1
|
Bishop RC, Kemper AM, Clark LV, Wilkins PA, McCoy AM. Stability of Gastric Fluid and Fecal Microbial Populations in Healthy Horses under Pasture and Stable Conditions. Animals (Basel) 2024; 14:2979. [PMID: 39457909 PMCID: PMC11503871 DOI: 10.3390/ani14202979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Equine gastrointestinal microbial communities vary across the gastrointestinal tract and in response to diet or disease. Understanding the composition and stability of gastric fluid microbiota in healthy horses is a prerequisite to understanding changes associated with the development of disease. The objective of this study was to describe microbial communities in the gastric fluid and feces of healthy horses longitudinally. Horses were maintained on pasture (6 weeks), stabled (5 weeks), then returned to pasture. A consistent forage diet was provided throughout. Native gastric fluid and feces were collected weekly for full-length 16S ribosomal DNA sequencing and microbial profiling analysis. Fewer taxa were identified in the gastric fluid (770) than in the feces (5284). Species richness and diversity were significantly different between sample types (p < 0.001), but not between housing locations (p = 0.3). There was a significant effect of housing and horse on the Bray-Curtis compositional diversity of gastric (p = 0.005; p = 0.009) and fecal (p = 0.001; p = 0.001) microbiota. When horses moved from pasture to stable, the relative proportions of gastric fluid Lactobacillaceae increased and Streptococcaceae decreased, while fecal Firmicutes increased and Bacteriodota decreased. Within each housing condition, there was no significant week-to-week variation in gastric (p = 0.9) or fecal (p = 0.09) microbiota. Overall, these findings support the maintenance of stable gastric and fecal microbial populations under each management condition, providing a basis for further investigation of gastric fluid microbiota in diseases of the foregut.
Collapse
Affiliation(s)
- Rebecca C. Bishop
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ann M. Kemper
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Lindsay V. Clark
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Pamela A. Wilkins
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Annette M. McCoy
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
2
|
Lu Y, Chu S, Shi Z, You R, Chen H. Marked variations in diversity and functions of gut microbiota between wild and domestic stag beetle Dorcus Hopei Hopei. BMC Microbiol 2024; 24:24. [PMID: 38238710 PMCID: PMC10795464 DOI: 10.1186/s12866-023-03177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Although stag beetles are a popular saprophytic insect, their gut microbiome has been poorly studied. Here, 16 S rRNA gene sequencing was employed to reveal the gut microbiota composition and functional variations between wild and domestic Dorcus hopei hopei (Dhh) larval individuals. RESULTS The results indicated a significant difference between the wild and domestic Dhh gut microbiota., the domestic Dhh individuals contained more gut microbial taxa (e.g. genera Ralstonia and Methyloversatilis) with xenobiotic degrading functions. The wild Dhh possesses gut microbiota compositions (e.g. Turicibacter and Tyzzerella ) more appropriate for energy metabolism and potential growth. This study furthermore assigned all Dhh individuals by size into groups for data analysis; which indicated limited disparities between the gut microbiota of different-sized D. hopei hopei larvae. CONCLUSION The outcome of this study illustrated that there exists a significant discrepancy in gut microbiota composition between wild and domestic Dhh larvae. In addition, the assemblage of gut microbiome in Dhh was primarily attributed to environmental influences instead of individual differences such as developmental potential or size. These findings will provide a valuable theoretical foundation for the protection of wild saprophytic insects and the potential utilization of the insect-associated intestinal microbiome in the future.
Collapse
Affiliation(s)
- Yikai Lu
- BASIS International School Hangzhou, Hangzhou, 310020, Zhejiang, China
| | - Siyuan Chu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Zhiyuan Shi
- BASIS International School Hangzhou, Hangzhou, 310020, Zhejiang, China
| | - Ruobing You
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Haimin Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
3
|
Nezhadi J, Rezaee MA, Ozma MA, Ganbarov K, Kafil HS. Gut Microbiota Exchange in Domestic Animals and Rural-urban People Axis. Curr Pharm Biotechnol 2024; 25:825-837. [PMID: 37877143 DOI: 10.2174/0113892010261535230920062107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 10/26/2023]
Abstract
In recent years, one of the most critical topics in microbiology that can be addressed is microbiome and microbiota. The term microbiome contains both the microbiota and structural elements, metabolites/signal molecules, and the surrounding environmental conditions, and the microbiota consists of all living members forming the microbiome. Among; the intestinal microbiota is one of the most important microbiota, also called the gut microbiota. After colonization, the gut microbiota can have different functions, including resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, and controlling immune function. Recently, studies have shown that the gut microbiota can prevent the formation of fat in the body. In this study, we examined the gut microbiota in various animals, including dogs, cats, dairy cows, sheep, chickens, horses, and people who live in urban and rural areas. Based on the review of various studies, it has been determined that the population of microbiota in animals and humans is different, and various factors such as the environment, nutrition, and contact with animals can affect the microbiota of people living in urban and rural areas.
Collapse
Affiliation(s)
- Javad Nezhadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Asghari Ozma
- Department of Microbiology, Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- Department of Microbiology, Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Klinsawat W, Uthaipaisanwong P, Jenjaroenpun P, Sripiboon S, Wongsurawat T, Kusonmano K. Microbiome variations among age classes and diets of captive Asian elephants (Elephas maximus) in Thailand using full-length 16S rRNA nanopore sequencing. Sci Rep 2023; 13:17685. [PMID: 37848699 PMCID: PMC10582034 DOI: 10.1038/s41598-023-44981-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Asian elephant (Elephas maximus) is the national symbol of Thailand and linked to Thai history and culture for centuries. The elephant welfare improvement is one of the major components to achieve sustainable captive management. Microbiome inhabiting digestive tracts have been shown with symbiotic relations to host health. This work provided high-resolution microbiome profiles of 32 captive elephants at a species level by utilizing full-length 16S rRNA gene nanopore sequencing. Eleven common uncultured bacterial species were found across elephants fed with solid food including uncultured bacterium Rikenellaceae RC9 gut group, Kiritimatiellae WCHB1-41, Phascolarctobacterium, Oscillospiraceae NK4A214 group, Christensenellaceae R-7 group, Oribacterium, Oscillospirales UCG-010, Lachnospiraceae, Bacteroidales F082, uncultured rumen Rikenellaceae RC9 gut group, and Lachnospiraceae AC2044 group. We observed microbiome shifts along the age classes of baby (0-2 years), juvenile (2-10 years), and adult (> 10 years). Interestingly, we found distinct microbiome profiles among adult elephants fed with a local palm, Caryota urens, as a supplement. Potential beneficial microbes have been revealed according to the age classes and feed diets. The retrieved microbiome data could be provided as good baseline microbial profiles for monitoring elephant health, suggesting further studies towards dietary selection suitable for each age class and the use of local supplementary diets.
Collapse
Affiliation(s)
- Worata Klinsawat
- Conservation Ecology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pichahpuk Uthaipaisanwong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supaphen Sripiboon
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Kanthida Kusonmano
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
- Bioinformatics and Systems Biology Program, Schools of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|
5
|
Tuniyazi M, Wang W, Zhang N. A Systematic Review of Current Applications of Fecal Microbiota Transplantation in Horses. Vet Sci 2023; 10:vetsci10040290. [PMID: 37104445 PMCID: PMC10141098 DOI: 10.3390/vetsci10040290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a technique involving transferring fecal matter from a healthy donor to a recipient, with the goal of reinstating a healthy microbiome in the recipient's gut. FMT has been used in horses to manage various gastrointestinal disorders, such as colitis and diarrhea. To evaluate the current literature on the use of FMT in horses, including its efficacy, safety, and potential applications, the authors conducted an extensive search of several databases, including PubMed, MEDLINE, Web of Science, and Google Scholar, published up to 11 January 2023. The authors identified seven studies that met their inclusion criteria, all of which investigated the FMT application as a treatment for gastrointestinal disorders such as colitis and diarrhea. The authors demonstrated that FMT was generally effective in treating these conditions. However, the authors noted that the quality of the studies was generally suboptimal and characterized by small sample sizes and a lack of control groups. The authors concluded that FMT is a promising treatment option for certain gastrointestinal disorders in horses. Nevertheless, more research is required to determine the optimal donor selection, dosing, and administration protocols, as well as the long-term safety and efficacy of FMT in horses.
Collapse
Affiliation(s)
- Maimaiti Tuniyazi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenqing Wang
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Bustamante CC, de Paula VB, Rabelo IP, Fernandes CC, Kishi LT, Canola PA, Lemos EGDM, Valadão CAA. Effects of Starch Overload and Cecal Buffering on Fecal Microbiota of Horses. Animals (Basel) 2022; 12:ani12233435. [PMID: 36496956 PMCID: PMC9737938 DOI: 10.3390/ani12233435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Starch overload in horses causes gastrointestinal and metabolic disorders that are associated with microbiota changes. Therefore, we identified the fecal microbiota and hypothesized that intracecal injection of alkaline solution (buffer; Mg(OH)2 + Al(OH)3) could stabilize these microbiota and clinical changes in horses submitted to corn starch overload. Ten crossbred horses (females and geldings) were allocated to group I (water−saline and starch−buffer treatments) and group II (water−buffer and starch−saline treatments). Clinical signs, gross analysis of the feces, and fecal microbiota were evaluated through 72 h (T0; T8; T12; T24; T48; T72). Corn starch or water were administrated by nasogastric tube at T0, and the buffer injected into the cecum at T8 in starch−buffer and water−buffer treatments. Starch overload reduced the richness (p < 0.001) and diversity (p = 0.001) of the fecal microbiota. However, the starch−buffer treatment showed greater increase in amylolytic bacteria (Bifidobacterium 0.0% to 5.6%; Lactobacillus 0.1% to 7.4%; p < 0.05) and decrease in fibrolytic bacteria (Lachnospiraceae 10.2% to 5.0%; Ruminococcaceae 11.7% to 4.2%; p < 0.05) than starch−saline treatment. Additionally, animals that received starch−buffer treatment showed more signs of abdominal discomfort and lameness associated with dysbiosis (amylolytic r > 0.5; fribolytic r < 0.1; p < 0.05), showing that cecal infusion of buffer did not prevent, but intensified intestinal disturbances and the risk of laminitis.
Collapse
Affiliation(s)
- Caio C. Bustamante
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Vanessa B. de Paula
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Isabela P. Rabelo
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Camila C. Fernandes
- Department of Technology, Multiuse Sequencing Laboratory, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Luciano T. Kishi
- Department of Technology, Multiuse Sequencing Laboratory, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Paulo A. Canola
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Eliana Gertrudes de M. Lemos
- Department of Technology, Biochemistry of Microorganisms and Plants Laboratory, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Carlos Augusto A. Valadão
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Correspondence:
| |
Collapse
|
7
|
Bao W, Yu J, He Y, Liu M, Yang X. The diversity analysis and gene function prediction of intestinal bacteria in three equine species. Front Microbiol 2022; 13:973828. [PMID: 36160217 PMCID: PMC9490377 DOI: 10.3389/fmicb.2022.973828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
The intestinal flora has a variety of physiological functions involved in the regulation of host metabolism, immunity and endocrinology, and plays an important role in maintaining the health of the host. In this study, we used high-throughput sequencing technology to analyze the intestinal bacterial diversity and their gene functions in three equine species of the genus Shetland Pony (SP), Mongolian Wild Ass (MA), and Plain Zebra (PZ) in captivity in two wildlife parks in Inner Mongolia Autonomous Region, China. The results showed that only the SP intestinal bacterial abundance index (Chao1) was significantly different (P < 0.05) between the same species in the two wildlife parks, but neither the intestinal bacterial diversity index (Shannon) nor the community composition were significantly different (P > 0.05). The bacterial abundance index (Chao1) was significantly higher in MA than SP (P < 0.05) and highly significantly higher than PZ (P < 0.01); the bacterial diversity index (Shannon) was higher in MA than PZ, but there was no significant difference, but both MA and PZ were significantly higher than SP (P < 0.05). Moreover, the intestinal bacterial community composition was significantly different among the three equine species (P = 0.001). The dominant bacterial phyla for SP, MA, and PZ were Firmicutes and Bacteroidota; among them, the bacterial family with the highest relative abundance was Lachnospiraceae and the bacterial genus was Rikenellaceae_RC9_gut_group. Analysis of the metabolic gene functions of intestinal bacteria revealed that the highest relative abundance at Pathway level 2 was for global and overview maps; at Pathway level 3, the highest relative abundance was for biosynthesis of secondary metabolites. In sum, the intestinal bacterial community composition and diversity of the above three equine species differed significantly, but their metabolic gene functions were similar. Moreover, the results of this manuscript fill the gap in the study of intestinal bacterial diversity in SP, MA, and PZ. It also provides a reference for the study of the dominant bacteria in the intestinal microorganisms of these three equine species and the discovery of novel functional genes.
