1
|
Cunha S, Bicker J, Sereno J, Falcão A, Fortuna A. Blood brain barrier dysfunction in healthy aging and dementia: Why, how, what for? Ageing Res Rev 2024; 99:102395. [PMID: 38950867 DOI: 10.1016/j.arr.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
The blood brain barrier (BBB) is an indispensable structure that maintains the central nervous system (CNS) microenvironment for a correct neuronal function. It is composed by highly specialized microvessels, surrounded by astrocytes, pericytes, neurons and microglia cells, which tightly control the influx and efflux of substances to the brain parenchyma. During aging, the BBB becomes impaired, and it may contribute to the development of neurodegenerative and neurological disorders including Alzheimer's disease and other dementias. Restoring the BBB can be a strategy to prevent disease onset and development, reducing the symptoms of these conditions. This work critically reviews the major mechanisms underlying BBB breakdown in healthy and unhealthy aging, as well as biomarkers and methodologies that accurately assess its impairment. Complementarily, potential therapeutic targets are discussed as new strategies to restore the normal function of the BBB in aging.
Collapse
Affiliation(s)
- Susana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - José Sereno
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Manukjan N, Chau S, Caiment F, van Herwijnen M, Smeets HJ, Fulton D, Ahmed Z, Blankesteijn WM, Foulquier S. Wnt7a Decreases Brain Endothelial Barrier Function Via β-Catenin Activation. Mol Neurobiol 2024; 61:4854-4867. [PMID: 38147228 PMCID: PMC11236883 DOI: 10.1007/s12035-023-03872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
The blood-brain barrier consists of tightly connected endothelial cells protecting the brain's microenvironment from the periphery. These endothelial cells are characterized by specific tight junction proteins such as Claudin-5 and Occludin, forming the endothelial barrier. Disrupting these cells might lead to blood-brain barrier dysfunction. The Wnt/β-catenin signaling pathway can regulate the expression of these tight junction proteins and subsequent barrier permeability. The aim of this study was to investigate the in vitro effects of Wnt7a mediated β-catenin signaling on endothelial barrier integrity. Mouse brain endothelial cells, bEnd.3, were treated with recombinant Wnt7a protein or XAV939, a selective inhibitor of Wnt/β-catenin mediated transcription to modulate the Wnt signaling pathway. The involvement of Wnt/HIF1α signaling was investigated by inhibiting Hif1α signaling with Hif1α siRNA. Wnt7a stimulation led to activation and nuclear translocation of β-catenin, which was inhibited by XAV939. Wnt7a stimulation decreased Claudin-5 expression mediated by β-catenin and decreased endothelial barrier formation. Wnt7a increased Hif1α and Vegfa expression mediated by β-catenin. However, Hif1α signaling pathway did not regulate tight junction proteins Claudin-5 and Occludin. Our data suggest that Wnt7a stimulation leads to a decrease in tight junction proteins mediated by the nuclear translocation of β-catenin, which hampers proper endothelial barrier formation. This process might be crucial in initiating endothelial cell proliferation and angiogenesis. Although HIF1α did not modulate the expression of tight junction proteins, it might play a role in brain angiogenesis and underlie pathogenic mechanisms in Wnt/HIF1α signaling in diseases such as cerebral small vessel disease.
Collapse
Affiliation(s)
- Narek Manukjan
- Department of Pharmacology and Toxicology, Maastricht University, 50 Universiteitssingel, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Steven Chau
- Department of Pharmacology and Toxicology, Maastricht University, 50 Universiteitssingel, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, GROW - School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Marcel van Herwijnen
- Department of Toxicogenomics, GROW - School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Hubert J Smeets
- Department of Toxicogenomics, GROW - School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- MHeNs-School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Daniel Fulton
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Maastricht University, 50 Universiteitssingel, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
- CARIM-School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, Maastricht University, 50 Universiteitssingel, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
- CARIM-School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
- MHeNs-School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
- Department of Neurology, Maastricht University Medical Center+, P.O. Box 5800, Maastricht, 6202 AZ, The Netherlands.
| |
Collapse
|
3
|
Chen Y, Huang X, Chen H, Yi C. An easy-to-perform method for microvessel isolation and primary brain endothelial cell culture to study Alzheimer's disease. Heliyon 2024; 10:e33077. [PMID: 38994107 PMCID: PMC11238044 DOI: 10.1016/j.heliyon.2024.e33077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Dysfunction of the blood-brain barrier (BBB) has been increasingly recognised as a critical early event in Alzheimer's disease (AD) pathophysiology. Central to this mechanism is the impaired function of brain endothelial cells (BECs), the primary structural constituents of the BBB, the study of which is imperative for understanding AD pathophysiology. However, the published methods to isolate BECs are time-consuming and have a low success rate. Here, we developed a rapid and streamlined protocol for BEC isolation without using transgenic reporters, flow cytometry, and magnetic beads, which are essential for existing methods. Using this novel protocol, we isolated high-purity BECs from cell clusters of cortical microvessels from wild-type and APPswe/PS1dE9 (APP/PS1, a classical AD model) mice at 2, 4 and 9 months of age. Reduced levels of tight junction proteins Claudin-5 and Zonula Occludens-1, as well as glucose transporter 1, were observed in the isolated cortical microvessels from APP/PS1 mice and amyloid-β (Aβ) oligomer-treated BECs from wild-type mice. Trans-well permeability assay showed increased FITC-dextran leakage in BECs treated with Aβ, suggesting impaired BBB permeability. BECs obtained using our novel protocol can undergo various experimental analyses, including immunofluorescence staining, western blotting, real-time PCR, and trans-well permeability assay. In conclusion, our novel protocol represents a reliable and valuable tool for in vitro modelling BBB to study AD-related mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yang Chen
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaomin Huang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
4
|
Liu Q, Ba X, Han L, Yan J, Chen Z, Qin K, Tu S, Shen P. Dahuang-Wumei decoction protects against hepatic encephalopathy in mice: Behavioural, biochemical, and molecular evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155419. [PMID: 38522314 DOI: 10.1016/j.phymed.2024.155419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Disturbance of the blood‒brain barrier (BBB) and associated inflammatory responses are observed in patients with hepatic encephalopathy (HE) and can cause long-term complications. Dahuang-Wumei decoction (DWD) is a renowned traditional Chinese herbal medicine with a long history of clinical use and has been widely employed as an effective treatment for hepatic encephalopathy (HE). Despite its established efficacy, the precise mechanisms underlying the therapeutic effects of DWD have not been fully elucidated. PURPOSE The present study aimed to comprehensively explore the potential effects and underlying molecular mechanisms of DWD on HE through an integrated investigation that included both in vivo and in vitro experiments. METHODS In the present study, carbon tetrachloride (CCl4) and thioacetamide (TAA) were used to establish an HE model in mice. The therapeutic effects of DWD on liver injury, fibrosis, brain injury, behaviour, and consciousness disorders were evaluated in vivo. C8-D1A and bEnd.3 cells were used to construct a BBB model in vitro. The effects of DWD on proinflammatory factor expression, BBB damage and the Wnt/β-catenin pathway were detected in vivo and in vitro. RESULTS Our results showed that DWD can improve liver injury and fibrosis and brain damage and inhibit neurofunctional and behavioural disorders in mice with HE. Afterwards, we found that DWD decreased the levels of proinflammatory factors and suppressed BBB disruption by increasing the levels of junction proteins in vivo and vitro. Further studies verified that the Wnt/β-catenin pathway may play a pivotal role in mediating the inhibitory effect of DWD on HE. CONCLUSION These results demonstrated that DWD can treat HE by preventing BBB disruption, and the underlying mechanisms involved were associated with the activation of the Wnt/β-catenin pathway and the inhibition of inflammatory responses.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Xin Ba
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Liang Han
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Jiahui Yan
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Zhe Chen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Kai Qin
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Shenghao Tu
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Pan Shen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China; Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, China.
| |
Collapse
|
5
|
Porkoláb G, Mészáros M, Szecskó A, Vigh JP, Walter FR, Figueiredo R, Kálomista I, Hoyk Z, Vizsnyiczai G, Gróf I, Jan JS, Gosselet F, Pirity MK, Vastag M, Hudson N, Campbell M, Veszelka S, Deli MA. Synergistic induction of blood-brain barrier properties. Proc Natl Acad Sci U S A 2024; 121:e2316006121. [PMID: 38748577 PMCID: PMC11126970 DOI: 10.1073/pnas.2316006121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/05/2024] [Indexed: 05/27/2024] Open
Abstract
Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/β-catenin signaling and inhibition of the TGF-β pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/β-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.
Collapse
Affiliation(s)
- Gergő Porkoláb
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
- Doctoral School of Biology, University of Szeged, SzegedH-6720, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | - Anikó Szecskó
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
- Doctoral School of Biology, University of Szeged, SzegedH-6720, Hungary
| | - Judit P. Vigh
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
- Doctoral School of Biology, University of Szeged, SzegedH-6720, Hungary
| | - Fruzsina R. Walter
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | | | - Ildikó Kálomista
- In Vitro Metabolism Laboratory, Gedeon Richter, BudapestH-1103, Hungary
| | - Zsófia Hoyk
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | - Gaszton Vizsnyiczai
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | - Ilona Gróf
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan70101, Taiwan
| | - Fabien Gosselet
- Laboratoire de la Barriére Hémato-Encéphalique, Université d’Artois, Lens62307, France
| | - Melinda K. Pirity
- Institute of Genetics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | - Monika Vastag
- In Vitro Metabolism Laboratory, Gedeon Richter, BudapestH-1103, Hungary
| | - Natalie Hudson
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| |
Collapse
|
6
|
Vemuri K, de Alves Pereira B, Fuenzalida P, Subashi Y, Barbera S, van Hooren L, Hedlund M, Pontén F, Lindskog C, Olsson AK, Lugano R, Dimberg A. CD93 maintains endothelial barrier function and limits metastatic dissemination. JCI Insight 2024; 9:e169830. [PMID: 38441970 PMCID: PMC11128212 DOI: 10.1172/jci.insight.169830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Compromised vascular integrity facilitates extravasation of cancer cells and promotes metastatic dissemination. CD93 has emerged as a target for antiangiogenic therapy, but its importance for vascular integrity in metastatic cancers has not been evaluated. Here, we demonstrate that CD93 participates in maintaining the endothelial barrier and reducing metastatic dissemination. Primary melanoma growth was hampered in CD93-/- mice, but metastatic dissemination was increased and associated with disruption of adherens and tight junctions in tumor endothelial cells and elevated expression of matrix metalloprotease 9 at the metastatic site. CD93 directly interacted with vascular endothelial growth factor receptor 2 (VEGFR2) and its absence led to VEGF-induced hyperphosphorylation of VEGFR2 in endothelial cells. Antagonistic anti-VEGFR2 antibody therapy rescued endothelial barrier function and reduced the metastatic burden in CD93-/- mice to wild-type levels. These findings reveal a key role of CD93 in maintaining vascular integrity, which has implications for pathological angiogenesis and endothelial barrier function in metastatic cancer.
