1
|
Zhang Y, Lu X, Yao W, Cheng X, Wang Q, Feng Y, Shen W. Magnesium Hydride Confers Osmotic Tolerance in Mung Bean Seedlings by Promoting Ascorbate-Glutathione Cycle. PLANTS (BASEL, SWITZERLAND) 2024; 13:2819. [PMID: 39409689 PMCID: PMC11478981 DOI: 10.3390/plants13192819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024]
Abstract
Despite substantial evidence suggesting that hydrogen gas (H2) can enhance osmotic tolerance in plants, the conventional supply method of hydrogen-rich water (HRW) poses challenges for large-scale agricultural applications. Recently, magnesium hydride (MgH2), a hydrogen storage material in industry, has been reported to yield beneficial effects in plants. This study aimed to investigate the effects and underlying mechanisms of MgH2 in plants under osmotic stress. Mung bean seedlings were cultured under control conditions or with 20% polyethylene glycol (PEG)-6000, with or without MgH2 addition (0.01 g L-1). Under our experimental conditions, the MgH2 solution maintained a higher H2 content and longer retention time than HRW. Importantly, PEG-stimulated endogenous H2 production was further triggered by MgH2 application. Further results revealed that MgH2 significantly alleviated the inhibition of seedling growth and reduced oxidative damage induced by osmotic stress. Pharmacological evidence suggests the MgH2-reestablished redox homeostasis was associated with activated antioxidant systems, particularly the ascorbate-glutathione cycle. The above observations were further supported by the enhanced activities and gene transcriptional levels of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. Overall, this study demonstrates the importance of MgH2 in mitigating osmotic stress in mung bean seedlings, providing novel insights into the potential agricultural applications of hydrogen storage materials.
Collapse
Affiliation(s)
- Yihua Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Xing Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Wenrong Yao
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Xiaoqing Cheng
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Qiao Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Yu Feng
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
2
|
Lv S, Zhang L, Wang T, Fan W, Liu S. Hydrogen nanobubbles and oxidative windows: Investigating how varying hydrogen concentrations influence seed germination and stress defense. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135035. [PMID: 38941838 DOI: 10.1016/j.jhazmat.2024.135035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
The hydrogen molecule can effectively regulate plant growth and development, improving plant resistance to abiotic stresses. However, studies regarding the optimal concentration of hydrogen and the associated mechanisms of action in organisms are lacking. This study showed that the maximum germination rate of radish seeds decreased from 90 % to 50 % under the stress of cadmium ions (Cd2+), and hydrogen nanobubble (NB) water significantly alleviated the stress effect of Cd2+ on radish seed germination. A hydrogen concentration of 0.8 ppm had the best effect, reducing Cd2+ accumulation in radish seeds by 63.23 % and increasing the maximum germination rate from 50 % to 65 %. At concentrations exceeding 1.2 ppm, the beneficial effect of hydrogen was weakened or even reversed. Consequently, we integrated the concept of the oxidative window into a REDOX balance model and demonstrated that an appropriate hydrogen concentration can effectively maintain the REDOX state within organisms. Transcriptome sequencing analysis revealed that hydrogen NB water modulated Cd2+ absorption and accumulation in seeds by regulating cell wall components, alleviating oxidative stress through oxidoreductase activity, and enhancing nutrient synthesis and metabolism. This collectively alleviated the inhibitory effect of Cd2+ on seed germination. This study is helpful for further understanding the effect of hydrogen concentration on the REDOX balance of seed germination, providing a theoretical basis for selecting hydrogen concentration to improve its effectiveness in agricultural fields.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Environmental Science and Engineering, School of Materials Science and Engineering, Beihang University, Beijing 10191, China
| | - Linhao Zhang
- Department of Environmental Science and Engineering, School of Materials Science and Engineering, Beihang University, Beijing 10191, China
| | - Ting Wang
- Department of Environmental Science and Engineering, School of Materials Science and Engineering, Beihang University, Beijing 10191, China
| | - Wenhong Fan
- Department of Environmental Science and Engineering, School of Materials Science and Engineering, Beihang University, Beijing 10191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Shu Liu
- Department of Environmental Science and Engineering, School of Materials Science and Engineering, Beihang University, Beijing 10191, China.
| |
Collapse
|
3
|
Satasiya P, Patel S, Patel R, Raigar OP, Modha K, Parekh V, Joshi H, Patel V, Chaudhary A, Sharma D, Prajapati M. Meta-analysis of identified genomic regions and candidate genes underlying salinity tolerance in rice (Oryza sativa L.). Sci Rep 2024; 14:5730. [PMID: 38459066 PMCID: PMC10923909 DOI: 10.1038/s41598-024-54764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
Rice output has grown globally, yet abiotic factors are still a key cause for worry. Salinity stress seems to have the more impact on crop production out of all abiotic stresses. Currently one of the most significant challenges in paddy breeding for salinity tolerance with the help of QTLs, is to determine the QTLs having the best chance of improving salinity tolerance with the least amount of background noise from the tolerant parent. Minimizing the size of the QTL confidence interval (CI) is essential in order to primarily include the genes responsible for salinity stress tolerance. By considering that, a genome-wide meta-QTL analysis on 768 QTLs from 35 rice populations published from 2001 to 2022 was conducted to identify consensus regions and the candidate genes underlying those regions responsible for the salinity tolerance, as it reduces the confidence interval (CI) to many folds from the initial QTL studies. In the present investigation, a total of 65 MQTLs were extracted with an average CI reduced from 17.35 to 1.66 cM including the smallest of 0.01 cM. Identification of the MQTLs for individual traits and then classifying the target traits into correlated morphological, physiological and biochemical aspects, resulted in more efficient interpretation of the salinity tolerance, identifying the candidate genes and to understand the salinity tolerance mechanism as a whole. The results of this study have a huge potential to improve the rice genotypes for salinity tolerance with the help of MAS and MABC.
Collapse
Affiliation(s)
- Pratik Satasiya
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Sanyam Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ritesh Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Om Prakash Raigar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kaushal Modha
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Parekh
- Department of Biotechnology, College of Forestry, Navsari Agricultural University, Navsari, Gujarat, India
| | - Haimil Joshi
- Coastal Soil Salinity Research Station Danti-Umbharat, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Patel
- Regional Rice Research Station, Vyara, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ankit Chaudhary
- Kishorbhai Institute of Agriculture Sciences and Research Centre, Uka Tarsadia University, Bardoli, Gujarat, India.
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Maulik Prajapati
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
4
|
Zhu C, Wei F, Jiang H, Lin Z, Zhong L, Wu Y, Sun X, Song L. Exploration of the structural mechanism of hydrogen (H 2)-promoted horseradish peroxidase (HRP) activity via multiple spectroscopic and molecular dynamics simulation techniques. Int J Biol Macromol 2024; 258:128901. [PMID: 38128803 DOI: 10.1016/j.ijbiomac.2023.128901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Horseradish peroxidase (HRP) is an enzyme that is widely used in various fields. In this study, the effects of molecular hydrogen (H2) on the activity and structural characteristics of HRP were investigated by employing multiple spectroscopic techniques, atomic force microscopy (AFM) and molecular dynamics (MD) simulations. The results demonstrated that H2 could enhance HRP activity, especially in 1.5 mg/L hydrogen-rich water (HRW). The structural analysis results showed that H2 might alter HRP activity by affecting the active sites, secondary structure, hydrogen bonding network, CS groups, and morphological characteristics. The MD results also confirmed that H2 could increase the FeN bond distance in the active site, affect the secondary structure, and increase the number of hydrogen bonds. The MD results further suggested that H2 could increase the number of salt bridges, and lengthen the SS bonds in HRP. This study primarily revealed the mechanism by which H2 enhances the HRP activity, providing insight into the interactions between gas and macromolecular proteins. However, some of the results obtained via MD simulations still need to be verified experimentally. In addition, our study also provided a new convenient strategy to enhance enzyme activity.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fenfen Wei
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huibin Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Lin
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyue Zhong
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangjun Sun
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Kousar M, Kim YR, Kim JY, Park J. Enhancement of Growth and Secondary Metabolites by the Combined Treatment of Trace Elements and Hydrogen Water in Wheat Sprouts. Int J Mol Sci 2023; 24:16742. [PMID: 38069065 PMCID: PMC10706805 DOI: 10.3390/ijms242316742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to evaluate the response of Triticum aestivum to hydrogen water (HW) and trace elements treated with HW. A pot experiment was conducted to assess the growth indices, secondary metabolites, and antioxidant levels. The response surface methodology (RSM) approach was used to ascertain the concentrations and significant interaction between treatments. The outcomes demonstrated that the combined treatment of Se acid and Mo oxide exhibited a notable positive effect on the growth and secondary metabolites, when treated with HW as compared to distilled water (DW). Notably, the interaction between these two treatments is significant, and the higher response was observed at the optimal concentration of 0.000005% for Se acid and 0.06% for Mo oxide. Additionally, an in vitro experiment revealed that the mixture treatment inhibits the accumulation of lipids in HepG2 hepatocytes cells. Moreover, metabolic analysis revealed that upregulated metabolites are linked to the inhibition of lipid accumulation. In addition, the analysis emphasizes that the continued benefits of higher plants as a renewable supply for chemicals compounds, especially therapeutic agents, are being expanded and amplified by these state-of-the-art technologies.
Collapse
Affiliation(s)
- Muniba Kousar
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Yu Rim Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
- Center for Functional Biomaterials, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
6
|
Guo W, Xing Y, Luo X, Li F, Ren M, Liang Y. Reactive Oxygen Species: A Crosslink between Plant and Human Eukaryotic Cell Systems. Int J Mol Sci 2023; 24:13052. [PMID: 37685857 PMCID: PMC10487619 DOI: 10.3390/ijms241713052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive oxygen species (ROS) are important regulating factors that play a dual role in plant and human cells. As the first messenger response in organisms, ROS coordinate signals in growth, development, and metabolic activity pathways. They also can act as an alarm mechanism, triggering cellular responses to harmful stimuli. However, excess ROS cause oxidative stress-related damage and oxidize organic substances, leading to cellular malfunctions. This review summarizes the current research status and mechanisms of ROS in plant and human eukaryotic cells, highlighting the differences and similarities between the two and elucidating their interactions with other reactive substances and ROS. Based on the similar regulatory and metabolic ROS pathways in the two kingdoms, this review proposes future developments that can provide opportunities to develop novel strategies for treating human diseases or creating greater agricultural value.