Collapse
|
8
|
MacNicol JL, Renwick S, Ganobis CM, Allen-Vercoe E, Weese JS, Pearson W. A Comparison of Methods to Maintain the Equine Cecal Microbial Environment In Vitro Utilizing Cecal and Fecal Material. Animals (Basel) 2022; 12:ani12152009. [PMID: 35953998 PMCID: PMC9367579 DOI: 10.3390/ani12152009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary In vitro systems for the fermentation of equine gastrointestinal (GI) content provide researchers with the ability to evaluate changes which may occur due to external influences but which cannot be accessed in vivo. The objective of this study was to evaluate three fermentation systems to replicate the equine cecal environment with regard to the microbiome and metabolite profile. The microbiome and metabolome of the fecal slurry used as inocula in this study were not representative of the cecal systems and care should be taken if feces are to be used to mimic proximal hindgut regions such as the cecum. However, the microbiome of the cecal inoculum maintained in either a chemostat batch fermenter or anaerobic chamber was fairly comparable. The metabolite concentrations, but not rate of production, were significantly different between the two cecal systems. These results provide a context to determine the most appropriate methods by which to create a fermentation system to reflect the equine cecal environment. They also highlight that caution must be exercised as many factors may influence the microbial and metabolic profiles within these systems; as such, they can best be used to demonstrate trends and gross reactions to environmental stimuli. Abstract The equine gastrointestinal (GI) microbiota is intimately related to the horse. The objective of the current study was to evaluate the microbiome and metabolome of cecal inoculum maintained in an anaerobic chamber or chemostat batch fermenter, as well as the fecal slurry maintained in an anaerobic chamber over 48 h. Cecal and fecal content were collected from healthy adult horses immediately upon death. Cecal fluid was used to inoculate chemostat vessels (chemostat cecal, n = 11) and vessels containing cecal fluid (anaerobic cecal, n = 15) or 5% fecal slurry (anaerobic fecal, n = 6) were maintained in an anaerobic chamber. Sampling for microbiome and metabolome analysis was performed at vessel establishment (0 h), and after 24 h and 48 h of fermentation. Illumina sequencing was performed, and metabolites were identified via nuclear magnetic resonance (NMR). Alpha and beta diversity indices, as well as individual metabolite concentrations and metabolite regression equations, were analyzed and compared between groups and over time. No differences were evident between alpha or beta diversity in cecal fluid maintained in either an anaerobic chamber or chemostat. The microbiome of the fecal inoculum maintained anaerobically shifted over 48 h and was not comparable to that of the cecal inoculum. Metabolite concentrations were consistently highest in chemostat vessels and lowest in anaerobic fecal vessels. Interestingly, the rate of metabolite change in anaerobic cecal and chemostat cecal vessels was comparable. In conclusion, maintaining an equine cecal inoculum in either an anaerobic chamber or chemostat vessel for 48 h is comparable in terms of the microbiome. However, the microbiome and metabolome of fecal material is not comparable with a cecal inoculum. Future research is required to better understand the factors that influence the level of microbial activity in vitro, particularly when microbiome data identify analogous communities.
Collapse
Affiliation(s)
- Jennifer L. MacNicol
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| | - Simone Renwick
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Caroline M. Ganobis
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jeffery Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Wendy Pearson
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Qin H, Li G, Xu X, Zhang C, Zhong W, Xu S, Yin Y, Song J. The role of oral microbiome in periodontitis under diabetes mellitus. J Oral Microbiol 2022; 14:2078031. [PMID: 35694215 PMCID: PMC9176325 DOI: 10.1080/20002297.2022.2078031] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Periodontitis is among most common human inflammatory diseases and characterized by destruction of tooth-supporting tissues that will eventually lead to tooth loss. Diabetes mellitus (DM) is a group of metabolic disorders characterized by chronic hyperglycemia which results from defects in insulin secretion and/or insulin resistance. Numerous studies have provided evidence for the inter-relationship between DM and periodontitis that has been considered as the sixth most frequent complication of DM. However, the mechanisms are not fully understood yet. The impact of DM on periodontitis through hyperglycemia and inflammatory pathways is well described, but the effects of DM on oral microbiota remain controversial according to previous studies. Recent studies using next-generation sequencing technology indicate that DM can alter the biodiversity and composition of oral microbiome especially subgingival microbiome. This may be another mechanism by which DM risks or aggravates periodontitis. Thus, to understand the role of oral microbiome in periodontitis of diabetics and the mechanism of shifts of oral microbiome under DM would be valuable for making specific therapeutic regimens for treating periodontitis patients with DM or preventing diabetic patients from periodontitis. This article reviews the role of oral microbiome in periodontal health (symbiosis) and disease (dysbiosis), highlights the oral microbial shifts under DM and summarizes the mechanism of the shifts.
Collapse
Affiliation(s)
- Han Qin
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Guangyue Li
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Xiaohui Xu
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Shihan Xu
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Yuanyuan Yin
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| |
Collapse
|
10
|
Cerdó T, Ruíz A, Acuña I, Nieto-Ruiz A, Diéguez E, Sepúlveda-Valbuena N, Escudero-Marín M, García-Santos JA, García-Ricobaraza M, Herrmann F, Moreno JA, De Castellar R, Jiménez J, Suárez A, Campoy C. A synbiotics, long chain polyunsaturated fatty acids, and milk fat globule membranes supplemented formula modulates microbiota maturation and neurodevelopment closer to breastfed infants. Clin Nutr 2022; 41:1697-1711. [DOI: 10.1016/j.clnu.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
|
11
|
Short-Chain Fatty Acids Modulate Healthy Gut Microbiota Composition and Functional Potential. Curr Microbiol 2022; 79:128. [PMID: 35287182 PMCID: PMC8921067 DOI: 10.1007/s00284-022-02825-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022]
Abstract
Many studies have focused on the metabolic capacity of human gut microbiota to produce short-chain fatty acids and subsequent effects on host physiology. Given scarce data on how SCFAs produced by gut bacteria participate in cross-feeding to influence community structure and function, we evaluated the potential of SCFAs to modulate human gut microbiota in vitro. We employed anaerobic fecal cultivation in chemically defined medium supplemented with one of nine SCFAs to determine effects on both gut microbial community structure via 16S rRNA sequencing and function via genome reconstruction analysis. Each SCFA displayed significant and unique modulatory potential with respect to the relative abundance of bacterial taxa. Analysis of SCFA-supplemented communities revealed that alterations of individual closely related phylotypes displayed coherent changes, although exceptions were also observed which suggest strain-dependent differences in SCFA-induced changes. We used genome reconstruction to evaluate the functional implications of SCFA-mediated restructuring of fecal communities. We note that some SCFA-supplemented cultures displayed a reduction in the predicted abundance of SCFA producers, which suggests a possible undefined negative feedback mechanism. We conclude that SCFAs are not simply end-products of metabolism but also serve to modulate the gut microbiota through cross-feeding that alters the fitness of specified taxa. These results are important in the identification of prebiotics that elevate specific SCFAs for therapeutic benefit and highlight SCFA consumers as a salient part of the overall metabolic flux pertaining to bacterial fermentative processes.
Collapse
|
12
|
Integrated metagenomics-metabolomics analysis reveals the cecal microbial composition, function, and metabolites of pigs fed diets with different starch sources. Food Res Int 2022; 154:110951. [DOI: 10.1016/j.foodres.2022.110951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023]
|
13
|
Franzan BC, Coelho IDS, de Souza MT, Santos MMDM, de Almeida FQ, Silva VP. Fecal Microbiome Responses to Sudden Diet Change in Mangalarga Marchador horses. J Equine Vet Sci 2021; 108:103803. [PMID: 34864510 DOI: 10.1016/j.jevs.2021.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Sudden changes in horses' diet have been previously associated with gastrointestinal disease. This study evaluated the effects of a sudden change of diet composed exclusively of Coastcross hay (CHD) to a complete extruded diet (CED) on the fecal microbiome of horses. A completely randomized design with repeated measurements was used. The study started with eight adult horses randomly split into group A, fed with CHD, and group B, fed with CED. After 34 days of diet adaptation, the diets were abruptly changed between the groups. Fecal samples were collected at 0, 24, and 96 hours after the diet change, and the pH and microbiome analyses of the feces were subsequently evaluated. Changing from CHD to CED reduced the alpha diversity 24 hours after the alteration, with a decrease in the relative abundance of Firmicutes and an increase of Bacteroidetes. Fecal pH decreased and the relative abundance of Verrucomicrobia increased 96 hours after changing the diets. The community structure was also different after 96 hours of diet change. In contrast, 24 hours after changing from CED to CHD reduced fecal pH and abundance of Synergistetes. After 96 hours, there was an increase in the alpha diversity, and the abundance of the phylum Lentisphaerae. Group B showed no changes in the community structure when its diet was changed. Concluding, diet composition influenced the response of the equine fecal microbiome to sudden dietary changes.
Collapse
Affiliation(s)
- Bruna Caroline Franzan
- Animal Science Institute, Universidade Federal Rural do Rio de Janeiro/ UFRRJ, BR 465, Km 07, Seropédica, Rio de Janeiro, 23890-000, Brazil
| | - Irene da Silva Coelho
- Veterinary Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23890-000, Brazil
| | - Marina Torres de Souza
- Veterinary Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23890-000, Brazil
| | - Marina Monteiro de Moraes Santos
- Animal Science Institute, Universidade Federal Rural do Rio de Janeiro/ UFRRJ, BR 465, Km 07, Seropédica, Rio de Janeiro, 23890-000, Brazil
| | - Fernando Queiroz de Almeida
- Veterinary Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23890-000, Brazil
| | - Vinicius Pimentel Silva
- Animal Science Institute, Universidade Federal Rural do Rio de Janeiro/ UFRRJ, BR 465, Km 07, Seropédica, Rio de Janeiro, 23890-000, Brazil.
| |
Collapse
|
14
|
Fernandes KA, Rogers CW, Gee EK, Kittelmann S, Bolwell CF, Bermingham EN, Biggs PJ, Thomas DG. Resilience of Faecal Microbiota in Stabled Thoroughbred Horses Following Abrupt Dietary Transition between Freshly Cut Pasture and Three Forage-Based Diets. Animals (Basel) 2021; 11:2611. [PMID: 34573577 PMCID: PMC8471312 DOI: 10.3390/ani11092611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
The management of competition horses in New Zealand often involves rotations of short periods of stall confinement and concentrate feeding, with periods of time at pasture. Under these systems, horses may undergo abrupt dietary changes, with the incorporation of grains or concentrate feeds to the diet to meet performance needs, or sudden changes in the type of forage fed in response to a lack of fresh or conserved forage. Abrupt changes in dietary management are a risk factor for gastrointestinal (GI) disturbances, potentially due to the negative effects observed on the population of GI microbiota. In the present study, the faecal microbiota of horses was investigated to determine how quickly the bacterial communities; (1) responded to dietary change, and (2) stabilised following abrupt dietary transition. Six Thoroughbred mares were stabled for six weeks, consuming freshly cut pasture (weeks 1, 3 and 5), before being abruptly transitioned to conserved forage-based diets, both offered ad libitum. Intestinal markers were administered to measure digesta transit time immediately before each diet change. The conserved forage-based diets were fed according to a 3 × 3 Latin square design (weeks 2, 4 and 6), and comprised a chopped ensiled forage fed exclusively (Diet FE) or with whole oats (Diet FE + O), and perennial ryegrass hay fed with whole oats (Diet H + O). Faecal samples were collected at regular intervals from each horse following the diet changes. High throughput 16S rRNA gene sequencing was used to evaluate the faecal microbiota. There were significant differences in alpha diversity across diets (p < 0.001), and a significant effect of diet on the beta diversity (ANOSIM, p = 0.001), with clustering of samples observed by diet group. There were differences in the bacterial phyla across diets (p < 0.003), with the highest relative abundances observed for Firmicutes (62-64%) in the two diets containing chopped ensiled forage, Bacteroidetes (32-38%) in the pasture diets, and Spirochaetes (17%) in the diet containing hay. Major changes in relative abundances of faecal bacteria appeared to correspond with the cumulative percentage of intestinal markers retrieved in the faeces as the increasing amounts of digesta from each new diet transited the animals. A stable faecal microbiota profile was observed in the samples from 96 h after abrupt transition to the treatment diets containing ensiled chopped forage. The present study confirmed that the diversity and community structure of the faecal bacteria in horses is diet-specific and resilient following dietary transition and emphasised the need to have modern horse feeding management that reflects the ecological niche, particularly by incorporating large proportions of forage into equine diets.
