfunction of the airway epithelium and in the responses of both innate immunity and of respiratory pathogens. Here we review the current evidence around the role of tissue hypoxia in modulating the host-pathogen interaction at the airway epithelium. Furthermore, we highlight the work needed to delineate the role of tissue hypoxia in the pathophysiology of chronic inflammatory lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease in addition to novel respiratory diseases such as COVID-19. Elucidating the molecular mechanisms underlying the epithelial-pathogen interactions in the setting of hypoxia will enable better understanding of persistent infections and complex disease processes in chronic inflammatory lung diseases and may aid the identification of novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Lee K. Page
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - C. Mirella Spalluto
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
- Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
19
|
Pathophysiology of Lung Disease and Wound Repair in Cystic Fibrosis. PATHOPHYSIOLOGY 2021; 28:155-188. [PMID: 35366275 PMCID: PMC8830450 DOI: 10.3390/pathophysiology28010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive, life-threatening condition affecting many organs and tissues, the lung disease being the chief cause of morbidity and mortality. Mutations affecting the CF Transmembrane Conductance Regulator (CFTR) gene determine the expression of a dysfunctional protein that, in turn, triggers a pathophysiological cascade, leading to airway epithelium injury and remodeling. In vitro and in vivo studies point to a dysregulated regeneration and wound repair in CF airways, to be traced back to epithelial CFTR lack/dysfunction. Subsequent altered ion/fluid fluxes and/or signaling result in reduced cell migration and proliferation. Furthermore, the epithelial-mesenchymal transition appears to be partially triggered in CF, contributing to wound closure alteration. Finally, we pose our attention to diverse approaches to tackle this defect, discussing the therapeutic role of protease inhibitors, CFTR modulators and mesenchymal stem cells. Although the pathophysiology of wound repair in CF has been disclosed in some mechanisms, further studies are warranted to understand the cellular and molecular events in more details and to better address therapeutic interventions.
Collapse
|
20
|
Awatade NT, Wong SL, Capraro A, Pandzic E, Slapetova I, Zhong L, Turgutoglu N, Fawcett LK, Whan RM, Jaffe A, Waters SA. Significant functional differences in differentiated Conditionally Reprogrammed (CRC)- and Feeder-free Dual SMAD inhibited-expanded human nasal epithelial cells. J Cyst Fibros 2021; 20:364-371. [PMID: 33414087 DOI: 10.1016/j.jcf.2020.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Patient-derived airway cells differentiated at Air Liquid Interface (ALI) are valuable models for Cystic fibrosis (CF) precision therapy. Different culture expansion methods have been established to extend expansion capacity of airway basal cells, while retaining functional airway epithelium physiology. Considerable variation in response to CFTR modulators is observed in cultures even within the same CFTR genotype and despite the use of similar ALI culture techniques. We aimed to address culture expansion method impact on differentiation. METHODS Nasal epithelial brushings from 14 individuals (CF=9; non-CF=5) were collected, then equally divided and expanded under conditional reprogramming culture (CRC) and feeder-serum-free "dual-SMAD inhibition" (SMADi) methods. Expanded cells from each culture were differentiated with proprietary PneumaCult™-ALI media. Morphology (Immunofluorescence), global proteomics (LC-MS/MS) and function (barrier integrity, cilia motility, and ion transport) were compared in CRCALI and SMADiALI under basal and CFTR corrector treated (VX-809) conditions. RESULTS No significant difference in the structural morphology or baseline global proteomics profile were observed. Barrier integrity and cilia motility were significantly different, despite no difference in cell junction morphology or cilia abundance. Epithelial Sodium Channels and Calcium-activated Chloride Channel activity did not differ but CFTR mediated chloride currents were significantly reduced in SMADiALI compare to their CRCALI counterparts. CONCLUSION Alteration of cellular physiological function in vitro were more prominent than structural and differentiation potential in airway ALI. Since initial expansion culture conditions significantly influence CFTR activity, this could lead to false conclusions if data from different labs are compared against each other without specific reference ranges.
Collapse
Affiliation(s)
- Nikhil T Awatade
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Sharon L Wong
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Alexander Capraro
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Elvis Pandzic
- Biomedical Imaging Facility, University of New South Wales, Sydney, NSW, Australia
| | - Iveta Slapetova
- Biomedical Imaging Facility, University of New South Wales, Sydney, NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Nihan Turgutoglu
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Laura K Fawcett
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Renee M Whan
- Biomedical Imaging Facility, University of New South Wales, Sydney, NSW, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Shafagh A Waters
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Quaresma MC, Pankonien I, Clarke LA, Sousa LS, Silva IAL, Railean V, Doušová T, Fuxe J, Amaral MD. Mutant CFTR Drives TWIST1 mediated epithelial-mesenchymal transition. Cell Death Dis 2020; 11:920. [PMID: 33106471 PMCID: PMC7588414 DOI: 10.1038/s41419-020-03119-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is a monogenetic disease resulting from mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene encoding an anion channel. Recent evidence indicates that CFTR plays a role in other cellular processes, namely in development, cellular differentiation and wound healing. Accordingly, CFTR has been proposed to function as a tumour suppressor in a wide range of cancers. Along these lines, CF was recently suggested to be associated with epithelial–mesenchymal transition (EMT), a latent developmental process, which can be re-activated in fibrosis and cancer. However, it is unknown whether EMT is indeed active in CF and if EMT is triggered by dysfunctional CFTR itself or a consequence of secondary complications of CF. In this study, we investigated the occurrence of EMT in airways native tissue, primary cells and cell lines expressing mutant CFTR through the expression of epithelial and mesenchymal markers as well as EMT-associated transcription factors. Transepithelial electrical resistance, proliferation and regeneration rates, and cell resistance to TGF-β1induced EMT were also measured. CF tissues/cells expressing mutant CFTR displayed several signs of active EMT, namely: destructured epithelial proteins, defective cell junctions, increased levels of mesenchymal markers and EMT-associated transcription factors, hyper-proliferation and impaired wound healing. Importantly, we found evidence that the mutant CFTR triggered EMT was mediated by EMT-associated transcription factor TWIST1. Further, our data show that CF cells are over-sensitive to EMT but the CF EMT phenotype can be reversed by CFTR modulator drugs. Altogether, these results identify for the first time that EMT is intrinsically triggered by the absence of functional CFTR through a TWIST1 dependent mechanism and indicate that CFTR plays a direct role in EMT protection. This mechanistic link is a plausible explanation for the high incidence of fibrosis and cancer in CF, as well as for the role of CFTR as tumour suppressor protein.
Collapse
Affiliation(s)
- Margarida C Quaresma
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Ines Pankonien
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luís S Sousa
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Iris A L Silva
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Violeta Railean
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Tereza Doušová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jonas Fuxe
- Division of Pathology, Department of Laboratory Medicine (LABMED), Karolinska Institutet and Karolinska University hospital, Huddinge, Stockholm, Sweden
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal.
| |
Collapse
|
22
|
Ly TD, Kleine A, Fischer B, Schmidt V, Hendig D, Kuhn J, Knabbe C, Faust I. Identification of Putative Non-Substrate-Based XT-I Inhibitors by Natural Product Library Screening. Biomolecules 2020; 10:E1467. [PMID: 33096778 PMCID: PMC7589200 DOI: 10.3390/biom10101467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/02/2023] Open
Abstract
Fibroproliferative diseases are characterized by excessive accumulation of extracellular matrix (ECM) components leading to organ dysfunction. This process is characterized by an increase in myofibroblast content and enzyme activity of xylosyltransferase-I (XT-I), the initial enzyme in proteoglycan (PG) biosynthesis. Therefore, the inhibition of XT-I could be a promising treatment for fibrosis. We used a natural product-inspired compound library to identify non-substrate-based inhibitors of human XT-I by UPLC-MS/MS. We combined this cell-free approach with virtual and molecular biological analyses to confirm and prioritize the inhibitory potential of the compounds identified. The characterization for compound potency in TGF-β1-driven XYLT1 transcription regulation in primary dermal human fibroblasts (key cells in ECM remodeling) was addressed by gene expression analysis. Consequently, we identified amphotericin B and celastrol as new non-substrate-based XT-I protein inhibitors. Their XT-I inhibitory effects were mediated by an uncompetitive or a competitive inhibition mode, respectively. Both compounds reduced the cellular XYLT1 expression level and XT-I activity. We showed that these cellular inhibitor-mediated changes involve the TGF-β and microRNA-21 signaling pathway. The results of our study provide a strong rationale for the further optimization and future usage of the XT-I inhibitors identified as promising therapeutic agents of fibroproliferative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany; (T.-D.L.); (A.K.); (B.F.); (V.S.); (D.H.); (J.K.); (C.K.)