Collapse
Affiliation(s)
- Wei Guo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yadi Xing
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Yiming Liang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
7
|
Mori T, Takahashi S, Soga A, Arimoto M, Kishikawa R, Yama Y, Dohra H, Kawagishi H, Hirai H. Aerobic H 2 production related to formate metabolism in white-rot fungi. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1201889. [PMID: 37746127 PMCID: PMC10512323 DOI: 10.3389/ffunb.2023.1201889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/05/2023] [Indexed: 09/26/2023]
Abstract
Biohydrogen is mainly produced by anaerobic bacteria, anaerobic fungi, and algae under anaerobic conditions. In higher eukaryotes, it is thought that molecular hydrogen (H2) functions as a signaling molecule for physiological processes such as stress responses. Here, it is demonstrated that white-rot fungi produce H2 during wood decay. The white-rot fungus Trametes versicolor produces H2 from wood under aerobic conditions, and H2 production is completely suppressed under hypoxic conditions. Additionally, oxalate and formate supplementation of the wood culture increased the level of H2 evolution. RNA-seq analyses revealed that T. versicolor oxalate production from the TCA/glyoxylate cycle was down-regulated, and conversely, genes encoding oxalate and formate metabolism enzymes were up-regulated. Although the involvement in H2 production of a gene annotated as an iron hydrogenase was uncertain, the results of organic acid supplementation, gene expression, and self-recombination experiments strongly suggest that formate metabolism plays a role in the mechanism of H2 production by this fungus. It is expected that this novel finding of aerobic H2 production from wood biomass by a white-rot fungus will open new fields in biohydrogen research.
Collapse
Affiliation(s)
- Toshio Mori
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
| | - Saaya Takahashi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Ayumi Soga
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Misa Arimoto
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | | | - Yuhei Yama
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Hideo Dohra
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
- Faculty of Science, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
8
|
Wang X, An Z, Liao J, Ran N, Zhu Y, Ren S, Meng X, Cui N, Yu Y, Fan H. The Role and Mechanism of Hydrogen-Rich Water in the Cucumis sativus Response to Chilling Stress. Int J Mol Sci 2023; 24:ijms24076702. [PMID: 37047675 PMCID: PMC10095547 DOI: 10.3390/ijms24076702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Cucumber is a warm climate vegetable that is sensitive to chilling reactions. Chilling can occur at any period of cucumber growth and development and seriously affects the yield and quality of cucumber. Hydrogen (H2) is a type of antioxidant that plays a critical role in plant development and the response to stress. Hydrogen-rich water (HRW) is the main way to use exogenous hydrogen. This study explored the role and mechanism of HRW in the cucumber defense response to chilling stress. The research results showed that applying 50% saturated HRW to the roots of cucumber seedlings relieved the damage caused by chilling stress. The growth and development indicators, such as plant height, stem diameter, leaf area, dry weight, fresh weight, and root length, increased under the HRW treatment. Photosynthetic efficiency, chlorophyll content, and Fv/Fm also improved and reduced energy dissipation. In addition, after HRW treatment, the REC and MDA content were decreased, and membrane lipid damage was reduced. NBT and DAB staining results showed that the color was lighter, and the area was smaller under HRW treatment. Additionally, the contents of O2- and H2O2 also decreased. Under chilling stress, the application of HRW increased the activity of the antioxidases SOD, CAT, POD, GR, and APX and improved the expression of the SOD, CAT, POD, GR, and APX antioxidase genes. The GSSG content was reduced, and the GSH content was increased. In addition, the ASA content also increased. Therefore, exogenous HRW is an effective measure for cucumber to respond to chilling stress.
Collapse
Affiliation(s)
- Xue Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhonghui An
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiameng Liao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Nana Ran
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yimeng Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shufeng Ren
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
9
|
Liu S, Zha Z, Chen S, Tang R, Zhao Y, Lin Q, Duan Y, Wang K. Hydrogen-rich water alleviates chilling injury-induced lignification of kiwifruit by inhibiting peroxidase activity and improving antioxidant system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2675-2680. [PMID: 36229969 DOI: 10.1002/jsfa.12272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/19/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Kiwifruit is prone to chilling stress and displays chilling injury (CI) such as lignification; however, the underlying physicochemical mechanism remains largely unknown. Here, the changes in levels of quality attributes, lignin biosynthesis, antioxidant system and sugars were compared in kiwifruit between control and hydrogen-rich water (HRW) treatments during cold storage for 90 days at 0 °C. RESULTS The results reveal that HRW is an effective measure for CI alleviation, as indicated by the decrease in lignification level with repressed peroxidase activity but enhanced polyphenol oxidase activity. The amelioration of membrane peroxidation was suggested by the repressed levels of H2 O2 and malondialdehyde. They were accompanied by the improvement of antioxidant system, which is supported by the enhancement of sugars including fructose and glucose. CONCLUSION In conclusion, HRW can enhance chilling tolerance, as suggested by the alleviation of lignification through inhibiting peroxidase activity and elevating the antioxidant system to attenuate membrane peroxidation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Zhuping Zha
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Shuqi Chen
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Rui Tang
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Yaoyao Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiong Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuquan Duan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ke Wang
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Shao Y, Lin F, Wang Y, Cheng P, Lou W, Wang Z, Liu Z, Chen D, Guo W, Lan Y, Du L, Zhou Y, Zhou T, Shen W. Molecular Hydrogen Confers Resistance to Rice Stripe Virus. Microbiol Spectr 2023; 11:e0441722. [PMID: 36840556 PMCID: PMC10100981 DOI: 10.1128/spectrum.04417-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Although molecular hydrogen (H2) has potential therapeutic effects in animals, whether or how this gas functions in plant disease resistance has not yet been elucidated. Here, after rice stripe virus (RSV) infection, H2 production was pronouncedly stimulated in Zhendao 88, a resistant rice variety, compared to that in a susceptible variety (Wuyujing No.3). External H2 supply remarkably reduced the disease symptoms and RSV coat protein (CP) levels, especially in Wuyujing No.3. The above responses were abolished by the pharmacological inhibition of H2 production. The transgenic Arabidopsis plants overexpressing a hydrogenase gene from Chlamydomonas reinhardtii also improved plant resistance. In the presence of H2, the transcription levels of salicylic acid (SA) synthetic genes were stimulated, and the activity of SA glucosyltransferases was suppressed, thus facilitating SA accumulation. Genetic evidence revealed that two SA synthetic mutants of Arabidopsis (sid2-2 and pad4) were more susceptible to RSV than the wild type (WT). The treatments with H2 failed to improve the resistance to RSV in two SA synthetic mutants. The above results indicated that H2 enhances rice resistance to RSV infection possibly through the SA-dependent pathway. This study might open a new window for applying the H2-based approach to improve plant disease resistance. IMPORTANCE Although molecular hydrogen has potential therapeutic effects in animals, whether or how this gas functions in plant disease resistance has not yet been elucidated. RSV was considered the most devastating plant virus in rice, since it could cause severe losses in field production. This disease was thus selected as a classical model to explore the interrelationship between molecular hydrogen and plant pathogen resistance. In this study, we discovered that both exogenous and endogenous H2 could enhance plant resistance against Rice stripe virus infection by regulating salicylic acid signaling. Compared with some frequently used agrochemicals, H2 is almost nontoxic. We hope that the findings presented here will serve as an opportunity for the scientific community to push hydrogen-based agriculture forward.
Collapse
Affiliation(s)
- Yudong Shao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Feng Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wang Lou
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhaoyun Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Zhiyang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Dongyue Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wei Guo
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Ying Lan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Linlin Du
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Yijun Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Tong Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Dong W, Cao S, Zhou Q, Jin S, Zhou C, Liu Q, Li X, Chen W, Yang Z, Shi L. Hydrogen-rich water treatment increased several phytohormones and prolonged the shelf life in postharvest okras. FRONTIERS IN PLANT SCIENCE 2023; 14:1108515. [PMID: 36866361 PMCID: PMC9971804 DOI: 10.3389/fpls.2023.1108515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen-rich water (HRW) treatment has been reported to delay the softening and senescence of postharvest okras, but its regulatory mechanism remains unclear. In this paper, we investigated the effects of HRW treatment on the metabolism of several phytohormones in postharvest okras, which act as regulatory molecules in fruit ripening and senescence processes. The results showed that HRW treatment delayed okra senescence and maintained fruit quality during storage. The treatment upregulated all of the melatonin biosynthetic genes such as AeTDC, AeSNAT, AeCOMT and AeT5H, contributing to the higher melatonin content in the treated okras. Meanwhile, increased transcripts of anabolic genes but lower expression of catabolic genes involved in indoleacetic acid (IAA) and gibberellin (GA) metabolism were observed in okras when treated with HRW, which was related to the enhanced levels of IAA and GA. However, the treated okras experienced lower abscisic acid (ABA) content as compared to the non-treated fruit due to the down-regulation of its biosynthetic genes and up-regulation of the degradative gene AeCYP707A. Additionally, there was no difference in γ-aminobutyric acid between the non-treated and HRW-treated okras. Collectively, our results indicated that HRW treatment increased levels of melatonin, GA and IAA, but decreased ABA content, which ultimately delayed fruit senescence and prolonged shelf life in postharvest okras.
Collapse
|
12
|
Li C, Yu W, Wu Y, Li Y. Roles of Hydrogen Gas in Plants under Abiotic Stress: Current Knowledge and Perspectives. Antioxidants (Basel) 2022; 11:antiox11101999. [PMID: 36290722 PMCID: PMC9598357 DOI: 10.3390/antiox11101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen gas (H2) is a unique molecular messenger, which is known to be involved in diverse physiological processes in plants, from seed germination to seedling growth to regulation of environmental stresses. In this review, we focus on the role of H2 in plant responses to abiotic stresses, such as temperature, osmotic stress, light, paraquat (PQ)-induced oxidative stresses, and metal stresses. In general, H2 can alleviate environmental stresses by improving the antioxidant defense system, photosynthetic capacity, re-establishing ion homeostasis and glutathione homeostasis, maintaining nutrient element homeostasis, mediating glucose metabolism and flavonoid pathways, regulating heme oxygenase-1 (HO-1) signaling, and interaction between H2 and nitric oxide (NO), carbonic oxide (CO), or plant hormones. In addition, some genes modulated by H2 under abiotic stresses are also discussed. Detailed evidence of molecular mechanisms for H2-mediated particular pathways under abiotic stress, however, is scarce. Further studies regarding the regulatory roles of H2 in modulating abiotic stresses research should focus on the molecular details of the particular pathways that are activated in plants. More research work will improve knowledge concerning possible applications of hydrogen-rich water (HRW) to respond to abiotic stresses with the aim of enhancing crop quality and economic value.