Collapse
Affiliation(s)
- Karlette A. Fernandes
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (K.A.F.); (C.W.R.)
| | - Chris W. Rogers
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (K.A.F.); (C.W.R.)
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.F.B.); (P.J.B.)
| | - Erica K. Gee
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.F.B.); (P.J.B.)
| | - Sandra Kittelmann
- AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand; (S.K.); (E.N.B.)
| | - Charlotte F. Bolwell
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.F.B.); (P.J.B.)
| | - Emma N. Bermingham
- AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand; (S.K.); (E.N.B.)
| | - Patrick J. Biggs
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.F.B.); (P.J.B.)
| | - David G. Thomas
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (K.A.F.); (C.W.R.)
| |
Collapse
|
15
|
Longland AC, Barfoot C, Harris PA. The degradation of four different horse feeds in vitro previously evaluated in ponies in vivo. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Park T, Cheong H, Yoon J, Kim A, Yun Y, Unno T. Comparison of the Fecal Microbiota of Horses with Intestinal Disease and Their Healthy Counterparts. Vet Sci 2021; 8:vetsci8060113. [PMID: 34204317 PMCID: PMC8234941 DOI: 10.3390/vetsci8060113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Background: The intestinal microbiota plays an essential role in maintaining the host's health. Dysbiosis of the equine hindgut microbiota can alter the fermentation patterns and cause metabolic disorders. (2) Methods: This study compared the fecal microbiota composition of horses with intestinal disease and their healthy counterparts living in Korea using 16S rRNA sequencing from fecal samples. A total of 52 fecal samples were collected and divided into three groups: horses with large intestinal disease (n = 20), horses with small intestinal disease (n = 8), and healthy horses (n = 24). (3) Results: Horses with intestinal diseases had fewer species and a less diverse bacterial population than healthy horses. Lactic acid bacteria, Lachnospiraceae, and Lactobacillaceae were overgrown in horses with large intestinal colic. The Firmicutes to Bacteroidetes ratio (F/B), which is a relevant marker of gut dysbiosis, was 1.94, 2.37, and 1.74 for horses with large intestinal colic, small intestinal colic, and healthy horses, respectively. (4) Conclusions: The overgrowth of two lactic acid bacteria families, Lachnospiraceae and Lactobacillaceae, led to a decrease in hindgut pH that interfered with normal fermentation, which might cause large intestinal colic. The overgrowth of Streptococcus also led to a decrease in pH in the hindgut, which suppressed the proliferation of the methanogen and reduced methanogenesis in horses with small intestinal colic.
Collapse
Affiliation(s)
- Taemook Park
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (T.P.); (J.Y.); (A.K.)
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Heetae Cheong
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea;
| | - Jungho Yoon
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (T.P.); (J.Y.); (A.K.)
| | - Ahram Kim
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (T.P.); (J.Y.); (A.K.)
| | - Youngmin Yun
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
- Correspondence: (Y.Y.); (T.U.); Tel.: +82-64-754-3376 (Y.Y.); +82-64-754-3354 (T.U.)
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju 63243, Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
- Correspondence: (Y.Y.); (T.U.); Tel.: +82-64-754-3376 (Y.Y.); +82-64-754-3354 (T.U.)
| |
Collapse
|
17
|
Lin S, Li Q, Jiang S, Xu Z, Jiang Y, Liu L, Jiang J, Tong Y, Wang P. Crocetin ameliorates chronic restraint stress-induced depression-like behaviors in mice by regulating MEK/ERK pathways and gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113608. [PMID: 33242618 DOI: 10.1016/j.jep.2020.113608] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This study aimed at determining the effects of saffron on depression as well as its neuroprotective and pharmacological effects on the intestinal function of crocetin in mice exposed to chronic restraint stress. MATERIALS AND METHODS Chronic stress was induced in two-week-old ICR mice by immobilizing them for 6 h per day for 28 days. The mice were orally administered with crocetin (20, 40, 80 mg/kg), fluoxetine (20 mg/kg) or distilled water. The treatments were administered daily and open field and tail suspension tests were performed. Immunofluorescent and Western-bolt (WB) assays were conducted to determine the expression of mitogen-activated protein kinase phosphatase-1 (MKP-1), the precursor of brain-derived neurotrophic factor (proBDNF), extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated cAMP response element-binding (CREB) protein in the hippocampus. Serum levels of dopamine (DA), proBDNF, MKP-1 and CREB were measured by Elisa kits. High-throughput sequencing was carried out to analyze the composition of intestinal microbiota. RESULTS Crocetin ameliorated depressive-like behaviors caused by chronic restraint stress-induced depressive mice. It significantly attenuated the elevated levels of MKP-1, proBDNF, alanine transaminase, aspartate transaminase and increased the serum levels of DA as well as CREB. Histopathological analysis showed that crocetin suppressed hippocampus injury in restraint stress mice by protecting neuronal cells. Immunofluorescent and WB analysis showed elevated expression levels of ERK1/2, CREB and inhibited expression levels of MKP-1, proBDNF in the hippocampus. The intestinal ecosystem of the crocetin group partially recovered and was close to the control group. CONCLUSIONS Crocetin has neuroprotective properties and ameliorates the effects of stress-associated brain damage by regulating the MKP-1-ERK1/2-CREB signaling and intestinal ecosystem.
Collapse
Affiliation(s)
- Susu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qiaoqiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shanshan Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yu Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ling Liu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jinyan Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yingpeng Tong
- Institute of Natural Medicine and Health Products, School of Advanced Study, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
18
|
Saeidi E, Mansoori Yarahmadi H, Fakhraei J, Mojahedi S. Effect of Feeding Fructooligosaccharides and Enterococcus faecium and Their Interaction on Digestibility, Blood, and Immune Parameters of Adult Horses. J Equine Vet Sci 2021; 99:103410. [PMID: 33781429 DOI: 10.1016/j.jevs.2021.103410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/08/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
The objectives of this study were to determine the effects of dietary prebiotic fructooligosaccharides (FOS) from inulin and Enterococcus faecium on nutrient digestibility, fecal pH, and some blood parameters. In this experiment, twelve adult Kurdish horses with average bogy weight of 416 ± 43.3 kg and age averaging 6 ± 1.8 year were used in a replicated 4 × 4 Latin Square experiment with a 2 × 2 factorial design during 4 periods of 28 days, including 21 days for dietary adaptation and 7 days for sampling. Horses were offered 1 of 4 treatments: (1) no FOS or 2.5 × 1011 colony forming units (CFU) of Enterococcus faecium supplementation (Con), (2) 10 g of FOS without Enterococcus faecium supplementation (Pre), (3) 10 g of Enterococcus faecium without FOS supplementation (Pro), and (4) 10 g of FOS plus 10 g of Enterococcus faecium supplementation (Mix). Results showed that fecal pH decreased in horses fed Pre or Pro treatments compared with those not supplemented (P < .05). Also, triglyceride and cholesterol decreased when Pre was added to the diets (P < .05). The concentration of triglyceride and cholesterol decreased in horses fed the Mix and Pro diets. Pre × Pro supplementation interactions were significant for high-density lipoprotein (HDL) concentration and tended to be significant for low-density lipoprotein (LDL) concentration, and horses fed the Mix treatment had the greatest and the lowest concentration of HDL and LDL, respectively (P < .01). The IgM concentration was greater in horses fed Pre or Pro compared with those not supplemented (P < .05). The treatments had no effect on IgA, IgG or liver enzymes concentration. Moreover, results indicated that FOS and Enterococcus faecium adding may interact to affect blood parameters, but did not affect nutrient digestibility under our experimental conditions, therefore further researches with higher supplementary doses are warranted.
Collapse
Affiliation(s)
- Edris Saeidi
- Department of Animal Science, College of Agriculture, Islamic Azad University, Arak Branch, Arak, Iran
| | | | - Jafar Fakhraei
- Department of Animal Science, College of Agriculture, Islamic Azad University, Arak Branch, Arak, Iran
| | - Somayeh Mojahedi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
19
|
McKinney CA, Bedenice D, Pacheco AP, Oliveira BCM, Paradis MR, Mazan M, Widmer G. Assessment of clinical and microbiota responses to fecal microbial transplantation in adult horses with diarrhea. PLoS One 2021; 16:e0244381. [PMID: 33444319 PMCID: PMC7808643 DOI: 10.1371/journal.pone.0244381] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS Fecal microbial transplantation (FMT) is empirically implemented in horses with colitis to facilitate resolution of diarrhea. The purpose of this study was to assess FMT as a clinical treatment and modulator of fecal microbiota in hospitalized horses with colitis. METHODS A total of 22 horses with moderate to severe diarrhea, consistent with a diagnosis of colitis, were enrolled at two referral hospitals (L1: n = 12; L2: n = 10). FMT was performed in all 12 patients on 3 consecutive days at L1, while treatment at L2 consisted of standard care without FMT. Manure was collected once daily for 4 days from the rectum in all colitis horses, prior to FMT for horses at L1, and from each manure sample used for FMT. Fecal samples from 10 clinically healthy control horses housed at L2, and 30 healthy horses located at 5 barns in regional proximity to L1 were also obtained to characterize the regional healthy equine microbiome. All fecal microbiota were analyzed using 16S amplicon sequencing. RESULTS AND CONCLUSIONS As expected, healthy horses at both locations showed a greater α-diversity and lower β-diversity compared to horses with colitis. The fecal microbiome of healthy horses clustered by location, with L1 horses showing a higher prevalence of Kiritimatiellaeota. Improved manure consistency (lower diarrhea score) was associated with a greater α-diversity in horses with colitis at both locations (L1: r = -0.385, P = 0.006; L2: r = -0.479, P = 0.002). Fecal transplant recipients demonstrated a greater overall reduction in diarrhea score (median: 4±3 grades), compared to untreated horses (median: 1.5±3 grades, P = 0.021), with a higher incidence in day-over-day improvement in diarrhea (22/36 (61%) vs. 10/28 (36%) instances, P = 0.011). When comparing microbiota of diseased horses at study conclusion to that of healthy controls, FMT-treated horses showed a lower mean UniFrac distance (0.53±0.27) than untreated horses (0.62±0.26, P<0.001), indicating greater normalization of the microbiome in FMT-treated patients.