| |
Collapse
|
23
|
You E, Ko P, Jeong J, Keum S, Kim JW, Seo YJ, Song WK, Rhee S. Dynein-mediated nuclear translocation of yes-associated protein through microtubule acetylation controls fibroblast activation. Cell Mol Life Sci 2020; 77:4143-4161. [PMID: 31912196 PMCID: PMC11105004 DOI: 10.1007/s00018-019-03412-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022]
Abstract
Myofibroblasts are the major cell type that is responsible for increase in the mechanical stiffness in fibrotic tissues. It has well documented that the TGF-β/Smad axis is required for myofibroblast differentiation under the rigid substrate condition. However, the mechanism driving myofibroblast differentiation in soft substrates remains unknown. In this research, we demonstrated that interaction of yes-associated protein (YAP) and acetylated microtubule via dynein, a microtubule motor protein drives nuclear localization of YAP in the soft matrix, which in turn increased TGF-β1-induced transcriptional activity of Smad for myofibroblast differentiation. Pharmacological and genetical disruption of dynein impaired the nuclear translocation of YAP and decreased the TGF-β1-induced Smad activity even though phosphorylation and nuclear localization of Smad occurred normally in α-tubulin acetyltransferase 1 (α-TAT1) knockout cell. Moreover, microtubule acetylation prominently appeared in the fibroblast-like cells nearby the blood vessel in the fibrotic liver induced by CCl4 administration, which was conversely decreased by TGF-β receptor inhibitor. As a result, quantitative inhibition of microtubule acetylation may be suggested as a new target for overcoming fibrotic diseases.
Collapse
Affiliation(s)
- Eunae You
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Woo Keun Song
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-Gu, Gwangju, 61005, Republic of Korea.
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
24
|
Fibrocyte accumulation in the lungs of cystic fibrosis patients. J Cyst Fibros 2020; 19:815-822. [PMID: 32593509 DOI: 10.1016/j.jcf.2020.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) patients develop severe lung disease including chronic airway infections, neutrophilic inflammation, and progressive fibrotic remodeling in airways. However, cellular and molecular processes that regulate excessive collagen deposition in airways in these patients remain unclear. Fibrocytes are bone marrow (BM)-derived mesenchymal cells that express the hematopoietic cell marker CD45, and mesenchymal cell markers and implicated in collagen deposition in several fibrotic diseases. It is unknown whether fibrocytes accumulate in the lungs of CF patients, so the current study evaluates the presence of fibrocytes in the fibrotic lesions of airways in explanted CF lungs compared to non-CF unused donor lungs (control). METHODS We used immunofluorescence staining to determine if fibrocytes accumulate in explanted CF lungs compared to healthy donor lungs. Simultaneously, we evaluated cells collected by bronchoalveolar lavage (BAL) in CF patients using multi-color flow cytometry. Finally, we analyzed transcripts differentially expressed in fibrocytes isolated from the explanted CF lungs compared to control to assess fibrocyte-specific pro-fibrotic gene networks. RESULTS Our findings demonstrate fibrocyte accumulation in CF lungs compared to non-CF lungs. Additionally, fibrocytes were detected in the BAL of all CF children. Transcriptomic analysis of fibrocytes identified dysregulated genes associated with fibrotic remodeling in CF lungs. CONCLUSIONS With significantly increased fibrocytes that show increased expression of pro-fibrotic gene transcripts compared to control, our findings suggest an intervention for fibrotic remodeling as a potential therapeutic target in CF.
Collapse
|
25
|
Schulz-Kuhnt A, Greif V, Hildner K, Knipfer L, Döbrönti M, Zirlik S, Fuchs F, Atreya R, Zundler S, López-Posadas R, Neufert C, Ramming A, Kiefer A, Grüneboom A, Strasser E, Wirtz S, Neurath MF, Atreya I. ILC2 Lung-Homing in Cystic Fibrosis Patients: Functional Involvement of CCR6 and Impact on Respiratory Failure. Front Immunol 2020; 11:691. [PMID: 32457736 PMCID: PMC7221160 DOI: 10.3389/fimmu.2020.00691] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/26/2020] [Indexed: 01/10/2023] Open
Abstract
Cystic fibrosis patients suffer from a progressive, often fatal lung disease, which is based on a complex interplay between chronic infections, locally accumulating immune cells and pulmonary tissue remodeling. Although group-2 innate lymphoid cells (ILC2s) act as crucial initiators of lung inflammation, our understanding of their involvement in the pathogenesis of cystic fibrosis remains incomplete. Here we report a marked decrease of circulating CCR6+ ILC2s in the blood of cystic fibrosis patients, which significantly correlated with high disease severity and advanced pulmonary failure, strongly implicating increased ILC2 homing from the peripheral blood to the chronically inflamed lung tissue in cystic fibrosis patients. On a functional level, the CCR6 ligand CCL20 was identified as potent promoter of lung-directed ILC2 migration upon inflammatory conditions in vitro and in vivo using a new humanized mouse model with light-sheet fluorescence microscopic visualization of lung-accumulated human ILC2s. In the lung, blood-derived human ILC2s were able to augment local eosinophil and neutrophil accumulation and induced a marked upregulation of pulmonary type-VI collagen expression. Studies in primary human lung fibroblasts additionally revealed ILC2-derived IL-4 and IL-13 as important mediators of this type-VI collagen-inducing effect. Taken together, the here acquired results suggest that pathologically increased CCL20 levels in cystic fibrosis airways induce CCR6-mediated lung homing of circulating human ILC2s. Subsequent ILC2 activation then triggers local production of type-VI collagen and might thereby drive extracellular matrix remodeling potentially influencing pulmonary tissue destruction in cystic fibrosis patients. Thus, modulating the lung homing capacity of circulating ILC2s and their local effector functions opens new therapeutic avenues for cystic fibrosis treatment.