Collapse
|
13
|
Wang Y, Cheng P, Zhao G, Li L, Shen W. Phytomelatonin and gasotransmitters: a crucial combination for plant physiological functions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5851-5862. [PMID: 35430633 DOI: 10.1093/jxb/erac159] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/13/2022] [Indexed: 05/05/2023]
Abstract
Melatonin, a molecule that was first identified in animal tissues, has been confirmed to be involved as a potential phytohormone in a variety of plant physiological responses. It is considered primarily as an antioxidant with important actions in controlling reactive oxygen and reactive nitrogen species. In addition to its role in regulating plant growth and development, phytomelatonin is involved in protection against abiotic and biotic stresses. The 'gasotransmitter'-that is, a gaseous signaling molecule-is a new concept that has been advanced in the past two decades, with functions in animal and plant physiological regulation. Gasotransmitters including nitric oxide, carbon monoxide, hydrogen sulfide, methane, and, more recently identified, hydrogen gas are critical and indispensable in a wide range of biological processes. This review investigates the interrelationship between phytomelatonin and the above-mentioned gasotransmitters from the perspective of biosynthetic origin and functions. Moreover, the potential future research directions for phytomelatonin and gasotransmitters interactions are discussed.
Collapse
Affiliation(s)
- Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Gan Zhao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Nitric Oxide Acts as an Inhibitor of Postharvest Senescence in Horticultural Products. Int J Mol Sci 2022; 23:ijms231911512. [PMID: 36232825 PMCID: PMC9569437 DOI: 10.3390/ijms231911512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Horticultural products display fast senescence after harvest at ambient temperatures, resulting in decreased quality and shorter shelf life. As a gaseous signal molecule, nitric oxide (NO) has an important physiological effect on plants. Specifically, in the area of NO and its regulation of postharvest senescence, tremendous progress has been made. This review summarizes NO synthesis; the effect of NO in alleviating postharvest senescence; the mechanism of NO-alleviated senescence; and its interactions with other signaling molecules, such as ethylene (ETH), abscisic acid (ABA), melatonin (MT), hydrogen sulfide (H2S), hydrogen gas (H2), hydrogen peroxide (H2O2), and calcium ions (Ca2+). The aim of this review is to provide theoretical references for the application of NO in postharvest senescence in horticultural products.
Collapse
|
15
|
Hancock JT. Editorial for Special Issue: “Production and Role of Molecular Hydrogen in Plants”. PLANTS 2022; 11:plants11152047. [PMID: 35956525 PMCID: PMC9370376 DOI: 10.3390/plants11152047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
Molecular hydrogen (H2) is an extremely small molecule, which is relatively insoluble in water and relatively inert [...]
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
16
|
Nguyen TK, Lim JH. Is It a Challenge to Use Molecular Hydrogen for Extending Flower Vase Life? PLANTS 2022; 11:plants11101277. [PMID: 35631701 PMCID: PMC9146928 DOI: 10.3390/plants11101277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
Currently, molecular hydrogen treatment has the potential to manage the Corona Virus disease (COVID-19) and pandemic based on its anti-inflammatory, apoptosis-resistance, antioxidant, and hormone-regulating properties. Antioxidant properties are beneficial in both animal and human diseases. In agricultural sciences, molecular hydrogen is used to postpone postharvest ripening and senescence in fruits. However, studies on flower senescence are limited to the application of hydrogen molecules during floral preharvest and postharvest. Fortunately, improved tools involving molecular hydrogen can potentially improve postharvest products and storage. We also discuss the benefits and drawbacks of molecular hydrogen in floral preharvest and postharvest. This review provides an overview of molecular hydrogen solutions for floral preservative storage.
Collapse
|
17
|
Integrated Metabolomic and Transcriptomic Analyses to Understand the Effects of Hydrogen Water on the Roots of Ficus hirta Vahl. PLANTS 2022; 11:plants11050602. [PMID: 35270073 PMCID: PMC8912395 DOI: 10.3390/plants11050602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022]
Abstract
Wuzhimaotao (Ficus hirta Vahl) is an important medicinal and edible plant in China. The extract from the roots of Ficus hirta Vahl contains phenylpropanoid compounds, such as coumarins and flavonoids, which are the main active components of this Chinese herbal medicine. In this study, we analyzed the transcriptomic and metabolomic data of the hydrogen-water-treated roots of Ficus hirta Vahl and a control group. The results showed that many genes and metabolites were regulated in the roots of Ficus hirta Vahl that were treated with hydrogen water. Compared with the control group, 173 genes were downregulated and 138 genes were upregulated in the hydrogen-rich water treatment group. Differential metabolite analysis through LC-MS showed that 168 and 109 metabolites had significant differences in positive and negative ion mode, respectively. In the upregulated metabolites, the main active components of Wuzhimaotao, such as the phenylpropane compounds naringin, bergaptol, hesperidin, and benzofuran, were found. Integrated transcriptomic and metabolomic data analysis showed that four and one of the most relevant pathways were over enriched in positive and negative ion mode, respectively. In the relationship between metabolites and DEGs, phenylpropanoid biosynthesis and metabolism play an important role. This indicates that phenylpropanoid biosynthesis and metabolism may be the main metabolic pathways regulated by hydrogen water. Our transcriptome analysis showed that most of the DEGs with |log2FC| ≥ 1 are transcription factor genes, and most of them are related to plant hormone signal transduction, stress resistance, and secondary metabolism, mainly phenylpropanoid biosynthesis and metabolism. This study provides important evidence and clues for revealing the botanical effect mechanism of hydrogen and a theoretical basis for the application of hydrogen agriculture in the cultivation of Chinese herbal medicine.
Collapse
|
18
|
Cheng P, Wang J, Zhao Z, Kong L, Lou W, Zhang T, Jing D, Yu J, Shu Z, Huang L, Zhu W, Yang Q, Shen W. Molecular Hydrogen Increases Quantitative and Qualitative Traits of Rice Grain in Field Trials. PLANTS (BASEL, SWITZERLAND) 2021; 10:2331. [PMID: 34834694 PMCID: PMC8624507 DOI: 10.3390/plants10112331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
How to use environmentally friendly technology to enhance rice field and grain quality is a challenge for the scientific community. Here, we showed that the application of molecular hydrogen in the form of hydrogen nanobubble water could increase the length, width, and thickness of brown/rough rice and white rice, as well as 1000-grain weight, compared to the irrigation with ditch water. The above results were well matched with the transcriptional profiles of representative genes related to high yield, including up-regulation of heterotrimeric G protein β-subunit gene (RGB1) for cellular proliferation, Grain size 5 (GS5) for grain width, Small grain 1 (SMG1) for grain length and width, Grain weight 8 (GW8) for grain width and weight, and down-regulation of negatively correlated gene Grain size 3 (GS3) for grain length. Meanwhile, although total starch content in white rice is not altered by HNW, the content of amylose was decreased by 31.6%, which was parallel to the changes in the transcripts of the amylose metabolism genes. In particular, cadmium accumulation in white rice was significantly reduced, reaching 52% of the control group. This phenomenon was correlated well with the differential expression of transporter genes responsible for Cd entering plants, including down-regulated Natural resistance-associated macrophage protein (Nramp5), Heavy metal transporting ATPase (HMA2 and HMA3), and Iron-regulated transporters (IRT1), and for decreasing Cd accumulation in grain, including down-regulated Low cadmium (LCD). This study clearly showed that the application of molecular hydrogen might be used as an effective approach to increase field and grain quality of rice.
Collapse
Affiliation(s)
- Pengfei Cheng
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (P.C.); (J.W.); (Z.Z.); (L.K.); (W.L.); (T.Z.); (W.Z.); (Q.Y.)
| | - Jun Wang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (P.C.); (J.W.); (Z.Z.); (L.K.); (W.L.); (T.Z.); (W.Z.); (Q.Y.)
| | - Zhushan Zhao
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (P.C.); (J.W.); (Z.Z.); (L.K.); (W.L.); (T.Z.); (W.Z.); (Q.Y.)
| | - Lingshuai Kong
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (P.C.); (J.W.); (Z.Z.); (L.K.); (W.L.); (T.Z.); (W.Z.); (Q.Y.)
| | - Wang Lou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (P.C.); (J.W.); (Z.Z.); (L.K.); (W.L.); (T.Z.); (W.Z.); (Q.Y.)
| | - Tong Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (P.C.); (J.W.); (Z.Z.); (L.K.); (W.L.); (T.Z.); (W.Z.); (Q.Y.)
| | - Dedao Jing
- Zhenjiang Institute of Agricultural Science of the Ning-Zhen Hilly District, Jurong 212400, China; (D.J.); (J.Y.); (Z.S.)
| | - Julong Yu
- Zhenjiang Institute of Agricultural Science of the Ning-Zhen Hilly District, Jurong 212400, China; (D.J.); (J.Y.); (Z.S.)
| | - Zhaolin Shu
- Zhenjiang Institute of Agricultural Science of the Ning-Zhen Hilly District, Jurong 212400, China; (D.J.); (J.Y.); (Z.S.)
| | - Liqin Huang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wenjiao Zhu
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (P.C.); (J.W.); (Z.Z.); (L.K.); (W.L.); (T.Z.); (W.Z.); (Q.Y.)
| | - Qing Yang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (P.C.); (J.W.); (Z.Z.); (L.K.); (W.L.); (T.Z.); (W.Z.); (Q.Y.)
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (P.C.); (J.W.); (Z.Z.); (L.K.); (W.L.); (T.Z.); (W.Z.); (Q.Y.)
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Hancock JT, LeBaron TW, May J, Thomas A, Russell G. Molecular Hydrogen: Is This a Viable New Treatment for Plants in the UK? PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112270. [PMID: 34834633 PMCID: PMC8618766 DOI: 10.3390/plants10112270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Despite being trialed in other regions of the world, the use of molecular hydrogen (H2) for enhanced plant growth and the postharvest storage of crops has yet to be widely accepted in the UK. The evidence that the treatment of plants and plant products with H2 alleviates plant stress and slows crop senescence continues to grow. Many of these effects appear to be mediated by the alteration of the antioxidant capacity of plant cells. Some effects seem to involve heme oxygenase, whilst the reduction in the prosthetic group Fe3+ is also suggested as a mechanism. Although it is difficult to use as a gaseous treatment in a field setting, the use of hydrogen-rich water (HRW) has the potential to be of significant benefit to agricultural practices. However, the use of H2 in agriculture will only be adopted if the benefits outweigh the production and application costs. HRW is safe and relatively easy to use. If H2 gas or HRW are utilized in other countries for agricultural purposes, it is tempting to suggest that they could also be widely used in the UK in the future, particularly for postharvest storage, thus reducing food waste.