Collapse
Affiliation(s)
- Caroline A. McKinney
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Daniela Bedenice
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Ana P. Pacheco
- Department of Clinical Sciences, Carlson College of Veterinary Medicine at Oregon State University, Corvallis, Oregon, United States of America
| | - Bruno C. M. Oliveira
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Brazil
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Mary-Rose Paradis
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Melissa Mazan
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Giovanni Widmer
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
20
|
Tuniyazi M, He J, Guo J, Li S, Zhang N, Hu X, Fu Y. Changes of microbial and metabolome of the equine hindgut during oligofructose-induced laminitis. BMC Vet Res 2021; 17:11. [PMID: 33407409 PMCID: PMC7789226 DOI: 10.1186/s12917-020-02686-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
Background Laminitis is a common and serve disease which caused by inflammation and pathological changes of the laminar junction. However, the pathologic mechanism remains unclear. In this study we aimed to investigate changes of the gut microbiota and metabolomics in oligofructose-induced laminitis of horses. Results Animals submitted to treatment with oligofructose had lower fecal pH but higher lactic acid, histamine, and Lipopolysaccharide (LPS) in serum. Meanwhile, oligofructose altered composition of the hindgut bacterial community, demonstrated by increasing relative abundance of Lactobacillus and Megasphaera. In addition, the metabolome analysis revealed that treatment with oligofructose decreased 84 metabolites while 53 metabolites increased, such as dihydrothymine, N3,N4-Dimethyl-L-arginine, 10E,12Z-Octadecadienoic acid, and asparagine. Pathway analysis revealed that aldosterone synthesis and secretion, regulation of lipolysis in adipocytes, steroid hormone biosynthesis, pyrimidine metabolism, biosynthesis of unsaturated fatty acids, and galactose metabolism were significantly different between healthy and laminitis horses. Furthermore, correlation analysis between gut microbiota and metabolites indicated that Lactobacillus and/or Megasphaera were positively associated with the dihydrothymine, N3,N4-Dimethyl-L-arginine, 10E,12Z-Octadecadienoic acid, and asparagine. Conclusions These results revealed that disturbance of gut microbiota and changes of metabolites were occurred during the development of equine laminitis, and these results may provide novel insights to detect biomarkers for a better understanding of the potential mechanism and prevention strategies for laminitis in horses. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02686-9.
Collapse
Affiliation(s)
- Maimaiti Tuniyazi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Junying He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Jian Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Shuang Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China.
| |
Collapse
|
21
|
Willette JA, Pitta D, Indugu N, Vecchiarelli B, Hennessy ML, Dobbie T, Southwood LL. Experimental crossover study on the effects of withholding feed for 24 h on the equine faecal bacterial microbiota in healthy mares. BMC Vet Res 2021; 17:3. [PMID: 33402190 PMCID: PMC7786913 DOI: 10.1186/s12917-020-02706-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND An association between equine gastrointestinal disease causing colic signs and changes in faecal bacterial microbiota has been identified. The reasons for these changes and their clinical relevance has not been investigated. Withholding feed, which is an integral part of managing horses with colic, may contribute to the observed changes in the microbiota and impact interpretation of findings in horses with colic. Study objectives were, therefore, to determine the effect of withholding feed for 24 h on equine faecal bacterial microbiota in healthy mares to differentiate the effects of withholding feed from the changes potentially associated with the disease. RESULTS Species richness and Shannon diversity (alpha diversity) were significantly lower at the late withheld (10-24 h post withholding feed) and early refed (2-12 h post re-feeding) time points compared to samples from fed horses (P < 0.01). Restoration of species richness and diversity began to occur at the late refed (18-24 h post re-feeding) time points. Horses having feed withheld had a distinct bacterial population compared to fed horses (beta diversity). Bacteroidetes BS11 and Firmicutes Christensenellaceae, Christensenella, and Dehalobacteriaceae were significantly increased in horses withheld from feed primarily during the late withheld and early refed time points. Bacteroidetes Marinilabiaceae and Prevotellaceae, Firmicutes Veillonellaceae, Anaerovibrio, and Bulleidia, and Proteobacteria GMD14H09 were significantly decreased in horses with feed withheld at late withheld, early refed, and late refed time periods (P < 0.01). Changes in commensal gut microbiota were not significant between groups. CONCLUSIONS Withholding feed has a significant effect on faecal bacterial microbiota diversity and composition particularly following at least 10 h of withholding feed and should be taken into consideration when interpreting data on the equine faecal bacterial microbiota in horses.
Collapse
Affiliation(s)
- Jaclyn A Willette
- Departments of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 West Street Rd, Kennett Square, PA, 19348, USA
- Present address: Department of Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Dipti Pitta
- Departments of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 West Street Rd, Kennett Square, PA, 19348, USA
| | - Nagaraju Indugu
- Departments of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 West Street Rd, Kennett Square, PA, 19348, USA
| | - Bonnie Vecchiarelli
- Departments of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 West Street Rd, Kennett Square, PA, 19348, USA
| | - Meagan L Hennessy
- Departments of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 West Street Rd, Kennett Square, PA, 19348, USA
| | - Tamara Dobbie
- Departments of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 West Street Rd, Kennett Square, PA, 19348, USA
| | - Louise L Southwood
- Departments of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 West Street Rd, Kennett Square, PA, 19348, USA.
| |
Collapse
|
22
|
Daniels SP, Leng J, Swann JR, Proudman CJ. Bugs and drugs: a systems biology approach to characterising the effect of moxidectin on the horse's faecal microbiome. Anim Microbiome 2020; 2:38. [PMID: 33499996 PMCID: PMC7807906 DOI: 10.1186/s42523-020-00056-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background Anthelmintic treatment is a risk factor for intestinal disease in the horse, known as colic. However the mechanisms involved in the onset of disease post anthelmintic treatment are unknown. The interaction between anthelmintic drugs and the gut microbiota may be associated with this observed increase in risk of colic. Little is known about the interaction between gut microbiota and anthelmintics and how treatment may alter microbiome function. The objectives of this study were: To characterise (1) faecal microbiota, (2) feed fermentation kinetics in vitro and (3) metabolic profiles following moxidectin administration to horses with very low (0 epg) adult strongyle burdens. Hypothesis: Moxidectin will not alter (1) faecal microbiota, (2) feed fermentation in vitro, or, (3) host metabolome. Results Moxidectin increased the relative abundance of Deferribacter spp. and Spirochaetes spp. observed after 160 h in moxidectin treated horses. Reduced in vitro fibre fermentation was observed 16 h following moxidectin administration in vivo (P = 0.001), along with lower pH in the in vitro fermentations from the moxidectin treated group. Metabolic profiles from urine samples did not differ between the treatment groups. However metabolic profiles from in vitro fermentations differed between moxidectin and control groups 16 h after treatment (R2 = 0.69, Q2Y = 0.48), and within the moxidectin group between 16 h and 160 h post moxidectin treatment (R2 = 0.79, Q2Y = 0.77). Metabolic profiles from in vitro fermentations and fermentation kinetics both indicated altered carbohydrate metabolism following in vivo treatment with moxidectin. Conclusions These data suggest that in horses with low parasite burdens moxidectin had a small but measurable effect on both the community structure and the function of the gut microbiome.
Collapse
Affiliation(s)
- S P Daniels
- School of Equine Management and Science, Royal Agricultural University, Cirencester, Gloucestershire, GL9 6JS, UK. .,School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7TE, UK.
| | - J Leng
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7TE, UK
| | - J R Swann
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - C J Proudman
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7TE, UK
| |
Collapse
|
23
|
Adewole D. Effect of Dietary Supplementation with Coarse or Extruded Oat Hulls on Growth Performance, Blood Biochemical Parameters, Ceca Microbiota and Short Chain Fatty Acids in Broiler Chickens. Animals (Basel) 2020; 10:E1429. [PMID: 32824171 PMCID: PMC7459877 DOI: 10.3390/ani10081429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to determine the effect of dietary supplementation with coarse or extruded oat hulls on growth performance, blood biochemistry, cecal microbiota, and short chain fatty acids (SCFA) in broiler chickens. Chickens were randomly allotted to four dietary treatments consisting of a corn-wheat-soybean meal-based diet (Basal), Basal + Bacitracin methylenedisalicylate (BMD), Basal +3% coarse OH (COH), and basal +3% extruded OH (EOH). Feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR) were recorded weekly. On day 36, eight chickens/treatment were euthanized, blood samples were collected, and organ weights were determined. Cecal digesta samples were collected for the determination of SCFA concentration and microbial DNA sequence. Data were subjected to ANOVA using the mixed procedure of SAS. Alpha diversity was estimated with the Shannon index, and the significance of diversity differences was tested with ANOVA. Birds fed COH and EOH had reduced (p < 0.05) BWG, but there was no effect of treatment on FCR. There was a significant increase (p = 0.0050) in relative gizzard empty weight among birds that were fed COH, compared to the other treatments. Dietary treatments had no effect on blood biochemical parameters and SCFA concentration. Cecal microbial composition of chickens was mostly comprised of Firmicutes and Tenericutes. Seven OTUs that were differentially abundant among treatments were identified. In conclusion, supplementation of broiler chickens' diets with 3% COH or EOH did not affect the FCR, blood biochemical parameters and SCFA concentration, but modified few cecal microbiota at the species level. Dietary supplementation with COH but not EOH significantly increased the relative gizzard weight.
Collapse
Affiliation(s)
- Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
24
|
Abstract
There is a need to develop feeding strategies to prevent the adverse effect of concentrate feeding in high-performance horses fed energy-dense diets aiming to maintain their health and welfare. The objective of this study is to determine the effect of a VistaEQ product containing 4% live yeast Saccharomyces cerevisiae (S. cerevisiae), with activity 5 × 108 colony-forming unit/g and fed 2 g/pony per day, on faecal microbial populations when supplemented with high-starch and high-fibre diets using Illumina next generation sequencing of the V3-V4 region of the 16S ribosomal RNA gene. The four treatments were allocated to eight mature Welsh section A pony geldings enrolled in a 4-period × 8 animal crossover design. Each 19-day experimental period consisted of an 18-day adaptation phase and a single collection day, followed by a 7-day wash out period. After DNA extraction from faeces and library preparation, α-diversity and linear discriminant analysis effect size were performed using 16S metagenomics pipeline in Quantitative Insights Into Microbial Ecology (QIIME™) and Galaxy/Hutlab. Differences between the groups were considered significant when linear discriminant analysis score was >2 corresponding to P < 0.05. The present study showed that S. cerevisiae used was able to induce positive changes in the equine microbiota when supplemented to a high-fibre diet: it increased relative abundance (RA) of Lachnospiraceae and Dehalobacteriaceae family members associated with a healthy core microbiome. Yeast supplementation also increased the RA of fibrolytic bacteria (Ruminococcus) when fed with a high-fibre diet and reduced the RA of lactate producing bacteria (Streptococcus) when a high-starch diet was fed. In addition, yeast increased the RA of acetic, succinic acid producing bacterial family (Succinivibrionaceae) and butyrate producing bacterial genus (Roseburia) when fed with high-starch and high-fibre diets, respectively. VistaEQ supplementation to equine diets can be potentially used to prevent acidosis and increase fibre digestibility. It may help to meet the energy requirements of performance horses while maintaining gut health.
