1
|
Morris MJ, Hasebe K, Shinde AL, Leong MKH, Billah MM, Hesam-Shariati S, Kendig MD. Time-restricted feeding does not prevent adverse effects of palatable cafeteria diet on adiposity, cognition and gut microbiota in rats. J Nutr Biochem 2024; 134:109761. [PMID: 39251144 DOI: 10.1016/j.jnutbio.2024.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Time-restricted feeding (TRF) is a popular dietary strategy whereby daily food intake is limited to a <12h window. As little is known about the effects of TRF on cognitive and behavioral measures, the present study examined the effects of time-restricted (8h/day; zeitgeber time [ZT]12-20) or continuous access to a high-fat, high-sugar cafeteria-style diet (Caf; Caf and Caf-TRF groups; n=12 adult male Sprague-Dawley rats) or standard chow (Chow and Chow-TRF groups) on short-term memory, anxiety-like behavior, adiposity and gut microbiota composition over 13-weeks with daily food intake measures. TRF significantly reduced daily energy intake in Caf- but not chow-fed groups. In Caf-fed groups, TRF reduced the proportion of energy derived from sugar while increasing that derived from protein. Caf diet significantly increased weight gain, adiposity and fasting glucose within 4 weeks; TRF partially reduced these effects. Caf diet increased anxiety-like behavior in the Elevated Plus Maze in week 3 but not week 12, and impaired hippocampal-dependent place recognition memory in week 11; neither measure was affected by TRF. Global microbiota composition differed markedly between chow and Caf groups, with a small effect of TRF in rats fed chow. In both chow and Caf diet groups, TRF reduced microbiota alpha diversity measures of Shannon diversity and evenness relative to continuous access. Results indicate only limited benefits of TRF access to an obesogenic diet under these conditions, suggesting that more severe time restriction may be required to offset adverse metabolic and cognitive effects when using highly palatable diets.
Collapse
Affiliation(s)
| | - Kyoko Hasebe
- School of Biomedical Sciences, UNSW Sydney, Kensington, Australia
| | - Arya L Shinde
- School of Biomedical Sciences, UNSW Sydney, Kensington, Australia
| | | | | | | | - Michael D Kendig
- School of Biomedical Sciences, UNSW Sydney, Kensington, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
2
|
Hayes AMR, Kao AE, Ahuja A, Subramanian KS, Klug ME, Rea JJ, Nourbash AC, Tsan L, Kanoski SE. Early- but not late-adolescent Western diet consumption programs for long-lasting memory impairments in male but not female rats. Appetite 2024; 194:107150. [PMID: 38049033 PMCID: PMC11033621 DOI: 10.1016/j.appet.2023.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Early life Western diet (WD) consumption leads to impaired memory function, particularly for processes mediated by the hippocampus. However, the precise critical developmental window(s) during which WD exposure negatively impacts hippocampal function are unknown. Here, we exposed male and female rats to a WD model involving free access to a variety of high-fat and/or high-sugar food and drink items during either the early-adolescent period (postnatal days [PN] 26-41; WD-EA) or late-adolescent period (PN 41-56; WD-LA). Control (CTL) rats were given healthy standard chow throughout both periods. To evaluate long-lasting memory capacity well beyond the early life WD exposure periods, we performed behavioral assessments after both a short (4 weeks for WD-EA, 2 weeks for WD-LA) and long (12 weeks for WD-EA, 10 weeks for WD-LA) period of healthy diet intervention. Results revealed no differences in body weight or body composition between diet groups, regardless of sex. Following the shorter period of healthy diet intervention, both male and female WD-EA and WD-LA rats showed deficits in hippocampal-dependent memory compared to CTL rats. Following the longer healthy diet intervention period, memory impairments persisted in male WD-EA but not WD-LA rats. In contrast, in female rats the longer healthy diet intervention reversed the initial memory impairments in both WD-EA and WD-LA rats. Collectively, these findings reveal that early-adolescence is a critical period of long-lasting hippocampal vulnerability to dietary insults in male but not female rats, thus highlighting developmental- and sex-specific effects mediating the relationship between the early life nutritional environment and long-term cognitive health.
Collapse
Affiliation(s)
- Anna M R Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alicia E Kao
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Arun Ahuja
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Keshav S Subramanian
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Molly E Klug
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jessica J Rea
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Anna C Nourbash
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Linda Tsan
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Zhang L. Protective Effect of Tertiary Butylhydroquinone against Obesity-induced Skeletal Muscle Pathology in Post-weaning High Fat Diet Fed Rats. Curr Pharm Biotechnol 2024; 25:1276-1287. [PMID: 37565558 DOI: 10.2174/1389201024666230810094809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Obesity deleteriously affects skeletal muscle functionality starting from infancy to adulthood, leading to dysfunctional skeletal muscle. OBJECTIVES This study, therefore, evaluated the protective action of tert-butylhydroquinone (tBHQ) against obesity-induced skeletal muscle pathology in high-fat diet (HFD) fed rats. METHODS Twenty post-weaning male albino rats were randomized into four groups of five rats each as: Group 1 (control), Group 2 (HFD), Group 3 (orlistat) and Group 4 (tBHQ). Group one received rat pellets for 12 weeks, while groups 2 to 4 received HFD for 12 weeks. At the end of week 8, obesity was confirmed with Lee Obesity Index and body mass index values of ≥ 303 and ≥ 0.68 gcm2, respectively. Group 3 was given oral administration of orlistat (10 mg/kg, once daily), while group 4 was given oral administration of tBHQ (25 mg/kg, once daily). Administration of orlistat and tBHQ commenced from week 9 to the end of the experiment. RESULTS Chronic exposure of post-weaning rats to HFD led to their development of the metabolic syndrome phenotypes in adulthood, characterized by obesity, hyperglycemia, dyslipidaemia, hyperinsulinaemia, insulin resistance as well as induction of oxidative stress and alteration of skeletal muscle markers, which were mitigated following supplementation with orlistat and tBHQ. CONCLUSION The study showed the anti-obesity potentials of tBHQ and its protective action against HFD obesity-induced skeletal muscular pathology.
Collapse
Affiliation(s)
- Le Zhang
- Department of Pediatrics, Hanzhong Central Hospital, Hanzhong, 723000, China
| |
Collapse
|
4
|
Aboujassoum HM, Mohamed-Ali V, Abraham D, Clapp LH, Al-Naemi HA. Relative Recovery of Non-Alcoholic Fatty Liver Disease (NAFLD) in Diet-Induced Obese Rats. Nutrients 2023; 16:115. [PMID: 38201945 PMCID: PMC10780646 DOI: 10.3390/nu16010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Consumption of a high-carbohydrate diet has a critical role in the induction of weight gain and obesity-related pathologies. This study tested the hypothesis that a carbohydrate-rich diet induces weight gain, ectopic fat deposition, associated metabolic risks and development of non-alcoholic fatty liver disease (NAFLD), which are partially reversible following carbohydrate reduction. Sprague Dawley (SD) rats were fed a carbohydrate-enriched cafeteria diet (CAF) or normal chow (NC) ad libitum for 16-18 weeks. In the reversible group (REV), the CAF was replaced with NC for a further 3 weeks (18-21 weeks). Animals fed the CAF diet showed significantly increased body weight compared to those fed NC, accompanied by abnormal changes in their systemic insulin and triglycerides, elevation of hepatic triglyceride and hepatic steatosis. In the REV group, when the CAF diet was stopped, a modest, non-significant weight loss was associated with improvement in systemic insulin and appearance of the liver, with lower gross fatty deposits and hepatic triglyceride. In conclusion, a carbohydrate-enriched diet led to many features of metabolic syndrome, including hyperinsulinemia, while a dietary reduction in this macronutrient, even for a short period, was able to restore normoinsulinemia, and reversed some of the obesity-related hepatic abnormalities, without significant weight loss.