Collapse
Affiliation(s)
- Anja Schulz-Kuhnt
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Vicky Greif
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Lisa Knipfer
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Michael Döbrönti
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Sabine Zirlik
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Florian Fuchs
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Medicine 3, University Hospital of Erlangen, Erlangen, Germany
| | - Alexander Kiefer
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Anika Grüneboom
- Department of Medicine 3, University Hospital of Erlangen, Erlangen, Germany
| | - Erwin Strasser
- Department of Transfusion Medicine and Haemostaseology, University Hospital of Erlangen, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
26
|
Zhang X, Zhou Y, Yu X, Huang Q, Fang W, Li J, Bonventre JV, Sukhova GK, Libby P, Shi GP. Differential Roles of Cysteinyl Cathepsins in TGF-β Signaling and Tissue Fibrosis. iScience 2019; 19:607-622. [PMID: 31446224 PMCID: PMC6715892 DOI: 10.1016/j.isci.2019.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/11/2019] [Accepted: 08/06/2019] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor beta (TGF-β) signaling contributes to tissue fibrosis. Here we demonstrate that TGF-β enhances CatS and CatK expression but reduces CatB and CatL expression in mouse kidney tubular epithelial cells (TECs). CatS- and CatK deficiency reduces TEC nuclear membrane importer importin-β expression, Smad-2/3 activation, and extracellular matrix (ECM) production. Yet CatB- and CatL-deficiency displays the opposite observations with reduced nuclear membrane exporter RanBP3 expression. CatS and CatK form immunocomplexes with the importin-β and RanBP3 more effectively than do CatB and CatL. On the plasma membrane, CatS and CatK preferentially form immunocomplexes with and activate TGF-β receptor-2, whereas CatB and CatL form immunocomplexes with and inactivate TGF-β receptor-1. Unilateral ureteral obstruction-induced renal injury tests differential cathepsin activities in TGF-β signaling and tissue fibrosis. CatB- or CatL-deficiency exacerbates fibrosis, whereas CatS- or CatK-deficiency protects kidneys from fibrosis. These cathepsins exert different effects in the TGF-β signaling cascade independent of their proteolytic properties.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA; School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Zhou
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA; Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xueqing Yu
- Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qin Huang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenqian Fang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Jie Li
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Joseph V Bonventre
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Galina K Sukhova
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Guo-Ping Shi
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Nicola T, Kabir FL, Coric T, Wall SB, Zhang W, James M, MacEwen M, Ren C, Halloran B, Ambalavanan N, Harris WT. CFTR dysfunction increases endoglin and TGF-β signaling in airway epithelia. Physiol Rep 2019; 7:e13977. [PMID: 30806029 PMCID: PMC6389738 DOI: 10.14814/phy2.13977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 11/24/2022] Open
Abstract
Endoglin (ENG) regulates signaling by transforming growth factor-β (TGF-β), a genetic modifier of cystic fibrosis (CF) lung disease severity. We hypothesized that ENG mediates TGF-β pathobiology in CF airway epithelia. Comparing CF and non-CF human lungs, we measured ENG by qPCR, immunoblotting and ELISA. In human bronchial epithelial cell lines (16HBE), we used CFTR siRNA knockdown and functional inhibition (CFTRINH -172) to connect loss of CFTR to ENG synthesis. Plasmid overexpression of ENG assessed the direct effect of ENG on TGF-β transcription and signal amplification in 16HBE cells. We found ENG protein to be increased more than fivefold both in human CF bronchoalveolar fluid (BALF) and human CF lung homogenates. ENG transcripts were increased threefold in CF, with a twofold increase in TGF-β signaling. CFTR knockdown in 16HBE cells tripled ENG transcription and doubled protein levels with corresponding increases in TGF-β signaling. Plasmid overexpression of ENG alone nearly doubled TGF-β1 mRNA and increased TGF-β signaling in 16HBE cells. These experiments identify that loss of CFTR function increases ENG expression in CF epithelia and amplifies TGF-β signaling. Targeting ENG may offer a novel therapeutic opportunity to address TGF-β associated pathobiology in CF.
Collapse
Affiliation(s)
- Teodora Nicola
- Division of NeonatologyDepartment of PediatricsUniversity of Alabama at BirminghamBirminghamAlabama
| | - Farruk L. Kabir
- Division of Pediatric PulmonologyDepartment of PediatricsUniversity of Alabama at BirminghamBirminghamAlabama
| | - Tatjana Coric
- Department of Pharmacology and ToxicologyUniversity of Alabama at BirminghamBirminghamAlabama
| | - Stephanie B. Wall
- Division of NeonatologyDepartment of PediatricsUniversity of Alabama at BirminghamBirminghamAlabama
| | - Weifeng Zhang
- Division of NeonatologyDepartment of PediatricsUniversity of Alabama at BirminghamBirminghamAlabama
| | - Masheika James
- Division of NeonatologyDepartment of PediatricsUniversity of Alabama at BirminghamBirminghamAlabama
| | - Mark MacEwen
- Division of Pediatric PulmonologyDepartment of PediatricsUniversity of Alabama at BirminghamBirminghamAlabama
| | - Changchun Ren
- Division of NeonatologyDepartment of PediatricsUniversity of Alabama at BirminghamBirminghamAlabama
| | - Brian Halloran
- Division of NeonatologyDepartment of PediatricsUniversity of Alabama at BirminghamBirminghamAlabama
| | - Namasivayam Ambalavanan
- Division of NeonatologyDepartment of PediatricsUniversity of Alabama at BirminghamBirminghamAlabama
| | - William T. Harris
- Division of Pediatric PulmonologyDepartment of PediatricsUniversity of Alabama at BirminghamBirminghamAlabama
- Gregory Fleming James Cystic Fibrosis CenterUniversity of Alabama at BirminghamBirminghamAlabama
| |
Collapse
|
28
|
Na M, Hong X, Fuyu J, Dingjie X, Sales D, Hui Z, Zhongqiu W, Shifeng L, Xuemin G, Wenchen C, Dan L, Guizhen Z, Bonan Z, Lijuan Z, Shumin L, Ying Z, Jin W, Mingwang R, Summer R, Fang Y. Proteomic profile of TGF-β1 treated lung fibroblasts identifies novel markers of activated fibroblasts in the silica exposed rat lung. Exp Cell Res 2019; 375:1-9. [PMID: 30641040 DOI: 10.1016/j.yexcr.2019.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
Abstract
We performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) on control and TGF-β1-exposed rat lung fibroblasts to identify proteins differentially expressed between cell populations. A total of 196 proteins were found to be differentially expressed in response to TGF-β1 treatment. Guided by these results, we next determined whether similar changes in protein expression were detectable in the rat lung after chronic exposure to silica dust. Of the five proteins selected for further analysis, we found that levels of all proteins were markedly increased in the silica-exposed rat lung, including the proteins for the very low density lipoprotein receptor (VLDLR) and the transmembrane (type I) heparin sulfate proteoglycan called syndecan 2 (SDC2). Because VLDLR and SDC2 have not, to our knowledge, been previously linked to the pathobiology of silicosis, we next examined whether knockdown of either gene altered responses to TGF-β1 in MRC-5 lung fibroblasts. Interestingly, we found knockdown of either VLDLR or SDC2 dramatically reduced collagen production to TGF-β1, suggesting that both proteins might play a novel role in myofibroblast biology and pathogenesis of silica-induced pulmonary fibrosis. In summary, our findings suggest that performing LC-MS/MS on TGF-β1 stimulated lung fibroblasts can uncover novel molecular targets of activated myofibroblasts in silica-exposed lung.
Collapse
Affiliation(s)
- Mao Na
- Basic Medical College, North China University of Science and Technology, Tangshan, China
| | - Xu Hong
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Jin Fuyu
- Basic Medical College, North China University of Science and Technology, Tangshan, China
| | - Xu Dingjie
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Dominic Sales
- Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhang Hui
- Basic Medical College, North China University of Science and Technology, Tangshan, China
| | - Wei Zhongqiu
- Basic Medical College, North China University of Science and Technology, Tangshan, China
| | - Li Shifeng
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Gao Xuemin
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Cai Wenchen
- School of public health, North China University of Science and Technology, Tangshan, China
| | - Li Dan
- Basic Medical College, North China University of Science and Technology, Tangshan, China
| | - Zhang Guizhen
- Basic Medical College, North China University of Science and Technology, Tangshan, China
| | - Zhang Bonan
- School of public health, North China University of Science and Technology, Tangshan, China
| | - Zhang Lijuan
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Li Shumin
- School of public health, North China University of Science and Technology, Tangshan, China
| | - Zhu Ying
- School of public health, North China University of Science and Technology, Tangshan, China
| | - Wang Jin
- Basic Medical College, North China University of Science and Technology, Tangshan, China
| | - Rui Mingwang
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Ross Summer
- Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yang Fang
- Basic Medical College, North China University of Science and Technology, Tangshan, China; School of public health, North China University of Science and Technology, Tangshan, China; The Hebei key laboratory for organ fibrosis research, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
29
|
Plyler ZE, Birket SE, Schultz BD, Hong JS, Rowe SM, Petty CF, Crowley MR, Crossman DK, Schoeb TR, Sorscher EJ. Non-obstructive vas deferens and epididymis loss in cystic fibrosis rats. Mech Dev 2018; 155:15-26. [PMID: 30391480 DOI: 10.1016/j.mod.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/28/2023]
Abstract
This study utilizes morphological and mechanistic endpoints to characterize the onset of bilateral atresia of the vas deferens in a recently derived cystic fibrosis (CF) rat model. Embryonic reproductive structures, including Wolffian (mesonephric) duct, Mullerian (paramesonephric) duct, mesonephric tubules, and gonad, were shown to mature normally through late embryogenesis, with involution of the vas deferens and/or epididymis typically occurring between birth and postnatal day 4 (P4), although timing and degree of atresia varied. No evidence of mucus obstruction, which is associated with pathology in other CF-affected tissues, was observed at any embryological or postnatal time point. Reduced epididymal coiling was noted post-partum and appeared to coincide with, or predate, loss of more distal vas deferens structure. Remarkably, α smooth muscle actin expression in cells surrounding duct epithelia was markedly diminished in CF animals by P2.5 when compared to wild type counterparts, indicating reduced muscle development. RNA-seq and immunohistochemical analysis of affected tissues showed disruption of developmental signaling by Wnt and related pathways. The findings have relevance to vas deferens loss in humans with CF, where timing of ductular damage is not well characterized and underlying mechanisms are not understood. If vas deferens atresia in humans begins in late gestation and continues through early postnatal life, emerging modulator therapies given perinatally might preserve and enhance integrity of the reproductive tract, which is otherwise absent or deficient in 97% of males with cystic fibrosis.