Collapse
Affiliation(s)
- Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Beatriz de Alves Pereira
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Patricia Fuenzalida
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Yelin Subashi
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Stefano Barbera
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Marie Hedlund
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| |
Collapse
|
7
|
Conway GE, Paranjape AN, Chen X, Villanueva FS. Development of an In Vitro Model to Study Mechanisms of Ultrasound-Targeted Microbubble Cavitation-Mediated Blood-Brain Barrier Opening. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:425-433. [PMID: 38158246 PMCID: PMC10843834 DOI: 10.1016/j.ultrasmedbio.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Ultrasound-targeted microbubble cavitation (UTMC)-mediated blood-brain barrier (BBB) opening is being explored as a method to increase drug delivery to the brain. This strategy has progressed to clinical trials for various neurological disorders, but the underlying cellular mechanisms are incompletely understood. In the study described here, a contact co-culture transwell model of the BBB was developed that can be used to determine the signaling cascade leading to increased BBB permeability. METHODS This BBB model consists of bEnd.3 cells and C8-D1A astrocytes seeded on opposite sides of a transwell membrane. Pulsed ultrasound (US) is applied to lipid microbubbles (MBs), and the change in barrier permeability is measured via transendothelial electrical resistance and dextran flux. Live cell calcium imaging (Fluo-4 AM) is performed during UTMC treatment. RESULTS This model exhibits important features of the BBB, including endothelial tight junctions, and is more restrictive than the endothelial cell (EC) monolayer alone. When US is applied to MBs in contact with the ECs, BBB permeability increases in this model by two mechanisms: UTMC induces pore formation in the EC membrane (sonoporation), leading to increased transcellular permeability, and UTMC causes formation of reversible inter-endothelial gaps, which increases paracellular permeability. Additionally, this study determines that calcium influx into ECs mediates the increase in BBB permeability after UTMC in this model. CONCLUSION Both transcellular and paracellular permeability can be used to increase drug delivery to the brain. Future studies can use this model to determine how UTMC-induced calcium-mediated signaling increases BBB permeability.
Collapse
Affiliation(s)
- Grace E Conway
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anurag N Paranjape
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Deli MA, Porkoláb G, Kincses A, Mészáros M, Szecskó A, Kocsis AE, Vigh JP, Valkai S, Veszelka S, Walter FR, Dér A. Lab-on-a-chip models of the blood-brain barrier: evolution, problems, perspectives. LAB ON A CHIP 2024; 24:1030-1063. [PMID: 38353254 DOI: 10.1039/d3lc00996c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A great progress has been made in the development and use of lab-on-a-chip devices to model and study the blood-brain barrier (BBB) in the last decade. We present the main types of BBB-on-chip models and their use for the investigation of BBB physiology, drug and nanoparticle transport, toxicology and pathology. The selection of the appropriate cell types to be integrated into BBB-on-chip devices is discussed, as this greatly impacts the physiological relevance and translatability of findings. We identify knowledge gaps, neglected engineering and cell biological aspects and point out problems and contradictions in the literature of BBB-on-chip models, and suggest areas for further studies to progress this highly interdisciplinary field. BBB-on-chip models have an exceptional potential as predictive tools and alternatives of animal experiments in basic and preclinical research. To exploit the full potential of this technique expertise from materials science, bioengineering as well as stem cell and vascular/BBB biology is necessary. There is a need for better integration of these diverse disciplines that can only be achieved by setting clear parameters for characterizing both the chip and the BBB model parts technically and functionally.
Collapse
Affiliation(s)
- Mária A Deli
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Gergő Porkoláb
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Hungary
| | - András Kincses
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Mária Mészáros
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Anikó Szecskó
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Hungary
| | - Anna E Kocsis
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Judit P Vigh
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Hungary
| | - Sándor Valkai
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Szilvia Veszelka
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Fruzsina R Walter
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - András Dér
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| |
Collapse
|
9
|
Kadry H, Cucullo L. Evaluation of Barrier Integrity Using a Two-Layered Microfluidic Device Mimicking the Blood-Brain Barrier. Methods Mol Biol 2024; 2711:77-88. [PMID: 37776450 DOI: 10.1007/978-1-0716-3429-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The blood-brain barrier (BBB) plays an essential role in maintaining the homeostasis of the brain microenvironment by controlling the influx and efflux of biological substances that are necessary to sustain the neuronal metabolic activity and functions. This barrier is established at the blood-brain interface of the brain microcapillaries by different cells. These include microvascular endothelial cells, astrocytes, and pericytes besides other components such as microglia, basal membrane, and neuronal cells forming together what is commonly referred to as the neurovascular unit; different in vivo and in vitro platforms are available to study the BBB where each system provides specific benefits and drawbacks. Recently, organ-on-a-chip platforms combine the elegance of microengineering technology with the complexity of biological systems to create near-ideal experimental models for various diseases and organs. These microfluidic devices with micron-sized channels allow the cells to be grown in a more biologically relevant environment, enabling cell to cell communications with continuous bathing in biological fluids in a tissue-like fashion. They also closely represent tissue and organ functionality by recapitulating mechanical forces as well as vascular perfusion. Here, we describe the use of humanized BBB model created with microfluidic organ-on-a-chip technology where human brain microvascular endothelial cells (BMECs) are cocultured with primary human pericytes and astrocytes. We thoroughly described the method to assess BBB integrity using a microfluidic chip and various sizes of labeled dextran as permeability markers. In addition, we provide a detailed protocol on how to microscopically investigate the tight junction proteins expression between hBMECs.
Collapse
Affiliation(s)
- Hossam Kadry
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA.
| |
Collapse
|
10
|
Xue S, Zhou X, Yang ZH, Si XK, Sun X. Stroke-induced damage on the blood-brain barrier. Front Neurol 2023; 14:1248970. [PMID: 37840921 PMCID: PMC10569696 DOI: 10.3389/fneur.2023.1248970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 10/17/2023] Open
Abstract
The blood-brain barrier (BBB) is a functional phenotype exhibited by the neurovascular unit (NVU). It is maintained and regulated by the interaction between cellular and non-cellular matrix components of the NVU. The BBB plays a vital role in maintaining the dynamic stability of the intracerebral microenvironment as a barrier layer at the critical interface between the blood and neural tissues. The large contact area (approximately 20 m2/1.3 kg brain) and short diffusion distance between neurons and capillaries allow endothelial cells to dominate the regulatory role. The NVU is a structural component of the BBB. Individual cells and components of the NVU work together to maintain BBB stability. One of the hallmarks of acute ischemic stroke is the disruption of the BBB, including impaired function of the tight junction and other molecules, as well as increased BBB permeability, leading to brain edema and a range of clinical symptoms. This review summarizes the cellular composition of the BBB and describes the protein composition of the barrier functional junction complex and the mechanisms regulating acute ischemic stroke-induced BBB disruption.
Collapse
Affiliation(s)
| | | | | | | | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
12
|
Xu L, Liu R, Qin Y, Wang T. Brain metabolism in Alzheimer's disease: biological mechanisms of exercise. Transl Neurodegener 2023; 12:33. [PMID: 37365651 DOI: 10.1186/s40035-023-00364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's disease (AD) is a major subtype of neurodegenerative dementia caused by long-term interactions and accumulation of multiple adverse factors, accompanied by dysregulation of numerous intracellular signaling and molecular pathways in the brain. At the cellular and molecular levels, the neuronal cellular milieu of the AD brain exhibits metabolic abnormalities, compromised bioenergetics, impaired lipid metabolism, and reduced overall metabolic capacity, which lead to abnormal neural network activity and impaired neuroplasticity, thus accelerating the formation of extracellular senile plaques and intracellular neurofibrillary tangles. The current absence of effective pharmacological therapies for AD points to the urgent need to investigate the benefits of non-pharmacological approaches such as physical exercise. Despite the evidence that regular physical activity can improve metabolic dysfunction in the AD state, inhibit different pathophysiological molecular pathways associated with AD, influence the pathological process of AD, and exert a protective effect, there is no clear consensus on the specific biological and molecular mechanisms underlying the advantages of physical exercise. Here, we review how physical exercise improves crucial molecular pathways and biological processes associated with metabolic disorders in AD, including glucose metabolism, lipid metabolism, Aβ metabolism and transport, iron metabolism and tau pathology. How metabolic states influence brain health is also presented. A better knowledge on the neurophysiological mechanisms by which exercise improves AD metabolism can contribute to the development of novel drugs and improvement of non-pharmacological interventions.
Collapse
Affiliation(s)
- Longfei Xu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Ran Liu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Yingkai Qin
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
| | - Tianhui Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
13
|
Ramachandran M, Vaccaro A, van de Walle T, Georganaki M, Lugano R, Vemuri K, Kourougkiaouri D, Vazaios K, Hedlund M, Tsaridou G, Uhrbom L, Pietilä I, Martikainen M, van Hooren L, Olsson Bontell T, Jakola AS, Yu D, Westermark B, Essand M, Dimberg A. Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma. Cancer Cell 2023:S1535-6108(23)00136-8. [PMID: 37172581 DOI: 10.1016/j.ccell.2023.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Glioblastomas are aggressive brain tumors that are largely immunotherapy resistant. This is associated with immunosuppression and a dysfunctional tumor vasculature, which hinder T cell infiltration. LIGHT/TNFSF14 can induce high endothelial venules (HEVs) and tertiary lymphoid structures (TLS), suggesting that its therapeutic expression could promote T cell recruitment. Here, we use a brain endothelial cell-targeted adeno-associated viral (AAV) vector to express LIGHT in the glioma vasculature (AAV-LIGHT). We found that systemic AAV-LIGHT treatment induces tumor-associated HEVs and T cell-rich TLS, prolonging survival in αPD-1-resistant murine glioma. AAV-LIGHT treatment reduces T cell exhaustion and promotes TCF1+CD8+ stem-like T cells, which reside in TLS and intratumoral antigen-presenting niches. Tumor regression upon AAV-LIGHT therapy correlates with tumor-specific cytotoxic/memory T cell responses. Our work reveals that altering vascular phenotype through vessel-targeted expression of LIGHT promotes efficient anti-tumor T cell responses and prolongs survival in glioma. These findings have broader implications for treatment of other immunotherapy-resistant cancers.