Collapse
Affiliation(s)
| | - Vidya Mohamed-Ali
- Anti-Doping Laboratory Qatar, Sports City Road, Doha P.O. Box 2713, Qatar;
- Centre of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - David Abraham
- Centre of Rheumatology and Connective Tissue Disorders, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK;
| | - Lucie H. Clapp
- Institute of Cardiovascular Science, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK;
| | - Hamda A. Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
- Department of Biological and Environmental Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
5
|
Goulart A, Anchieta NF, Sampaio PA, Brazão V, Silva JLD, Portapilla GB, Duarte A, Tezuca DY, Providello MV, Stabile AM, Prado JCD. Cafeteria diet-induced obesity remodels immune response in acute Trypanosoma cruzi infection. Immunobiology 2023; 228:152747. [PMID: 37774598 DOI: 10.1016/j.imbio.2023.152747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Obesity is a global problem associated with several conditions, including hypertension, diabetes, arthritis and cardiovascular diseases. With the increase in the prevalence of obesity in recent years, mostly in developing countries, it is important to study its impact on various diseases, including infectious illnesses, such as Chagas disease, caused by the protozoan Trypanosoma cruzi. Considering that a diet rich in salt, sugar, and fat is associated with obesity, this study aimed to evaluate the influence of cafeteria diet (CAF)-induced obesity on immune responses in T. cruzi-infected rats. METHODS Male Wistar Hannover rats were provided with water and food ad libitum (chow group). The CAF-fed groups received a normal rodent diet or CAF. The animals were intraperitoneally infected with 105 trypomastigote forms of the Y strain of T. cruzi present in the whole blood from a previously infected mouse. RESULTS CAF-fed rats showed a significant increase in visceral adipose tissue weight compared to chow-fed rats. A significant reduction in CD3+ CD4+ helper splenic T cells was observed in obese-infected rats compared to non-obese-infected rats, as well as CD11b and macrophages. In addition, macrophages from obese animals displayed reduced RT1b levels compared to those from control animals. Moreover, INF-γ, an important factor in macrophage activation, was reduced in obese-infected rats compared with their counterparts. CONCLUSIONS These results indicate that a CAF can impair the cell-mediated immune response against T. cruzi.
Collapse
Affiliation(s)
- Amanda Goulart
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Department of Clinical Analyses, Toxicology and Food Science, Brazil
| | - Naira Ferreira Anchieta
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Department of Clinical Analyses, Toxicology and Food Science, Brazil
| | | | - Vânia Brazão
- Ribeirão Preto College of Nursing - University of São Paulo, Brazil.
| | - Jefferson Luiz Da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Department of Clinical Analyses, Toxicology and Food Science, Brazil
| | - Gisele Bulhões Portapilla
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Department of Clinical Analyses, Toxicology and Food Science, Brazil
| | - Andressa Duarte
- Ribeirão Preto Medical School - University of São Paulo, Department of Pathology and Legal Medicine, Brazil
| | | | - Maiara Voltarelli Providello
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Department of Clinical Analyses, Toxicology and Food Science, Brazil
| | | | - José Clóvis do Prado
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Department of Clinical Analyses, Toxicology and Food Science, Brazil
| |
Collapse
|
6
|
Hayes AMR, Kao AE, Ahuja A, Subramanian KS, Klug ME, Rea JJ, Nourbash AC, Tsan L, Kanoski SE. Early- but not late-adolescent Western diet consumption programs for long-lasting memory impairments in male but not female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563808. [PMID: 37961703 PMCID: PMC10634796 DOI: 10.1101/2023.10.24.563808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Early life Western diet (WD) consumption leads to impaired memory function, particularly for processes mediated by the hippocampus. However, the precise critical developmental window(s) during which WD exposure negatively impacts hippocampal function are unknown. Here, we exposed male and female rats to a WD model involving free access to a variety of high-fat and/or high-sugar food and drink items during either the early-adolescent period (postnatal days [PN] 26-41; WD-EA) or late-adolescent period (PN 41-56; WD-LA). Control (CTL) rats were given healthy standard chow throughout both periods. To evaluate long-lasting memory capacity well beyond the early life WD exposure periods, we performed behavioral assessments after both a short (4 weeks for WD-EA, 2 weeks for WD-LA) and long (12 weeks for WD-EA, 10 weeks for WD-LA) period of healthy diet intervention. Results revealed no differences in body weight or body composition between diet groups, regardless of sex. Following the shorter period of healthy diet intervention, both male and female WD-EA and WD-LA rats showed deficits in hippocampal-dependent memory compared to CTL rats. Following the longer healthy diet intervention period, memory impairments persisted in male WD-EA but not WD-LA rats. In contrast, in female rats the longer healthy diet intervention reversed the initial memory impairments in both WD-EA and WD-LA rats. Collectively, these findings reveal that early-adolescence is a critical period of long-lasting hippocampal vulnerability to dietary insults in male but not female rats, thus highlighting developmental- and sex-specific effects mediating the relationship between the early life nutritional environment and long-term cognitive health.
Collapse
Affiliation(s)
- Anna M. R. Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alicia E. Kao
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Arun Ahuja
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Keshav S. Subramanian
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Molly E. Klug
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jessica J. Rea
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Anna C. Nourbash
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Linda Tsan
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Farber C, Renteria K, Ritter J, Muraida JD, Rivers C, McKenzie A, Zhu J, Koh GY, Lane MA. Comparison of maternal versus postweaning ingestion of a high fat, high sucrose diet on depression-related behavior, novelty reactivity, and corticosterone levels in young, adult rat offspring. Behav Brain Res 2023; 455:114677. [PMID: 37734488 DOI: 10.1016/j.bbr.2023.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
Consumption of a Western-type diet, high in fat and sugar, by mothers as well as maternal weight gain and obesity during gestation and lactation may impact offspring risk for mood and cognitive disorders. The objective of this study was to determine if ingestion of a high fat, high sucrose (HFS) diet by rat dams during gestation and lactation or by their pups after weaning impacted these behaviors and stress responsivity in young, adult offspring. To accomplish this, dams consumed either a 45% fat/high sucrose (HFS) diet or the AIN93G control diet during gestation and lactation. At weaning, pups from dams that consumed the HFS diet were weaned to the control diet. Pups from dams assigned to the control diet were weaned to either the control or HFS diet. Pup behavioral testing began at 10 weeks of age. Pups whose dams consumed the HFS diet during gestation and lactation exhibited increased depression-related behavior and baseline serum corticosterone levels, but no difference in peak levels in response to stress. Male pups of these dams displayed increased working memory during acquisition of the holeboard task and tended to exhibit more anxiety-related behavior in the elevated O-maze test. Regardless of when consumed, the HFS diet increased novelty reactivity in the open field test. These data indicate that diet but not maternal weight gain during gestation impacts offspring behavior and elevates stress hormone levels. Also, regardless of when consumed, the HFS diet increases novelty reactivity, a risk factor for depression and addiction.