Collapse
Affiliation(s)
- John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (J.M.); (A.T.); (G.R.)
| | - Tyler W. LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Faculty of Natural Sciences of Comenius University, 84104 Bratislava, Slovakia;
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
| | - Jennifer May
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (J.M.); (A.T.); (G.R.)
| | - Adam Thomas
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (J.M.); (A.T.); (G.R.)
| | - Grace Russell
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (J.M.); (A.T.); (G.R.)
| |
Collapse
|
20
|
Wang YQ, Liu YH, Wang S, Du HM, Shen WB. Hydrogen agronomy: research progress and prospects. J Zhejiang Univ Sci B 2021; 21:841-855. [PMID: 33150769 DOI: 10.1631/jzus.b2000386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Agriculture is the foundation of social development. Under the pressure of population growth, natural disasters, environmental pollution, climate change, and food safety, the interdisciplinary "new agriculture" is becoming an important trend of modern agriculture. In fact, new agriculture is not only the foundation of great health and new energy sources, but is also the cornerstone of national food security, energy security, and biosafety. Hydrogen agronomy focuses mainly on the mechanism of hydrogen gas (H2) biology effects in agriculture, and provides a theoretical foundation for the practice of hydrogen agriculture, a component of the new agriculture. Previous research on the biological effects of H2 focused chiefly on medicine. The mechanism of selective antioxidant is the main theoretical basis of hydrogen medicine. Subsequent experiments have demonstrated that H2 can regulate the growth and development of plant crops, edible fungus, and livestock, and enhance the tolerance of these agriculturally important organisms against abiotic and biotic stresses. Even more importantly, H2 can regulate the growth and development of crops by changing the soil microbial community composition and structure. Use of H2 can also improve the nutritional value and postharvest quality of agricultural products. Researchers have also shown that the biological functions of molecular hydrogen are mediated by modulating reactive oxygen species (ROS), nitric oxide (NO), and carbon monoxide (CO) signaling cascades in plants and microbes. This review summarizes and clarifies the history of hydrogen agronomy and describes recent progress in the field. We also argue that emerging hydrogen agriculture will be an important direction in the new agriculture. Further, we discuss several scientific problems in hydrogen agronomy, and suggest that the future of hydrogen agronomy depends on contributions by multiple disciplines. Important future research directions of hydrogen agronomy include hydrogen agriculture in special environments, such as islands, reefs, aircraft, and outer space.
Collapse
Affiliation(s)
- Yue-Qiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Hao Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong-Mei Du
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China.,School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Biao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.,Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Li L, Yin Q, Zhang T, Cheng P, Xu S, Shen W. Hydrogen Nanobubble Water Delays Petal Senescence and Prolongs the Vase Life of Cut Carnation ( Dianthus caryophyllus L.) Flowers. PLANTS 2021; 10:plants10081662. [PMID: 34451707 PMCID: PMC8401707 DOI: 10.3390/plants10081662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
The short vase life of cut flowers limits their commercial value. To ameliorate this practical problem, this study investigated the effect of hydrogen nanobubble water (HNW) on delaying senescence of cut carnation flowers (Dianthuscaryophyllus L.). It was observed that HNW had properties of higher concentration and residence time for the dissolved hydrogen gas in comparison with conventional hydrogen-rich water (HRW). Meanwhile, application of 5% HNW significantly prolonged the vase life of cut carnation flowers compared with distilled water, other doses of HNW (including 1%, 10%, and 50%), and 10% HRW, which corresponded with the alleviation of fresh weight and water content loss, increased electrolyte leakage, oxidative damage, and cell death in petals. Further study showed that the increasing trend with respect to the activities of nucleases (including DNase and RNase) and protease during vase life period was inhibited by 5% HNW. The results indicated that HNW delayed petal senescence of cut carnation flowers through reducing reactive oxygen species accumulation and initial activities of senescence-associated enzymes. These findings may provide a basic framework for the application of HNW for postharvest preservation of agricultural products.
Collapse
Affiliation(s)
- Longna Li
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (Q.Y.); (T.Z.); (P.C.)
| | - Qianlan Yin
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (Q.Y.); (T.Z.); (P.C.)
| | - Tong Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (Q.Y.); (T.Z.); (P.C.)
| | - Pengfei Cheng
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (Q.Y.); (T.Z.); (P.C.)
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (Q.Y.); (T.Z.); (P.C.)
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-25-84-399-032; Fax: +86-25-84-396-542
| |
Collapse
|
22
|
Jiang K, Kuang Y, Feng L, Liu Y, Wang S, Du H, Shen W. Molecular Hydrogen Maintains the Storage Quality of Chinese Chive through Improving Antioxidant Capacity. PLANTS 2021; 10:plants10061095. [PMID: 34072565 PMCID: PMC8227461 DOI: 10.3390/plants10061095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023]
Abstract
Chinese chive usually becomes decayed after a short storage time, which was closely observed with the redox imbalance. To cope with this practical problem, in this report, molecular hydrogen (H2) was used to evaluate its influence in maintaining storage quality of Chinese chive, and the changes in antioxidant capacity were also analyzed. Chives were treated with 1%, 2%, or 3% H2, and with air as the control, and then were stored at 4 ± 1 °C. We observed that, compared with other treatment groups, the application of 3% H2 could significantly prolong the shelf life of Chinese chive, which was also confirmed by the obvious mitigation of decreased decay index, the loss ratio of weight, and the reduction in soluble protein content. Meanwhile, the decreasing tendency in total phenolic, flavonoid, and vitamin C contents was obviously impaired or slowed down by H2. Results of antioxidant capacity revealed that the accumulation of reactive oxygen species (ROS) and hydrogen peroxide (H2O2) was differentially alleviated, which positively matched with 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and the improved activities of antioxidant enzymes, including superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). Above results clearly suggest that postharvest molecular hydrogen application might be a potential useful approach to improve the storage quality of Chinese chive, which is partially achieved through the alleviation of oxidative damage happening during the storage periods. These findings also provide potential theoretical and practical significance for transportation and consumption of perishable vegetables.
Collapse
Affiliation(s)
- Ke Jiang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.J.); (Y.K.); (L.F.); (Y.L.); (S.W.)
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Kuang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.J.); (Y.K.); (L.F.); (Y.L.); (S.W.)
| | - Liying Feng
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.J.); (Y.K.); (L.F.); (Y.L.); (S.W.)
| | - Yuhao Liu
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.J.); (Y.K.); (L.F.); (Y.L.); (S.W.)
| | - Shu Wang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.J.); (Y.K.); (L.F.); (Y.L.); (S.W.)
| | - Hongmei Du
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.J.); (Y.K.); (L.F.); (Y.L.); (S.W.)
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-25-84-399-032; Fax: +86-25-84-396-542
| |
Collapse
|
23
|
Li L, Lou W, Kong L, Shen W. Hydrogen Commonly Applicable from Medicine to Agriculture: From Molecular Mechanisms to the Field. Curr Pharm Des 2021; 27:747-759. [PMID: 33290194 DOI: 10.2174/1381612826666201207220051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/08/2020] [Indexed: 11/22/2022]
Abstract
The emerging field of hydrogen biology has to date mainly been applied in medicine. However, hydrogen biology can also enable positive outcomes in agriculture. Agriculture faces significant challenges resulting from a growing population, climate change, natural disasters, environmental pollution, and food safety issues. In fact, hydrogen agriculture is a practical application of hydrogen biology, which may assist in addressing many of these challenges. It has been demonstrated that hydrogen gas (H2) may enhance plant tolerance towards abiotic and biotic stresses, regulate plant growth and development, increase nutritional values, prolong the shelf life, and decrease the nitrite accumulation during the storage of vegetables, as well as increase the resilience of livestock to pathogens. Our field trials show that H2 may have a promising potential to increase yield and improve the quality of agricultural products. This review aims to elucidate mechanisms for a novel agricultural application of H2 in China. Future development of hydrogen agriculture is proposed as well. Obviously, hydrogen agriculture belongs to a low carbon economy, and has great potential to provide "safe, tasty, healthy, and high-yield" agricultural products so that it may improve the sustainability of agriculture.
Collapse
Affiliation(s)
- Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wang Lou
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingshuai Kong
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Fu X, Ma L, Gui R, Ashraf U, Li Y, Yang X, Zhang J, Imran M, Tang X, Tian H, Mo Z. Differential response of fragrant rice cultivars to salinity and hydrogen rich water in relation to growth and antioxidative defense mechanisms. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1203-1211. [PMID: 33617358 DOI: 10.1080/15226514.2021.1889963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salinity negatively effects the growth and productivity of crop plants; however, the effects of hydrogen rich water (HRW) on the early growth of fragrant rice under salinity stress are rarely investigated. In present study, two HRW treatments: foliar application (F-HRW) and irrigation (I-HRW) were applied on the two fragrant rice cultivars, Yuxiangyouzhan and Xiangyaxiangzhan, grown under normal and salt stress conditions, i.e., 0 and 150 mmol NaCl L-1, respectively. Plants without HRW application were grown as control (CK). Results showed that the dry weight per unit plant height (mg cm-1) was increased by 12.6% and 23.0% in F-HRW and I-HRW, respectively under salt stress as compared with CK. Application of HRW, regardless of the application method, modulated the antioxidant activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) while reduced malondialdehyde (MDA) contents under salt stress. Moreover, significant and positive relations were observed among total dry weight and shoot dry weight, dry weight per unit plant height, SOD and CAT activity in root. Overall, F-HRW application modulated the early growth and related physiological attributes in fragrant rice under salt stress whereas I-HRW was found to mitigate salt stress. Novelty statement: Involvement of endogenous H2 in plants for regulating various physiological functions is of great importance to stimulate and/or activate the antioxidant defense responses against oxidative stress; however, there is a lack of research in this aspect. The present study investigated the effects of hydrogen rich water (HRW) on the growth and physiological attributes of two fragrant rice cultivars grown under salt-stress. It was noteworthy to find that application of HRW either foliar application or irrigation improved the morphological characters, i.e., dry weight per unit plant height and enhanced the activities of antioxidants, i.e., peroxidase, superoxide dismutase and catalase whilst decreased the malonaldehyde content. Overall, the application of HRW modulates plant growth and physiological attributes in fragrant rice cultivars under salt-stress conditions. This study will be helpful in improving the early growth and/or stand establishment of fragrant rice nursery under saline conditions.