Collapse
|
25
|
Garber A, Hastie P, Murray JA. Factors Influencing Equine Gut Microbiota: Current Knowledge. J Equine Vet Sci 2020; 88:102943. [PMID: 32303307 DOI: 10.1016/j.jevs.2020.102943] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
Gastrointestinal microbiota play a crucial role in nutrient digestion, maintaining animal health and welfare. Various factors may affect microbial balance often leading to disturbances that may result in debilitating conditions such as colic and laminitis. The invention of next-generation sequencing technologies and bioinformatics has provided valuable information on the effects of factors influencing equine gut microbiota. Among those factors are nutrition and management (e.g., diet, supplements, exercise), medical substances (e.g., antimicrobials, anthelmintics, anesthetics), animal-related factors (breed and age), various pathological conditions (colitis, diarrhea, colic, laminitis, equine gastric ulcer syndrome), as well as stress-related factors (transportation and weaning). The aim of this review is to assimilate current knowledge on equine microbiome studies, focusing on the effect of factors influencing equine gastrointestinal microbiota. Decrease in microbial diversity and richness leading to decrease in stability; decrease in Lachnospiraceae and Ruminococcaceae family members, which contribute to gut homeostasis; increase in Lactobacillus and Streptococcus; decrease in lactic acid utilizing bacteria; decrease in butyrate-producing bacteria that have anti-inflammatory properties may all be considered as a negative change in equine gut microbiota. Shifts in Firmicutes and Bacteroidetes have often been observed in the literature in response to certain treatments or when describing healthy and unhealthy animals; however, these shifts are inconsistent. It is time to move forward and use the knowledge now acquired to start manipulating the microbiota of horses.
Collapse
Affiliation(s)
- Anna Garber
- School of Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| | - Peter Hastie
- School of Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jo-Anne Murray
- School of Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
26
|
Leng J, Walton G, Swann J, Darby A, La Ragione R, Proudman C. "Bowel on the Bench": Proof of Concept of a Three-Stage, In Vitro Fermentation Model of the Equine Large Intestine. Appl Environ Microbiol 2019; 86:e02093-19. [PMID: 31676474 PMCID: PMC6912081 DOI: 10.1128/aem.02093-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/20/2019] [Indexed: 12/18/2022] Open
Abstract
The intestinal microbiota of the horse, an animal of huge economic and social importance worldwide, is essential to the health of the animal. Understanding the intestinal ecosystem and its dynamic interaction with diet and dietary supplements currently requires the use of experimental animals, with consequent welfare and financial constraints. Here, we describe the development and assessment, using multiple analytical platforms, of a three-vessel, continuous-flow, in vitro model of the equine hindgut. After inoculation of the model with fresh horse feces, the bacterial communities established in each vessel had a taxonomic distribution similar to that of the source animal. Short-chain fatty acid (SCFA) and branched-chain fatty acid (BCFA) production within the model at steady state was consistent with the expected bacterial function, although higher concentrations of some SCFA/BCFA relative to those in the ex vivo gut content were apparent. We demonstrate the intermodel repeatability and the ability of the model to capture some aspects of individual variation in bacterial community profiles. The findings of this proof-of-concept study, including recognition of the limitions of the model, support its future development as a tool for investigating the impact of disease, nutrition, dietary supplementation, and medication on the equine intestinal microbiota.IMPORTANCE The equine gut model that we have developed and describe has the potential to facilitate the exploration of how the equine gut microbiota is affected by diet, disease, and medication. It is a convenient, cost-effective, and welfare-friendly alternative to in vivo research models.
Collapse
Affiliation(s)
- J Leng
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - G Walton
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - J Swann
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - A Darby
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - R La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - C Proudman
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
27
|
Bulmer LS, Murray JA, Burns NM, Garber A, Wemelsfelder F, McEwan NR, Hastie PM. High-starch diets alter equine faecal microbiota and increase behavioural reactivity. Sci Rep 2019; 9:18621. [PMID: 31819069 PMCID: PMC6901590 DOI: 10.1038/s41598-019-54039-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023] Open
Abstract
Gut microbiota have been associated with health, disease and behaviour in several species and are an important link in gut-brain axis communication. Diet plays a key role in affecting the composition of gut microbiota. In horses, high-starch diets alter the hindgut microbiota. High-starch diets are also associated with increased behavioural reactivity in horses. These changes in microbiota and behaviour may be associated. This study compares the faecal microbiota and behaviour of 10 naïve ponies. A cross-over design was used with experimental groups fed high-starch (HS) or high-fibre (HF) diets. Results showed that ponies were more reactive and less settled when being fed the HS diet compared to the HF diet. Irrespective of diet, the bacterial profile was dominated by two main phyla, Firmicutes, closely followed by Bacteroidetes. However, at lower taxonomic levels multivariate analysis of 16S rRNA gene sequencing data showed diet affected faecal microbial community structure. The abundance of 85 OTUs differed significantly related to diet. Correlative relationships exist between dietary induced alterations to faecal microbiota and behaviour. Results demonstrate a clear link between diet, faecal microbial community composition and behaviour. Dietary induced alterations to gut microbiota play a role in affecting the behaviour of the host.
Collapse
Affiliation(s)
- Louise S Bulmer
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| | - Jo-Anne Murray
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Neil M Burns
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Anna Garber
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Francoise Wemelsfelder
- Animal and Veterinary Sciences, SRUC, Roslin Institute Building, Midlothian, EH25 9RG, UK
| | - Neil R McEwan
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK
| | - Peter M Hastie
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| |
Collapse
|
28
|
Kauter A, Epping L, Semmler T, Antao EM, Kannapin D, Stoeckle SD, Gehlen H, Lübke-Becker A, Günther S, Wieler LH, Walther B. The gut microbiome of horses: current research on equine enteral microbiota and future perspectives. Anim Microbiome 2019; 1:14. [PMID: 33499951 PMCID: PMC7807895 DOI: 10.1186/s42523-019-0013-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the complex interactions of microbial communities including bacteria, archaea, parasites, viruses and fungi of the gastrointestinal tract (GIT) associated with states of either health or disease is still an expanding research field in both, human and veterinary medicine. GIT disorders and their consequences are among the most important diseases of domesticated Equidae, but current gaps of knowledge hinder adequate progress with respect to disease prevention and microbiome-based interventions. Current literature on enteral microbiomes mirrors a vast data and knowledge imbalance, with only few studies tackling archaea, viruses and eukaryotes compared with those addressing the bacterial components.Until recently, culture-dependent methods were used for the identification and description of compositional changes of enteral microorganisms, limiting the outcome to cultivatable bacteria only. Today, next generation sequencing technologies provide access to the entirety of genes (microbiome) associated with the microorganisms of the equine GIT including the mass of uncultured microbiota, or "microbial dark matter".This review illustrates methods commonly used for enteral microbiome analysis in horses and summarizes key findings reached for bacteria, viruses and fungi so far. Moreover, reasonable possibilities to combine different explorative techniques are described. As a future perspective, knowledge expansion concerning beneficial compositions of microorganisms within the equine GIT creates novel possibilities for early disorder diagnostics as well as innovative therapeutic approaches. In addition, analysis of shotgun metagenomic data enables tracking of certain microorganisms beyond species barriers: transmission events of bacteria including pathogens and opportunists harboring antibiotic resistance factors between different horses but also between humans and horses will reach new levels of depth concerning strain-level distinctions.
Collapse
Affiliation(s)
- Anne Kauter
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Lennard Epping
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | | | - Dania Kannapin
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Sabita D Stoeckle
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Heidrun Gehlen
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Günther
- Pharmaceutical Biology Institute of Pharmacy, Universität Greifswald, Greifswald, Germany
| | | | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| |
Collapse
|
29
|
Getachew B, Tizabi Y. Effects of C-Terminal Domain of the Heavy Chain of Tetanus Toxin on Gut Microbiota in a Rat Model of Depression. CLINICAL PHARMACOLOGY AND TRANSLATIONAL MEDICINE 2019; 3:152-159. [PMID: 32159077 PMCID: PMC7063687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND/AIMS It is now well established that imbalance or dysbiosis in the gut microbiota (GM) plays a significant role in neuropsychiatric/neurodegenerative disorders. Recently it has been reported that the C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) may not only act as a neuroprotectant but may also exhibit antidepressant effects in Wistar-Kyoto (WKY) rats, a putative animal model of treatment-resistant depression. The aim of this study was to determine whether Hc-TeTx may also interact with GM implicated in mood regulation in these rats. METHODS Adult male WKY rats (5/group) were injected intramuscularly (IM) with 60 μg/kg Hc-TeTx or saline. Twenty-four hours after the injection, the animals were sacrificed, intestinal stools were collected and stored at -80°C. DNA was extracted from the samples for 16S rRNA gene-based microbiota analysis using 16S Metagenomics application. RESULTS Abundance of several bacteria at different taxonomic levels were distinguished between Hc-TeTx group and the control. At species-level, 11 operational taxonomic units (OTUs), particularly Bifidobacterium cholerium, a bacterium with a strong ability to degrade resistant starch, were enriched (69 fold) in the Hc-TeTx group. In addition, 5 species of probiotic Lactobacillus, two butyrate-forming species Sarcina, Butyrivibro proteovlasticus and Roseburia faecis, were enhanced by a minimum of 2-fold in Hc-TeTx group. In contrast, 24 species including five species of pathogenic Provettela (5-14 fold), two mucin-degrading Akkermansia muciniphila and Mucispirillum schaedleri, and four species of pathogenic Ruminoccus were reduced by a minimum of 2-fold by Hc-TeTx treatment. CONCLUSION Hc-TeTx enhanced probiotic species and suppressed the opportunistic pathogens. Since overall effect of Hc-TeTx appears to be promoting GM associated with mood enhancement (e.g. Bifidobacterium, Butyrivibro, and Lactobacillus) and suppressing GM associated with mood dysregulation (e.g. Mucispirillum, Provettela, and Ruminoccus) a novel mechanism of beneficial effects of Hc-TeTx may involve normalization of dysbiosis.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
30
|
Hogan G, Walker S, Turnbull F, Curiao T, Morrison AA, Flores Y, Andrews L, Claesson MJ, Tangney M, Bartley DJ. Microbiome analysis as a platform R&D tool for parasitic nematode disease management. ISME JOURNAL 2019; 13:2664-2680. [PMID: 31239540 DOI: 10.1038/s41396-019-0462-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/06/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
The relationship between bacterial communities and their host is being extensively investigated for the potential to improve the host's health. Little is known about the interplay between the microbiota of parasites and the health of the infected host. Using nematode co-infection of lambs as a proof-of-concept model, the aim of this study was to characterise the microbiomes of nematodes and that of their host, enabling identification of candidate nematode-specific microbiota member(s) that could be exploited as drug development tools or for targeted therapy. Deep sequencing techniques were used to elucidate the microbiomes of different life stages of two parasitic nematodes of ruminants, Haemonchus contortus and Teladorsagia circumcincta, as well as that of the co-infected ovine hosts, pre- and post infection. Bioinformatic analyses demonstrated significant differences between the composition of the nematode and ovine microbiomes. The two nematode species also differed significantly. The data indicated a shift in the constitution of the larval nematode microbiome after exposure to the ovine microbiome, and in the ovine intestinal microbial community over time as a result of helminth co-infection. Several bacterial species were identified in nematodes that were absent from their surrounding abomasal environment, the most significant of which included Escherichia coli/Shigella. The ability to purposefully infect nematode species with engineered E. coli was demonstrated in vitro, validating the concept of using this bacterium as a nematode-specific drug development tool and/or drug delivery vehicle. To our knowledge, this is the first description of the concept of exploiting a parasite's microbiome for drug development and treatment purposes.