Collapse
Affiliation(s)
- Christopher Farber
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Karisa Renteria
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Jordan Ritter
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - J D Muraida
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Carley Rivers
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Avery McKenzie
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Jie Zhu
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Gar Yee Koh
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Michelle A Lane
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States.
| |
Collapse
|
8
|
Cruz KLO, Salla DH, Oliveira MP, Silva LE, Vedova LMD, Mendes TF, Bressan CBC, Silva MR, Santos SML, Soares HJ, Mendes RL, Vernke CN, Silva MG, Laurentino AOM, Medeiros FD, Vilela TC, Lemos I, Bitencourt RM, Réus GZ, Streck EL, Mello AH, Rezin GT. Energy metabolism and behavioral parameters in female mice subjected to obesity and offspring deprivation stress. Behav Brain Res 2023; 451:114526. [PMID: 37271313 DOI: 10.1016/j.bbr.2023.114526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the behavioral and energy metabolism parameters in female mice subjected to obesity and offspring deprivation (OD) stress. Eighty female Swiss mice, 40 days old, were weighed and divided into two groups: Control group (control diet, n = 40) and Obese group (high-fat diet, n = 40), for induction of the animal model of obesity, the protocol was based on the consumption of a high-fat diet and lasted 8 weeks. Subsequently, the females were subjected to pregnancy, after the birth of the offspring, were divided again into the following groups (n = 20): Control non-deprived (ND), Control + OD, Obese ND, and Obese + OD, for induction of the stress protocol by OD. After the offspring were 21 days old, weaning was performed and the dams were subjected to behavioral tests. The animals were humanely sacrificed, the brain was removed, and brain structures were isolated to assess energy metabolism. Both obesity and OD led to anhedonia in the dams. It was shown that the structures most affected by obesity and OD are the hypothalamus and hippocampus, as evidenced by the mitochondrial dysfunction found in these structures. When analyzing the groups separately, it was observed that OD led to more pronounced mitochondrial damage; however, the association of obesity with OD, as well as obesity alone, also generated damage. Thus, it is concluded that obesity and OD lead to anhedonia in animals and to mitochondrial dysfunction in the hypothalamus and hippocampus, which may lead to losses in feeding control and cognition of the dams.
Collapse
Affiliation(s)
- Kenia L O Cruz
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Daniele H Salla
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Mariana P Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Larissa E Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil.
| | - Larissa M D Vedova
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Talita F Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Catarina B C Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Mariella R Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Sheila M L Santos
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Hevylin J Soares
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Rayane L Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Camila N Vernke
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Marina G Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Ana O M Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Fabiana D Medeiros
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Thais C Vilela
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Isabela Lemos
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Rafael M Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, Brazil
| | - Emilio L Streck
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Aline H Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gislaine T Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| |
Collapse
|
9
|
Wijenayake S, Martz J, Lapp HE, Storm JA, Champagne FA, Kentner AC. The contributions of parental lactation on offspring development: It's not udder nonsense! Horm Behav 2023; 153:105375. [PMID: 37269591 PMCID: PMC10351876 DOI: 10.1016/j.yhbeh.2023.105375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesis describes how maternal stress exposures experienced during critical periods of perinatal life are linked to altered developmental trajectories in offspring. Perinatal stress also induces changes in lactogenesis, milk volume, maternal care, and the nutritive and non-nutritive components of milk, affecting short and long-term developmental outcomes in offspring. For instance, selective early life stressors shape the contents of milk, including macro/micronutrients, immune components, microbiota, enzymes, hormones, milk-derived extracellular vesicles, and milk microRNAs. In this review, we highlight the contributions of parental lactation to offspring development by examining changes in the composition of breast milk in response to three well-characterized maternal stressors: nutritive stress, immune stress, and psychological stress. We discuss recent findings in human, animal, and in vitro models, their clinical relevance, study limitations, and potential therapeutic significance to improving human health and infant survival. We also discuss the benefits of enrichment methods and support tools that can be used to improve milk quality and volume as well as related developmental outcomes in offspring. Lastly, we use evidence-based primary literature to convey that even though select maternal stressors may modulate lactation biology (by influencing milk composition) depending on the severity and length of exposure, exclusive and/or prolonged milk feeding may attenuate the negative in utero effects of early life stressors and promote healthy developmental trajectories. Overall, scientific evidence supports lactation to be protective against nutritive and immune stressors, but the benefits of lactation in response to psychological stressors need further investigation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada.
| | - Julia Martz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Hannah E Lapp
- Deparment of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Jasmyne A Storm
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | | | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
10
|
Mota-Ramírez LD, Escobar C. Postweaning cafeteria diet induces a short-term metabolic disfunction and a differential vulnerability to develop anxiety-like and depressive-like behaviors in male but not female rats. Dev Psychobiol 2023; 65:e22392. [PMID: 37073591 DOI: 10.1002/dev.22392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/20/2023]
Abstract
Children and adolescents are high consumers of Western diets (rich in fat and sugars), which is a risk factor for overweight and obesity. Moreover, the presence of anxiety and depression among this population has increased significantly. This study explores in young postweaning rats the association between Western diet consumption and the development of metabolic and behavioral disturbances. At postnatal day (PN) 24, Wistar rats of both sexes were weaned and assigned to a control or cafeteria diet (CAF) group. After short-term exposure, a group of rats was euthanized at PN31 to obtain abdominal fat pads and blood samples. Another group of rats was tested in the open-field test, splash test, anhedonia test, and social play across 11 days (PN32-42). The CAF groups exhibited a significantly high level of body fat, serum glucose, triglycerides, leptin, and HOMA index when compared to the control groups. Only CAF males exhibited anxiety-like and depression-like behavior. Present results indicate that postweaning short-term exposure to a CAF diet has immediate detrimental effects on metabolism in both sexes. However, only CAF males showed mood disturbances. This study provides evidence that a CAF diet exerts immediate effects on behavior and metabolism in the postweaning period and that sexes present differential vulnerability.
Collapse
Affiliation(s)
- Luz D Mota-Ramírez
- Departamento de Anatomía, Facultad de Medicina UNAM, Mexico City, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina UNAM, Mexico City, Mexico
| |
Collapse
|
11
|
Food intake behaviors change as a function of maternal diet and time-restricted feeding. NUTR HOSP 2023; 40:419-427. [PMID: 36880723 DOI: 10.20960/nh.04213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION changes in dietary/energetic composition during the critical period of development (pregnancy/lactation) or even during meal times may contribute to changes in metabolic and behavioral parameters such as feeding behavior. OBJECTIVE the study aimed to examine the repercussions of time-restricted feeding on feeding behavior and on some parameters of glycemic and lipemic metabolism of the offspring of adult rats whose mothers were fed a westernized diet during pregnancy and lactation. METHODS initially, 43 male Wistar rats were used. At 60 days of life, the rats were divided into 4 groups: C: control group; RC: control group with time-restricted feeding; W: westernized diet during pregnancy/lactation group; RW: westernized diet group during pregnancy/lactation group with time-restricted feeding. The following parameters were evaluated: behavioral sequence of satiety (BSS), biochemical parameters, and abdominal fat. RESULTS findings highlighted a high level of abdominal fat in the groups whose mothers were submitted to a westernized diet, as well as hypertriglyceridemia, and clear differences in feed rate and meal length. This study showed that the westernized diet ingested by mothers during pregnancy and lactation induced hyperlipidemia and changes in the feeding behavior of their adult offspring. CONCLUSIONS these changes may be responsible for eating disorders and risk factors for metabolism disturbance-related diseases.
Collapse
|
12
|
Kendig MD, Hasebe K, Tajaddini A, Kaakoush NO, Westbrook RF, Morris MJ. The Benefits of Switching to a Healthy Diet on Metabolic, Cognitive, and Gut Microbiome Parameters Are Preserved in Adult Rat Offspring of Mothers Fed a High-Fat, High-Sugar Diet. Mol Nutr Food Res 2023; 67:e2200318. [PMID: 36271770 PMCID: PMC10909468 DOI: 10.1002/mnfr.202200318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/05/2022] [Indexed: 01/19/2023]
Abstract
SCOPE Maternal obesity increases the risk of health complications in children, highlighting the need for effective interventions. A rat model of maternal obesity to examine whether a diet switch intervention could reverse the adverse effects of an unhealthy postweaning diet is used. METHODS AND RESULTS Male and female offspring born to dams fed standard chow or a high-fat, high-sugar "cafeteria" (Caf) diet are weaned onto chow or Caf diets until 22 weeks of age, when Caf-fed groups are switched to chow for 5 weeks. Adiposity, gut microbiota composition, and place recognition memory are assessed before and after the switch. Body weight and adiposity fall in switched groups but remain significantly higher than chow-fed controls. Nonetheless, the diet switch improves a deficit in place recognition memory observed in Caf-fed groups, increases gut microbiota species richness, and alters β diversity. Modeling indicate that adiposity most strongly predicts gut microbiota composition before and after the switch. CONCLUSION Maternal obesity does not alter the effects of switching diet on metabolic, microbial, or cognitive measures. Thus, a healthy diet intervention lead to major shifts in body weight, adiposity, place recognition memory, and gut microbiota composition, with beneficial effects preserved in offspring born to obese dams.