Collapse
Affiliation(s)
- Z E Plyler
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S E Birket
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - B D Schultz
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA
| | - J S Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - S M Rowe
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C F Petty
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M R Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - D K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - T R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
30
|
Wong CKS, Falkenham A, Myers T, Légaré JF. Connective tissue growth factor expression after angiotensin II exposure is dependent on transforming growth factor-β signaling via the canonical Smad-dependent pathway in hypertensive induced myocardial fibrosis. J Renin Angiotensin Aldosterone Syst 2018; 19:1470320318759358. [PMID: 29575960 PMCID: PMC5888824 DOI: 10.1177/1470320318759358] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Introduction: Transforming growth factor-β (TGF-β) and connective tissue growth factor (CTGF) are often described as the initial pro-fibrotic mediators upregulated early in fibrosis models dependent on angiotensin II (Ang-II). In the present study, we explore the mechanistic link between TGF-β and CTGF expression by using a novel TGF-β trap. Materials and methods: NIH/3T3 fibroblasts were subjected to TGF-β with or without TGF-β trap or 1D11 antibody, CTGF or CTGF plus TGF-β for six or 24 hours, and then used for quantitative real-time polymerase chain reaction (qRT-PCR) or immunocytochemistry. Male C57BL/6 mice were infused with Ang-II and randomly assigned TGF-β trap for six or 24 hours. Hearts were harvested for histological analyses, qRT-PCR and western blotting. Results: Exogenous TGF-β-induced fibroblasts resulted in significant upregulation of CTGF, TGF-β and type I collagen transcript levels in vitro. Additionally, TGF-β promoted the differentiation of fibroblasts into α-SMA+ myofibroblasts. CTGF expression was reduced by the addition of TGF-β trap or neutralizing antibody, confirming that its expression is dependent on TGF-β signaling. In contrast, exogenous CTGF did not appear to have an effect on fibroblast production of pro-fibrotic transcripts or fibroblast differentiation. Ang-II infusion in vivo led to a significant increase in TGF-β and CTGF mRNA expression at six and 24 hours with corresponding changes in Smad2 phosphorylation (pSmad2), indicative of increased TGF-β signaling. Ang-II animals that received the TGF-β trap demonstrated reduced CTGF mRNA levels and pSmad2 at six hours, suggesting that early CTGF expression is dependent on TGF-β signaling. Conclusions: We demonstrated that CTGF expression is dependent on TGF-β signaling both in vitro and in vivo in a model of myocardial fibrosis. This also suggests that early myocardial CTGF mRNA expression (six hours) after Ang-II exposure is likely dependent on latent TGF-β activation via the canonical Smad-dependent pathway in resident cardiac cells.
Collapse
Affiliation(s)
| | - Alec Falkenham
- 1 Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Tanya Myers
- 2 Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Jean-Francois Légaré
- 1 Department of Pathology, Dalhousie University, Halifax, NS, Canada.,2 Department of Surgery, Dalhousie University, Halifax, NS, Canada.,3 Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada.,4 Cardiovascular Research New Brunswick, New Brunswick Heart Centre, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| |
Collapse
|
31
|
Tian B, Widen SG, Yang J, Wood TG, Kudlicki A, Zhao Y, Brasier AR. The NFκB subunit RELA is a master transcriptional regulator of the committed epithelial-mesenchymal transition in airway epithelial cells. J Biol Chem 2018; 293:16528-16545. [PMID: 30166344 DOI: 10.1074/jbc.ra118.003662] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a multistep dedifferentiation program important in tissue repair. Here, we examined the role of the transcriptional regulator NF-κB in EMT of primary human small airway epithelial cells (hSAECs). Surprisingly, transforming growth factor β (TGFβ) activated NF-κB/RELA proto-oncogene, NF-κB subunit (RELA) translocation within 1 day of stimulation, yet induction of its downstream gene regulatory network occurred only after 3 days. A time course of TGFβ-induced EMT transition was analyzed by RNA-Seq in the absence or presence of inducible shRNA-mediated silencing of RELA. In WT cells, TGFβ stimulation significantly affected the expression of 2,441 genes. Gene set enrichment analysis identified WNT, cadherin, and NF-κB signaling as the most prominent TGFβ-inducible pathways. By comparison, RELA controlled expression of 3,138 overlapping genes mapping to WNT, cadherin, and chemokine signaling pathways. Conducting upstream regulator analysis, we found that RELA controls six clusters of upstream transcription factors, many of which overlapped with a transcription factor topology map of EMT developed earlier. RELA triggered expression of three key EMT pathways: 1) the WNT/β-catenin morphogen pathway, 2) the JUN transcription factor, and 3) the Snail family transcriptional repressor 1 (SNAI1). RELA binding to target genes was confirmed by ChIP. Experiments independently validating WNT dependence on RELA were performed by silencing RELA via genome editing and indicated that TGFβ-induced WNT5B expression and downstream activation of the WNT target AXIN2 are RELA-dependent. We conclude that RELA is a master transcriptional regulator of EMT upstream of WNT morphogen, JUN, SNAI1-ZEB1, and interleukin-6 autocrine loops.
Collapse
Affiliation(s)
- Bing Tian
- From the Departments of Internal Medicine and.,Sealy Center for Molecular Medicine, and
| | - Steven G Widen
- Sealy Center for Molecular Medicine, and.,Biochemistry and Molecular Biology
| | - Jun Yang
- From the Departments of Internal Medicine and.,Sealy Center for Molecular Medicine, and
| | - Thomas G Wood
- Sealy Center for Molecular Medicine, and.,Biochemistry and Molecular Biology
| | - Andrzej Kudlicki
- Sealy Center for Molecular Medicine, and.,Biochemistry and Molecular Biology.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - Yingxin Zhao
- From the Departments of Internal Medicine and.,Sealy Center for Molecular Medicine, and.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705
| |
Collapse
|
32
|
Kramer EL, Hardie WD, Madala SK, Davidson C, Clancy JP. Subacute TGFβ expression drives inflammation, goblet cell hyperplasia, and pulmonary function abnormalities in mice with effects dependent on CFTR function. Am J Physiol Lung Cell Mol Physiol 2018; 315:L456-L465. [PMID: 29877096 DOI: 10.1152/ajplung.00530.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis (CF) produces variable lung disease phenotypes that are, in part, independent of the CF transmembrane conductance regulator ( CFTR) genotype. Transforming growth factor-β (TGFβ) is the best described genetic modifier of the CF phenotype, but its mechanism of action is unknown. We hypothesized that TGFβ is sufficient to drive pathognomonic features of CF lung disease in vivo and that CFTR deficiency enhances susceptibility to pathological TGFβ effects. A CF mouse model and littermate controls were exposed intratracheally to an adenoviral vector containing the TGFβ1 cDNA (Ad-TGFβ), empty vector, or PBS only. Studies were performed 1 wk after treatment, including lung mechanics, collection of bronchoalveolar lavage fluid, and analysis of lung histology, RNA, and protein. CF and non-CF mice showed similar weight loss, inflammation, goblet cell hyperplasia, and Smad pathway activation after Ad-TGFβ treatment. Ad-TGFβ produced greater abnormalities in lung mechanics in CF versus control mice, which was uniquely associated with induction of phosphoinositide 3-kinase and mitogen-activated protein kinase signaling. CFTR transcripts were reduced, and epithelial sodium channel transcripts were increased in CF and non-CF mice, whereas the goblet cell transcription factors, forkhead ortholog A3 and SAM-pointed domain-containing ETS-like factor, were increased in non-CF but not CF mice following Ad-TGFβ treatment. Pulmonary TGFβ1 expression was sufficient to produce pulmonary remodeling and abnormalities in lung mechanics that were associated with both shared and unique cell signaling pathway activation in CF and non-CF mice. These results highlight the multifunctional impact of TGFβ on pulmonary pathology in vivo and identify cellular-response differences that may impact CF lung pathology.