Collapse
Affiliation(s)
- Xiaomeng Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Runfei Gui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Umair Ashraf
- Department of Botany, University of Education, Division of Science and Technology, Lahore, Pakistan
| | - Yuzhan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Jianwen Zhang
- Yunfu Bureau of Agriculture and Rural Affairs, Yunfu, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Hua Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
25
|
Hancock JT, Russell G. Downstream Signalling from Molecular Hydrogen. PLANTS (BASEL, SWITZERLAND) 2021; 10:367. [PMID: 33672953 PMCID: PMC7918658 DOI: 10.3390/plants10020367] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
Molecular hydrogen (H2) is now considered part of the suite of small molecules that can control cellular activity. As such, H2 has been suggested to be used in the therapy of diseases in humans and in plant science to enhance the growth and productivity of plants. Treatments of plants may involve the creation of hydrogen-rich water (HRW), which can then be applied to the foliage or roots systems of the plants. However, the molecular action of H2 remains elusive. It has been suggested that the presence of H2 may act as an antioxidant or on the antioxidant capacity of cells, perhaps through the scavenging of hydroxyl radicals. H2 may act through influencing heme oxygenase activity or through the interaction with reactive nitrogen species. However, controversy exists around all the mechanisms suggested. Here, the downstream mechanisms in which H2 may be involved are critically reviewed, with a particular emphasis on the H2 mitigation of stress responses. Hopefully, this review will provide insight that may inform future research in this area.
Collapse
Affiliation(s)
- John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | | |
Collapse
|
26
|
Su J, Yang X, Shao Y, Chen Z, Shen W. Molecular hydrogen-induced salinity tolerance requires melatonin signalling in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2021; 44:476-490. [PMID: 33103784 DOI: 10.1111/pce.13926] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 05/21/2023]
Abstract
Melatonin (MT) plays positive roles in salinity stress tolerance. However, the upstream signalling components that regulate MT are poorly understood. Here, we report that endogenous MT acts downstream of molecular hydrogen (H2 ) in the salinity response in Arabidopsis. The addition of hydrogen-rich water and expression of the hydrogenase1 gene (CrHYD1) from Chlamydomonas reinhardtii increased endogenous H2 and MT levels and enhanced salinity tolerance. These results were not observed in the absence of serotonin N-acetyltransferase gene (SNAT). H2 increased the levels of SNAT transcripts in the wild-type and CrHYD1 lines, which had lower Na+ /K+ ratios and higher levels of ion transport-related gene transcripts. These changes were not observed in atsnat/CrHYD1-4 hybrids. The increased MT-dependent Na+ extrusion observed in the CrHYD1 plants resulted, at least in part, from enhanced Na+ /H+ antiport across the plasma membrane. The endogenous H2 -induced MT-dependent regulation of ion and redox homeostasis was impaired in the atsnat/CrHYD1-4 hybrids. Taken together, these results demonstrate that MT-induced salinity tolerance is induced by a H2 signalling cascade that regulates ion and redox homeostasis in response to salinity.
Collapse
Affiliation(s)
- Jiuchang Su
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinghao Yang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yudong Shao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ziping Chen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Russell G, Zulfiqar F, Hancock JT. Hydrogenases and the Role of Molecular Hydrogen in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1136. [PMID: 32887396 PMCID: PMC7569912 DOI: 10.3390/plants9091136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Molecular hydrogen (H2) has been suggested to be a beneficial treatment for a range of species, from humans to plants. Hydrogenases catalyze the reversible oxidation of H2, and are found in many organisms, including plants. One of the cellular effects of H2 is the selective removal of reactive oxygen species (ROS) and reactive nitrogen species (RNS), specifically hydroxyl radicals and peroxynitrite. Therefore, the function of hydrogenases and the action of H2 needs to be reviewed in the context of the signalling roles of a range of redox active compounds. Enzymes can be controlled by the covalent modification of thiol groups, and although motifs targeted by nitric oxide (NO) can be predicted in hydrogenases sequences it is likely that the metal prosthetic groups are the target of inhibition. Here, a selection of hydrogenases, and the possibility of their control by molecules involved in redox signalling are investigated using a bioinformatics approach. Methods of treating plants with H2 along with the role of H2 in plants is also briefly reviewed. It is clear that studies report significant effects of H2 on plants, improving growth and stress responses, and therefore future work needs to focus on the molecular mechanisms involved.
Collapse
Affiliation(s)
- Grace Russell
- Department of Applied Sciences, University of the West of England, Bristol BS 16 1QY, UK;
| | - Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS 16 1QY, UK;
| |
Collapse
|
28
|
Affiliation(s)
- Thi Kieu Ngan Pham
- Department of Mechanical Engineering University of Hawai‘i at Mānoa 2540 Dole Street Honolulu Hawaii 96822 USA
| | - Joseph J. Brown
- Department of Mechanical Engineering University of Hawai‘i at Mānoa 2540 Dole Street Honolulu Hawaii 96822 USA
| |
Collapse
|
29
|
Li L, Liu Y, Wang S, Zou J, Ding W, Shen W. Magnesium Hydride-Mediated Sustainable Hydrogen Supply Prolongs the Vase Life of Cut Carnation Flowers via Hydrogen Sulfide. FRONTIERS IN PLANT SCIENCE 2020; 11:595376. [PMID: 33362825 PMCID: PMC7755932 DOI: 10.3389/fpls.2020.595376] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 05/08/2023]
Abstract
Magnesium hydride (MgH2) is a promising solid-state hydrogen source with high storage capacity (7.6 wt%). Although it is recently established that MgH2 has potential applications in medicine because it sustainably supplies hydrogen gas (H2), the biological functions of MgH2 in plants have not been observed yet. Also, the slow reaction kinetics restricts its practical applications. In this report, MgH2 (98% purity; 0.5-25 μm size) was firstly used as a hydrogen generation source for postharvest preservation of flowers. Compared with the direct hydrolysis of MgH2 in water, the efficiency of hydrogen production from MgH2 hydrolysis could be greatly improved when the citrate buffer solution is introduced. These results were further confirmed in the flower vase experiment by showing higher efficiency in increasing the production and the residence time of H2 in solution, compared with hydrogen-rich water. Mimicking the response of hydrogen-rich water and sodium hydrosulfide (a hydrogen sulfide donor), subsequent experiments discovered that MgH2-citrate buffer solution not only stimulated hydrogen sulfide (H2S) synthesis but also significantly prolonged the vase life of cut carnation flowers. Meanwhile, redox homeostasis was reestablished, and the increased transcripts of representative senescence-associated genes, including DcbGal and DcGST1, were partly abolished. By contrast, the discussed responses were obviously blocked by the inhibition of endogenous H2S with hypotaurine, an H2S scavenger. These results clearly revealed that MgH2-supplying H2 could prolong the vase life of cut carnation flowers via H2S signaling, and our results, therefore, open a new window for the possible application of hydrogen-releasing materials in agriculture.
Collapse
Affiliation(s)
- Longna Li
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuhao Liu
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shu Wang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jianxin Zou
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjiang Ding
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Wenbiao Shen,
| |
Collapse
|
30
|
Yao Y, Yang Y, Li C, Huang D, Zhang J, Wang C, Li W, Wang N, Deng Y, Liao W. Research Progress on the Functions of Gasotransmitters in Plant Responses to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2019; 8:E605. [PMID: 31847297 PMCID: PMC6963697 DOI: 10.3390/plants8120605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Abiotic stress is one of the major threats affecting plant growth and production. The harm of abiotic stresses includes the disruption of cellular redox homeostasis, reactive oxygen species (ROS) production, and oxidative stress in the plant. Plants have different mechanisms to fight stress, and these mechanisms are responsible for maintaining the required homeostasis in plants. Recently, the study of gasotransmitters in plants has attracted much attention, especially for abiotic stress. In the present review, abiotic stressors were mostly found to induce gasotransmitter production in plants. Meanwhile, these gasotransmitters can enhance the activity of several antioxidant enzymes, alleviate the harmfulness of ROS, and enhance plant tolerance under various stress conditions. In addition, we introduced the interaction of gasotransmitters in plants under abiotic stress. With their promising applications in agriculture, gasotransmitters will be adopted in the near future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (Y.Y.); (C.L.); (D.H.); (J.Z.); (C.W.); (W.L.); (N.W.); (Y.D.)
| |
Collapse
|
31
|
Guan Q, Ding XW, Jiang R, Ouyang PL, Gui J, Feng L, Yang L, Song LH. Effects of hydrogen-rich water on the nutrient composition and antioxidative characteristics of sprouted black barley. Food Chem 2019; 299:125095. [PMID: 31279124 DOI: 10.1016/j.foodchem.2019.125095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023]
Abstract
Hydrogen gas (H2), a multifunctional signaling molecule, has received increasing attention in recent years. In the present study, hydrogen-rich water (HRW) (2 ppm) was used for the processing of sprouted black barley (Hordeum distichum L.), and the results showed that the HRW treatment could significantly increase the germination rate and growth rate of black barley (P < 0.05). A chemical component analysis showed that in sprouted black barley, the HRW treatment could change the distribution of phytochemicals (e.g., the ionic strength of guanosine), increase the concentrations of free vanillic acid, coumaric acid, sinapic acid, conjugated sinapic acid, Ca and Fe and the hydroxyl radical scavenging rate, and decrease the protein, fat, starch and dietary fibre contents compared with the results obtained after treatment with ultra-pure water (P < 0.05). HRW can be used for the processing of sprouted grains to effectively increase their germination efficiency and concentrations of bioactive phytochemicals.