Collapse
Affiliation(s)
- Michael D. Kendig
- Department of PharmacologySchool of Medical SciencesUNSW SydneyNSW2052Australia
- School of Life SciencesUniversity of Technology SydneyNSW2007Australia
| | - Kyoko Hasebe
- Department of PharmacologySchool of Medical SciencesUNSW SydneyNSW2052Australia
| | - Aynaz Tajaddini
- Department of PharmacologySchool of Medical SciencesUNSW SydneyNSW2052Australia
| | | | | | - Margaret J. Morris
- Department of PharmacologySchool of Medical SciencesUNSW SydneyNSW2052Australia
| |
Collapse
|
13
|
Alvarez-Monell A, Subias-Gusils A, Mariné-Casadó R, Boqué N, Caimari A, Solanas M, Escorihuela RM. Impact of Calorie-Restricted Cafeteria Diet and Treadmill Exercise on Sweet Taste in Diet-Induced Obese Female and Male Rats. Nutrients 2022; 15:nu15010144. [PMID: 36615803 PMCID: PMC9823820 DOI: 10.3390/nu15010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The goal of the present study was to evaluate the sweet taste function in obese rats fed with a 30% calorie-restricted cafeteria diet (CAFR) and/or subjected to moderate treadmill exercise (12-17 m/min, 35 min, 5 days per week) for 9 weeks. A two-bottle preference test, a taste reactivity test, and a brief-access licking test were carried out when animals were aged 21 weeks; biometric and metabolic parameters were also measured along the interventions. Two separate experiments for females and males were performed. Behaviorally, CAF diet decreased sucrose intake and preference, as well as perceived palatability, in both sexes and decreased hedonic responses in males. Compared to the CAF diet, CAFR exerted a corrective effect on sweet taste variables in females by increasing sucrose intake in the preference test and licking responses, while exercise decreased sucrose intake in both sexes and licking responses in females. As expected, CAF diet increased body weight and Lee index and worsened the metabolic profile in both sexes, whereas CAFR diet ameliorated these effects mainly in females. Exercise had no noticeable effects on these parameters. We conclude that CAF diet might diminish appetitive behavior toward sucrose in both sexes, and that this effect could be partially reverted by CAFR diet in females only, while exercise might exert protective effects against overconsumption of sucrose in both sexes.
Collapse
Affiliation(s)
- Adam Alvarez-Monell
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
| | - Alex Subias-Gusils
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Noemi Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Montserrat Solanas
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| | - Rosa M. Escorihuela
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| |
Collapse
|
14
|
Elbaset MA, Nasr M, Ibrahim BMM, Ahmed-Farid OAH, Bakeer RM, Hassan NS, Ahmed RF. Curcumin nanoemulsion counteracts hepatic and cardiac complications associated with high-fat/high-fructose diet in rats. J Food Biochem 2022; 46:e14442. [PMID: 36165438 DOI: 10.1111/jfbc.14442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
The relationship between the incidence of cardiovascular abnormalities and non-alcoholic fatty liver disease (NAFLD) has long been postulated. Curcumin (CUR) is a potential anti-atherosclerotic agent but its poor water solubility hinders its pharmacological use. Therefore, the present study aimed to investigate the effect of formulation of CUR nanoemulsion prepared using the spontaneous emulsification technique on high fat high fructose (HFHF)-induced hepatic and cardiac complications. Fifty Wistar rats were divided into five groups. CUR nanoemulsion at doses of 5 and 10 mg/kg and conventional powdered CUR at a dose of 50 mg/kg were orally administered daily to rats for two weeks, and compared with normal control and HFHF control. Results revealed that the high dose level of CUR nanoemulsion was superior to conventional CUR in ameliorating the HFHF-induced insulin resistance status and hyperlipidemia, with beneficial impact on rats' recorded electrocardiogram (ECG), serum aspartate aminotransferase (ALT) and alanine aminotransferase (AST) levels, leptin, adiponectin, creatine phosphokinase, lactate dehydrogenase and cardiac troponin-I. In addition, hepatic and cardiac oxidative and nitrosative stresses, oxidative DNA damage and disrupted cellular energy statuses were counteracted. Results were also confirmed by histopathological examination. PRACTICAL APPLICATIONS: The use of curcumin nanoemulsion could be beneficial in combating hepatic and cardiac complications resulting from HFHF diets.
Collapse
Affiliation(s)
- Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Bassant M M Ibrahim
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Nabila S Hassan
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Rania F Ahmed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
15
|
Tsan L, Sun S, Hayes AMR, Bridi L, Chirala LS, Noble EE, Fodor AA, Kanoski SE. Early life Western diet-induced memory impairments and gut microbiome changes in female rats are long-lasting despite healthy dietary intervention. Nutr Neurosci 2022; 25:2490-2506. [PMID: 34565305 PMCID: PMC8957635 DOI: 10.1080/1028415x.2021.1980697] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Western diet consumption during adolescence results in hippocampus (HPC)-dependent memory impairments and gut microbiome dysbiosis. Whether these adverse outcomes persist in adulthood following healthy dietary intervention is unknown. Here we assessed the short- and long-term effects of adolescent consumption of a Western diet enriched with either sugar or both sugar and fat on metabolic outcomes, HPC function, and gut microbiota. METHODS Adolescent female rats (PN 26) were fed a standard chow diet (CHOW), chow with access to 11% sugar solution (SUG), or a junk food cafeteria-style diet (CAF) containing various foods high in fat and/or sugar. During adulthood (PN 65+), metabolic outcomes, HPC-dependent memory, and gut microbial populations were evaluated. In a subsequent experiment, these outcomes were evaluated following a 5-week dietary intervention where CAF and SUG groups were maintained on standard chow alone. RESULTS Both CAF and SUG groups demonstrated impaired HPC-dependent memory, increased adiposity, and altered gut microbial populations relative to the CHOW group. However, impaired peripheral glucose regulation was only observed in the SUG group. When examined following a healthy dietary intervention in a separate experiment, metabolic dysfunction was not observed in either the CAF or SUG group, whereas HPC-dependent memory impairments were observed in the CAF but not the SUG group. In both groups the composition of the gut microbiota remained distinct from CHOW rats after the dietary intervention. CONCLUSIONS While the metabolic impairments associated with adolescent junk food diet consumption are not present in adulthood following dietary intervention, the HPC-dependent memory impairments and the gut microbiome dysbiosis persist.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anna M. R. Hayes
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lana Bridi
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lekha S. Chirala
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Emily E. Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Scott E. Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Restricted cafeteria feeding and treadmill exercise improved body composition, metabolic profile and exploratory behavior in obese male rats. Sci Rep 2022; 12:19545. [PMID: 36379981 PMCID: PMC9666649 DOI: 10.1038/s41598-022-23464-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate, in male Long-Evans rats, whether a restricted-cafeteria diet (CAFR), based on a 30% calorie restriction vs continuous ad libitum cafeteria (CAF) fed animals, administered alone or in combination with moderate treadmill exercise (12 m/min, 35 min, 5 days/week for 8 weeks), was able to ameliorate obesity and the associated risk factors induced by CAF feeding for 18 weeks and to examine the changes in circadian locomotor activity, hypothalamic-pituitary-adrenal (HPA) axis functionality, and stress response elicited by this dietary pattern. In addition to the expected increase in body weight and adiposity, and the development of metabolic dysregulations compatible with Metabolic Syndrome, CAF intake resulted in a sedentary profile assessed by the home-cage activity test, reduced baseline HPA axis activity through decreased corticosterone levels, and boosted exploratory behavior. Both CAFR alone and in combination with exercise reduced abdominal adiposity and hypercholesterolemia compared to CAF. Exercise increased baseline locomotor activity in the home-cage in all dietary groups, boosted exploratory behavior in STD and CAF, partially decreased anxiety-like behavior in CAF and CAFR, but did not affect HPA axis-related parameters.