Collapse
Affiliation(s)
- Elizabeth L Kramer
- Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, Ohio.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - William D Hardie
- Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, Ohio.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Satish K Madala
- Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, Ohio.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Cynthia Davidson
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - John P Clancy
- Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, Ohio.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| |
Collapse
|
33
|
Abstract
Activation of TGF-β1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-β1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-β1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.
Collapse
Affiliation(s)
- Kevin K Kim
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| | - Dean Sheppard
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
34
|
Zhou Q, Wu X, Hu J, Yuan R. Abnormal expression of fibrosis markers, estrogen receptor α and stromal derived factor‑1/chemokine (C‑X‑C motif) receptor‑4 axis in intrauterine adhesions. Int J Mol Med 2018; 42:81-90. [PMID: 29568895 PMCID: PMC5979937 DOI: 10.3892/ijmm.2018.3586] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Intrauterine adhesions (IUAs) are mainly derived from fibrous tissue formation following endometrial damage. The aim of the present study was to assess whether fibrosis markers, estrogen receptor (ER)α and the stromal derived factor (SDF)-1/C-X-C chemokine receptor type 4 (CXCR-4) axis are abnormally expressed in IUA endometrium. A total of 76 human endometrial biopsy samples (normal, n=20; mild-to-moderate IUAs, n=40; and severe IUAs, n=16) were employed, and Sprague-Dawley rat IUA models at different time points were constructed. Subsequently, the expression of transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-9, ERα and the SDF-1/CXCR-4 axis was evaluated in human and rat IUAs using histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction and western blotting. In patients and rats with IUA formation, the expression of TGF-β1, MMP-9 and ERα was significantly higher compared with the control group at the mRNA and protein levels (P<0.05); in addition, in patients, the TGF-β1, MMP-9 and ERα levels were significantly higher in severe IUAs compared with those in mild-to-moderate IUA endometrium (P<0.05). Although the chemokine SDF-1 level in rats increased significantly during the early postoperative phase (reaching a peak at the second estrus phase) in rat endometrium (P<0.05), its special receptor CXCR-4 expression did not differ significantly compared with the control group in rats or patients (P>0.05). Our findings indicated that aberrant activation of fibrosis and expression of ERα may be involved in the pathology of IUA formation. The role of the SDF-1/CXCR-4 axis in IUAs as inflammatory medium in the short-term or special homing factors for bone marrow mesenchymal stem cells requires further verification in in vivo animal models.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xixi Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Rui Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
35
|
Lutful Kabir F, Ambalavanan N, Liu G, Li P, Solomon GM, Lal CV, Mazur M, Halloran B, Szul T, Gerthoffer WT, Rowe SM, Harris WT. MicroRNA-145 Antagonism Reverses TGF-β Inhibition of F508del CFTR Correction in Airway Epithelia. Am J Respir Crit Care Med 2018; 197:632-643. [PMID: 29232160 PMCID: PMC6005236 DOI: 10.1164/rccm.201704-0732oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022] Open
Abstract
RATIONALE MicroRNAs (miRNAs) destabilize mRNA transcripts and inhibit protein translation. miR-145 is of particular interest in cystic fibrosis (CF) as it has a direct binding site in the 3'-untranslated region of CFTR (cystic fibrosis transmembrane conductance regulator) and is upregulated by the CF genetic modifier TGF (transforming growth factor)-β. OBJECTIVES To demonstrate that miR-145 mediates TGF-β inhibition of CFTR synthesis and function in airway epithelia. METHODS Primary human CF (F508del homozygous) and non-CF airway epithelial cells were grown to terminal differentiation at the air-liquid interface on permeable supports. TGF-β (5 ng/ml), a miR-145 mimic (20 nM), and a miR-145 antagonist (20 nM) were used to manipulate CFTR function. In CF cells, lumacaftor (3 μM) and ivacaftor (10 μM) corrected mutant F508del CFTR. Quantification of CFTR mRNA, protein, and function was done by standard techniques. MEASUREMENTS AND MAIN RESULTS miR-145 is increased fourfold in CF BAL fluid compared with non-CF (P < 0.01) and increased 10-fold in CF primary airway epithelial cells (P < 0.01). Exogenous TGF-β doubles miR-145 expression (P < 0.05), halves wild-type CFTR mRNA and protein levels (P < 0.01), and nullifies lumacaftor/ivacaftor F508del CFTR correction. miR-145 overexpression similarly decreases wild-type CFTR protein synthesis (P < 0.01) and function (P < 0.05), and eliminates F508del corrector benefit. miR-145 antagonism blocks TGF-β suppression of CFTR and enhances lumacaftor correction of F508del CFTR. CONCLUSIONS miR-145 mediates TGF-β inhibition of CFTR synthesis and function in airway epithelia. Specific antagonists to miR-145 interrupt TGF-β signaling to restore F508del CFTR modulation. miR-145 antagonism may offer a novel therapeutic opportunity to enhance therapeutic benefit of F508del CFTR correction in CF epithelia.
Collapse
Affiliation(s)
| | | | | | - Peng Li
- Department of Biostatistics, and
| | - George M. Solomon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | - Tomasz Szul
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - William T. Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Steven M. Rowe
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - William T. Harris
- Department of Pediatrics
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
36
|
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disease characterized by progressive lung disease. Most CF therapies focus on treating secondary pulmonary complications rather than addressing the underlying processes inducing airway remodeling and ineffective response to infection. Transforming growth factor beta (TGFβ) is a cytokine involved in fibrosis, inflammation, and injury response as well as a genetic modifier and biomarker of CF lung disease. Targeting the TGFβ pathway has been pursued in other diseases, but the mechanism of TGFβ effects in CF is less well understood. Areas covered: In this review, we discuss CF lung disease pathogenesis with a focus on potential links to TGFβ. TGFβ signaling in lung health and disease is reviewed. Recent studies investigating TGFβ's impact in CF airway epithelial cells are highlighted. Finally, an overview of potential therapies to target TGFβ signaling relevant to CF are addressed. Expert opinion: The broad impact of TGFβ signaling on numerous cellular processes in homeostasis and disease is both a strength and a challenge to developing TGFβ dependent therapeutics in CF. We discuss the challenges inherent in developing TGFβ-targeted therapy, identifying appropriate patient populations, and questions regarding the timing of treatment. Future directions for research into TGFβ focused therapeutics are discussed.