Collapse
Affiliation(s)
- Qi Guan
- Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Wen Ding
- Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Jiang
- Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng-Ling Ouyang
- Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Gui
- Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Feng
- Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Yang
- Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Hua Song
- Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
32
|
García-Gómez P, Almagro G, Sánchez-López ÁM, Bahaji A, Ameztoy K, Ricarte-Bermejo A, Baslam M, Antolín MC, Urdiain A, López-Belchi MD, López-Gómez P, Morán JF, Garrido J, Muñoz FJ, Baroja-Fernández E, Pozueta-Romero J. Volatile compounds other than CO 2 emitted by different microorganisms promote distinct posttranscriptionally regulated responses in plants. PLANT, CELL & ENVIRONMENT 2019; 42:1729-1746. [PMID: 30480826 DOI: 10.1111/pce.13490] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 05/23/2023]
Abstract
A "box-in-box" cocultivation system was used to investigate plant responses to microbial volatile compounds (VCs) and to evaluate the contributions of organic and inorganic VCs (VOCs and VICs, respectively) to these responses. Arabidopsis plants were exposed to VCs emitted by adjacent Alternaria alternata and Penicillium aurantiogriseum cultures, with and without charcoal filtration. No VOCs were detected in the headspace of growth chambers containing fungal cultures with charcoal filters. However, these growth chambers exhibited elevated CO2 and bioactive CO and NO headspace concentrations. Independently of charcoal filtration, VCs from both fungal phytopathogens promoted growth and distinct developmental changes. Plants cultured at CO2 levels observed in growth boxes containing fungal cultures were identical to those cultured at ambient CO2 . Plants exposed to charcoal-filtered fungal VCs, nonfiltered VCs, or superelevated CO2 levels exhibited transcriptional changes resembling those induced by increased irradiance. Thus, in the "box-in-box" system, (a) fungal VICs other than CO2 and/or VOCs not detected by our analytical systems strongly influence the plants' responses to fungal VCs, (b) different microorganisms release VCs with distinct action potentials, (c) transcriptional changes in VC-exposed plants are mainly due to enhanced photosynthesis signaling, and (d) regulation of some plant responses to fungal VCs is primarily posttranscriptional.
Collapse
Affiliation(s)
- Pablo García-Gómez
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | | | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - Kinia Ameztoy
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | | | - Marouane Baslam
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Niigata University, Niigata, 950-2181, Japan
| | - María Carmen Antolín
- Facultades de Ciencias y Farmacia y Nutrición, Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), Universidad de Navarra, 31008, Pamplona, Spain
| | - Amadeo Urdiain
- Facultades de Ciencias y Farmacia y Nutrición, Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), Universidad de Navarra, 31008, Pamplona, Spain
| | - María Dolores López-Belchi
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
- Departamento de Producción Vegetal, Universidad de Concepción, Avenue Vicente Méndez 595, Chillán, Chile
| | - Pedro López-Gómez
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - José Fernando Morán
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - Julián Garrido
- Departamento de Ciencias, Universidad Pública de Navarra Campus Arrosadía, 31006, Pamplona, Spain
- Institute for Advanced Materials, Universidad Pública de Navarra Campus Arrosadía, 31006, Pamplona, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | | | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| |
Collapse
|
33
|
Wang B, Bian B, Wang C, Li C, Fang H, Zhang J, Huang D, Huo J, Liao W. Hydrogen gas promotes the adventitious rooting in cucumber under cadmium stress. PLoS One 2019; 14:e0212639. [PMID: 30785953 PMCID: PMC6382157 DOI: 10.1371/journal.pone.0212639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/06/2019] [Indexed: 11/18/2022] Open
Abstract
Hydrogen gas (H2) plays an important role in plant development and stress responses. Here, cucumber (Cucumis sativus L.) explants were used to investigate the roles of H2 in adventitious root development under cadmium (Cd) stress and its physiological mechanism. The results showed that hydrogen-rich water (HRW) promoted adventitious rooting under Cd stress and 50% HRW obtained the maximal biological response. Compared with Cd treatment, HRW + Cd treatment significantly reduced the content of malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide radical (O2-), thiobarbituric acid reactive substances (TBARS), ascorbic acid (AsA) and reduced glutathione (GSH), as well as relative electrical conductivity (REC), lipoxygenase (LOX) activity, AsA/docosahexaenoic acid (DHA) ratio, and GSH/oxidized glutathione (GSSG) ratio, while increasing DHA and GSSG content. HRW + Cd treatment also significantly increased in the activity and related gene expression of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR). Additionally, HRW + Cd treatment increased the contents of osmotic adjustment substances, as well as the activities of peroxidase (POD) and polyphenol oxidase (PPO), while significantly decreasing indoleacetic acid oxidase (IAAO) activity. In summary, H2 could induce adventitious rooting under Cd stress by decreasing the oxidative damage, increasing osmotic adjustment substance content and regulating rooting-related enzyme activity.
Collapse
Affiliation(s)
- Bo Wang
- College of Horticulture, Gansu Agricultural University, Yinmen Village, Anning District, Lanzhou, PR China
| | - Biting Bian
- College of Horticulture, Gansu Agricultural University, Yinmen Village, Anning District, Lanzhou, PR China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Yinmen Village, Anning District, Lanzhou, PR China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, Yinmen Village, Anning District, Lanzhou, PR China
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, Yinmen Village, Anning District, Lanzhou, PR China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yinmen Village, Anning District, Lanzhou, PR China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Yinmen Village, Anning District, Lanzhou, PR China
| | - Jianqiang Huo
- College of Horticulture, Gansu Agricultural University, Yinmen Village, Anning District, Lanzhou, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Yinmen Village, Anning District, Lanzhou, PR China
| |
Collapse
|
34
|
Azolla pinnata, Aspergillus terreus and Eisenia fetida for enhancing agronomic value of paddy straw. Sci Rep 2019; 9:1341. [PMID: 30718700 PMCID: PMC6361974 DOI: 10.1038/s41598-018-37880-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/15/2018] [Indexed: 11/12/2022] Open
Abstract
In the present study rice straw (R, control) was mixed with Cowdung (C), Azolla (A) and cellulolytic fungus Aspergillus terreus (F) in different combinations viz. RC, RA, RF, RCF, RCA, RFA and RCFA and subjected to aerobic composting (Acom) and vermicomposting (Vcom - with Eisenia fetida). It was found that addition of azolla and cattledung to two parts straw(RCA-666: 314:20 g) caused fastest degradation (105 days), gave maximum population buildup of E. fetida (cocoons, hatchlings and worm biomass), highest decline in pH, EC, TOC and C/N ratio and maximum increase over control in N(17.72%), P(44.64%), K(43.17%), H (7.93%), S (14.85%), Ca(10.16%), Na(145.97%), Fe(68.56%), Zn(12.10%) and Cu(32.24%). Rice straw (R) took longest time for degradation i.e. 120 and 140 days and had lowest content of nutrients in Vcom as well as Acom group. RCFA was also converted into Vcom at the same time but other parameters were less than RCA except for highest content of B (19.87%), Mg(21.27%) and Mn (5.58%). Bioconversion of three parts straw (RCA-735:245:20 g) was also faster (110 days) with vermicomposting than all the mixtures of Acom group (130–140 days) but nutrient content was slightly less than RCA with 2 parts straw. The results show that azolla reduces dependence on cattledung for recycling the carbon rich rice straw and enhances its agronomic value.
Collapse
|
35
|
Li C, Gong T, Bian B, Liao W. Roles of hydrogen gas in plants: a review. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:783-792. [PMID: 32291062 DOI: 10.1071/fp17301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/06/2018] [Indexed: 06/11/2023]
Abstract
Hydrogen gas (H2) was first identified as a unique molecular messenger in animals. Since H2 was reported as a novel antioxidant, it has been proven effective in treating many diseases. However, the studies concerning H2 in plants are just beginning to emerge. Here, two paths of H2 production in plants have been reported, namely, hydrogenase and nitrogenase. H2 has positive effects on seed germination, seedling growth, adventitious rooting, root elongation, harvest freshness, stomatal closure and anthocyanin synthesis. H2 also can enhance plant symbiotic stress resistance commonly through the enhancement of antioxidant defence system. Moreover, H2 shows cross talk with nitric oxide, carbon monoxide and other signalling molecules (for example, abscisic acid, ethylene and jasmonate acid). H2 can regulate the expression of responsive genes under abiotic stress and during adventitious roots formation and anthocyanin biosynthesis. Future work will need to focus on the molecular mechanism of H2 and its crosstalk with other signalling molecules in plants. With its promising application in agriculture, hydrogen agriculture will be welcomed in the near future.
Collapse
Affiliation(s)
- Changxia Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Tingyu Gong
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Biting Bian
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
36
|
Ge L, Yang M, Yang NN, Yin XX, Song WG. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget 2017; 8:102653-102673. [PMID: 29254278 PMCID: PMC5731988 DOI: 10.18632/oncotarget.21130] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022] Open
Abstract
Since the 2007 discovery that molecular hydrogen (H2) has selective antioxidant properties, multiple studies have shown that H2 has beneficial effects in diverse animal models and human disease. This review discusses H2 biological effects and potential mechanisms of action in various diseases, including metabolic syndrome, organ injury, and cancer; describes effective H2 delivery approaches; and summarizes recent progress toward H2 applications in human medicine. We also discuss remaining questions in H2 therapy, and conclude with an appeal for a greater role for H2 in the prevention and treatment of human ailments that are currently major global health burdens. This review makes a case for supporting hydrogen medicine in human disease prevention and therapy.
Collapse
Affiliation(s)
- Li Ge
- Department of Histology and Embryology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Ming Yang
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Na-Na Yang
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Institute of Atherosclerosis, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Xin-Xin Yin
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Wen-Gang Song
- Department of medical immunology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| |
Collapse
|
37
|
Cao Z, Duan X, Yao P, Cui W, Cheng D, Zhang J, Jin Q, Chen J, Dai T, Shen W. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis. Int J Mol Sci 2017; 18:E2084. [PMID: 28972563 PMCID: PMC5666766 DOI: 10.3390/ijms18102084] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 11/23/2022] Open
Abstract
Metabolism of molecular hydrogen (H₂) in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H₂ in lateral root (LR) formation is still unclear. Here, our results showed that H₂-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog) was able to trigger endogenous H₂ production in tomato seedlings, and a contrasting response was observed in the presence of N-1-naphthyphthalamic acid (NPA), an auxin transport inhibitor. NPA-triggered the inhibition of H₂ production and thereafter lateral root development was rescued by exogenously applied H₂. Detection of endogenous nitric oxide (NO) by the specific probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) and electron paramagnetic resonance (EPR) analyses revealed that the NO level was increased in both NAA- and H₂-treated tomato seedlings. Furthermore, NO production and thereafter LR formation induced by auxin and H₂ were prevented by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO) and the inhibitor of nitrate reductase (NR; an important NO synthetic enzyme). Molecular evidence confirmed that some representative NO-targeted cell cycle regulatory genes were also induced by H₂, but was impaired by the removal of endogenous NO. Genetic evidence suggested that in the presence of H₂, Arabidopsis mutants nia2 (in particular) and nia1 (two nitrate reductases (NR)-defective mutants) exhibited defects in lateral root length. Together, these results demonstrated that auxin-induced H₂ production was associated with lateral root formation, at least partially via a NR-dependent NO synthesis.