Collapse
|
17
|
Parnarouskis L, Leventhal AM, Ferguson SG, Gearhardt AN. Withdrawal: A key consideration in evaluating whether highly processed foods are addictive. Obes Rev 2022; 23:e13507. [PMID: 36196649 PMCID: PMC9786266 DOI: 10.1111/obr.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/04/2022] [Accepted: 09/20/2022] [Indexed: 12/30/2022]
Abstract
Researchers are currently debating whether theories of addiction explain compulsive overeating of highly processed (HP) foods (i.e., industrially created foods high in refined carbohydrates and/or fat), which contributes to obesity and diet-related disease. A subset of individuals consumes HP foods with behavioral phenotypes that mirror substance use disorders. Withdrawal, the emergence of aversive physical and psychological symptoms upon reduction or cessation of substance use, is a core component of addiction that was central to historical debates about other substances' addictive potential (e.g., nicotine and cocaine). However, no one has systematically considered evidence for whether HP foods cause withdrawal, which represents a key knowledge gap regarding the utility of addiction models for understanding compulsive overeating. Thus, we reviewed evidence for whether animals and humans exhibit withdrawal when reducing or eliminating HP food intake. Controlled experimental evidence indicates animals experience HP food withdrawal marked by neural reward changes and behaviors consistent with withdrawal from other addictive substances. In humans, preliminary evidence supports subjective withdrawal-like experiences. However, most current human research is limited to retrospective recall. Further experimental research is needed to evaluate this construct. We outline future research directions to investigate HP food withdrawal in humans and consider potential clinical implications.
Collapse
Affiliation(s)
| | - Adam M Leventhal
- Institute for Addiction Science, University of Southern California, Los Angeles, California, USA
| | - Stuart G Ferguson
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Ashley N Gearhardt
- Department of Psychology, The University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Parnarouskis L, Gearhardt AN. Preliminary Evidence that Tolerance and Withdrawal Occur in Response to Ultra-processed Foods. CURRENT ADDICTION REPORTS 2022. [DOI: 10.1007/s40429-022-00425-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Casagrande BP, Bueno AA, Pisani LP, Estadella D. Hepatic glycogen participates in the regulation of hypothalamic pAkt/Akt ratio in high-sugar/high-fat diet-induced obesity. Metab Brain Dis 2022; 37:1423-1434. [PMID: 35316448 DOI: 10.1007/s11011-022-00944-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 01/07/2023]
Abstract
The hypothalamus is a major integrating centre that controls energy homeostasis and plays a major role in hepatic glycogen (HGlyc) turnover. Not only do hypothalamic and hepatic Akt levels influence glucose homeostasis and glycogen synthesis, but exposure to high-sugar/high-fat diets (HSHF) can also lead to hypothalamic inflammation and HGlyc accumulation. HSHF withdrawal overall restores energy and glucose homeostasis, but the actual relationship between hypothalamic inflammation and HGlyc after short-term HSHF withdrawal has not yet been fully elucidated. Here we investigated the short-term effects of HSHF withdrawal preceded by a 30-day HSHF intake on the liver-hypothalamus crosstalk and glucose homeostasis. Sixty-day old male Wistar rats were fed for 30 days a control chow (n = 10) (Ct), or an HSHF diet (n = 20). On the 30th day of dietary intervention, a random HSHF subset (n = 10) had their diets switched to control chow for 48 h (Hw) whilst the remaining HSHF rats remained in the HSHF diet (n = 10) (Hd). All rats were anaesthetized and euthanized at the end of the protocol. We quantified HGlyc, Akt phosphorylation, inflammation and glucose homeostasis biomarkers. We also assessed the effect of propensity to obesity on those biomarkers, as detailed previously. Hd rats showed impaired glucose homeostasis, higher HGlyc and hypothalamic inflammation, and lower pAkt/Akt. Increased HGlyc was significantly associated with HSHF intake on pAkt/Akt lowered levels. We also found that HGlyc breakdown may have prevented a further pAkt/Akt drop after HSHF withdrawal. Propensity to obesity showed no apparent effect on hypothalamic inflammation or glucose homeostasis. Our findings suggest a comprehensive role of HGlyc as a structural and functional modulator of energy metabolism, and such roles may come into play relatively rapidly.
Collapse
Affiliation(s)
- Breno P Casagrande
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo-UNIFESP/BS, 1015-020, Santos, São Paulo, Brazil
| | - Allain A Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Henwick Grove, WR2 6AJ, Worcester, United Kingdom
| | - Luciana P Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo-UNIFESP/BS, 1015-020, Santos, São Paulo, Brazil
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo-UNIFESP/BS, 1015-020, Santos, São Paulo, Brazil.
| |
Collapse
|
20
|
Vindas-Smith R, Quesada D, Hernández-Solano MI, Castro M, Sequeira-Cordero A, Fornaguera J, Gómez G, Brenes JC. Fat intake and obesity-related parameters predict striatal BDNF gene expression and dopamine metabolite levels in cafeteria diet-fed rats. Neuroscience 2022; 491:225-239. [DOI: 10.1016/j.neuroscience.2022.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
21
|
Gastiazoro MP, Rossetti MF, Schumacher R, Stoker C, Durando M, Zierau O, Ramos JG, Varayoud J. Epigenetic disruption of placental genes by chronic maternal cafeteria diet in rats. J Nutr Biochem 2022; 106:109015. [DOI: 10.1016/j.jnutbio.2022.109015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
|
22
|
Subias-Gusils A, Álvarez-Monell A, Boqué N, Caimari A, Del Bas JM, Mariné-Casadó R, Solanas M, Escorihuela RM. Behavioral and Metabolic Effects of a Calorie-Restricted Cafeteria Diet and Oleuropein Supplementation in Obese Male Rats. Nutrients 2021; 13:nu13124474. [PMID: 34960026 PMCID: PMC8704884 DOI: 10.3390/nu13124474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023] Open
Abstract
Diet-induced obesity models are widely used to investigate dietary interventions for treating obesity. This study was aimed to test whether a dietary intervention based on a calorie-restricted cafeteria diet (CAF-R) and a polyphenolic compound (Oleuropein, OLE) supplementation modified sucrose intake, preference, and taste reactivity in cafeteria diet (CAF)-induced obese rats. CAF diet consists of high-energy, highly palatable human foods. Male rats fed standard chow (STD) or CAF diet were compared with obese rats fed CAF-R diet, alone or supplemented with an olive tree leaves extract (25 mg/kg*day) containing a 20.1% of OLE (CAF-RO). Biometric, food consumption, and serum parameters were measured. CAF diet increased body weight, food and energy consumption and obesity-associated metabolic parameters. CAF-R and CAF-RO diets significantly attenuated body weight gain and BMI, diminished food and energy intake and improved biochemical parameters such as triacylglycerides and insulin resistance which did not differ between CAF-RO and STD groups. The three cafeteria groups diminished sucrose intake and preference compared to STD group. CAF-RO also diminished the hedonic responses for the high sucrose concentrations compared with the other groups. These results indicate that CAF-R diet may be an efficient strategy to restore obesity-associated alterations, whilst OLE supplementation seems to have an additional beneficial effect on sweet taste function.