Collapse
Affiliation(s)
- Glenn Hogan
- SynBioCentre, University College Cork, Cork, Ireland.,Cancer Research@UCC, University College Cork, Cork, Ireland
| | - Sidney Walker
- SynBioCentre, University College Cork, Cork, Ireland.,Cancer Research@UCC, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Frank Turnbull
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK
| | - Tania Curiao
- SynBioCentre, University College Cork, Cork, Ireland.,Cancer Research@UCC, University College Cork, Cork, Ireland
| | - Alison A Morrison
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK
| | - Yensi Flores
- SynBioCentre, University College Cork, Cork, Ireland.,Cancer Research@UCC, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Leigh Andrews
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Mark Tangney
- SynBioCentre, University College Cork, Cork, Ireland. .,Cancer Research@UCC, University College Cork, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Dave J Bartley
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK.
| |
Collapse
|
31
|
Poelaert KCK, Van Cleemput J, Laval K, Descamps S, Favoreel HW, Nauwynck HJ. Beyond Gut Instinct: Metabolic Short-Chain Fatty Acids Moderate the Pathogenesis of Alphaherpesviruses. Front Microbiol 2019; 10:723. [PMID: 31024501 PMCID: PMC6460668 DOI: 10.3389/fmicb.2019.00723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Short-chain fatty acids (SCFA), such as sodium butyrate (SB), sodium propionate (SPr), and sodium acetate (SAc), are metabolic end-products of the fermentation of dietary fibers. They are linked with multiple beneficial effects on the general mammalian health, based on the sophisticated interplay with the host immune response. Equine herpesvirus 1 (EHV1) is a major pathogen, which primarily replicates in the respiratory epithelium, and disseminates through the body via a cell-associated viremia in leukocytes, even in the presence of neutralizing antibodies. Infected monocytic CD172a+ cells and T-lymphocytes transmit EHV1 to the endothelium of the endometrium or central nervous system (CNS), causing reproductive or neurological disorders. Here, we questioned whether SCFA have a potential role in shaping the pathogenesis of EHV1 during the primary replication in the URT, during the cell-associated viremia, or at the level of the endothelium of the pregnant uterus and/or CNS. First, we demonstrated the expression of SCFA receptors, FFA2 and FFA3, within the epithelium of the equine respiratory tract, at the cell surface of immune cells, and equine endothelium. Subsequently, EHV1 replication was evaluated in the URT, in the presence or absence of SB, SPr, or SAc. In general, we demonstrated that SCFA do not affect the number of viral plaques or virus titer upon primary viral replication. Only SB and SPr were able to reduce the plaque latitudes. Similarly, pretreatment of monocytic CD172a+ cells and T-lymphocytes with different concentrations of SCFA did not alter the number of infected cells. When endothelial cells were treated with SB, SPr, or SAc, prior to the co-cultivation with EHV1-inoculated mononuclear cells, we observed a reduced number of adherent immune cells to the target endothelium. This was associated with a downregulation of endothelial adhesion molecules ICAM-1 and VCAM-1 in the presence of SCFA, which ultimately lead to a significant reduction of the EHV1 endothelial plaques. These results indicate that physiological concentrations of SCFA may affect the pathogenesis of EHV1, mainly at the target endothelium, in favor of the fitness of the horse. Our findings may have significant implications to develop innovative therapies, to prevent the devastating clinical outcome of EHV1 infections.
Collapse
Affiliation(s)
- Katrien C K Poelaert
- Laboratory of Virology, Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jolien Van Cleemput
- Laboratory of Virology, Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,301 Schultz Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Kathlyn Laval
- 301 Schultz Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Sarah Descamps
- Laboratory of Virology, Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Herman W Favoreel
- Laboratory of Virology, Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
32
|
The Dietary Components and Feeding Management as Options to Offset Digestive Disturbances in Horses. J Equine Vet Sci 2019. [DOI: 10.1016/j.jevs.2018.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Douthit TL, Leventhal HR, Uwituze S, Halpin MY, Araújo Lopes AL, Drouillard JS. Megasphaera elsdenii Attenuates Lactate Accumulation in Cultures of Equine Cecal Microorganisms Provided With Starch or Oligofructose. J Equine Vet Sci 2019. [DOI: 10.1016/j.jevs.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Getachew B, Aubee JI, Schottenfeld RS, Csoka AB, Thompson KM, Tizabi Y. Ketamine interactions with gut-microbiota in rats: relevance to its antidepressant and anti-inflammatory properties. BMC Microbiol 2018; 18:222. [PMID: 30579332 PMCID: PMC6303954 DOI: 10.1186/s12866-018-1373-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Appreciable evidence suggest that dysbiosis in microbiota, reflected in gut microbial imbalance plays a key role in the pathogenesis of neuropsychiatric disorders including depression and inflammatory diseases. Recently, the antidepressant properties of ketamine have gained prominence due to its fast and long lasting effects. Additional uses for ketamine in inflammatory disorders such as irritable bowel syndrome have been suggested. However, ketamine's exact mechanism of action and potential effects on microbiome is not known. Here, we examined the effects of low dose ketamine, known to induce antidepressant effects, on stool microbiome profile in adult male Wistar rats. Animals (5/group) were injected intraperitoneally with ketamine (2.5 mg/kg) or saline, daily for 7 days and sacrificed on day 8 when intestinal stools were collected and stored at - 80 °C. DNA was extracted from the samples and the 16 S rRNA gene-based microbiota analysis was performed using 16S Metagenomics application. RESULTS At genus-level, ketamine strikingly amplified Lactobacillus, Turicibacter and Sarcina by 3.3, 26 and 42 fold, respectively. Conversely, opportunistic pathogens Mucispirillum and Ruminococcus were reduced by approximately 2.6 and 26 fold, respectively, in ketamine group. Low levels of Lactobacillus and Turicibacter are associated with various disorders including depression and administration of certain species of Lactobacillus ameliorates depressive-like behavior in animal models. Hence, some of the antidepressant effects of ketamine might be mediated through its interaction with these gut bacteria. Additionally, high level of Ruminococcus is positively associated with the severity of irritable bowel syndrome (IBS), and some species of Mucispirillum have been associated with intestinal inflammation. Indirect evidence of anti-inflammatory role of Sarcina has been documented. Hence, some of the anti-inflammatory effects of ketamine and its usefulness in specific inflammatory diseases including IBS may be mediated through its interaction with these latter bacteria. CONCLUSION Our data suggest that at least some of the antidepressant and anti-inflammatory effects of daily ketamine treatment for 7 days may be mediated via its interaction with specific gut bacteria. These findings further validate the usefulness of microbiome as a target for therapeutic intervention and call for more detailed investigation of microbiome interaction with central mediators of mood and/or inflammatory disorders.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC 20059 USA
| | - Joseph I. Aubee
- Department of Microbiology, Howard University College Medicine, Washington, DC 20059 USA
| | - Richard S. Schottenfeld
- Department of Psychiatry and Behavioral Sciences, Howard University College Medicine, Washington, DC 20059 USA
| | - Antonei B. Csoka
- Department of Anatomy, Howard University College Medicine, Washington, DC 20059 USA
| | - Karl M. Thompson
- Department of Microbiology, Howard University College Medicine, Washington, DC 20059 USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC 20059 USA
| |
Collapse
|
35
|
Cheng D, Chang H, Ma S, Guo J, She G, Zhang F, Li L, Li X, Lu Y. Tiansi Liquid Modulates Gut Microbiota Composition and Tryptophan⁻Kynurenine Metabolism in Rats with Hydrocortisone-Induced Depression. Molecules 2018; 23:molecules23112832. [PMID: 30384480 PMCID: PMC6278342 DOI: 10.3390/molecules23112832] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/21/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022] Open
Abstract
Tiansi Liquid is a traditional Chinese herbal medicine used to treat depression; however, the underlying mechanisms remain unclear. Here, we examined the effect of Tiansi Liquid in a rat model of hydrocortisone-induced depression using behavioral testing, 16S rRNA high-throughput pyrosequencing and high-performance liquid chromatography-mass spectrometry-based metabolomics of the tryptophan (TRP)–kynurenine (KYN) pathway. Tiansi Liquid significantly improved the sucrose preference and exploratory behavior of the depressive rats. The richness of intestinal mucosa samples from the model (depressive) group tended to be higher than that from the control group, while the richness was higher in the Tiansi Liquid-treated group than in the model group. Tiansi Liquid increased the relative abundance of some microbiota (Ruminococcaceae, Lactococcus, Lactobacillus, Lachnospiraceae_NK4A136_group). Metabolomics showed that Tiansi Liquid reduced the levels of tryptophan 2,3 dioxygenase, indoleamine 2,3-dioxygenase, quinoline and the KYN/TRP ratio, while increasing kynurenic acid and 5-HT levels. Correlation analysis revealed a negative relationship between the relative abundance of the Lachnospiraceae_NK4A136_group and quinoline content. Collectively, these findings suggest that Tiansi Liquid ameliorates depressive symptoms in rats by modulating the gut microbiota composition and metabolites in the TRP–KYN pathway.
Collapse
Affiliation(s)
- Dan Cheng
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Hongsheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Suya Ma
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jian Guo
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Feilong Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lingling Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xinjie Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yi Lu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
36
|
Biddle AS, Tomb JF, Fan Z. Microbiome and Blood Analyte Differences Point to Community and Metabolic Signatures in Lean and Obese Horses. Front Vet Sci 2018; 5:225. [PMID: 30294603 PMCID: PMC6158370 DOI: 10.3389/fvets.2018.00225] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/29/2018] [Indexed: 01/14/2023] Open
Abstract
Due to modern management practices and the availability of energy dense feeds, obesity is a serious and increasingly common health problem for horses. Equine obesity is linked to insulin resistance and exacerbation of inflammatory issues such as osteoarthritis and laminitis. While the gut microbiome is thought to play a part in metabolic status in horses, bacterial communities associated with obesity have yet to be described. Here we report differences in metabolic factors in the blood of obese, normal and lean horses correlated with differences in gut microbiome composition. We report that obese horses had higher levels of leptin, triglycerides, glucose, and cortisol in their blood, and more diverse gut microbiome communities with higher relative abundance of Firmicutes, and lower numbers of Bacteroidetes and Actinobacteria. Network analyses of correlations between body condition, blood analytes, and microbial composition at the genus level revealed a more nuanced picture of microbe-host interactions, pointing to specific bacterial species and assemblages that may be signatures of obesity and leanness in the horse gut. In particular, bacteria groups positively associated with two blood analytes and obesity included Butyrivibrio spp., Prevotellaceae, Blautia spp., two members of Erysipelotrichaceae, and a Lachnospiraceae taxa. These results are an important first step in unraveling the metabolic differences between obese and lean horse gut communities, and designing targeted strategies for microbial intervention.
Collapse
Affiliation(s)
- Amy S. Biddle
- Department of Animal and Food Science, University of Delaware, Newark, DE, United States
| | - Jean-Francois Tomb
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States
| | - Zirui Fan
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
37
|
Johnson ACB, Rossow HA. Effects of two equine digestive aid supplements on hindgut health. Transl Anim Sci 2018; 3:340-349. [PMID: 32704804 PMCID: PMC7200547 DOI: 10.1093/tas/txy103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 11/21/2022] Open
Abstract
Gastrointestinal disease is the number one killer of horses. Little is known about the maintenance of microbes in the equine hindgut and how to distinguish a healthy gut in a live horse. Utilization of internal and external digestibility markers and starch fermentation has been extensively studied in ruminants and is the basis for research conducted on horses. The aims of this study were to investigate the effects of two equine feed digestive aid supplements on hindgut health (HGH) as reflected in fecal pH and digestibility and to compare and validate DM digestibility measurements through the use of internal and external markers such as chromium oxide (CR), lignin (Lig), indigestible ADF (iADF), indigestible NDF (iNDF), and indigestible lignin (iLig). Nine mature Quarter horses (six geldings, three mares) were used in a crossover design, three feeding periods of 17 d (51 d total), using three treatments: control, no feed additive (CON), Smartpak (SP; Plymouth, MA), or Platinum Performance (PP; Buellton, CA). Both SP and PP contained a strain of Lactobacillus, whereas SP further supplied mannanoligosaccharides (MOS) and fructooligosaccharides (FOS) and PP supplied Saccharomyces boulardii. Within the 17-d period, horses were offered orchard grass hay and sweet cob grain and the assigned treatment daily and four CR cookies to deliver 8 g/d of CR for the last 7 d of each period. Total feces were collected from 15 to 17 d. Feed and fecal samples were dried, ground, and sent to ANALAB (Fulton, IL) for nutrient analysis. Duplicate samples of feed and feces were placed in ruminally cannulated cows for in situ determination of iADF, iNDF, and iLig to estimate digestibility. Estimated CR fecal output, CR DMI, and DM digestibilities were evaluated using the root mean square prediction error percentage of the observed mean (RMSPE), concordance correlation coefficient (CCC), and Nash–Sutcliffe efficiency methods. Marker predictive ability tests showed iADF to have the least amount of bias with the smallest RMSPE (4%), largest CCC (0.43), and the largest amount of random bias (error of dispersion = 0.45). Supplementation of PP decreased CR DM digestibility (P < 0.02). Smartpak increased fecal pH (P < 0.09), but PP had no effect on fecal pH. Therefore, SP had a beneficial effect on HGH that is believed to be due to MOS and FOS.