Collapse
Affiliation(s)
- Zeyu Cao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xingliang Duan
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Yao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Weiti Cui
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dan Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jing Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qijiang Jin
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jun Chen
- Wuhan Shizhen Water Structure Research Institute Co., Ltd., Wuhan 430200, China.
| | - Tianshan Dai
- Xinjiang Hongsheng Kangtong Biotechnology Co., Ltd., Xinjiang 830022, China.
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
38
|
Zhao X, Chen Q, Wang Y, Shen Z, Shen W, Xu X. Hydrogen-rich water induces aluminum tolerance in maize seedlings by enhancing antioxidant capacities and nutrient homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:369-379. [PMID: 28647604 DOI: 10.1016/j.ecoenv.2017.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 05/21/2023]
Abstract
The ameliorative effect of H2 on aluminum (Al)-induced stress remains poorly understood. We treated maize seedlings with Al and hydrogen-rich water (HRW) to determine the roles of H2 in the alleviation of Al toxicity. Our results demonstrated that Al stress triggered damage to the photosynthetic apparatus, plant growth inhibition, and reactive oxygen species (ROS) production, and boosted lipid peroxidation. However, the addition of HRW at 75% saturation markedly alleviated Al toxicity symptoms through the promotion of root elongation. These responses were related to the significantly increased activities of typical antioxidant enzymes (CAT, APX, SOD, and POD). In vivo imaging of plasma membrane integrity, lipid peroxidation, and the level of ROS provided further evidence that HRW could improve Al tolerance. Our results also indicate that 100% HRW mitigated Al toxicity less than 75% HRW. Moreover, different concentrations of HRW significantly improved photosynthesis and increased nutrient uptake. We conclude that exogenous H2 supplementation could enhance Al tolerance by reestablishing redox homeostasis and maintaining nutrient homeostasis.
Collapse
Affiliation(s)
- Xueqiang Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuhong Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmei Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
39
|
Fan M, Sun X, Xu N, Liao Z, Li Y, Wang J, Fan Y, Cui D, Li P, Miao Z. Integration of deep transcriptome and proteome analyses of salicylic acid regulation high temperature stress in Ulva prolifera. Sci Rep 2017; 7:11052. [PMID: 28887495 PMCID: PMC5591278 DOI: 10.1038/s41598-017-11449-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/21/2017] [Indexed: 01/17/2023] Open
Abstract
To investigate changes in transcript and relative protein levels in response to salicylic acid regulation of the thermotolerance in U. prolifera, complementary transcriptome and proteome analyses were performed with U. prolifera grown at 35 °C (UpHT) and with the addition of SA at high temperature (UpSHT). At mRNA level,12,296 differentially expressed genes (DEGs) were obtained from the comparison of UpSHT with UpHT. iTRAQ-labeling proteome analysis showed that a total of 4,449 proteins were identified and reliably quantified. At mRNA level, the up-regulated genes involved in antioxidant activity were thioredoxin,peroxiredoxin,FeSOD, glutathione peroxidase, partion catalase and MnSOD. The down-regulated genes were ascorbate peroxidase, glutathione S-transferase, catalase and MnSOD. In addition, the DEGs involved in plant signal transduction pathway (such as auxin response factors, BRI1 and JAZ) were down-regulated. At protein level, the up-regulated proteins involved in carbon fixation and the down-regulated protein mainly were polyubiquitin, ascorbate peroxidase. The expression of Ca2+-binding protein, heat shock protein and photosynthesis-related proteins, EDS1 were also significantly regulated both at mRNA and protein level. The results indicated that SA alleviated the high-temperature stimulus through partion antioxidant related proteins up-regulated, JA signal pathway enchanced, Ca2+-binding proteins, photosynthesis-related proteins significantly changed, antioxidant enzyme activities increased and photosynthesis index changed.
Collapse
Affiliation(s)
- Meihua Fan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China. .,Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China.
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Zhi Liao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Yahe Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Yingping Fan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Dalian Cui
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Peng Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Zengliang Miao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| |
Collapse
|
40
|
Chen Y, Wang M, Hu L, Liao W, Dawuda MM, Li C. Carbon Monoxide Is Involved in Hydrogen Gas-Induced Adventitious Root Development in Cucumber under Simulated Drought Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:128. [PMID: 28223992 PMCID: PMC5293791 DOI: 10.3389/fpls.2017.00128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/20/2017] [Indexed: 05/08/2023]
Abstract
Hydrogen gas (H2) and carbon monoxide (CO) are involved in plant growth and developmental processes and may induce plant tolerance to several stresses. However, the independent roles and interaction effect of H2 and CO in adventitious root development under drought conditions have still not received the needed research attention. We hypothesize that there exists crosstalk between H2 and CO during adventitious root development under drought stress. The results of our current study revealed that 50% (v/v) hydrogen-rich water (HRW), 500 μM Hemin (the CO donor) and 30% (w/v) CO aqueous solution apparently promoted the development of adventitious roots in cucumber explants (Cucumis Sativus L.) under drought stress. H2 and CO increased relative water content (RWC), leaf chlorophyll content (chlorophyll a, b, and a+b), and chlorophyll fluorescence parameters [photochemical efficiency of photosystem II (PSII), PSII actual photochemical efficiency and photochemical quench coefficient] under drought condition. When the CO scavenger hemoglobin (Hb) or zinc protoporphyrin IX (ZnPPIX) was added to HRW/CO aqueous solution, the positive effect of HRW/CO aqueous solution on RWC, leaf chlorophyll content, and chlorophyll fluorescence parameters were reversed. Additionally, superoxide dismutases, peroxidase, catalase, and ascorbate peroxidase was significantly increased in the explants treated with HRW and CO aqueous solution under drought stress, thus alleviating oxidative damage, as indicated by decreases in thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and superoxide radical (O2-) levels. H2 and CO also improved the levels of water soluble carbohydrate, total soluble protein, and proline content. However, the above CO/H2-mediated effects were reversed by CO scavenger Hb or CO specific synthetic inhibitor ZnPPIX. Therefore, CO may be involved in H2-induced adventitious rooting under drought stress and alleviate oxidative damage by enhancing RWC, leaf chlorophyll content, chlorophyll fluorescence parameters, metabolic constituent content, activating anti-oxidant enzymes and reducing TBARS, O2-, and H2O2 levels.
Collapse
Affiliation(s)
| | | | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| | | | | |
Collapse
|
41
|
Wang Y, Duan X, Xu S, Wang R, Ouyang Z, Shen W. Linking hydrogen-mediated boron toxicity tolerance with improvement of root elongation, water status and reactive oxygen species balance: a case study for rice. ANNALS OF BOTANY 2016; 118:1279-1291. [PMID: 27616208 PMCID: PMC5155599 DOI: 10.1093/aob/mcw181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Accepted: 06/24/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Boron is essential for plant growth but hazardous when present in excess. As the antioxidant properties of hydrogen gas (H2) were recently described in plants, oxidative stress induced by excess boron was investigated along with other biological responses during rice (Oryza sativa) seed germination to study the beneficial role of H2 METHODS: Rice seeds were pretreated with exogenous H2 Using physiological, pharmacological and molecular approaches, the production of endogenous H2, growth status, reactive oxygen species (ROS) balance and relative gene expression in rice were measured under boron stress to investigate mechanisms of H2-mediated boron toxicity tolerance. KEY RESULTS In our test, boron-inhibited seed germination and seedling growth, and endogenous H2 production, were obviously blocked by exogenously applying H2 The re-establishment of ROS balance was confirmed by reduced lipid peroxidation and ROS accumulation. Meanwhile, activities of catalase (CAT) and peroxidase (POX) were increased. Suppression of pectin methylesterase (PME) activity and downregulation of PME transcripts by H2 were consistent with the alleviation of root growth inhibition caused by boron. Water status was improved as well. This result was confirmed by the upregulation of genes encoding specific aquaporins (AQPs), the maintenance of low osmotic potential and high content of soluble sugar. Increased transcription of representative AQP genes (PIP2;7 in particular) and BOR2 along with decreased BOR1 mRNA may contribute to lowering boron accumulation. CONCLUSIONS Hydrogen provides boron toxicity tolerance mainly by improving root elongation, water status and ROS balance.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingliang Duan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Xu
- Institute of Botany Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ren Wang
- Institute of Botany Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Zhaozeng Ouyang
- Shuigu Environmental Protection Technological Company Ltd, Shanghai 200437, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Ren A, Liu R, Miao ZG, Zhang X, Cao PF, Chen TX, Li CY, Shi L, Jiang AL, Zhao MW. Hydrogen-rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum. Environ Microbiol 2016; 19:566-583. [PMID: 27554678 DOI: 10.1111/1462-2920.13498] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/10/2016] [Indexed: 11/28/2022]
Abstract
Ganoderma lucidum is one of the most important medicinal fungi, but the lack of basic study on the fungus has hindered the further development of its value. To investigate the roles of the redox system in G. lucidum, acetic acid (HAc) was applied as a reactive oxygen species (ROS) stress inducer, and hydrogen-rich water (HRW) was used to relieve the ROS stress in this study. Our results demonstrate that the treatment of 5% HRW significantly decreased the ROS content, maintained biomass and polar growth morphology of mycelium, and decreased secondary metabolism under HAc-induced oxidative stress. Furthermore, the roles of HRW were largely dependent on restoring the glutathione system under HAc stress in G. lucidum. To provide further evidence, we used two glutathione peroxidase (GPX)-defective strains, the gpxi strain, the mercaptosuccinic acid (MS, a GPX inhibitor)-treated wide-type (WT) strain, and gpx overexpression strains for further research. The results show that HRW was unable to relieve the HAc-induced ROS overproduction, decreased biomass, mycelium morphology change and increased secondary metabolism biosynthesis in the absence of GPX function. The gpx overexpression strains exhibited resistance to HAc-induced oxidative stress. Thus, we propose that HRW regulates morphology, growth and secondary metabolism via glutathione peroxidase under HAc stress in the fungus G. lucidum. Furthermore, our research also provides a method to study the ROS system in other fungi.