Collapse
Affiliation(s)
- Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Maria Georganaki
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Despoina Kourougkiaouri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Konstantinos Vazaios
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Marie Hedlund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Georgia Tsaridou
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Miika Martikainen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Clinical Pathology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
14
|
Gonzales-Aloy E, Ahmed-Cox A, Tsoli M, Ziegler DS, Kavallaris M. From cells to organoids: The evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Adv Drug Deliv Rev 2023; 196:114777. [PMID: 36931346 DOI: 10.1016/j.addr.2023.114777] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Brain cancer remains the deadliest cancer. The blood-brain barrier (BBB) is impenetrable to most drugs and is a complex 3D network of multiple cell types including endothelial cells, astrocytes, and pericytes. In brain cancers, the BBB becomes disrupted during tumor progression and forms the blood-brain tumor barrier (BBTB). To advance therapeutic development, there is a critical need for physiologically relevant BBB in vitro models. 3D cell systems are emerging as valuable preclinical models to accelerate discoveries for diseases. Given the versatility and capability of 3D cell models, their potential for modelling the BBB and BBTB is reviewed. Technological advances of BBB models and challenges of in vitro modelling the BBTB, and application of these models as tools for assessing therapeutics and nano drug delivery, are discussed. Quantitative, in vitro BBB models that are predictive of effective brain cancer therapies will be invaluable for accelerating advancing new treatments to the clinic.
Collapse
Affiliation(s)
- Estrella Gonzales-Aloy
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - Aria Ahmed-Cox
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Katharina Gaus Light Microscopy Facility, Mark Wainright Analytical Center, UNSW Sydney, NSW, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Kids Cancer Center, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; UNSW RNA Institute, UNSW Sydney, NSW, Australia.
| |
Collapse
|
15
|
Experimental Models of In Vitro Blood-Brain Barrier for CNS Drug Delivery: An Evolutionary Perspective. Int J Mol Sci 2023; 24:ijms24032710. [PMID: 36769032 PMCID: PMC9916529 DOI: 10.3390/ijms24032710] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Central nervous system (CNS) disorders represent one of the leading causes of global health burden. Nonetheless, new therapies approved against these disorders are among the lowest compared to their counterparts. The absence of reliable and efficient in vitro blood-brain barrier (BBB) models resembling in vivo barrier properties stands out as a significant roadblock in developing successful therapy for CNS disorders. Therefore, advancement in the creation of robust and sensitive in vitro BBB models for drug screening might allow us to expedite neurological drug development. This review discusses the major in vitro BBB models developed as of now for exploring the barrier properties of the cerebral vasculature. Our main focus is describing existing in vitro models, including the 2D transwell models covering both single-layer and co-culture models, 3D organoid models, and microfluidic models with their construction, permeability measurement, applications, and limitations. Although microfluidic models are better at recapitulating the in vivo properties of BBB than other models, significant gaps still exist for their use in predicting the performance of neurotherapeutics. However, this comprehensive account of in vitro BBB models can be useful for researchers to create improved models in the future.
Collapse
|
16
|
Schumacher L, Slimani R, Zizmare L, Ehlers J, Kleine Borgmann F, Fitzgerald JC, Fallier-Becker P, Beckmann A, Grißmer A, Meier C, El-Ayoubi A, Devraj K, Mittelbronn M, Trautwein C, Naumann U. TGF-Beta Modulates the Integrity of the Blood Brain Barrier In Vitro, and Is Associated with Metabolic Alterations in Pericytes. Biomedicines 2023; 11:214. [PMID: 36672722 PMCID: PMC9855966 DOI: 10.3390/biomedicines11010214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The blood-brain barrier (BBB) is a selectively permeable boundary that separates the circulating blood from the extracellular fluid of the brain and is an essential component for brain homeostasis. In glioblastoma (GBM), the BBB of peritumoral vessels is often disrupted. Pericytes, being important to maintaining BBB integrity, can be functionally modified by GBM cells which induce proliferation and cell motility via the TGF-β-mediated induction of central epithelial to mesenchymal transition (EMT) factors. We demonstrate that pericytes strengthen the integrity of the BBB in primary endothelial cell/pericyte co-cultures as an in vitro BBB model, using TEER measurement of the barrier integrity. In contrast, this effect was abrogated by TGF-β or conditioned medium from TGF-β secreting GBM cells, leading to the disruption of a so far intact and tight BBB. TGF-β notably changed the metabolic behavior of pericytes, by shutting down the TCA cycle, driving energy generation from oxidative phosphorylation towards glycolysis, and by modulating pathways that are necessary for the biosynthesis of molecules used for proliferation and cell division. Combined metabolomic and transcriptomic analyses further underscored that the observed functional and metabolic changes of TGF-β-treated pericytes are closely connected with their role as important supporting cells during angiogenic processes.
Collapse
Affiliation(s)
- Leonie Schumacher
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Rédouane Slimani
- Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH), 1445 Strassen, Luxembourg
- Luxembourg Centre of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, 72076 Tübingen, Germany
| | - Jakob Ehlers
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Felix Kleine Borgmann
- Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH), 1445 Strassen, Luxembourg
- Luxembourg Centre of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
| | - Julia C. Fitzgerald
- Mitochondrial Biology of Parkinson’s Disease, Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Petra Fallier-Becker
- Institute for Pathology and Neuropathology, University of Tübingen, 72076 Tübingen, Germany
| | - Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Alexander Grißmer
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Ali El-Ayoubi
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Kavi Devraj
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Edinger Institute (Neurological Institute), Goethe University Hospital, 60528 Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH), 1445 Strassen, Luxembourg
- Luxembourg Centre of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- National Center of Pathology (NCP), Laboratoire Nationale de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, 72076 Tübingen, Germany
| | - Ulrike Naumann
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
17
|
Curcumin and N-Acetylcysteine Nanocarriers Alone or Combined with Deferoxamine Target the Mitochondria and Protect against Neurotoxicity and Oxidative Stress in a Co-Culture Model of Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12010130. [PMID: 36670992 PMCID: PMC9855117 DOI: 10.3390/antiox12010130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
As the blood-brain barrier (BBB) prevents most compounds from entering the brain, nanocarrier delivery systems are frequently being explored to potentially enhance the passage of drugs due to their nanometer sizes and functional characteristics. This study aims to investigate whether Pluronic® F68 (P68) and dequalinium (DQA) nanocarriers can improve the ability of curcumin, n-acetylcysteine (NAC) and/or deferoxamine (DFO), to access the brain, specifically target mitochondria and protect against rotenone by evaluating their effects in a combined Transwell® hCMEC/D3 BBB and SH-SY5Y based cellular Parkinson’s disease (PD) model. P68 + DQA nanoformulations enhanced the mean passage across the BBB model of curcumin, NAC and DFO by 49%, 28% and 49%, respectively (p < 0.01, n = 6). Live cell mitochondrial staining analysis showed consistent co-location of the nanocarriers within the mitochondria. P68 + DQA nanocarriers also increased the ability of curcumin and NAC, alone or combined with DFO, to protect against rotenone induced cytotoxicity and oxidative stress by up to 19% and 14% (p < 0.01, n = 6), as measured by the MTT and mitochondrial hydroxyl radical assays respectively. These results indicate that the P68 + DQA nanocarriers were successful at enhancing the protective effects of curcumin, NAC and/or DFO by increasing the brain penetrance and targeted delivery of the associated bioactives to the mitochondria in this model. This study thus emphasises the potential effectiveness of this nanocarrier strategy in fully utilising the therapeutic benefit of these antioxidants and lays the foundation for further studies in more advanced models of PD.
Collapse
|
18
|
Gastfriend BD, Nishihara H, Canfield SG, Foreman KL, Engelhardt B, Palecek SP, Shusta EV. Wnt signaling mediates acquisition of blood-brain barrier properties in naïve endothelium derived from human pluripotent stem cells. eLife 2021; 10:70992. [PMID: 34755601 PMCID: PMC8664294 DOI: 10.7554/elife.70992] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Endothelial cells (ECs) in the central nervous system (CNS) acquire their specialized blood-brain barrier (BBB) properties in response to extrinsic signals, with Wnt/β-catenin signaling coordinating multiple aspects of this process. Our knowledge of CNS EC development has been advanced largely by animal models, and human pluripotent stem cells (hPSCs) offer the opportunity to examine BBB development in an in vitro human system. Here we show that activation of Wnt signaling in hPSC-derived naïve endothelial progenitors, but not in matured ECs, leads to robust acquisition of canonical BBB phenotypes including expression of GLUT-1, increased claudin-5, decreased PLVAP and decreased permeability. RNA-seq revealed a transcriptome profile resembling ECs with CNS-like characteristics, including Wnt-upregulated expression of LEF1, APCDD1, and ZIC3. Together, our work defines effects of Wnt activation in naïve ECs and establishes an improved hPSC-based model for interrogation of CNS barriergenesis.
Collapse
Affiliation(s)
- Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | | | - Scott G Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | - Koji L Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | | | - Sean P Palecek
- Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | - Eric V Shusta
- Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
19
|
Lynch MJ, Gobbo OL. Advances in Non-Animal Testing Approaches towards Accelerated Clinical Translation of Novel Nanotheranostic Therapeutics for Central Nervous System Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2632. [PMID: 34685073 PMCID: PMC8538557 DOI: 10.3390/nano11102632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Nanotheranostics constitute a novel drug delivery system approach to improving systemic, brain-targeted delivery of diagnostic imaging agents and pharmacological moieties in one rational carrier platform. While there have been notable successes in this field, currently, the clinical translation of such delivery systems for the treatment of neurological disorders has been limited by the inadequacy of correlating in vitro and in vivo data on blood-brain barrier (BBB) permeation and biocompatibility of nanomaterials. This review aims to identify the most contemporary non-invasive approaches for BBB crossing using nanotheranostics as a novel drug delivery strategy and current non-animal-based models for assessing the safety and efficiency of such formulations. This review will also address current and future directions of select in vitro models for reducing the cumbersome and laborious mandate for testing exclusively in animals. It is hoped these non-animal-based modelling approaches will facilitate researchers in optimising promising multifunctional nanocarriers with a view to accelerating clinical testing and authorisation applications. By rational design and appropriate selection of characterised and validated models, ranging from monolayer cell cultures to organ-on-chip microfluidics, promising nanotheranostic particles with modular and rational design can be screened in high-throughput models with robust predictive power. Thus, this article serves to highlight abbreviated research and development possibilities with clinical translational relevance for developing novel nanomaterial-based neuropharmaceuticals for therapy in CNS disorders. By generating predictive data for prospective nanomedicines using validated in vitro models for supporting clinical applications in lieu of requiring extensive use of in vivo animal models that have notable limitations, it is hoped that there will be a burgeoning in the nanotherapy of CNS disorders by virtue of accelerated lead identification through screening, optimisation through rational design for brain-targeted delivery across the BBB and clinical testing and approval using fewer animals. Additionally, by using models with tissue of human origin, reproducible therapeutically relevant nanomedicine delivery and individualised therapy can be realised.