Collapse
Affiliation(s)
- Alexa C B Johnson
- Department of Population Health and Reproduction, SVM VMTRC University of California-Davis, Tulare, CA
| | - Heidi A Rossow
- Department of Population Health and Reproduction, SVM VMTRC University of California-Davis, Tulare, CA
| |
Collapse
|
38
|
Longo PL, Dabdoub S, Kumar P, Artese HPC, Dib SA, Romito GA, Mayer MPA. Glycaemic status affects the subgingival microbiome of diabetic patients. J Clin Periodontol 2018; 45:932-940. [PMID: 29742293 DOI: 10.1111/jcpe.12908] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/26/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
AIM Periodontitis is correlated with type 2 diabetes mellitus (T2DM), but little is known about glycaemic status effect on subgingival microbiota associated with periodontitis. This study evaluated if periodontal microbiome of T2DM patients is affected by glycaemic status. MATERIALS AND METHODS Twenty-one T2DM non-smoking patients with chronic periodontitis and body mass index ≤40 kg/m2 were allocated into two groups according to systemic glycaemic status: inadequate (DMI- HbA1c ≥ 8%) and adequate (DMA- HbA1c <7.8%). Subgingival biofilm was collected from sites with moderate (PD = 4-6 mm) and severe disease (PD ≥ 7 mm) in two quadrants. The V5-V6 hypervariable region of the 16SrRNA was sequenced using the GS-FLX-454 Titanium platform. Sequences were compared with HOMD database using QIIME and PhyloToAST pipelines. Statistical comparisons were made using two-sample t-tests. RESULTS DMA microbiome presented higher diversity than DMI. Inadequate glycaemic control favoured fermenting species, especially those associated with propionate/succinate production, whereas those forming butyrate/pyruvate was decreased in DMI. Higher abundances of anginosus group and Streptococcus agalactiae in DMI may indicate that subgingival sites can be reservoir of potentially invasive pathogens. Altered subgingival microbiome in DMI may represent an additional challenge in the periodontal treatment of these patients and in the prevention of more invasive infections. CONCLUSION Glycaemic status in T2DM patients seems to modulate subgingival biofilm composition.
Collapse
Affiliation(s)
- Priscila L Longo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shareef Dabdoub
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Purnima Kumar
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Hilana P C Artese
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Sergio A Dib
- Department of Endocrinology, School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Giuseppe A Romito
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
39
|
Laghi L, Zhu C, Campagna G, Rossi G, Bazzano M, Laus F. Probiotic supplementation in trained trotter horses: effect on blood clinical pathology data and urine metabolomic assessed in field. J Appl Physiol (1985) 2018; 125:654-660. [PMID: 29672225 PMCID: PMC6139516 DOI: 10.1152/japplphysiol.01131.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 01/16/2023] Open
Abstract
The attention of sports community toward probiotic supplementation as a way to promote exercise and training performance, together with good health, has increased in recent years. This has applied also to horses, with promising results. Here, for the first time, we tested a probiotic mix of several strains of live bacteria typically employed for humans to improve the training performance of Standardbred horses in athletic activity. To evaluate its effects on the horse performance, we measured lactate concentration in blood, a translational outcome largely employed for the purpose, combined with the study of hematological and biochemical parameters, together with urine from a metabolomics perspective. The results showed that the probiotic supplementation significantly reduced postexercise blood lactate concentration. The hematological and biochemical parameters, together with urine molecular profile, suggested that a likely mechanism underlying this positive effect was connected to a switch of energy source in muscle from carbohydrates to short-chain fatty acids. Three sulfur-containing molecules differently concentrated in urines in connection to probiotics administration suggested that such switch was linked to sulfur metabolism. NEW & NOTEWORTHY Probiotic supplementation could reduce postexercise blood lactate concentration in Standardbred horses in athletic activity. Blood parameters, together with urine molecular profile, suggest the mechanism underlying this positive effect is connected to a switch of energy source in muscle from carbohydrates to short-chain fatty acids. Sulfur-containing molecules found in urines in connection to probiotics administration suggested that such switch was linked to sulfur metabolism.
Collapse
Affiliation(s)
- Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna , Cesena , Italy
| | - Chenglin Zhu
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna , Cesena , Italy
| | - Giuseppe Campagna
- Department of Experimental Medicine "Sapienza" University of Rome , Rome , Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| |
Collapse
|
40
|
Warzecha CM, Coverdale JA, Janecka JE, Leatherwood JL, Pinchak WE, Wickersham TA, McCann JC. Influence of short-term dietary starch inclusion on the equine cecal microbiome. J Anim Sci 2018; 95:5077-5090. [PMID: 29293739 DOI: 10.2527/jas2017.1754] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to determine bacterial community profiles of the equine cecum in response to abrupt inclusion of varying levels of dietary starch. Seven cecally cannulated Quarter Horse geldings (497 to 580 kg) were used in a crossover design with two 28-d periods and a 28-d washout between each. Horses were randomly assigned to dietary treatments consisting of a commercial concentrate offered as fed at either 0.6 (low starch [LS]) or 1.2% BW (high starch [HS]) daily that was divided into 2 meals at 12-h intervals. Prior to the start of each period, horses were allowed ad libitum access to coastal bermudagrass () hay. Concentrate was fed on d 1 with no adaptation. Cecal fluid was collected on d 1 at h 0 and at 3, 6, 9, and 12 h relative to the initial concentrate meal on d 1. Additional samples were collected 6 h after feeding on d 2, 3, and 7 of each period. Cecal contents were used to determine pH and VFA concentrations and extract microbial DNA. The V4 through V6 region of 16S rRNA gene was amplified using PCR and sequenced on the Roche 454 FLX platform. Sequence analysis was performed with QIIME, and data were analyzed using the MIXED procedure of SAS. Cecal pH tended to decrease ( = 0.09) in horses fed HS in the first 12 h after the first concentrate meal and remained lower ( ≤ 0.05) the following 7 d. Total VFA were greater ( ≤ 0.05) in horses fed HS in the initial 12 h and 7 d after addition of concentrate. Species richness determined using the Chao1 index was unchanged ( > 0.20) over the initial 12 h and decreased ( = 0.01) over 7 d for both treatments. Community diversity determined using the Shannon index tended to decrease ( = 0.06) over the 7 d. Relative abundances of Paraprevotellaceae were greater ( ≤ 0.05) in HS in the first 12 h. Over 7 d, relative abundances of Paraprevotellaceae, Veillonellaceae, and Succinivibrionaceae were greater ( ≤ 0.05) in HS compared with LS. Abrupt and short-term exposure to dietary starch does alter cecal fermentation and microbial community structure in horses, but the impact on horse health is unknown.
Collapse
|
41
|
Marycz K, Michalak I, Kornicka K. Advanced nutritional and stem cells approaches to prevent equine metabolic syndrome. Res Vet Sci 2018; 118:115-125. [PMID: 29421480 DOI: 10.1016/j.rvsc.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/25/2022]
Abstract
Horses metabolic disorders have become an important problem of modern veterinary medicine. Pathological obesity, insulin resistance and predisposition toward laminitis are associated with Equine Metabolic Syndrome (EMS). Based on pathogenesis of EMS, dietary and cell therapy management may significantly reduce development of this disorder. Special attention has been paid to the diet supplementation with highly bioavailable minerals and mesenchymal stem cells (MSC) which increase insulin sensitivity. In nutrition, there is a great interests in natural algae enriched via biosorption process with micro- and macroelements. In the case of cellular therapy, metabolic condition of engrafted cells may be crucial for the effectiveness of the therapy. Although, recent studies indicated on MSC deterioration in EMS individuals. Here, we described the combined nutritional and stem cells therapy for the EMS treatment. Moreover, we specified in details how EMS affects the adipose-derived stem cells (ASC) population. Presented here, combined kind of therapy- an innovative and cutting edge approach of metabolic disorders treatment may become a new gold standard in personalized veterinary medicine.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, 50-630 Wrocław, Poland; Wroclaw Research Centre EIT+, 54-066 Wrocław, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
| | - Katarzyna Kornicka
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, 50-630 Wrocław, Poland; Wroclaw Research Centre EIT+, 54-066 Wrocław, Poland.
| |
Collapse
|
42
|
Comparison of (R)-ketamine and lanicemine on depression-like phenotype and abnormal composition of gut microbiota in a social defeat stress model. Sci Rep 2017; 7:15725. [PMID: 29147024 PMCID: PMC5691133 DOI: 10.1038/s41598-017-16060-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggests a key role of the gut–microbiota–brain axis in the antidepressant actions of certain compounds. Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, showed rapid and sustained antidepressant effects in treatment-resistant depressed patients. In contrast, another NMDAR antagonist, lanicemine, did not exhibit antidepressant effects in such patients. (R)-ketamine, the (R)-enantiomer of ketamine, has rapid-acting and long-lasting antidepressant effects in rodent models of depression. Here we compared the effects of (R)-ketamine and lanicemine on depression-like phenotype and the composition of the gut microbiota in susceptible mice after chronic social defeat stress (CSDS). In behavioral tests, (R)-ketamine showed antidepressant effects in the susceptible mice, whereas lanicemine did not. The 16S ribosomal RNA gene sequencing of feces demonstrated that (R)-ketamine, but not lanicemine, significantly attenuated the altered levels of Bacteroidales, Clostridiales and Ruminococcaceae in the susceptible mice after CSDS. At the genus level, (R)-ketamine significantly attenuated the marked increase of Clostridium in the susceptible mice. In contrast, the effects of lanicemine were less potent than those of (R)-ketamine. This study suggests that the antidepressant effects of (R)-ketamine might be partly mediated by the restoration of altered compositions of the gut microbiota in a CSDS model.
Collapse
|
43
|
Mach N, Foury A, Kittelmann S, Reigner F, Moroldo M, Ballester M, Esquerré D, Rivière J, Sallé G, Gérard P, Moisan MP, Lansade L. The Effects of Weaning Methods on Gut Microbiota Composition and Horse Physiology. Front Physiol 2017; 8:535. [PMID: 28790932 PMCID: PMC5524898 DOI: 10.3389/fphys.2017.00535] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Weaning has been described as one of the most stressful events in the life of horses. Given the importance of the interaction between the gut-brain axis and gut microbiota under stress, we evaluated (i) the effect of two different weaning methods on the composition of gut microbiota across time and (ii) how the shifts of gut microbiota composition after weaning affect the host. A total of 34 foals were randomly subjected to a progressive (P) or an abrupt (A) weaning method. In the P method, mares were separated from foals at progressively increasing intervals every day, starting from five min during the fourth week prior to weaning and ending with 6 h during the last week before weaning. In the A method, mares and foals were never separated prior to weaning (0 d). Different host phenotypes and gut microbiota composition were studied across 6 age strata (days -30, 0, 3, 5, 7, and 30 after weaning) by 16S rRNA gene sequencing. Results revealed that the beneficial species belonging to Prevotella, Paraprevotella, and Ruminococcus were more abundant in the A group prior to weaning compared to the P group, suggesting that the gut microbiota in the A cohort was better adapted to weaning. Streptococcus, on the other hand, showed the opposite pattern after weaning. Fungal loads, which are thought to increase the capacity for fermenting the complex polysaccharides from diet, were higher in P relative to A. Beyond the effects of weaning methods, maternal separation at weaning markedly shifted the composition of the gut microbiota in all foals, which fell into three distinct community types at 3 days post-weaning. Most genera in community type 2 (i.e., Eubacterium, Coprococcus, Clostridium XI, and Blautia spp.) were negatively correlated with salivary cortisol levels, but positively correlated with telomere length and N-butyrate production. Average daily gain was also greater in the foals harboring a community type 2 microbiota. Therefore, community type 2 is likely to confer better stress response adaptation following weaning. This study identified potential microbial biomarkers that could predict the likelihood for physiological adaptations to weaning in horses, although causality remains to be addressed.