Collapse
Affiliation(s)
- Elizabeth L Kramer
- a Department of Pediatrics , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - John P Clancy
- a Department of Pediatrics , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
37
|
Constrictive Bronchiolitis in Cystic Fibrosis Adolescents with Refractory Pulmonary Decline. Ann Am Thorac Soc 2018; 13:2174-2183. [PMID: 27684511 DOI: 10.1513/annalsats.201412-594oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Refractory lung function decline in association with recurrent pulmonary exacerbations is a common, yet poorly explained finding in cystic fibrosis (CF). To investigate the histopathologic mechanisms of pulmonary deterioration during adolescence and early adulthood, we reviewed clinically-indicated lung biopsy specimens obtained during a period of persistent decline. OBJECTIVES To determine if peribronchiolar remodeling is prominent in lung biopsy specimens obtained in adolescents with CF refractory to conventional therapy. METHODS Six adolescents with CF (mean age, 16.2 y; mean FEV1, 52% predicted at biopsy) with significant pulmonary deterioration over 12-24 months (mean FEV1 decline of 14% predicted/year) despite aggressive intervention underwent computed tomography imaging and ultimately lung biopsy to aid clinical management. In addition to routine clinical evaluation, histopathologic investigation included staining for transforming growth factor-β (TGF-β, a genetic modifier of CF lung disease), collagen deposition (a marker of fibrosis), elastin (to evaluate for bronchiectasis), and α-smooth muscle actin (to identify myofibroblasts). MEASUREMENTS AND MAIN RESULTS All computed tomography scans demonstrated a mix of bronchiectasis and hyperinflation that was variable across lung regions and within patients. Lung biopsy revealed significant peribronchiolar remodeling, particularly in patients with more advanced disease, with near complete obliteration of the peribronchiolar lumen (constrictive bronchiolitis). Myofibroblast differentiation (a TGF-β-dependent process) was prominent in specimens with significant airway remodeling. CONCLUSIONS Constrictive bronchiolitis is widely present in the lung tissue of adolescents with CF with advanced disease and may contribute to impaired lung function that is refractory to conventional therapy (antibiotics, antiinflammatories, and mucolytics). TGF-β-dependent myofibroblast differentiation is prominent in areas of active fibrogenesis and may foster small airway remodeling in CF lung disease.
Collapse
|
38
|
Abstract
Type 2 immunity is characterized by the production of IL-4, IL-5, IL-9 and IL-13, and this immune response is commonly observed in tissues during allergic inflammation or infection with helminth parasites. However, many of the key cell types associated with type 2 immune responses - including T helper 2 cells, eosinophils, mast cells, basophils, type 2 innate lymphoid cells and IL-4- and IL-13-activated macrophages - also regulate tissue repair following injury. Indeed, these cell populations engage in crucial protective activity by reducing tissue inflammation and activating important tissue-regenerative mechanisms. Nevertheless, when type 2 cytokine-mediated repair processes become chronic, over-exuberant or dysregulated, they can also contribute to the development of pathological fibrosis in many different organ systems. In this Review, we discuss the mechanisms by which type 2 immunity contributes to tissue regeneration and fibrosis following injury.
Collapse
Affiliation(s)
- Richard L Gieseck
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA
| | - Mark S Wilson
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Thomas A Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA
| |
Collapse
|
39
|
Tian B, Patrikeev I, Ochoa L, Vargas G, Belanger KK, Litvinov J, Boldogh I, Ameredes BT, Motamedi M, Brasier AR. NF-κB Mediates Mesenchymal Transition, Remodeling, and Pulmonary Fibrosis in Response to Chronic Inflammation by Viral RNA Patterns. Am J Respir Cell Mol Biol 2017; 56:506-520. [PMID: 27911568 DOI: 10.1165/rcmb.2016-0259oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Airway remodeling is resultant of a complex multicellular response associated with a progressive decline of pulmonary function in patients with chronic airway disease. Here, repeated infections with respiratory viruses are linked with airway remodeling through largely unknown mechanisms. Although acute activation of the Toll-like receptor (TLR) 3 pathway by extracellular polyinosinic:polycytidylic acid (poly[I:C]) induces innate signaling through the NF-κB transcription factor in normal human small airway epithelial cells, prolonged (repetitive or tonic) poly(I:C) stimulation produces chronic stress fiber formation, mesenchymal transition, and activation of a fibrotic program. Chronic poly(I:C) stimulation enhanced the expression of core mesenchymal regulators Snail family zinc finger 1, zinc finger E-box binding homeobox, mesenchymal intermediate filaments (vimentin), and extracellular matrix proteins (fibronectin-1), and collagen 1A. This mesenchymal transition was prevented by silencing expression of NF-κB/RelA or administration of a small-molecule inhibitor of the IκB kinase, BMS345541. Acute poly(I:C) exposure in vivo induced profound neutrophilic airway inflammation. When administered repetitively, poly(I:C) resulted in enhanced fibrosis observed by lung micro-computed tomography, second harmonic generation microscopy of optically cleared lung tissue, and by immunohistochemistry. Epithelial flattening, expansion of the epithelial mesenchymal trophic unit, and enhanced Snail family zinc finger 1 and fibronectin 1 expression in airway epithelium were also observed. Repetitive poly(I:C)-induced airway remodeling, fibrosis, and epithelial-mesenchymal transition was inhibited by BMS345541 administration. Based on this novel model of viral inflammation-induced remodeling, we conclude that NF-κB is a major controller of epithelial-mesenchymal transition and pulmonary fibrosis, a finding that has potentially important relevance to airway remodeling produced by repetitive viral infections.
Collapse
Affiliation(s)
- Bing Tian
- Departments of 1 Internal Medicine.,2 Sealy Center for Molecular Medicine
| | | | | | | | - KarryAnne K Belanger
- Departments of 1 Internal Medicine.,4 Department of Biochemistry and Molecular Biology, and
| | - Julia Litvinov
- Departments of 1 Internal Medicine.,5 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Istvan Boldogh
- 2 Sealy Center for Molecular Medicine.,6 Institute for Translational Sciences.,5 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Bill T Ameredes
- Departments of 1 Internal Medicine.,2 Sealy Center for Molecular Medicine.,6 Institute for Translational Sciences
| | | | - Allan R Brasier
- Departments of 1 Internal Medicine.,2 Sealy Center for Molecular Medicine.,6 Institute for Translational Sciences
| |
Collapse
|
40
|
Sun Q, Wu Y, Zhao F, Wang J. Maresin 1 inhibits transforming growth factor-β1-induced proliferation, migration and differentiation in human lung fibroblasts. Mol Med Rep 2017; 16:1523-1529. [PMID: 29067437 PMCID: PMC5561789 DOI: 10.3892/mmr.2017.6711] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 04/18/2017] [Indexed: 12/16/2022] Open
Abstract
The myofibroblast has been implicated to be an important pathogenic cell in all fibrotic diseases, through synthesis of excess extracellular matrix. Lung fibroblast migration, proliferation and differentiation into a myofibroblast-like cell type are regarded as important steps in the formation of lung fibrosis. In the present study, the effect of maresin 1 (MaR 1), a pro-resolving lipid mediator, on transforming growth factor (TGF)-β1-stimulated lung fibroblasts was investigated, and the underlying molecular mechanisms were examined. The results of the present study demonstrated that MaR 1 inhibited TGF-β1-induced proliferative and migratory ability, assessed using MTT and scratch wound healing assays. The TGF-β1-induced expression of α-smooth muscle actin (α-SMA) and collagen type I, the hallmarks of myofibroblast differentiation, was decreased by MaR 1 at the mRNA and protein levels, determined using the reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Immunofluorescence demonstrated that MaR 1 downregulated the TGF-β1-induced expression of α-SMA. In addition, phosphorylated mothers against decapentaplegic homolog 2/3 (Smad2/3) and extracellular signal-related kinases (ERK) 1/2 were upregulated in TGF-β1-induced lung fibroblasts, and these effects were attenuated by MaR 1 administration. In conclusion, the results of the present study demonstrated that MaR 1 inhibited the TGF-β1-induced proliferation, migration and differentiation of human lung fibroblasts. These observed effects may be mediated in part by decreased phosphorylation of Smad2/3 and ERK1/2 signaling pathways. Therefore, MaR 1 may be a potential therapeutic approach to lung fibrotic diseases.