Collapse
Affiliation(s)
- Mark J. Lynch
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Oliviero L. Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
20
|
You L, Jiang H. Cabergoline possesses a beneficial effect on blood-brain barrier (BBB) integrity against lipopolysaccharide (LPS). Bioengineered 2021; 12:8358-8369. [PMID: 34592907 PMCID: PMC8806944 DOI: 10.1080/21655979.2021.1987066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Sepsis is a disease induced by severe systemic inflammation and contributes to multiple acute organic dysfunctions. It is reported that disrupted blood-brain barrier (BBB) integrity is involved in sepsis-associated encephalopathy (SAE), which can be alleviated by repairing the damaged tight junction structure. Cabergoline is a specific dopamine D2 receptor agonist developed to treat Parkinson’s disease and hyperprolactinemia and is reported to exert promising anti-inflammatory properties. The present study aimed to explore the beneficial effect of Cabergoline for the treatment of sepsis. In the animal experiments, mice were separated into 4 groups: sham, LPS (5 mg/kg), Cabergoline (0.1 mg/kg/day), and Cabergoline+LPS. We found that the increased neurological deficits, disrupted BBB integrity, elevated production of inflammatory factors, and declined expression level of zonula occludens-1 (ZO-1) were observed in lipopolysaccharide (LPS)-treated mice, all of which were significantly reversed by the administration of Cabergoline. In the in vitro model, human brain microvascular endothelial cells (HBMECs) were challenged with 1 µg/mL LPS in the presence or absence of Cabergoline (10, 20 μM) for 24 hours. The elevated cell permeability Papp value of fluorescein disodium across the HBMECs monolayer and declined trans-endothelial electrical resistance (TEER) in the LPS-treated HBMECs were significantly alleviated by Cabergoline, accompanied by the upregulation of ZO-1. In addition, wnt1 and β-catenin were found downregulated, which was reversed by Cabergoline. Importantly, the protective benefits of Cabergoline were all abolished by the overexpression of Dickkopf 3 (DKK3). Taken together, our data reveal that Cabergoline possessed a protective effect on BBB integrity against LPS.
Collapse
Affiliation(s)
- Lina You
- Department of Gerontology, Traditional Chinese medicine hospital of Jiulongpo District in Chongqing, Chongqing, 400080, China
| | - Haidong Jiang
- Chongqing Infectious Disease Medical Center, Chongqing, 400080, China
| |
Collapse
|
21
|
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci 2021; 15:661838. [PMID: 34588955 PMCID: PMC8475767 DOI: 10.3389/fncel.2021.661838] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the onset or progression of various neurodegenerative diseases. Initiation of neuroinflammation is triggered by endogenous substances (damage-associated molecular patterns) and/or exogenous pathogens. Activation of glial cells (microglia and astrocytes) is widely recognized as a hallmark of neuroinflammation and triggers the release of proinflammatory cytokines, leading to neurotoxicity and neuronal dysfunction. Another feature associated with neuroinflammatory diseases is impairment of the blood-brain barrier (BBB). The BBB, which is composed of brain endothelial cells connected by tight junctions, maintains brain homeostasis and protects neurons. Impairment of this barrier allows trafficking of immune cells or plasma proteins into the brain parenchyma and subsequent inflammatory processes in the brain. Besides neurons, activated glial cells also affect BBB integrity. Therefore, BBB dysfunction can amplify neuroinflammation and act as a key process in the development of neuroinflammation. BBB integrity is determined by the integration of multiple signaling pathways within brain endothelial cells through intercellular communication between brain endothelial cells and brain perivascular cells (pericytes, astrocytes, microglia, and oligodendrocytes). For prevention of BBB disruption, both cellular components, such as signaling molecules in brain endothelial cells, and non-cellular components, such as inflammatory mediators released by perivascular cells, should be considered. Thus, understanding of intracellular signaling pathways that disrupt the BBB can provide novel treatments for neurological diseases associated with neuroinflammation. In this review, we discuss current knowledge regarding the underlying mechanisms involved in BBB impairment by inflammatory mediators released by perivascular cells.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
22
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems. Pharmaceutics 2021; 13:1542. [PMID: 34683835 PMCID: PMC8538549 DOI: 10.3390/pharmaceutics13101542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Delivery of most drugs into the central nervous system (CNS) is restricted by the blood-brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single measures for the rate or extent of brain penetration has led to the emergence of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled with ongoing development of suitable in vitro BBB models, this integrated approach promises to reduce the incidence of costly late-stage failures in CNS drug development, and could help to overcome some of the technical, economic and ethical issues associated with in vivo studies in animal models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug penetration into the brain. We also review different in vitro models with regard to their inherent shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled with short-lived radionuclides. In this regard, a special focus has been set on those systems that are sufficiently well established to be used in laboratories without significant bioengineering expertise.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Boris D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| |
Collapse
|
23
|
Luo H, Chevillard L, Bellivier F, Mégarbane B, Etain B, Cisternino S, Declèves X. The role of brain barriers in the neurokinetics and pharmacodynamics of lithium. Pharmacol Res 2021; 166:105480. [PMID: 33549730 DOI: 10.1016/j.phrs.2021.105480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
Lithium (Li) is the most widely used mood stabilizer in treating patients with bipolar disorder. However, more than half of the patients do not or partially respond to Li therapy, despite serum Li concentrations in the serum therapeutic range. The exact mechanisms underlying the pharmacokinetic-pharmacodynamic (PK-PD) relationships of lithium are still poorly understood and alteration in the brain pharmacokinetics of lithium may be one of the mechanisms explaining the variability in the clinical response to Li. Brain barriers such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) play a crucial role in controlling blood-to-brain and brain-to-blood exchanges of various molecules including central nervous system (CNS) drugs. Recent in vivo studies by nuclear resonance spectroscopy revealed heterogenous brain distribution of Li in human that were not always correlated with serum concentrations, suggesting regional and variable transport mechanisms of Li through the brain barriers. Moreover, alteration in the functionality and integrity of brain barriers is reported in various CNS diseases, as a cause or a consequence and in this regard, Li by itself is known to modulate BBB properties such as the expression and activity of various transporters, metabolizing enzymes, and the specialized tight junction proteins on BBB. In this review, we will focus on recent knowledge into the role of the brain barriers as key-element in the Li neuropharmacokinetics which might improve the understanding of PK-PD of Li and its interindividual variability in drug response.
Collapse
Affiliation(s)
- Huilong Luo
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, USA
| | - Lucie Chevillard
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France
| | - Frank Bellivier
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Department of Psychiatry, Lariboisière Hospital, AP-HP, 75010 Paris, France
| | - Bruno Mégarbane
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Department of Medical and Toxicological Critical Care, Lariboisière Hospital, AP-HP, 75010 Paris, France
| | - Bruno Etain
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Department of Psychiatry, Lariboisière Hospital, AP-HP, 75010 Paris, France
| | - Salvatore Cisternino
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Service de Pharmacie, AP-HP, Hôpital Necker, 149 Rue de Sèvres, 75015 Paris, France
| | - Xavier Declèves
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Biologie du Médicament, AP-HP, Hôpital Cochin, 27 rue du Faubourg, St. Jacques, 75679 Paris Cedex 14, France.
| |
Collapse
|
24
|
Nozohouri S, Noorani B, Al-Ahmad A, Abbruscato TJ. Estimating Brain Permeability Using In Vitro Blood-Brain Barrier Models. Methods Mol Biol 2021; 2367:47-72. [PMID: 32789777 DOI: 10.1007/7651_2020_311] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The blood-brain barrier (BBB) is a vital biological interface that regulates transfer of different molecules between blood and brain and, therefore, maintains the homeostatic environment of the CNS. In order to perform high-throughput screening of therapeutics in drug discovery, specific properties of the BBB are investigated within in vitro BBB platforms. In this chapter, we detail the process and steps for the iPSC to BMEC and astrocyte differentiation as well as TEER and permeability measurement in Transwell platform of in vitro BBB model. Also, advanced microfluidic iPSCs-derived BMECs on chip and permeability measurement within this model have been elucidated.
Collapse
Affiliation(s)
- Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
- Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
25
|
Astrocyte-derived Wnt growth factors are required for endothelial blood-brain barrier maintenance. Prog Neurobiol 2020; 199:101937. [PMID: 33383106 DOI: 10.1016/j.pneurobio.2020.101937] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/28/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Maintenance of the endothelial blood-brain-barrier (BBB) through Wnt/β-catenin signalling is essential for neuronal function. The cells however, providing Wnt growth factors at the adult neurovascular unit (NVU) are poorly explored. Here we show by conditionally knocking out the evenness interrupted (Evi) gene in astrocytes (EviΔAC) that astrocytic Wnt release is crucial for BBB and NVU integrity. EviΔAC mice developed brain oedema and increased vascular tracer leakage. While brain vascularization and endothelial junctions were not altered in 10 and 40 week-old mice, endothelial caveolin(Cav)-1-mediated vesicle formation was increased in vivo and in vitro. Moreover, astrocytic end-feet were swollen, and aquaporin-4 distribution was disturbed, coinciding with decreased astrocytic Wnt activity. Vascular permeability correlated with increased neuronal activation by c-fos staining, indicative of altered neuronal function. Astrocyte-derived Wnts thus serve to maintain Wnt/β-catenin activity in endothelia and in astrocytes, thereby controlling Cav-1 expression, vesicular abundance, and end-feet integrity at the NVU.