Collapse
Affiliation(s)
- Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Rui Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Zhi-Gang Miao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Xue Zhang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Peng-Fei Cao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Tian-Xi Chen
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Chen-Yang Li
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Ai-Liang Jiang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Ming-Wen Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| |
Collapse
|
43
|
Zhu Y, Liao W, Niu L, Wang M, Ma Z. Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber. BMC PLANT BIOLOGY 2016; 16:146. [PMID: 27352869 PMCID: PMC4924243 DOI: 10.1186/s12870-016-0834-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/16/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Adventitious root development is a complex process regulated through a variety of signaling molecules. Hydrogen gas (H2) and nitric oxide (NO), two new signaling molecules are both involved in plant development and stress tolerance. RESULTS To investigate the mechanism of adventitious root development induced by hydrogen-rich water (HRW), a combination of fluorescence microscopy and molecular approaches was used to study cell cycle activation and cell cycle-related gene expression in cucumber (Cucumis sativus 'Xinchun 4') explants. The results revealed that the effect of HRW on adventitious root development was dose-dependent, with maximal biological responses at 50 % HRW. HRW treatment increased NO content in a time-dependent fashion. The results also indicated that HRW and NO promoted the G1-to-S transition and up-regulated cell cycle-related genes: CycA (A-type cyclin), CycB (B-type cyclin), CDKA (cyclin-dependent kinase A) and CDKB (cyclin-dependent kinase B) expression. Additionally, target genes related to adventitious rooting were up-regulated by HRW and NO in cucumber explants. While, the responses of HRW-induced adventitious root development and increase of NO content were partially blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt, NO synthase (NOS)-like enzyme inhibitor N(G) -nitro-L-arginine methylester hydrochloride, or nitrate reductase inhibitors tungstate and NaN3. These chemicals also partially reversed the effect of HRW on cell cycle activation and the transcripts of cell cycle regulatory genes and target genes related adventitious root formation. CONCLUSIONS Together, NO may emerge as a downstream signaling molecule in H2-induced adventitious root organogenesis. Additionally, H2 mediated cell cycle activation via NO pathway during adventitious root formation.
Collapse
Affiliation(s)
- Yongchao Zhu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Lijuan Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Meng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Zhanjun Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
44
|
Zhu Y, Liao W. A positive role for hydrogen gas in adventitious root development. PLANT SIGNALING & BEHAVIOR 2016; 11:e1187359. [PMID: 27171348 PMCID: PMC4973760 DOI: 10.1080/15592324.2016.1187359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 05/14/2023]
Abstract
Our recent study highlights the role of hydrogen gas (H2) in adventitious root development in cucumber. H2 is an effective gaseous signal molecule with the abilities to regulate plant growth and development and enhance plant resistance to environmental stimulus. In addition, the effect of H2 on fruit senescence and flowering time also has been reported. Adventitious root development is a critical step in plant vegetative propagation affected by a serious of signaling molecules, such as auxin, nitric oxide (NO), carbon oxide (CO), ethylene and Ca(2+). Observational evidence has shown that H2 can regulate adventitious root development in a dose-dependent manner. H2 may regulate HO-1/CO pathway through or not through NO pathway during adventitious rooting. Rooting-related enzymes, peroxidase, polyphenol oxidase, indoleacetic acid oxidase were required for H2-induced adventitious root. CsDNAJ-1, CsCPDK1/5, CsCDC6, CsAUX228-like, and CsAUX22D-like genes also were involved in this process.
Collapse
Affiliation(s)
- Yongchao Zhu
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| |
Collapse
|
45
|
Nicolson GL, de Mattos GF, Settineri R, Costa C, Ellithorpe R, Rosenblatt S, La Valle J, Jimenez A, Ohta S. Clinical Effects of Hydrogen Administration: From Animal and Human Diseases to Exercise Medicine. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ijcm.2016.71005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015; 5:12. [PMID: 26483953 PMCID: PMC4610055 DOI: 10.1186/s13618-015-0035-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 02/08/2023] Open
Abstract
Therapeutic effects of molecular hydrogen for a wide range of disease models and human diseases have been investigated since 2007. A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. About three-quarters of the articles show the effects in mice and rats. The number of clinical trials is increasing every year. In most diseases, the effect of hydrogen has been reported with hydrogen water or hydrogen gas, which was followed by confirmation of the effect with hydrogen-rich saline. Hydrogen water is mostly given ad libitum. Hydrogen gas of less than 4 % is given by inhalation. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases. Specific extinctions of hydroxyl radical and peroxynitrite were initially presented, but the radical-scavenging effect of hydrogen cannot be held solely accountable for its drastic effects. We and others have shown that the effects can be mediated by modulating activities and expressions of various molecules such as Lyn, ERK, p38, JNK, ASK1, Akt, GTP-Rac1, iNOS, Nox1, NF-κB p65, IκBα, STAT3, NFATc1, c-Fos, and ghrelin. Master regulator(s) that drive these modifications, however, remain to be elucidated and are currently being extensively investigated.
Collapse
Affiliation(s)
- Masatoshi Ichihara
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Sayaka Sobue
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015 Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673 Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| |
Collapse
|
47
|
Wu Q, Su N, Cai J, Shen Z, Cui J. Hydrogen-rich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities. JOURNAL OF PLANT PHYSIOLOGY 2015; 175:174-82. [PMID: 25543863 DOI: 10.1016/j.jplph.2014.09.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 05/08/2023]
Abstract
The aim of the present paper was to understand the specific mechanism of hydrogen-rich water (HRW) in alleviating cadmium (Cd) toxicity in Chinese cabbage (Brassica campestris spp. chinensis L.). Our results showed that the addition of 50% saturation HRW significantly alleviated the Cd toxic symptoms, including the improvement of both root elongation and seedling growth inhibition. These responses were consistent with a significant decrease of Cd accumulation in roots and shoots, which was further confirmed by the histochemical staining. Molecular evidence illustrated that Cd-induced up-regulations of IRT1 and Nramp1 genes, responsible for Cd absorption, were blocked by HRW. By contrast, Cd-induced up-regulation of the HMA3 gene, which regulates Cd sequestration into the root vacuoles, was substantially strengthened by HRW. Furthermore, compared with those in Cd stress alone, the expressions of HMA2 and HMA4, which function in the transportation of Cd to xylem, were repressed by co-treatment with HRW. HRW enhanced the activities of antioxidant enzymes, including superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase. These results were further confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS) production. Taken together, these results suggest that the improvement of Cd tolerance by HRW was associated with reduced Cd uptake and increased antioxidant defense capacities. Therefore, the application of HRW may be a promising strategy to improve Cd tolerance of Chinese cabbage.
Collapse
Affiliation(s)
- Qi Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangtao Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
48
|
Progress in the study of biological effects of hydrogen on higher plants and its promising application in agriculture. Med Gas Res 2014; 4:15. [PMID: 25276344 PMCID: PMC4177722 DOI: 10.1186/2045-9912-4-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022] Open
Abstract
While the medical effects of hydrogen have been broadly analyzed, research into the effects of hydrogen on higher plants has often been of lesser concern. Recent studies on the botanical effects of hydrogen have shown that it is involved in signal transduction pathways of plant hormones and can improve the resistance of plants to stressors, such as drought, salinity, cold and heavy metals. In addition, hydrogen could delay postharvest ripening and senescence of fruits. Observational evidence has also shown that hydrogen can regulate the flowering time of plants. These results indicate that hydrogen may have great potential applications within agricultural production, indicating that there may be a new 'hydrogen agricultural era' to come.
Collapse
|
49
|
Cui W, Fang P, Zhu K, Mao Y, Gao C, Xie Y, Wang J, Shen W. Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:103-11. [PMID: 24793520 DOI: 10.1016/j.ecoenv.2014.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/06/2014] [Accepted: 04/09/2014] [Indexed: 05/20/2023]
Abstract
In this report, the effect of hydrogen-rich water (HRW), which was used to investigate the physiological roles of hydrogen gas (H2) in plants recently, on the regulation of plant adaptation to mercury (Hg) toxicity was studied. Firstly, we observed that the exposure of alfalfa seedlings to HgCl2 triggered production of reactive oxygen species (ROS), growth stunt and increased lipid peroxidation. However, such effects could be obviously blocked by HRW. Meanwhile, significant decreases in the relative ion leakage and Hg accumulation were observed. Hg-induced increases in total and isozymatic activities of superoxide dismutase (SOD) were significantly reversed by HRW. Further results suggested that HRW-induced the activities of guaiacol peroxidase (POD) and ascorbate peroxidase (APX), two hydrogen peroxide-scavenging enzymes, was at transcriptional levels. Meanwhile, obvious increases of the ratios of reduced/oxidized glutathione (GSH), homoglutathione (hGSH), and ascorbic acid (AsA) and corresponding gene expression were consistent with the decreased oxidative damage in seedling roots. In summary, the results of this investigation indicated that HRW was able to alleviate Hg toxicity in alfalfa seedlings by (i) alleviating growth stunt and reducing Hg accumulation, and (ii) avoidance of oxidative stress and reestablishment of redox homeostasis.
Collapse
Affiliation(s)
- Weiti Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Fang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaikai Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Mao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cunyi Gao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjie Xie
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Wang
- Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
50
|
Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W. Reactive Oxygen Species-Dependent Nitric Oxide Production Contributes to Hydrogen-Promoted Stomatal Closure in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:759-773. [PMID: 24733882 PMCID: PMC4044830 DOI: 10.1104/pp.114.237925] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/12/2014] [Indexed: 05/20/2023]
Abstract
The signaling role of hydrogen gas (H2) has attracted increasing attention from animals to plants. However, the physiological significance and molecular mechanism of H2 in drought tolerance are still largely unexplored. In this article, we report that abscisic acid (ABA) induced stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering intracellular signaling events involving H2, reactive oxygen species (ROS), nitric oxide (NO), and the guard cell outward-rectifying K+ channel (GORK). ABA elicited a rapid and sustained H2 release and production in Arabidopsis. Exogenous hydrogen-rich water (HRW) effectively led to an increase of intracellular H2 production, a reduction in the stomatal aperture, and enhanced drought tolerance. Subsequent results revealed that HRW stimulated significant inductions of NO and ROS synthesis associated with stomatal closure in the wild type, which were individually abolished in the nitric reductase mutant nitrate reductase1/2 (nia1/2) or the NADPH oxidase-deficient mutant rbohF (for respiratory burst oxidase homolog). Furthermore, we demonstrate that the HRW-promoted NO generation is dependent on ROS production. The rbohF mutant had impaired NO synthesis and stomatal closure in response to HRW, while these changes were rescued by exogenous application of NO. In addition, both HRW and hydrogen peroxide failed to induce NO production or stomatal closure in the nia1/2 mutant, while HRW-promoted ROS accumulation was not impaired. In the GORK-null mutant, stomatal closure induced by ABA, HRW, NO, or hydrogen peroxide was partially suppressed. Together, these results define a main branch of H2-regulated stomatal movement involved in the ABA signaling cascade in which RbohF-dependent ROS and nitric reductase-associated NO production, and subsequent GORK activation, were causally involved.
Collapse
Affiliation(s)
- Yanjie Xie
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Mao
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Diwen Lai
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Qingya Wang
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|