Collapse
Affiliation(s)
- Núria Mach
- UMR 1313, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Aline Foury
- UMR 1286, Institut National de la Recherche Agronomique, Université Bordeaux, Nutrition et Neurobiologie IntégréeBordeaux, France
| | - Sandra Kittelmann
- AgResearch Ltd, Grasslands Research CentrePalmerston North, New Zealand
| | - Fabrice Reigner
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé PubliqueNouzilly, France
| | - Marco Moroldo
- UMR 1313, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries, Torre MarimonCaldes de Montbui, Spain
| | - Diane Esquerré
- UMR 444, Institut National de la Recherche Agronomique, Plateforme GETCastanet-Tolosan, France
| | - Julie Rivière
- UMR 1313, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Guillaume Sallé
- UMR 1282, Institut National de la Recherche Agronomique, Infectiologie et Santé PubliqueNouzilly, France
| | - Philippe Gérard
- UMR 1319, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Marie-Pierre Moisan
- UMR 1286, Institut National de la Recherche Agronomique, Université Bordeaux, Nutrition et Neurobiologie IntégréeBordeaux, France
| | - Léa Lansade
- PRC, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, IFCE, Université de ToursNouzilly, France
| |
Collapse
|
44
|
Abstract
The complex carbohydrates of terrestrial and marine biomass represent a rich nutrient source for free-living and mutualistic microbes alike. The enzymatic saccharification of these diverse substrates is of critical importance for fueling a variety of complex microbial communities, including marine, soil, ruminant, and monogastric microbiota. Consequently, highly specific carbohydrate-active enzymes, recognition proteins, and transporters are enriched in the genomes of certain species and are of critical importance in competitive environments. In Bacteroidetes bacteria, these systems are organized as polysaccharide utilization loci (PULs), which are strictly regulated, colocalized gene clusters that encode enzyme and protein ensembles required for the saccharification of complex carbohydrates. This review provides historical perspectives and summarizes key findings in the study of these systems, highlighting a critical shift from sequence-based PUL discovery to systems-based analyses combining reverse genetics, biochemistry, enzymology, and structural biology to precisely illuminate the molecular mechanisms underpinning PUL function. The ecological implications of dynamic PUL deployment by key species in the human gastrointestinal tract are explored, as well as the wider distribution of these systems in other gut, terrestrial, and marine environments.
Collapse
|
45
|
Stewart AS, Pratt-Phillips S, Gonzalez LM. Alterations in Intestinal Permeability: The Role of the "Leaky Gut" in Health and Disease. J Equine Vet Sci 2017; 52:10-22. [PMID: 31000910 DOI: 10.1016/j.jevs.2017.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
All species, including horses, suffer from alterations that increase intestinal permeability. These alterations, also known as "leaky gut," may lead to severe disease as the normal intestinal barrier becomes compromised and can no longer protect against harmful luminal contents including microbial toxins and pathogens. Leaky gut results from a variety of conditions including physical stressors, decreased blood flow to the intestine, inflammatory disease, and pathogenic infections, among others. Several testing methods exist to diagnose these alterations in both a clinical and research setting. To date, most research has focused on regulation of the host immune response due to the wide variety of factors that can potentially influence the intestinal barrier. This article serves to review the normal intestinal barrier, measurement of barrier permeability, pathogenesis and main causes of altered permeability, and highlight potential alternative therapies of leaky gut in horses while relating what has been studied in other species. Conditions resulting in barrier dysfunction and leaky gut can be a major cause of decreased performance and also death in horses. A better understanding of the intestinal barrier in disease and ways to optimize the function of this barrier is vital to the long-term health and maintenance of these animals.
Collapse
Affiliation(s)
- Amy Stieler Stewart
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | | | - Liara M Gonzalez
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Center for Gastrointestinal Biology and Disease, Large Animal Models Core, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
46
|
Decloedt A, Damen S, Vanhaecke L. Revealing the influence of glucocorticoid treatment on the excretion of anabolic-androgenic steroids in horses through in vitro digestive simulations and an in vivo case study. Res Vet Sci 2017; 115:132-137. [PMID: 28342428 DOI: 10.1016/j.rvsc.2017.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 09/04/2016] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
Anabolic-androgenic steroids (AAS) are strictly forbidden in equine sports because of their stimulating effect on muscle growth and performance. Nevertheless, low levels of AAS have been found in some horses, untreated with AAS. Glucocorticoids (GC), used as an anti-inflammatory therapy and structurally related to AAS, might play a role in this phenomenon. In order to unravel this possible correlation the influence of glucocorticoid treatment on the excretion of AAS was studied both in vivo and in vitro. In vivo effects were investigated by analysing urine samples collected from a gelding treated with betamethasone. Additionally, multiple in vitro digestion simulations were set up, according to a previously validated protocol, to study the possibility of a direct biotransformation of glucocorticoids to AAS, by the microbiota of the equine hindgut. Urine and in vitro digestion samples were extracted and analysed with UHPLC-MS/MS and UHPLC-Orbitrap-HRMS analytical methods. A significant influence on the urinary excretion of α-testosterone (αT), β-testosterone (βT) and androsta-1,4-diene-3,17-dione (ADD) was seen. αT-concentrations up to 20ng/mL were detected. ADD was not found before treatment but could be detected post-treatment. Cortisone and cortisol also peaked (>30ng/mL) between day 37 and 48 post-treatment. The in vitro digestion results however revealed no direct biotransformation of glucocorticoids to AAS by the microbiota of the equine hindgut. This study shows that a glucocorticoid treatment can disrupt the synthesis and excretion of AAS, not by direct biotransformation upon gastrointestinal digestion, but more likely by influencing the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Anneleen Decloedt
- Ghent University, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, 133 Salisburylaan, B-9820 Merelbeke, Belgium; Ghent University, Laboratory of Biochemistry and Brewing, Faculty of Bioscience Engineering, Department of Applied Biosciences, 1 Valentin Vaerwyckweg, B-9000 Ghent, Belgium
| | - Sander Damen
- Ghent University, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, 133 Salisburylaan, B-9820 Merelbeke, Belgium
| | - Lynn Vanhaecke
- Ghent University, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, 133 Salisburylaan, B-9820 Merelbeke, Belgium.
| |
Collapse
|
47
|
Microbial composition and diversity are associated with plant performance: a case study on long-term fertilization effect on wheat growth in an Ultisol. Appl Microbiol Biotechnol 2017; 101:4669-4681. [DOI: 10.1007/s00253-017-8147-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
48
|
Faecal parameters as biomarkers of the equine hindgut microbial ecosystem under dietary change. Animal 2017; 11:1136-1145. [PMID: 28065211 DOI: 10.1017/s1751731116002779] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Faeces could be used for evaluating the balance of the equine hindgut microbial ecosystem, which would offer a practical method for assessing gut health and how this relates to disease. However, previous studies concluded that faeces microbial ecosystem was not representative of the proximal hindgut (caecum and ventral colon). This study aimed to evaluate if variations of the faecal microbial ecosystem were similar to those observed in the proximal hindgut. Six horses, fistulated in the caecum and right ventral (RV) colon, were subjected to a gradual change of diet, from a 100% hay (high fibre) diet (2.2 DM kg/day per 100 kg BW) to a 57% hay+43% barley (high starch) diet (0.8 DM kg/day per 100 kg BW hay and 0.6 DM kg/day per 100 kg BW barley). The two diets were iso-energetic and fed over a 3-week trial period. Samples of digesta from the caecum, RV colon and faeces were collected two times on the 10th and 20th day of the trial, for each diet to assess the microbial ecosystem parameters by both classical culture technics and biochemical methods. The variations observed in the caecal and colonic bacterial composition (increase in total anaerobic, amylolytic and lactate-utilizing and decrease in cellulolytic bacteria concentrations) and microbial activity (changes in volatile fatty acids concentrations and increase in lactate concentrations) demonstrated that the hay+barley diet caused changes in the hindgut microbial ecosystem. Similar variations were observed in the faecal microbial ecosystem. Feeding the hay+barley diet resulted in higher concentrations of faecal lipopolysaccharides. The functional bacterial group concentrations (cellulolytics, amylolytics and lactate utilizers) were significantly correlated between caecum and faeces and between colon and faeces. From analyses of the metabolites produced from microbial activity, only valerate concentration in the caecum and the proportion of propionate were significantly correlated with the same parameters in the faeces. Results of the principal component analysis performed between all the caecal/faecal and colonic/faecal parameters revealed that the total anaerobic and cellulolytic bacteria concentrations, as well as valerate, l-lactate and lipopolysaccharide concentrations were strongly correlated with several microbial parameters in the caecum (P|0.45|) and in the colon (P|0.50|). This demonstrated that faecal samples and their bacterial analyses could be used to represent caecum and RV colon hindgut microbial ecosystem in terms of variations during a change from a high-fibre to a high-starch diet, and thus could be markers of particular interest to diagnostic proximal hindgut microbial disturbances.
Collapse
|
49
|
Staniar WB, Neuendorf LE, Brooks SA. Preliminary Investigation of the Changes in Fecal Streptococcal Population due to Diet and Time of Day in Horses. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Janabi A, Biddle A, Klein D, McKeever K. Exercise training-induced changes in the gut microbiota of Standardbred racehorses. COMPARATIVE EXERCISE PHYSIOLOGY 2016. [DOI: 10.3920/cep160015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exercise has a significant effect on different physiological systems in the body of human and animals. Only limited numbers of published studies in laboratory animals or humans have shown the effect of exercise on the gut microbiota, and no studies have shown this effect in horses. In this study, 8 horses (4 mares, 4 geldings) were exercise trained for 12 weeks, and 4 additional mares were used as a parallel seasonal control. To identify bacterial community changes over time for both groups, rectal faecal samples were collected, DNA was extracted, and the 16S rRNA gene (V3-V4) was sequenced using the Illumina Miseq platform. One-way ANOVA, Shannon diversity index, and Principal Coordinate Analysis (PCoA) were used to identify differences between and among samples. The exercise training group showed significant changes in the levels of Bacteroidetes, Proteobacteria, and Spirochaetes phyla (P<0.05), while there were no changes in the gut microbiota of the seasonal control group through the three months of the study (P>0.05). Moreover, with training two genera significantly changed in their relative abundance over time, namely Clostridium and Dysgonomonas (P<0.05). Dysgonomonas spp. was significantly changed in abundance during the exercise training period (P<0.05). Also Treponema spp. showed significant changes during the exercise training period (P<0.05). Shannon diversity index was decreased (P<0.05) in the exercise group at the beginning of the study, but then returned to pre-training levels. PCoA showed significant separation between time points of the exercise training group as far as the levels of genera and species (P<0.05) represented. Our results show that exercise training influences the gut microbiota, especially at the beginning of training.
Collapse
Affiliation(s)
- A.H.D. Janabi
- Microbial Biology Graduate Program, Rutgers-The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - A.S. Biddle
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - D. Klein
- Nutritional Sciences Graduate Program, Rutgers-The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - K.H. McKeever
- Equine Science Center, Department of Animal Science, Rutgers-The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|