Collapse
|
26
|
Aghaizu ND, Jin H, Whiting PJ. Dysregulated Wnt Signalling in the Alzheimer's Brain. Brain Sci 2020; 10:E902. [PMID: 33255414 PMCID: PMC7761504 DOI: 10.3390/brainsci10120902] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt signalling system is essential for both the developing and adult central nervous system. It regulates numerous cellular functions ranging from neurogenesis to blood brain barrier biology. Dysregulated Wnt signalling can thus have significant consequences for normal brain function, which is becoming increasingly clear in Alzheimer's disease (AD), an age-related neurodegenerative disorder that is the most prevalent form of dementia. AD exhibits a range of pathophysiological manifestations including aberrant amyloid precursor protein processing, tau pathology, synapse loss, neuroinflammation and blood brain barrier breakdown, which have been associated to a greater or lesser degree with abnormal Wnt signalling. Here we provide a comprehensive overview of the role of Wnt signalling in the CNS, and the research that implicates dysregulated Wnt signalling in the ageing brain and in AD pathogenesis. We also discuss the opportunities for therapeutic intervention in AD via modulation of the Wnt signalling pathway, and highlight some of the challenges and the gaps in our current understanding that need to be met to enable that goal.
Collapse
Affiliation(s)
- Nozie D. Aghaizu
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
| | - Hanqing Jin
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
| | - Paul J. Whiting
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
- ARUK Drug Discovery Institute (DDI), University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
27
|
Fei YX, Zhu JP, Zhao B, Yin QY, Fang WR, Li YM. XQ-1H regulates Wnt/GSK3β/β-catenin pathway and ameliorates the integrity of blood brain barrier in mice with acute ischemic stroke. Brain Res Bull 2020; 164:269-288. [PMID: 32916221 DOI: 10.1016/j.brainresbull.2020.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/30/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
Abstract
10-O-(N, N-dimethylaminoethyl) ginkgolide B methanesulfonate (XQ-1H), a novel analog of ginkgolide B, has been preliminarily recognized to show bioactivities against ischemia-induced injury. However, the underlying mechanism still remains to be fully elucidated. The aim of this study was to investigate the effect of XQ-1H against cerebral ischemia/reperfusion injury (CIRI) from the perspective of blood brain barrier (BBB) protection, and explore whether the underlying mechanism is associated with Wnt/GSK3β/β-catenin signaling pathway activation. The therapeutic effects of XQ-1H were evaluated in mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and in immortalized mouse cerebral endothelial cells (bEnd.3) challenged by oxygen and glucose deprivation/reoxygenation (OGD/R). Results showed that treatment with XQ-1H improved neurological behavior, reduced brain infarction volume, diminished edema, and attenuated the disruption of BBB in vivo. In vitro, XQ-1H increased cell viability and maintained the barrier function of bEnd.3 monolayer after OGD/R. Moreover, the protection of XQ-1H was accompanied with activation of Wnt/GSK3β/β-catenin pathway and upregulation of tight junction proteins. Notably, the protection of XQ-1H was abolished by Wnt/GSK3β/β-catenin inhibitor XAV939 or β-catenin siRNA, indicating XQ-1H exerted protection in a Wnt/GSK3β/β-catenin dependent profile. In summary, XQ-1H attenuated brain injury and maintained BBB integrity after CIRI, and the possible underlying mechanism may be related to the activation of Wnt/GSK3β/β-catenin pathway and upregulation of tight junction proteins.
Collapse
Affiliation(s)
- Yu-Xiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jian-Ping Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qi-Yang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
28
|
Mansor NI, Nordin N, Mohamed F, Ling KH, Rosli R, Hassan Z. Crossing the Blood-Brain Barrier: A Review on Drug Delivery Strategies for Treatment of the Central Nervous System Diseases. Curr Drug Deliv 2020; 16:698-711. [PMID: 31456519 DOI: 10.2174/1567201816666190828153017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 01/24/2023]
Abstract
Many drugs have been designed to treat diseases of the central nervous system (CNS), especially neurodegenerative diseases. However, the presence of tight junctions at the blood-brain barrier has often compromised the efficiency of drug delivery to target sites in the brain. The principles of drug delivery systems across the blood-brain barrier are dependent on substrate-specific (i.e. protein transport and transcytosis) and non-specific (i.e. transcellular and paracellular) transport pathways, which are crucial factors in attempts to design efficient drug delivery strategies. This review describes how the blood-brain barrier presents the main challenge in delivering drugs to treat brain diseases and discusses the advantages and disadvantages of ongoing neurotherapeutic delivery strategies in overcoming this limitation. In addition, we discuss the application of colloidal carrier systems, particularly nanoparticles, as potential tools for therapy for the CNS diseases.
Collapse
Affiliation(s)
- Nur Izzati Mansor
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norshariza Nordin
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farahidah Mohamed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan, Malaysia.,IKOP Sdn. Bhd., Pilot Plant Pharmaceutical Manufacturing, Faculty of Pharmacy, IIUM, Kuantan, Malaysia.,International Institute of Halal Research & Training (INHART), IIUM, Kuala Lumpur, Malaysia
| | - King Hwa Ling
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rozita Rosli
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| |
Collapse
|
29
|
Yang K, Zhu J, Wu J, Zhong Y, Shen X, Petrov B, Cai W. Maternal Vitamin D Deficiency Increases Intestinal Permeability and Programs Wnt/β-Catenin Pathway in BALB/C Mice. JPEN J Parenter Enteral Nutr 2020; 45:102-114. [PMID: 32270535 DOI: 10.1002/jpen.1820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent studies suggest that vitamin D deficiency is associated with intestinal dysfunctions, but the underlying mechanism remains unclear. This study aimed to investigate whether maternal vitamin D deficiency increases intestinal permeability in offspring and its related mechanism. METHODS Timed-pregnant mice were fed with either a standard chow diet (SC) or a vitamin D-deprived chow diet (VD-) 6 weeks prior to breeding and kept on the same diet until the end of gestation. All offspring were fed an SC for 3 weeks after weaning and then observed for effects associated with maternal vitamin D deficiency. RESULTS Maternal vitamin D deficiency increased intestinal permeability in offspring, which corresponded with the decreased expression of the tight junction protein claudin-1. Maternal vitamin D deficiency also repressed the messenger RNA expression of wingless/integrated family member 3a (Wnt3a) and the protein expression of nuclear β-catenin. The decreased Wnt3a gene expression in male was concurrent with the changes in histone H4 acetylation at either promoter or coding regions. The activation of the Wnt/β-catenin pathway protected against the impairment of intestinal permeability induced by maternal vitamin D deficiency. CONCLUSIONS Maternal vitamin D deficiency increased intestinal permeability and decreased tight junction protein expression in offspring. The suppression of the Wnt/β-catenin signaling pathway through histone modification might be involved in the underlying mechanism.
Collapse
Affiliation(s)
- Kefeng Yang
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jie Zhu
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, Texas, USA
| | - Jiang Wu
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhong
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuhua Shen
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Brawnie Petrov
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Wei Cai
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
30
|
Sabbagh MF, Nathans J. A genome-wide view of the de-differentiation of central nervous system endothelial cells in culture. eLife 2020; 9:e51276. [PMID: 31913116 PMCID: PMC6948952 DOI: 10.7554/elife.51276] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial cells (ECs) derived from the central nervous system (CNS) variably lose their unique barrier properties during in vitro culture, hindering the development of robust assays for blood-brain barrier (BBB) function, including drug permeability and extrusion assays. In previous work (Sabbagh et al., 2018) we characterized transcriptional and accessible chromatin landscapes of acutely isolated mouse CNS ECs. In this report, we compare transcriptional and accessible chromatin landscapes of acutely isolated mouse CNS ECs versus mouse CNS ECs in short-term in vitro culture. We observe that standard culture conditions are associated with a rapid and selective loss of BBB transcripts and chromatin features, as well as a greatly reduced level of beta-catenin signaling. Interestingly, forced expression of a stabilized derivative of beta-catenin, which in vivo leads to a partial conversion of non-BBB CNS ECs to a BBB-like state, has little or no effect on gene expression or chromatin accessibility in vitro.
Collapse
Affiliation(s)
- Mark F Sabbagh
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreUnited States
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Jeremy Nathans
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreUnited States
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUnited States
- Department of OphthalmologyJohns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
31
|
Laksitorini MD, Yathindranath V, Xiong W, Hombach-Klonisch S, Miller DW. Modulation of Wnt/β-catenin signaling promotes blood-brain barrier phenotype in cultured brain endothelial cells. Sci Rep 2019; 9:19718. [PMID: 31873116 PMCID: PMC6928218 DOI: 10.1038/s41598-019-56075-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/24/2019] [Indexed: 12/16/2022] Open
Abstract
Wnt/β-catenin signaling is important for blood-brain barrier (BBB) development and is implicated in BBB breakdown under various pathophysiological conditions. In the present study, a comprehensive characterization of the relevant genes, transport and permeability processes influenced by both the autocrine and external activation of Wnt signaling in human brain endothelial cells was examined using hCMEC/D3 culture model. The hCMEC/D3 expressed a full complement of Wnt ligands and receptors. Preventing Wnt ligand release from hCMEC/D3 produced minimal changes in brain endothelial function, while inhibition of intrinsic/autocrine Wnt/β-catenin activity through blocking β-catenin binding to Wnt transcription factor caused more modest changes. In contrast, activation of Wnt signaling using exogenous Wnt ligand (Wnt3a) or LiCl (GSK3 inhibitor) improved the BBB phenotypes of the hCMEC/D3 culture model, resulting in reduced paracellular permeability, and increased P-glycoprotein (P-gp) and breast cancer resistance associated protein (BCRP) efflux transporter activity. Further, Wnt3a reduced plasmalemma vesicle associated protein (PLVAP) and vesicular transport activity in hCMEC/D3. Our data suggest that this in vitro model of the BBB has a more robust response to exogenous activation of Wnt/β-catenin signaling compared to autocrine activation, suggesting that BBB regulation may be more dependent on external activation of Wnt signaling within the brain microvasculature.
Collapse
Affiliation(s)
- Marlyn D Laksitorini
- Department of Pharmacology and Theurapetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, R3E 0T6, Canada
- Department of Pharmaceutics, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, 55281, Indonesia
| | - Vinith Yathindranath
- Department of Pharmacology and Theurapetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, R3E 0T6, Canada
| | - Wei Xiong
- Department of Pharmacology and Theurapetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, R3E 0T6, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, R3E 0J9, Canada
| | - Donald W Miller
- Department of Pharmacology and Theurapetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, R3E 0T6, Canada.