Collapse
Affiliation(s)
- Quanchao Sun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - You Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Feng Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jianjun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
41
|
Epigenetic silencing of IRF1 dysregulates type III interferon responses to respiratory virus infection in epithelial to mesenchymal transition. Nat Microbiol 2017; 2:17086. [PMID: 28581456 PMCID: PMC5501188 DOI: 10.1038/nmicrobiol.2017.86] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/25/2017] [Indexed: 12/11/2022]
Abstract
Chronic oxidative injury produced by airway disease triggers TGFβ-mediated epigenetic reprogramming known as the epithelial-mesenchymal transition (EMT). We observe that EMT silences protective mucosal interferon (IFN)-I/-III production associated with enhanced rhinovirus (RV) and respiratory syncytial virus(RSV) replication. Mesenchymal transitioned cells are defective in inducible interferon regulatory factor (IRF)1 expression by occluding RelA and IRF3 access to the promoter. IRF1 is necessary for expression of type III IFNs (IFNLs-1 and 2/3). Induced by the EMT, Zinc Finger E-Box Binding Homeobox 1 (ZEB1) binds and silences IRF1. Ectopic ZEB1 is sufficient for IRF1 silencing, whereas ZEB1 knockdown partially restores IRF1-IFNL upregulation. ZEB1 silences IRF1 through the catalytic activity of the Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit (EZH2), forming repressive H3K27(me3) marks. We observe that IRF1 expression is mediated by ZEB1 de-repression; our study demonstrates how airway remodeling/fibrosis is associated with a defective mucosal antiviral response through ZEB1-initiated epigenetic silencing.
Collapse
|
42
|
Alves MJ, Figuerêdo RG, Azevedo FF, Cavallaro DA, Neto NIP, Lima JDC, Matos-Neto E, Radloff K, Riccardi DM, Camargo RG, De Alcântara PSM, Otoch JP, Junior MLB, Seelaender M. Adipose tissue fibrosis in human cancer cachexia: the role of TGFβ pathway. BMC Cancer 2017; 17:190. [PMID: 28288584 PMCID: PMC5348844 DOI: 10.1186/s12885-017-3178-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
Background Cancer cachexia is a multifactorial syndrome that dramatically decreases survival. Loss of white adipose tissue (WAT) is one of the key characteristics of cachexia. WAT wasting is paralleled by microarchitectural remodeling in cachectic cancer patients. Fibrosis results from uncontrolled ECM synthesis, a process in which, transforming growth factor-beta (TGFβ) plays a pivotal role. So far, the mechanisms involved in adipose tissue (AT) re-arrangement, and the role of TGFβ in inducing AT remodeling in weight-losing cancer patients are poorly understood. This study examined the modulation of ECM components mediated by TGFβ pathway in fibrotic AT obtained from cachectic gastrointestinal cancer patients. Methods After signing the informed consent form, patients were enrolled into the following groups: cancer cachexia (CC, n = 21), weight-stable cancer (WSC, n = 17), and control (n = 21). The total amount of collagen and elastic fibers in the subcutaneous AT was assessed by histological analysis and by immunohistochemistry. TGFβ isoforms expression was analyzed by Multiplex assay and by immunohistochemistry. Alpha-smooth muscle actin (αSMA), fibroblast-specific protein (FSP1), Smad3 and 4 were quantified by qPCR and/or by immunohistochemistry. Interleukin (IL) 2, IL5, IL8, IL13 and IL17 content, cytokines known to be associated with fibrosis, was measured by Multiplex assay. Results There was an accumulation of collagen and elastic fibers in the AT of CC, as compared with WSC and controls. Collagens type I, III, VI, and fibronectin expression was enhanced in the tissue of CC, compared with both WSC and control. The pronounced expression of αSMA in the surrounding of adipocytes, and the increased mRNA content for FSP1 (20-fold) indicate the presence of activated myofibroblasts; particularly in CC. TGFβ1 and TGFβ3 levels were up-regulated by cachexia in AT, as well in the isolated adipocytes. Smad3 and Smad4 labeling was found to be more evident in the fibrotic areas of CC adipose tissue. Conclusions Cancer cachexia promotes the development of AT fibrosis, in association with altered TGFβ signaling, compromising AT organization and function.
Collapse
Affiliation(s)
- Michele Joana Alves
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Raquel Galvão Figuerêdo
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Diego Alexandre Cavallaro
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,Department of Nutrition, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Joanna Darck Carola Lima
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Emidio Matos-Neto
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Katrin Radloff
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniela Mendes Riccardi
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodolfo Gonzalez Camargo
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - José Pinhata Otoch
- Department of Surgery, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil.,Department of Clinical Surgery, Hospital University, University of Sao Paulo, Sao Paulo, Brazil
| | - Miguel Luiz Batista Junior
- Biotechnology Group, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Marília Seelaender
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,Department of Surgery, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
43
|
A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nat Commun 2017; 8:14017. [PMID: 28090087 PMCID: PMC5241810 DOI: 10.1038/ncomms14017] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
T helper 9 (Th9) cells contribute to lung inflammation and allergy as sources of interleukin-9 (IL-9). However, the mechanisms by which IL-9/Th9 mediate immunopathology in the lung are unknown. Here we report an IL-9-driven positive feedback loop that reinforces allergic inflammation. We show that IL-9 increases IL-2 production by mast cells, which leads to expansion of CD25+ type 2 innate lymphoid cells (ILC2) and subsequent activation of Th9 cells. Blocking IL-9 or inhibiting CD117 (c-Kit) signalling counteracts the pathogenic effect of the described IL-9-mast cell-IL-2 signalling axis. Overproduction of IL-9 is observed in expectorates from cystic fibrosis (CF) patients, and a sex-specific variant of IL-9 is predictive of allergic reactions in female patients. Our results suggest that blocking IL-9 may be a therapeutic strategy to ameliorate inflammation associated with microbial colonization in the lung, and offers a plausible explanation for gender differences in clinical outcomes of patients with CF. In patients with cystic fibrosis, IL-9 signalling is increased. The authors describe an inflammatory loop in which IL-9 produced by Th9 cells drives mast cells to produce IL-2, resulting in ILC2 cell activation, and show inhibition of this loop with blocking antibodies to IL-9 in a mouse model of pulmonary infection.
Collapse
|
44
|
Constrictive Bronchiolitis: A Distinct Phenotype of Cystic Fibrosis Lung Disease? Ann Am Thorac Soc 2016; 13:2111-2112. [DOI: 10.1513/annalsats.201609-701ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Tian B, Zhao Y, Sun H, Zhang Y, Yang J, Brasier AR. BRD4 mediates NF-κB-dependent epithelial-mesenchymal transition and pulmonary fibrosis via transcriptional elongation. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1183-L1201. [PMID: 27793799 DOI: 10.1152/ajplung.00224.2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/25/2016] [Indexed: 02/08/2023] Open
Abstract
Chronic epithelial injury triggers a TGF-β-mediated cellular transition from normal epithelium into a mesenchymal-like state that produces subepithelial fibrosis and airway remodeling. Here we examined how TGF-β induces the mesenchymal cell state and determined its mechanism. We observed that TGF-β stimulation activates an inflammatory gene program controlled by the NF-κB/RelA signaling pathway. In the mesenchymal state, NF-κB-dependent immediate-early genes accumulate euchromatin marks and processive RNA polymerase. This program of immediate-early genes is activated by enhanced expression, nuclear translocation, and activating phosphorylation of the NF-κB/RelA transcription factor on Ser276, mediated by a paracrine signal. Phospho-Ser276 RelA binds to the BRD4/CDK9 transcriptional elongation complex, activating the paused RNA Pol II by phosphorylation on Ser2 in its carboxy-terminal domain. RelA-initiated transcriptional elongation is required for expression of the core epithelial-mesenchymal transition transcriptional regulators SNAI1, TWIST1, and ZEB1 and mesenchymal genes. Finally, we observed that pharmacological inhibition of BRD4 can attenuate experimental lung fibrosis induced by repetitive TGF-β challenge in a mouse model. These data provide a detailed mechanism for how activated NF-κB and BRD4 control epithelial-mesenchymal transition initiation and transcriptional elongation in model airway epithelial cells in vitro and in a murine pulmonary fibrosis model in vivo. Our data validate BRD4 as an in vivo target for the treatment of pulmonary fibrosis associated with inflammation-coupled remodeling in chronic lung diseases.