Collapse
Affiliation(s)
- Alex Subias-Gusils
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Departament de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Adam Álvarez-Monell
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
| | - Noemí Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area and Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Josep M. Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
| | - Montserrat Solanas
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| | - Rosa M. Escorihuela
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Departament de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| |
Collapse
|
23
|
Harrison LM, Noble DWA, Jennions MD. A meta-analysis of sex differences in animal personality: no evidence for the greater male variability hypothesis. Biol Rev Camb Philos Soc 2021; 97:679-707. [PMID: 34908228 DOI: 10.1111/brv.12818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
The notion that men are more variable than women has become embedded into scientific thinking. For mental traits like personality, greater male variability has been partly attributed to biology, underpinned by claims that there is generally greater variation among males than females in non-human animals due to stronger sexual selection on males. However, evidence for greater male variability is limited to morphological traits, and there is little information regarding sex differences in personality-like behaviours for non-human animals. Here, we meta-analysed sex differences in means and variances for over 2100 effects (204 studies) from 220 species (covering five broad taxonomic groups) across five personality traits: boldness, aggression, activity, sociality and exploration. We also tested if sexual size dimorphism, a proxy for sex-specific sexual selection, explains variation in the magnitude of sex differences in personality. We found no significant differences in personality between the sexes. In addition, sexual size dimorphism did not explain variation in the magnitude of the observed sex differences in the mean or variance in personality for any taxonomic group. In sum, we find no evidence for widespread sex differences in variability in non-human animal personality.
Collapse
Affiliation(s)
- Lauren M Harrison
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| |
Collapse
|
24
|
Mothers' cafeteria diet induced sex-specific changes in fat content, metabolic profiles, and inflammation outcomes in rat offspring. Sci Rep 2021; 11:18573. [PMID: 34535697 PMCID: PMC8448886 DOI: 10.1038/s41598-021-97487-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
“Western diet” containing high concentrations of sugar and fat consumed during pregnancy contributes to development of obesity and diabetes type 2 in offspring. To mimic effects of this diet in animals, a cafeteria (CAF) diet is used. We hypothesized that CAF diet given to rats before, and during pregnancy and lactation differently influences fat content, metabolic and inflammation profiles in offspring. Females were exposed to CAF or control diets before pregnancy, during pregnancy and lactation. At postnatal day 25 (PND 25), body composition, fat contents were measured, and blood was collected for assessment of metabolic and inflammation profiles. We have found that CAF diet lead to sex-specific alterations in offspring. At PND25, CAF offspring had: (1) higher percentage of fat content, and were lighter; (2) sex-specific differences in levels of glucose; (3) higher levels of interleukin 6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor (TNF-α); (4) sex-specific differences in concentration of IL-6 and TNF-α, with an increase in CAF females; (5) higher level of IL-10 in both sexes, with a more pronounced increase in females. We concluded that maternal CAF diet affects fat content, metabolic profiles, and inflammation parameters in offspring. Above effects are sex-specific, with female offspring being more susceptible to the diet.
Collapse
|
25
|
Casagrande BP, Pisani LP, Estadella D. AMPK in the gut-liver-brain axis and its influence on OP rats in an HSHF intake and WTD rat model. Pflugers Arch 2021; 473:1199-1211. [PMID: 34075446 DOI: 10.1007/s00424-021-02583-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Obesogenic diets (ODs) can affect AMPK activation in several sites as the colon, liver, and hypothalamus. OD intake can impair the hypothalamic AMPK regulation of energy homeostasis. Despite consuming ODs, not all subjects have the propensity to develop or progress to obesity. The obesity propensity is more associated with energy intake than expenditure dysregulations and may have a link with AMPK activity. While the effects of ODs are studied widely, few evaluate the short-term effects of terminating OD intake. Withdrawing from OD (WTD) is thought to improve or reverse the damages caused by the intake. Therefore, here we applied an OD intake and WTD protocol aiming to evaluate AMPK protein content and phosphorylation in the colon, liver, and hypothalamus and their relationship with obesity propensity. To this end, male Wistar rats (60 days) received control or high-sugar/high-fat (HSHF) OD for 30 days. Half of the animals were OD-withdrawn and fed the control diet for 48 h. After intake, we found a reduction in AMPK phosphorylation in the hypothalamus and colon, and after WTD, we found an increase in its hepatic and hypothalamic phosphorylation. The decrease in colon pAMPK/AMPK could be linked with hypothalamic pAMPK/AMPK after HSHF intake, while the increase in hepatic pAMPK/AMPK could have prevented the increase in hypothalamic pAMPK/AMPK. In the obesity-prone rats, we found higher levels of hypothalamic and colon pAMPK/AMPK despite the higher body mass gain. Our results highlight the relevance in multi-organ investigations and animal phenotype evaluation when studying the energy metabolism regulations.
Collapse
Affiliation(s)
- Breno Picin Casagrande
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP/BS, Santos, São Paulo, 11015-020, Brazil
| | - Luciana Pellegrini Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP/BS, Santos, São Paulo, 11015-020, Brazil
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP/BS, Santos, São Paulo, 11015-020, Brazil.
| |
Collapse
|
26
|
L. E. Mballa D, Yadang FSA, Tchamgoue AD, Mba JR, Tchokouaha LRY, M. Biang E, T. Tchinda A, Djomeni Dzeufiet DP, Agbor GA. Cafeteria Diet-Induced Metabolic and Cardiovascular Changes in Rats: The Role of Piper nigrum Leaf Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5585650. [PMID: 34122598 PMCID: PMC8189781 DOI: 10.1155/2021/5585650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cafeteria diet is known to induce excessive body fat accumulation (obesity) that could cause metabolic and cardiovascular changes and even death. The increase in prevalence over time and the failure in treatment options make obesity a real public health problem. The present study assessed the preventive effect of the hydro-ethanolic extract of the Piper nigrum leaf on the development of metabolic and cardiovascular changes in cafeteria diet fed Wistar rats. METHODS Thirty-six male rats were divided into 5 groups of 6 rats each: a normal control group (Nor.), a negative control group (Neg.), two groups administered different doses of extract in mg/kg (E250 and E500), and a group administered atorvastatin 10 mg/kg (Ator., reference drug). The animals were fed with experimental diets (standard and cafeteria) for a period of 5 weeks. Food and water intake were assessed daily, and the body weight assessed weekly. At the end of the feeding, plasma lipid profile and markers of hepatic and renal function were assessed. Furthermore, the relative weights of the adipose tissue and the organs were assessed. The liver, kidneys, and heart homogenates were assessed for markers of oxidative stress while the aorta was histopathologically examined. RESULTS Cafeteria diet-induced weight gain of 30% and increased triglyceride, total cholesterol, and low-density lipoprotein cholesterol level of more than 50%. Equally, an increase in the relative weight of accumulated adipose tissues of more than 90%, oxidative stress, and alteration in the organ structure were visible in cafeteria diet fed rats (Neg). Treatment with P. nigrum extract significantly prevented weight gain, dyslipidemia, oxidative stress, and alteration in the architecture of the aorta. The effect of P. nigrum extract was comparable to that of the reference drug. CONCLUSION Piper nigrum leaf may prevent weight gain and possess cardioprotective activity with a strong antioxidant activity.