- Kleysen Institute of Advanced Medicine, Health Sciences Center, Winnipeg, Manitoba, R3E 0T6, Canada.
| |
Collapse
|
32
|
Lee YK, Uchida H, Smith H, Ito A, Sanchez T. The isolation and molecular characterization of cerebral microvessels. Nat Protoc 2019; 14:3059-3081. [PMID: 31586162 DOI: 10.1038/s41596-019-0212-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 06/17/2019] [Indexed: 11/09/2022]
Abstract
The study of cerebral microvessels is becoming increasingly important in a wide variety of conditions, such as stroke, sepsis, traumatic brain injury and neurodegenerative diseases. However, the molecular mechanisms underlying cerebral microvascular dysfunction in these conditions are largely unknown. The molecular characterization of cerebral microvessels in experimental disease models has been hindered by the lack of a standardized method to reproducibly isolate intact cerebral microvessels with consistent cellular compositions and without the use of enzymatic digestion, which causes undesirable molecular and metabolic changes. Herein, we describe an optimized protocol for microvessel isolation from mouse brain cortex that yields microvessel fragments with consistent populations of discrete blood-brain barrier (BBB) components (endothelial cells, pericytes and astrocyte end feet) while retaining high RNA integrity and protein post-translational modifications (e.g., phosphorylation). We demonstrate that this protocol allows the quantification of changes in gene expression in a disease model (stroke) and the activation of signaling pathways in mice subjected to drug administration in vivo. We also describe the isolation of genomic DNA (gDNA) and bisulfite treatment for the assessment of DNA methylation, as well as the optimization of chromatin extraction and shearing from cortical microvessels. This optimized protocol and the described applications should improve the understanding of the molecular mechanisms governing cerebral microvascular dysfunction, which may help in the development of novel therapies for stroke and other neurologic conditions.
Collapse
Affiliation(s)
- Yun-Kyoung Lee
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York, NY, USA
| | - Hiroki Uchida
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York, NY, USA
| | - Helen Smith
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York, NY, USA
| | - Akira Ito
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York, NY, USA
| | - Teresa Sanchez
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York, NY, USA.
- Department of Neuroscience, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Bernatz S, Ilina EI, Devraj K, Harter PN, Mueller K, Kleber S, Braun Y, Penski C, Renner C, Halder R, Jennewein L, Solbach C, Thorsen F, Pestalozzi BC, Mischo A, Mittelbronn M. Impact of Docetaxel on blood-brain barrier function and formation of breast cancer brain metastases. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:434. [PMID: 31665089 PMCID: PMC6819416 DOI: 10.1186/s13046-019-1427-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/23/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Breast cancer (BC) is the most frequent malignant tumor in females and the 2nd most common cause of brain metastasis (BM), that are associated with a fatal prognosis. The increasing incidence from 10% up to 40% is due to more effective treatments of extracerebral sites with improved prognosis and increasing use of MRI in diagnostics. A frequently administered, potent chemotherapeutic group of drugs for BC treatment are taxanes usually used in the adjuvant and metastatic setting, which, however, have been suspected to be associated with a higher incidence of BM. The aim of our study was to experimentally analyze the impact of the taxane docetaxel (DTX) on brain metastasis formation, and to elucidate the underlying molecular mechanism. METHODS A monocentric patient cohort was analyzed to determine the association of taxane treatment and BM formation. To identify the specific impact of DTX, a murine brain metastatic model upon intracardial injection of breast cancer cells was conducted. To approach the functional mechanism, dynamic contrast-enhanced MRI and electron microscopy of mice as well as in-vitro transendothelial electrical resistance (TEER) and tracer permeability assays using brain endothelial cells (EC) were carried out. PCR-based, immunohistochemical and immunoblotting analyses with additional RNA sequencing of murine and human ECs were performed to explore the molecular mechanisms by DTX treatment. RESULTS Taxane treatment was associated with an increased rate of BM formation in the patient cohort and the murine metastatic model. Functional studies did not show unequivocal alterations of blood-brain barrier properties upon DTX treatment in-vivo, but in-vitro assays revealed a temporary DTX-related barrier disruption. We found disturbance of tubulin structure and upregulation of tight junction marker claudin-5 in ECs. Furthermore, upregulation of several members of the tubulin family and downregulation of tetraspanin-2 in both, murine and human ECs, was induced. CONCLUSION In summary, a higher incidence of BM was associated with prior taxane treatment in both a patient cohort and a murine mouse model. We could identify tubulin family members and tetraspanin-2 as potential contributors for the destabilization of the blood-brain barrier. Further analyses are needed to decipher the exact role of those alterations on tumor metastatic processes in the brain.
Collapse
Affiliation(s)
- Simon Bernatz
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt, Germany
| | - Elena I Ilina
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt, Germany.,Luxembourg Center of Neuropathology (LCNP), Luxembourg, Luxembourg.,Department of Oncology, Luxembourg Institute of Health (LIH), NORLUX Neuro-Oncology Laboratory, Luxembourg, Luxembourg
| | - Kavi Devraj
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Patrick N Harter
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Klaus Mueller
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt, Germany
| | - Sascha Kleber
- Oncology Centre Hirslanden and Zurich, Zurich, Switzerland
| | - Yannick Braun
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt, Germany
| | - Cornelia Penski
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt, Germany
| | | | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lukas Jennewein
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Christine Solbach
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Frits Thorsen
- KG Jebsen Brain Tumor Research Centre, University of Bergen, Bergen, Norway.,Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bernhard C Pestalozzi
- Department of Medical Oncology and Hematology, University Hospital Zurich (USZ), Rämistrasse 100, CH-8891, Zurich, Switzerland
| | - Axel Mischo
- Department of Medical Oncology and Hematology, University Hospital Zurich (USZ), Rämistrasse 100, CH-8891, Zurich, Switzerland.
| | - Michel Mittelbronn
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt, Germany. .,Luxembourg Center of Neuropathology (LCNP), Luxembourg, Luxembourg. .,Department of Oncology, Luxembourg Institute of Health (LIH), NORLUX Neuro-Oncology Laboratory, Luxembourg, Luxembourg. .,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg. .,National Center of Pathology (NCP), Luxembourg Center of Neuropathology (LCNP), Laboratoire national de santé (LNS), 1, Rue Louis Rech, L-3555, Dudelange, Luxembourg.
| |
Collapse
|
34
|
Toth AE, Nielsen SSE, Tomaka W, Abbott NJ, Nielsen MS. The endo-lysosomal system of bEnd.3 and hCMEC/D3 brain endothelial cells. Fluids Barriers CNS 2019; 16:14. [PMID: 31142333 PMCID: PMC6542060 DOI: 10.1186/s12987-019-0134-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background Brain endothelial cell-based in vitro models are among the most versatile tools in blood–brain barrier research for testing drug penetration to the central nervous system. Transcytosis of large pharmaceuticals across the brain capillary endothelium involves the complex endo-lysosomal system. This system consists of several types of vesicle, such as early, late and recycling endosomes, retromer-positive structures, and lysosomes. Since the endo-lysosomal system in endothelial cell lines of in vitro blood–brain barrier models has not been investigated in detail, our aim was to characterize this system in different models. Methods For the investigation, we have chosen two widely-used models for in vitro drug transport studies: the bEnd.3 mouse and the hCMEC/D3 human brain endothelial cell line. We compared the structures and attributes of their endo-lysosomal system to that of primary porcine brain endothelial cells. Results We detected significant differences in the vesicular network regarding number, morphology, subcellular distribution and lysosomal activity. The retromer-positive vesicles of the primary cells were distinct in many ways from those of the cell lines. However, the cell lines showed higher lysosomal degradation activity than the primary cells. Additionally, the hCMEC/D3 possessed a strikingly unique ratio of recycling endosomes to late endosomes. Conclusions Taken together our data identify differences in the trafficking network of brain endothelial cells, essentially mapping the endo-lysosomal system of in vitro blood–brain barrier models. This knowledge is valuable for planning the optimal route across the blood–brain barrier and advancing drug delivery to the brain. Electronic supplementary material The online version of this article (10.1186/s12987-019-0134-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea E Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark. .,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark.
| | - Simone S E Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark.,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark
| | - Weronika Tomaka
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark. .,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark.
| |
Collapse
|
35
|
Sato K. [Consideration for future in vitro BBB models - technical development to investigate the drug delivery to the CNS]. Nihon Yakurigaku Zasshi 2019; 152:287-294. [PMID: 30531099 DOI: 10.1254/fpj.152.287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Blood vessels in the central nervous system (CNS) limit the material exchange between blood and parenchyma by blood brain barrier (BBB). At present, no appropriate in vitro BBB models are available for the investigation whether or not the candidate compounds for new drugs could be delivered to the CNS. This causes huge difficulties of the development of CNS drugs and prediction of CNS adverse effects. In this review, I first outline the structures and functions of BBB, together with the parameters used for the quantification of BBB functions. I also introduce the history of in vitro BBB models used in the drug development so far, i.e., the transition from non-cell models to the models using primary culture of rodent cells, porcine, bovine, cell lines, etc. More recently, the application of human cells differentiated from human induced pluripotent stem cells and microfluidic engineering have already started. BBB is essential for the maintenance of brain homeostasis and the mechanisms of the BBB development will be clarified by reproducing functional BBB on the dish. The new in vitro models and the data may provide accurate prediction of drug delivery to the CNS and the improvement of the evaluation system for toxicity and safety, thereby leading to successful launch of new drugs on the market.
Collapse
|
36
|
Tang Y, Shen J, Zhang F, Yang FY, Liu M. Human serum albumin attenuates global cerebral ischemia/reperfusion-induced brain injury in a Wnt/β-Catenin/ROS signaling-dependent manner in rats. Biomed Pharmacother 2019; 115:108871. [PMID: 31026729 DOI: 10.1016/j.biopha.2019.108871] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 11/26/2022] Open
Abstract
This study sought to clarify the role and underlying mechanisms of human serum albumin (HSA) therapy in global cerebral ischemia/reperfusion (GCI/R)-induced brain damage in rats. Five groups of adult male Wistar rats (n = 12 per group) were created as follows: sham operation (Sham), global cerebral ischemia/reperfusion (GCI/R), HSA treatment (GCI/R + HSA), Dickkopf-1 (DDK1) treatment (GCI/R + DDK1), and DDK1 plus HSA treatment (GCI/R + DKK1 + HSA). The GCI/R injury model was created using the modified Pusinelli four-vessel occlusion method. After 24 h, rats were evaluated using neurological scoring, Nissl staining, and brain tissue water content. The mRNA expression of Wnt, GSK3β, and β-Catenin in the brain were detected by quantitative real time polymerase chain reaction. The protein expression of β-Catenin and GSK-3β were investigated by western blot and immunohistochemical analysis in the presence and absence of the Wnt/β-Catenin antagonist, DKK-1. Complex I activity and ROS content were also measured. After 24 h of reperfusion, the behavior score and brain tissue water content in the GCI/R + HSA group were lower than that in the GCI/R group. In addition, the degree of neuronal injury was significantly reduced in the GCI/R + HSA group (P < 0.05). The ROS content was significantly decreased and Complex I activity was markedly raised in the GCI/R + HSA group compared to the GCI/R group (P < 0.05). Further, GSK-3β expression in the GCI/R + HSA group was lower than that in the GCI/R group, while the Wnt and β-catenin expression were increased. These effects were reversed by DKK1. Taken together, we showed that HSA attenuates GCI/R-induced brain damage and may be neuroprotective via regulation of the Wnt/β-catenin/ROS signaling pathway.