Collapse
Affiliation(s)
- Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas; .,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas; and.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Hong Sun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Jun Yang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas; and.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
46
|
Zhao Y, Tian B, Sadygov RG, Zhang Y, Brasier AR. Integrative proteomic analysis reveals reprograming tumor necrosis factor signaling in epithelial mesenchymal transition. J Proteomics 2016; 148:126-38. [PMID: 27461979 DOI: 10.1016/j.jprot.2016.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022]
Abstract
UNLABELLED The airway epithelium is a semi-impermeable barrier whose disruption by growth factor reprogramming is associated with chronic airway diseases of humans. Transforming growth factor beta (TGFβ)-induced epithelial mesenchymal transition (EMT) plays important roles in airway remodeling characteristic of idiopathic lung fibrosis, asthma and chronic obstructive pulmonary disease (COPD). Inflammation of the airways leads to airway injury and tumor necrosis factor alpha (TNFα) plays an important pro-inflammatory role. Little systematic information about the effects of EMT on TNFα signaling is available. Using an in vitro model of TGFβ-induced EMT in primary human small airway epithelial cells (hSAECs), we applied quantitative proteomics and phosphoprotein profiling to understand the molecular mechanism of EMT and the impact of EMT on innate inflammatory responses. We quantified 7925 proteins and 1348 phosphorylation sites by stable isotope labeling with iTRAQ technology. We found that cellular response to TNFα is cell state dependent and the relative TNFα response in mesenchymal state is highly compressed. Combined bioinformatics analyses of proteome and phosphoproteome indicate that the EMT state is associated with reprogramming of kinome, signaling cascade of upstream transcription regulators, phosphor-networks, and NF-κB dependent cell signaling. BIOLOGICAL SIGNIFICANCE Epithelial mesenchymal transition and inflammation have important implications for clinical and physiologic manifestations of chronic airway diseases such as severe asthma, COPD, and lung fibrosis. Little systematic information on the interplay between EMT and innate inflammation is available. This study combined quantitative proteomics and phosphorproteomics approach to obtain systems-level insight into the upstream transcription regulators involved in the TGFβ-induced EMT in primary human small airway epithelial cells and to elucidate how EMT impacts on the TNFα signaling pathways. The proteomics and phosphoproteomics analysis indicates that many signaling pathways involved in TGFβ-induced EMT and EMT has profound reprogramming effects on innate inflammation response.
Collapse
Affiliation(s)
- Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, United States; Institute for Translational Sciences, UTMB, Galveston, TX, United States; Sealy Center for Molecular Medicine, UTMB, Galveston, TX, United States.
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, United States; Institute for Translational Sciences, UTMB, Galveston, TX, United States; Sealy Center for Molecular Medicine, UTMB, Galveston, TX, United States
| | - Rovshan G Sadygov
- Sealy Center for Molecular Medicine, UTMB, Galveston, TX, United States; Department of Biochemistry & Molecular Biology, UTMB, Galveston, TX, United States
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, United States; Institute for Translational Sciences, UTMB, Galveston, TX, United States; Sealy Center for Molecular Medicine, UTMB, Galveston, TX, United States.
| |
Collapse
|
47
|
Rajangam T, Park MH, Kim SH. 3D Human Adipose-Derived Stem Cell Clusters as a Model for In Vitro Fibrosis. Tissue Eng Part C Methods 2016; 22:679-90. [DOI: 10.1089/ten.tec.2016.0037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Thanavel Rajangam
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Min Hee Park
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Depatment of Biomedical Engineering, University of Science and Technology, Daejon, Republic of Korea
| |
Collapse
|
48
|
Kondoh H, Nishiyama T, Kikuchi Y, Fukayama M, Saito M, Kii I, Kudo A. Periostin Deficiency Causes Severe and Lethal Lung Injury in Mice With Bleomycin Administration. J Histochem Cytochem 2016; 64:441-53. [PMID: 27270966 DOI: 10.1369/0022155416652611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/10/2016] [Indexed: 01/11/2023] Open
Abstract
Pulmonary capillary leakage followed by influx of blood fluid into the air space of lung alveoli is a crucial step in the progression of acute lung injury (ALI). This influx is due to increased permeability of the alveolar-capillary barrier. The extracellular matrix (ECM) between the capillary and the epithelium would be expected to be involved in prevention of the influx; however, the role of the ECM remains to be addressed. Here, we show that the ECM architecture organized by periostin, a matricellular protein, plays a pivotal role in the survival of bleomycin-exposed mice. Periostin was localized in the alveolar walls. Although periostin-null mice displayed no significant difference in lung histology and air-blood permeability, they exhibited early lethality in a model of bleomycin-induced lung injury, compared with their wild-type counterparts. This early lethality may have been due to increased pulmonary leakage of blood fluid into the air space in the bleomycin-exposed periostin-null mice. These results suggest that periostin in the ECM architecture prevents pulmonary leakage of blood fluid, thus increasing the survival rate in mice with ALI. Thus, this study provides an evidence for the protective role of the ECM architecture in the lung alveoli.
Collapse
Affiliation(s)
- Hirofumi Kondoh
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan (HK, TN, IK, AK)
| | - Takashi Nishiyama
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan (HK, TN, IK, AK)
| | - Yoshinao Kikuchi
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (YK, MF)
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (YK, MF)
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, Tokyo, Japan (MS)
| | - Isao Kii
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan (HK, TN, IK, AK),Pathophysiological and Health Science Team, Imaging Application Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Japan (IK)
| | - Akira Kudo
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan (HK, TN, IK, AK)
| |
Collapse
|
49
|
Glasser SW, Hagood JS, Wong S, Taype CA, Madala SK, Hardie WD. Mechanisms of Lung Fibrosis Resolution. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1066-77. [PMID: 27021937 DOI: 10.1016/j.ajpath.2016.01.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 02/09/2023]
Abstract
Fibrogenesis involves a dynamic interplay between factors that promote the biosynthesis and deposition of extracellular matrix along with pathways that degrade the extracellular matrix and eliminate the primary effector cells. Opposing the often held perception that fibrotic tissue is permanent, animal studies and clinical data now demonstrate the highly plastic nature of organ fibrosis that can, under certain circumstances, regress. This review describes the current understanding of the mechanisms whereby the lung is known to resolve fibrosis focusing on degradation of the extracellular matrix, removal of myofibroblasts, and the role of inflammatory cells. Although there are significant gaps in understanding lung fibrosis resolution, accelerated improvements in biotechnology and bioinformatics are expected to improve the understanding of these mechanisms and have high potential to lead to novel and effective restorative therapies in the treatment not only of pulmonary fibrosis, but also of a wide-ranging spectrum of chronic disorders.
Collapse
Affiliation(s)
- Stephan W Glasser
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James S Hagood
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California; Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| | - Simon Wong
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California
| | - Carmen A Taype
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California-San Diego, La Jolla, California
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
50
|
Cigana C, Lorè NI, Riva C, De Fino I, Spagnuolo L, Sipione B, Rossi G, Nonis A, Cabrini G, Bragonzi A. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections. Sci Rep 2016; 6:21465. [PMID: 26883959 PMCID: PMC4756310 DOI: 10.1038/srep21465] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022] Open
Abstract
Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies.
Collapse
Affiliation(s)
- Cristina Cigana
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Nicola Ivan Lorè
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Camilla Riva
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ida De Fino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Lorenza Spagnuolo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Barbara Sipione
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Alessandro Nonis
- University Center for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Giulio Cabrini
- Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Alessandra Bragonzi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|