Collapse
Affiliation(s)
- Dorothee L. E. Mballa
- Department of Animal Biology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Fanta S. A. Yadang
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| | - Armelle D. Tchamgoue
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| | - Jean R. Mba
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| | - Lauve R. Y. Tchokouaha
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| | - Emmanuel M. Biang
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| | - Alembert T. Tchinda
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| | | | - Gabriel A. Agbor
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| |
Collapse
|
27
|
de França Silva RC, de Souza MA, da Silva JYP, Ponciano CDS, Bordin Viera V, de Menezes Santos Bertozzo CC, Guerra GC, de Souza Araújo DF, da Conceição MM, Querino Dias CDC, Oliveira ME, Soares JKB. Evaluation of the effectiveness of macaíba palm seed kernel (Acrocomia intumescens drude) on anxiolytic activity, memory preservation and oxidative stress in the brain of dyslipidemic rats. PLoS One 2021; 16:e0246184. [PMID: 33730037 PMCID: PMC7968719 DOI: 10.1371/journal.pone.0246184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
Macaíba palm seed kernel is a source of lipids and phenolic compounds. The objective of this study was to evaluate the effects of macaíba palm seed kernel on anxiety, memory, and oxidative stress in the brain of health and dyslipidemic rats. Forty rats were used, divided into 4 groups (n = 10 each): control (CONT), dyslipidemic (DG), kernel (KG), and Dyslipidemic kernel (DKG). Dyslipidemia was induced using a high fat emulsion for 14 days before treatment. KG and DKG received 1000 mg/kg of macaíba palm seed kernel per gavage for 28 days. After treatment, anxiety tests were carried out using the Open Field Test (OFT), Elevated Plus Maze (EPM), and the Object Recognition Test (ORT) to assess memory. In the animals’ brain tissue, levels of malondialdehyde (MDA) and total glutathione (GSH) were quantified to determine oxidative stress. The data were treated with Two Way ANOVA followed by Tukey (p <0.05). Results demonstrated that the animals treated with kernel realized more rearing. DG and KG groomed less compared with CONT and DKG compared with all groups in OFT. KG spent more time in aversive open arms compared with CONT and DKG compared with all groups in EPM. Only DKG spent more time in the central area in EMP. KG and DKG showed a reduction in the exploration rate and MDA values (p <0.05). Data showed that macaíba palm seed kernel consumption induced anxiolytic-like behaviour and decreased lipids peroxidation in rats’ brains. On the other hand, this consumption by healthy and dyslipidemic animals compromises memory.
Collapse
|
28
|
Tsan L, Décarie-Spain L, Noble EE, Kanoski SE. Western Diet Consumption During Development: Setting the Stage for Neurocognitive Dysfunction. Front Neurosci 2021; 15:632312. [PMID: 33642988 PMCID: PMC7902933 DOI: 10.3389/fnins.2021.632312] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 01/18/2023] Open
Abstract
The dietary pattern in industrialized countries has changed substantially over the past century due to technological advances in agriculture, food processing, storage, marketing, and distribution practices. The availability of highly palatable, calorically dense foods that are shelf-stable has facilitated a food environment where overconsumption of foods that have a high percentage of calories derived from fat (particularly saturated fat) and sugar is extremely common in modern Westernized societies. In addition to being a predictor of obesity and metabolic dysfunction, consumption of a Western diet (WD) is related to poorer cognitive performance across the lifespan. In particular, WD consumption during critical early life stages of development has negative consequences on various cognitive abilities later in adulthood. This review highlights rodent model research identifying dietary, metabolic, and neurobiological mechanisms linking consumption of a WD during early life periods of development (gestation, lactation, juvenile and adolescence) with behavioral impairments in multiple cognitive domains, including anxiety-like behavior, learning and memory function, reward-motivated behavior, and social behavior. The literature supports a model in which early life WD consumption leads to long-lasting neurocognitive impairments that are largely dissociable from WD effects on obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Léa Décarie-Spain
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, United States
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
29
|
Abd-Allah H, Nasr M, Ahmed-Farid OAH, El-Marasy SA, Bakeer RM, Ahmed RF. Biological and Pharmacological Characterization of Ascorbic Acid and Nicotinamide Chitosan Nanoparticles against Insulin-Resistance-Induced Cognitive Defects: A Comparative Study. ACS OMEGA 2021; 6:3587-3601. [PMID: 33585742 PMCID: PMC7876703 DOI: 10.1021/acsomega.0c05096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
High consumption of industrialized food with high fat content is generally associated with insulin resistance, which in turn causes memory impairment and cognitive decline. Nicotinamide and ascorbic acid are among the promising neuroprotective molecules; however, an appreciable therapeutic activity necessitates the administration of a large dose of either. Therefore, the study aimed to assess if loading them in chitosan nanoparticles in doses 5-10 times lower than the unencapsulated forms would achieve comparable therapeutic results. Animals were fed a high-fat-high-fructose (HFHF) diet for 75 days. The vitamins in their conventional form (100 mg/kg) and the nanoparticles under investigation (10 and 20 mg/kg) were given orally concomitantly with the diet in the last 15 days. The intake of HFHF diet for 75 days led to an insulin-resistant state, with memory impairment, which was verified behaviorally through the object recognition test. This was accompanied by significant reduction in brain insulin-like growth factor 1 (IGF-1), increased acetylcholine esterase activity, increase in the serotonin and dopamine turnover ratio, and increase in oxidative stress and 8-OHdG, indicating cellular DNA fragmentation. Cellular energy was also decreased, and immunohistochemical examination verified the high immunoreactivity in both the cortex and hippocampus of the brain. The administration of nanoparticulated nicotinamide or ascorbic acid with a 10 times lesser dose than the unencapsulated forms managed to reverse all aforementioned harmful effects, with an even lesser immunoreactivity score than the unencapsulated form. Therefore, it can be concluded that nicotinamide or ascorbic acid chitosan nanoparticles can be recommended as daily supplements for neuroprotection in patients suffering from insulin resistance after conduction of clinical investigations.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, 11561 Cairo, Egypt
| | - Maha Nasr
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, 11561 Cairo, Egypt
| | - Omar A. H. Ahmed-Farid
- Department
of Physiology, National Organization for
Drug Control and Research, 35521 Giza, Egypt
| | - Salma A. El-Marasy
- Department
of Pharmacology, Medical Research Division, National Research Centre, Dokki, 12622 Giza, Egypt
| | - Rofanda M. Bakeer
- Department
of Pathology, Faculty of Medicine, Helwan
University, 11795 Helwan, Egypt
- October
University of Modern Sciences and Arts (MSA) University, 12451 6th October
City, Egypt
| | - Rania F. Ahmed
- Department
of Pharmacology, Medical Research Division, National Research Centre, Dokki, 12622 Giza, Egypt
| |
Collapse
|
30
|
Subias-Gusils A, Boqué N, Caimari A, Del Bas JM, Mariné-Casadó R, Solanas M, Escorihuela RM. A restricted cafeteria diet ameliorates biometric and metabolic profile in a rat diet-induced obesity model. Int J Food Sci Nutr 2021; 72:767-780. [PMID: 33427533 DOI: 10.1080/09637486.2020.1870037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The administration of anti-obesity bioactive compounds and/or functional foods in rodents fed energy restriction diets based on chow food can be difficult to interpret. We propose an energy restricted cafeteria (CAF) diet as a dietetic intervention to be combined with other therapies. Postweaning male rats were fed standard chow, CAF diet or 30% energy restricted CAF diet (CAF-R) for 8 weeks. The CAF-R diet lowered energy intake and the increase of body weight and body mass index due to the CAF diet, lead to an intermediate feed efficiency, and dampened the CAF diet-induced alterations on body composition, serum levels of triacylglycerides and NEFAs, and insulin resistance. These effects were associated with diminished Ucp1, Nrf1 and Tfam1 gene expression in brown adipose tissue. In conclusion, the CAF-R diet ameliorated obesity and related metabolic disorders induced by a regular CAF diet, turning it in a useful tool to study anti-obesity compounds.
Collapse
Affiliation(s)
- Alex Subias-Gusils
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Noemí Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area and Technological Unit of Nutrition and Health, Reus, Spain
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Montserrat Solanas
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rosa M Escorihuela
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
31
|
Lalanza JF, Snoeren EMS. The cafeteria diet: A standardized protocol and its effects on behavior. Neurosci Biobehav Rev 2020; 122:92-119. [PMID: 33309818 DOI: 10.1016/j.neubiorev.2020.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Obesity is a major health risk, with junk food consumption playing a central role in weight gain, because of its high palatability and high-energy nutrients. The Cafeteria (CAF) diet model for animal experiments consists of the same tasty but unhealthy food products that people eat (e.g. hot dogs and muffins), and considers variety, novelty and secondary food features, such as smell and texture. This model, therefore, mimics human eating patterns better than other models. In this paper, we systematically review studies that have used a CAF diet in behavioral experiments and propose a standardized CAF diet protocol. The proposed diet is ad libitum and voluntary; combines different textures, nutrients and tastes, including salty and sweet products; and it is rotated and varied. Our summary of the behavioral effects of CAF diet show that it alters meal patterns, reduces the hedonic value of other rewards, and tends to reduce stress and spatial memory. So far, no clear effects of CAF diet were found on locomotor activity, impulsivity, coping and social behavior.