Collapse
Affiliation(s)
- Yuedong Tang
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, China; Medical Center of Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, Shanghai, China; Medical Research Centre for Chemical Injury, Emergency and Critical Care, Fudan University, Shanghai, China
| | - Jie Shen
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, China; Medical Center of Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, Shanghai, China; Medical Research Centre for Chemical Injury, Emergency and Critical Care, Fudan University, Shanghai, China.
| | - Feng Zhang
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, China; Medical Center of Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, Shanghai, China; Medical Research Centre for Chemical Injury, Emergency and Critical Care, Fudan University, Shanghai, China
| | - Fei-Yu Yang
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, China; Medical Center of Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, Shanghai, China; Medical Research Centre for Chemical Injury, Emergency and Critical Care, Fudan University, Shanghai, China
| | - Ming Liu
- Department of Respiration, Shanghai Punan Hospital, Shanghai, China
| |
Collapse
|
37
|
In Vitro Cell Models of the Human Blood-Brain Barrier: Demonstrating the Beneficial Influence of Shear Stress on Brain Microvascular Endothelial Cell Phenotype. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-1-4939-8946-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Lugano R, Vemuri K, Yu D, Bergqvist M, Smits A, Essand M, Johansson S, Dejana E, Dimberg A. CD93 promotes β1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. J Clin Invest 2018; 128:3280-3297. [PMID: 29763414 PMCID: PMC6063507 DOI: 10.1172/jci97459] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Tumor angiogenesis occurs through regulation of genes that orchestrate endothelial sprouting and vessel maturation, including deposition of a vessel-associated extracellular matrix. CD93 is a transmembrane receptor that is upregulated in tumor vessels in many cancers, including high-grade glioma. Here, we demonstrate that CD93 regulates β1 integrin signaling and organization of fibronectin fibrillogenesis during tumor vascularization. In endothelial cells and mouse retina, CD93 was found to be expressed in endothelial filopodia and to promote filopodia formation. The CD93 localization to endothelial filopodia was stabilized by interaction with multimerin-2 (MMRN2), which inhibited its proteolytic cleavage. The CD93-MMRN2 complex was required for activation of β1 integrin, phosphorylation of focal adhesion kinase (FAK), and fibronectin fibrillogenesis in endothelial cells. Consequently, tumor vessels in gliomas implanted orthotopically in CD93-deficient mice showed diminished activation of β1 integrin and lacked organization of fibronectin into fibrillar structures. These findings demonstrate a key role of CD93 in vascular maturation and organization of the extracellular matrix in tumors, identifying it as a potential target for therapy.
Collapse
Affiliation(s)
- Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Michael Bergqvist
- Centre for Research and Development, Uppsala University, Gävle Hospital, Gävle, Sweden.,Department of Radiation Sciences and Oncology, Umeå University Hospital, Umeå, Sweden
| | - Anja Smits
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.,Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Staffan Johansson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden.,Vascular Biology Unit, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
39
|
Veszelka S, Tóth A, Walter FR, Tóth AE, Gróf I, Mészáros M, Bocsik A, Hellinger É, Vastag M, Rákhely G, Deli MA. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport. Front Mol Neurosci 2018; 11:166. [PMID: 29872378 PMCID: PMC5972182 DOI: 10.3389/fnmol.2018.00166] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/01/2018] [Indexed: 01/16/2023] Open
Abstract
Cell culture-based blood-brain barrier (BBB) models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC), ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA). As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L), and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1) and influx transporters (GLUT-1, LAT-1) were present in all models at mRNA levels. The transcript of BCRP (ABCG2) was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which are substrates of these transporters. Brain endothelial cell lines GP8, RBE4, D3 and D3L did not form a restrictive paracellular barrier necessary for screening small molecular weight pharmacons. Therefore, among the tested culture models, the primary cell-based EPA model is suitable for the functional analysis of the BBB.
Collapse
Affiliation(s)
- Szilvia Veszelka
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - András Tóth
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Andrea E Tóth
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ilona Gróf
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mária Mészáros
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School in Theoretical Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Alexandra Bocsik
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Éva Hellinger
- In Vitro Metabolism Research, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Monika Vastag
- In Vitro Metabolism Research, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Gábor Rákhely
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
40
|
Nzou G, Wicks RT, Wicks EE, Seale SA, Sane CH, Chen A, Murphy SV, Jackson JD, Atala AJ. Human Cortex Spheroid with a Functional Blood Brain Barrier for High-Throughput Neurotoxicity Screening and Disease Modeling. Sci Rep 2018; 8:7413. [PMID: 29743549 PMCID: PMC5943588 DOI: 10.1038/s41598-018-25603-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
The integral selectivity characteristic of the blood brain barrier (BBB) limits therapeutic options for many neurologic diseases and disorders. Currently, very little is known about the mechanisms that govern the dynamic nature of the BBB. Recent reports have focused on the development and application of human brain organoids developed from neuro-progenitor cells. While these models provide an excellent platform to study the effects of disease and genetic aberrances on brain development, they may not model the microvasculature and BBB of the adult human cortex. To date, most in vitro BBB models utilize endothelial cells, pericytes and astrocytes. We report a 3D spheroid model of the BBB comprising all major cell types, including neurons, microglia and oligodendrocytes, to recapitulate more closely normal human brain tissue. Spheroids show expression of tight junctions, adherens junctions, adherens junction-associated proteins and cell specific markers. Functional assessment using MPTP, MPP+ and mercury chloride indicate charge selectivity through the barrier. Junctional protein distribution was altered under hypoxic conditions. Our spheroid model may have potential applications in drug discovery, disease modeling, neurotoxicity and cytotoxicity testing.
Collapse
Affiliation(s)
- Goodwell Nzou
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA.
| | - R T Wicks
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
- Department of Neurological Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - E E Wicks
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - S A Seale
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - C H Sane
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - A Chen
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - S V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - J D Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - A J Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| |
Collapse
|
41
|
Noumbissi ME, Galasso B, Stins MF. Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood-brain barrier models. Fluids Barriers CNS 2018; 15:12. [PMID: 29688865 PMCID: PMC5911972 DOI: 10.1186/s12987-018-0097-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
The vertebrate blood–brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units. The cellular composition of the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focusing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-disease models representative of specific brain areas.
Collapse
Affiliation(s)
- Midrelle E Noumbissi
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Bianca Galasso
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Monique F Stins
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA.
| |
Collapse
|
42
|
Tapia-Rojas C, Inestrosa NC. Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer's disease in J20-APP transgenic and wild-type mice. J Neurochem 2018; 144:443-465. [DOI: 10.1111/jnc.14278] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Cheril Tapia-Rojas
- Centro de Envejecimiento y Regeneración (CARE UC); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
- Centre for Healthy Brain Ageing; School of Psychiatry; Faculty of Medicine; University of New South Wales; Sydney New South Wales Australia
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA); Universidad de Magallanes; Punta Arenas Chile
| |
Collapse
|
43
|
Inhibition of soluble epoxide hydrolase prevents diabetic retinopathy. Nature 2017; 552:248-252. [PMID: 29211719 PMCID: PMC5828869 DOI: 10.1038/nature25013] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
Abstract
Diabetic retinopathy is an important cause of blindness in adults, and is characterized by progressive loss of vascular cells and slow dissolution of inter-vascular junctions, which result in vascular leakage and retinal oedema. Later stages of the disease are characterized by inflammatory cell infiltration, tissue destruction and neovascularization. Here we identify soluble epoxide hydrolase (sEH) as a key enzyme that initiates pericyte loss and breakdown of endothelial barrier function by generating the diol 19,20-dihydroxydocosapentaenoic acid, derived from docosahexaenoic acid. The expression of sEH and the accumulation of 19,20-dihydroxydocosapentaenoic acid were increased in diabetic mouse retinas and in the retinas and vitreous humour of patients with diabetes. Mechanistically, the diol targeted the cell membrane to alter the localization of cholesterol-binding proteins, and prevented the association of presenilin 1 with N-cadherin and VE-cadherin, thereby compromising pericyte-endothelial cell interactions and inter-endothelial cell junctions. Treating diabetic mice with a specific sEH inhibitor prevented the pericyte loss and vascular permeability that are characteristic of non-proliferative diabetic retinopathy. Conversely, overexpression of sEH in the retinal Müller glial cells of non-diabetic mice resulted in similar vessel abnormalities to those seen in diabetic mice with retinopathy. Thus, increased expression of sEH is a key determinant in the pathogenesis of diabetic retinopathy, and inhibition of sEH can prevent progression of the disease.
Collapse
|
44
|
Mazzoni J, Smith JR, Shahriar S, Cutforth T, Ceja B, Agalliu D. The Wnt Inhibitor Apcdd1 Coordinates Vascular Remodeling and Barrier Maturation of Retinal Blood Vessels. Neuron 2017; 96:1055-1069.e6. [PMID: 29154126 DOI: 10.1016/j.neuron.2017.10.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/03/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
Coordinating angiogenesis with acquisition of tissue-specific properties in endothelial cells is essential for vascular function. In the retina, endothelial cells form a blood-retina barrier by virtue of tight junctions and low transcytosis. While the canonical Norrin/Fz4/Lrp5/6 pathway is essential for angiogenesis, vascular remodeling, and barrier maturation, how these diverse processes are coordinated remains poorly understood. Here we demonstrate that Apcdd1, a negative regulator of Wnt/β-catenin signaling, is expressed in retinal endothelial cells during angiogenesis and barrier formation. Apcdd1-deficient mice exhibit a transient increase in vessel density at ages P10-P12 due to delayed vessel pruning. Moreover, Apcdd1 mutant endothelial cells precociously form the paracellular component of the barrier. Conversely, mice that overexpress Apcdd1 in retina endothelial cells have reduced vessel density but increased paracellular barrier permeability. Apcdd1 thus serves to precisely modulate Wnt/Norrin signaling activity in the retinal endothelium and coordinate the timing of both vascular pruning and barrier maturation.
Collapse
Affiliation(s)
- Jenna Mazzoni
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Julian R Smith
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Sanjid Shahriar
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Tyler Cutforth
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Bernardo Ceja
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Dritan Agalliu
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA; Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
45
|
Qian T, Maguire SE, Canfield SG, Bao X, Olson WR, Shusta EV, Palecek SP. Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. SCIENCE ADVANCES 2017; 3:e1701679. [PMID: 29134197 PMCID: PMC5677350 DOI: 10.1126/sciadv.1701679] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/11/2017] [Indexed: 05/18/2023]
Abstract
The blood-brain barrier (BBB) is composed of specialized endothelial cells that are critical to neurological health. A key tool for understanding human BBB development and its role in neurological disease is a reliable and scalable source of functional brain microvascular endothelial cells (BMECs). Human pluripotent stem cells (hPSCs) can theoretically generate unlimited quantities of any cell lineage in vitro, including BMECs, for disease modeling, drug screening, and cell-based therapies. We demonstrate a facile, chemically defined method to differentiate hPSCs to BMECs in a developmentally relevant progression via small-molecule activation of key signaling pathways. hPSCs are first induced to mesoderm commitment by activating canonical Wnt signaling. Next, these mesoderm precursors progress to endothelial progenitors, and treatment with retinoic acid leads to acquisition of BBB-specific markers and phenotypes. hPSC-derived BMECs generated via this protocol exhibit endothelial properties, including tube formation and low-density lipoprotein uptake, as well as efflux transporter activities characteristic of BMECs. Notably, these cells exhibit high transendothelial electrical resistance above 3000 ohm·cm2. These hPSC-derived BMECs serve as a robust human in vitro BBB model that can be used to study brain disease and inform therapeutic development.
Collapse
Affiliation(s)
- Tongcheng Qian
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shaenah E. Maguire
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Scott G. Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaoping Bao
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William R. Olson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eric V. Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
46
|
Nielsen SSE, Siupka P, Georgian A, Preston JE, Tóth AE, Yusof SR, Abbott NJ, Nielsen MS. Improved Method for the Establishment of an In Vitro Blood-Brain Barrier Model Based on Porcine Brain Endothelial Cells. J Vis Exp 2017. [PMID: 28994773 DOI: 10.3791/56277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of this protocol presents an optimized procedure for the purification and cultivation of pBECs and to establish in vitro blood-brain barrier (BBB) models based on pBECs in mono-culture (MC), MC with astrocyte-conditioned medium (ACM), and non-contact co-culture (NCC) with astrocytes of porcine or rat origin. pBECs were isolated and cultured from fragments of capillaries from the brain cortices of domestic pigs 5-6 months old. These fragments were purified by careful removal of meninges, isolation and homogenization of grey matter, filtration, enzymatic digestion, and centrifugation. To further eliminate contaminating cells, the capillary fragments were cultured with puromycin-containing medium. When 60-95% confluent, pBECs growing from the capillary fragments were passaged to permeable membrane filter inserts and established in the models. To increase barrier tightness and BBB characteristic phenotype of pBECs, the cells were treated with the following differentiation factors: membrane permeant 8-CPT-cAMP (here abbreviated cAMP), hydrocortisone, and a phosphodiesterase inhibitor, RO-20-1724 (RO). The procedure was carried out over a period of 9-11 days, and when establishing the NCC model, the astrocytes were cultured 2-8 weeks in advance. Adherence to the described procedures in the protocol has allowed the establishment of endothelial layers with highly restricted paracellular permeability, with the NCC model showing an average transendothelial electrical resistance (TEER) of 1249 ± 80 Ω cm2, and paracellular permeability (Papp) for Lucifer Yellow of 0.90 10-6 ± 0.13 10-6 cm sec-1 (mean ± SEM, n=55). Further evaluation of this pBEC phenotype showed good expression of the tight junctional proteins claudin 5, ZO-1, occludin and adherens junction protein p120 catenin. The model presented can be used for a range of studies of the BBB in health and disease and, with the highly restrictive paracellular permeability, this model is suitable for studies of transport and intracellular trafficking.
Collapse
Affiliation(s)
- Simone S E Nielsen
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University
| | - Piotr Siupka
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University
| | - Ana Georgian
- Institute of Pharmaceutical Science, King's College London
| | - Jane E Preston
- Institute of Pharmaceutical Science, King's College London
| | - Andrea E Tóth
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University
| | - Siti R Yusof
- Institute of Pharmaceutical Science, King's College London; HICoE Centre for Drug Research, Universiti Sains Malaysia
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London;
| | - Morten S Nielsen
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University;
| |
Collapse
|
47
|
Kulczar C, Lubin KE, Lefebvre S, Miller DW, Knipp GT. Development of a direct contact astrocyte-human cerebral microvessel endothelial cells blood-brain barrier coculture model. J Pharm Pharmacol 2017; 69:1684-1696. [PMID: 28872681 DOI: 10.1111/jphp.12803] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/01/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVES In conventional in-vitro blood-brain barrier (BBB) models, primary and immortalized brain microvessel endothelial cell (BMEC) lines are often cultured in a monolayer or indirect coculture or triculture configurations with astrocytes or pericytes, for screening permeation of therapeutic or potentially neurotoxic compounds. In each of these cases, the physiological relevancy associated with the direct contact between the BMECs, pericytes and astrocytes that form the BBB and resulting synergistic interactions are lost. We look to overcome this limitation with a direct contact coculture model. METHODS We established and optimized a direct interaction coculture system where primary human astrocytes are cultured on the apical surface of a Transwell® filter support and then human cerebral microvessel endothelial cells (hCMEC/D3) seeded directly on the astrocyte lawn. KEY FINDINGS The studies suggest the direct coculture model may provide a more restrictive and physiologically relevant model through a significant reduction in paracellular transport of model compounds in comparison with monoculture and indirect coculture. In comparison with existing methods, the indirect coculture and monoculture models utilized may limit cell-cell signaling between human astrocytes and BMECs that are possible with direct configurations. CONCLUSIONS Paracellular permeability reductions with the direct coculture system may enhance therapeutic agent and potential neurotoxicant screening for BBB permeability better than the currently available monoculture and indirect coculture in-vitro models.
Collapse
Affiliation(s)
- Chris Kulczar
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Kelsey E Lubin
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Sylvia Lefebvre
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Donald W Miller
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Gregory T Knipp
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
48
|
Newman SA, Pan Y, Short JL, Nicolazzo JA. Assessing the Impact of Lithium Chloride on the Expression of P-Glycoprotein at the Blood-Brain Barrier. J Pharm Sci 2017; 106:2625-2631. [DOI: 10.1016/j.xphs.2017.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022]
|
49
|
β-Catenin Is Required for Endothelial Cyp1b1 Regulation Influencing Metabolic Barrier Function. J Neurosci 2017; 36:8921-35. [PMID: 27559173 DOI: 10.1523/jneurosci.0148-16.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED The canonical Wnt/β-catenin signaling pathway is crucial for blood-brain barrier (BBB) formation in brain endothelial cells. Although glucose transporter 1, claudin-3, and plasmalemma vesicular-associated protein have been identified as Wnt/β-catenin targets in brain endothelial cells, further downstream targets relevant to BBB formation and function are incompletely explored. By Affymetrix expression analysis, we show that the cytochrome P450 enzyme Cyp1b1 was significantly decreased in β-catenin-deficient mouse endothelial cells, whereas its close homolog Cyp1a1 was upregulated in an aryl hydrocarbon receptor-dependent manner, hence indicating that β-catenin is indispensable for Cyp1b1 but not for Cyp1a1 expression. Functionally, Cyp1b1 could generate retinoic acid from retinol leading to cell-autonomous induction of the barrier-related ATP-binding cassette transporter P-glycoprotein. Cyp1b1 could also generate 20-hydroxyeicosatetraenoic acid from arachidonic acid, decreasing endothelial barrier function in vitro In mice in vivo pharmacological inhibition of Cyp1b1 increased BBB permeability for small molecular tracers, and Cyp1b1 was downregulated in glioma vessels in which BBB function is lost. Hence, we propose Cyp1b1 as a target of β-catenin indirectly influencing BBB properties via its metabolic activity, and as a potential target for modulating barrier function in endothelial cells. SIGNIFICANCE STATEMENT Wnt/β-catenin signaling is crucial for blood-brain barrier (BBB) development and maintenance; however, its role in regulating metabolic characteristics of endothelial cells is unclear. We provide evidence that β-catenin influences endothelial metabolism by transcriptionally regulating the cytochrome P450 enzyme Cyp1b1 Furthermore, expression of its close homolog Cyp1a1 was inhibited by β-catenin. Functionally, Cyp1b1 generated retinoic acid as well as 20-hydroxyeicosatetraenoic acid that regulated P-glycoprotein and junction proteins, respectively, thereby modulating BBB properties. Inhibition of Cyp1b1 in vivo increased BBB permeability being in line with its downregulation in glioma endothelia, potentially implicating Cyp1b1 in other brain pathologies. In conclusion, Wnt/β-catenin signaling regulates endothelial metabolic barrier function through Cyp1b1 transcription.
Collapse
|
50
|
Siqueira M, Francis D, Gisbert D, Gomes FCA, Stipursky J. Radial Glia Cells Control Angiogenesis in the Developing Cerebral Cortex Through TGF-β1 Signaling. Mol Neurobiol 2017; 55:3660-3675. [PMID: 28523566 DOI: 10.1007/s12035-017-0557-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Neuroangiogenesis in the developing central nervous system is controlled by interactions between endothelial cells (ECs) and radial glia (RG) neural stem cells, although RG-derived molecules implicated in these events are not fully known. Here, we investigated the role of RG-secreted TGF-β1, in angiogenesis in the developing cerebral cortex. By isolation of murine microcapillary brain endothelial cells (MBECs), we demonstrate that conditioned medium from RG cultures (RG-CM) promoted MBEC migration and formation of vessel-like structures in vitro, in a TGF-β1-dependent manner. These events were followed by endothelial regulation of GPR124 and BAI-1 gene expression by RG-CM. Proteome profile of RG-CM identified angiogenesis-related molecules IGFBP2/3, osteopontin, endostatin, SDF1, fractalkine, TIMP1/4, Ang-1, pentraxin3, and Cyr61, some of them modulated by TGF-β1 induction. In vivo gain and loss of function assays targeting RG cells demonstrates a specific TGF-β1-dependent control of blood vessels branching in the cerebral cortex. Together, our results point to TGF-β1 signaling pathway as a potential mediator of the RG-EC interactions and shed light to the key role of RG in paving the brain vascular network.
Collapse
Affiliation(s)
- Michele Siqueira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Francis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diego Gisbert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil.
| |
Collapse
|