Collapse
Affiliation(s)
- Jaume F Lalanza
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Eelke M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway; Regional Health Authority of North Norway, Norway.
| |
Collapse
|
32
|
Peng G, Yang L, Wu CY, Zhang LL, Wu CY, Li F, Shi HW, Hou J, Zhang LM, Ma X, Xiong J, Pan H, Zhang GQ. Whole body vibration training improves depression-like behaviors in a rat chronic restraint stress model. Neurochem Int 2020; 142:104926. [PMID: 33276022 DOI: 10.1016/j.neuint.2020.104926] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder that brings great harm and burden to both patients and society. This study aimed to examine the effects of whole-body vibration (WBV) training on a chronic restraint stress (CRS) induced depression rat model and provide an initial understanding of related molecular mechanisms. Adult Sprague-Dawley male rats were randomly divided into the following three groups: a) control group, b) depressive disorder group, and c) depression with WBV training treatment group. Daily food intake, body weight, sucrose preference test, open field test, elevated plus maze, forced swimming test, and Barnes maze task tests were performed. Immunofluorescence staining and ELISA analysis were used to assess neuronal damage, synaptic proteins, glial cells, and trophic factors. The data of behavioral tests and related biochemical indicators were statistically analyzed and compared between groups. Rats undergoing CRS showed increased anxiety-like behavior and memory impairment, along with synaptic atrophy and neuronal degeneration. WBV could reverse behavioral dysfunction, inhibit the degeneration of neurons, alleviate the damage of neurons and the pathological changes of glial cells, enhance trophic factor expression, and ameliorate the downregulation of dendritic and synaptic proteins after CRS. The effect of WBV in rats may be mediated via the reduction of hippocampal neuronal degeneration and by improving expression of synaptic proteins. WBV training exerts multifactorial benefits on MDD that supports its use as a promising new therapeutic option for improving depression-like behaviors in the depressive and/or potentially depressive.
Collapse
Affiliation(s)
- Guangcong Peng
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Luodan Yang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Chong Y Wu
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Ling L Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Chun Y Wu
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Fan Li
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Hai W Shi
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Jun Hou
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Li M Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Xu Ma
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Jing Xiong
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Hongying Pan
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China.
| | - Guang Q Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China.
| |
Collapse
|
33
|
A Abdel Jaleel G, A Al-Awdan S, F Ahmed R, A H Ahmed-Farid O, Saleh DO. Melatonin regulates neurodegenerative complications associated with NAFLD via enhanced neurotransmission and cellular integrity: a correlational study. Metab Brain Dis 2020; 35:1251-1261. [PMID: 32696189 DOI: 10.1007/s11011-020-00593-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is recognized globally as the leading cause of chronic liver diseases whose patients are asymptomatic and are diagnosed incidentally. It increases the rate of mortality which is usually related to cardiovascular events; however, scarce attention has been addressed to brain damage. This study was designed to investigate the impact of melatonin (MEL; 10 mg/kg) on overcoming the hepato and neuro-complications associated with high fat, high fructose (HFHF) diet induced-NAFLD in rats. NAFLD was induced by HFHF diet for 8 consecutive weeks. MEL was given orally for the last 10 days. Rats' general behavior was assessed by; open field test (OFT) and forced swimming test (FST). On biochemical level; serum levels of glucose, insulin, alanine transaminase and aspartate transaminase as well as the hepatic levels of triglycerides and total cholesterol were evaluated. Monoamines' brain levels, their metabolites in addition to the brain level of 8-hydroxyguanosine (8-OHdG) were evaluated. Moreover, the levels of tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide (NOx) were measured in both the liver and brain tissues. Oral treatment of NAFLD induced rats with MEL for ten consecutive days managed to increase the activity of the rats in the OFT and decrease the immobility period in the FST. Moreover, MEL reduced monoamines turnover and elevated brain 8-OHdG level. It also had the ability to counteract the elevated levels of GSH, NOx, MDA, and TNF- α in liver and brain tissues. MEL can be suggested to be a promising candidate for treating the neuronal side effects related to NAFLD.
Collapse
Affiliation(s)
- Gehad A Abdel Jaleel
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Sally A Al-Awdan
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Rania F Ahmed
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Dalia O Saleh
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt.
| |
Collapse
|
34
|
Gimenez-Donoso C, Bosque M, Vila A, Vilalta G, Santafe MM. Effects of a Fat-Rich Diet on the Spontaneous Release of Acetylcholine in the Neuromuscular Junction of Mice. Nutrients 2020; 12:nu12103216. [PMID: 33096733 PMCID: PMC7594037 DOI: 10.3390/nu12103216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Western societies are facing a clear increase in the rate of obesity and overweight which are responsible for musculoskeletal pain. Some of the substances described in the environment of myofascial trigger points (MTrPs) are the same as those found in the skeletal muscle of obese people, such as cytokines. Furthermore, elevated neuromuscular neurotransmission has been associated with MTrPs. The main objective of this study is to assess whether obesity or overweight may be a facilitator of myofascial pain. The experiments were performed on male Swiss mice. One experimental group was given a typical “cafeteria” diet and another group a commercial high-fat diet for six weeks. Intramuscular adipocytes were assessed with Sudan III. The functional study was performed with electromyographic recording to determine the plaque noise and intracellular recording of miniature endplate potentials (MEPPs). The intake of a cafeteria diet showed the presence of more adipocytes in muscle tissue, but not with the fat-supplemented diet. Both experimental groups showed an increase in the plaque noise and an increase in the frequency of MEPPs that lasted several weeks after interrupting diets. In summary, the supply of a hypercaloric diet for six weeks in mice increases spontaneous neurotransmission, thus facilitating the development of MTrPs.
Collapse
Affiliation(s)
- Carlos Gimenez-Donoso
- Centre de Fisioteràpia Inspira, Carrer Muntaner num 200, 2º, 2ª, 08036 Barcelona, Spain
| | - Marc Bosque
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St Llorenç num 21, 43201 Reus, Spain
| | - Anna Vila
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St Llorenç num 21, 43201 Reus, Spain
| | - Gemma Vilalta
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St Llorenç num 21, 43201 Reus, Spain
| | - Manel M Santafe
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St Llorenç num 21, 43201 Reus, Spain
| |
Collapse
|
35
|
Abd-Allah H, Nasr M, Ahmed-Farid OAH, Ibrahim BMM, Bakeer RM, Ahmed RF. Nicotinamide and ascorbic acid nanoparticles against the hepatic insult induced in rats by high fat high fructose diet: A comparative study. Life Sci 2020; 263:118540. [PMID: 33035588 DOI: 10.1016/j.lfs.2020.118540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/22/2022]
Abstract
AIMS Non-alcoholic fatty liver disease (NAFLD) caused by consumption of high levels of fat and sugars (HFHS) in diet is considered one of the most dangerous medical complications among children and adolescents. Nicotinamide is among the promising candidates in ameliorating HFHS diet-induced NAFLD, but its use is limited by the possibility of prompting hepatotoxicity in high doses. Ascorbic acid is another promising candidate, however its use as a hepatoprotective agent is limited by its chemical instability. Therefore, the aim of the study was to overcome their delivery limitations and enhance their hepatoprotective activity by loading into nanoparticles. KEY FINDINGS In the present study, upon incorporating nicotinamide or ascorbic acid in chitosan nanoparticles, they ameliorated the insulin-resistant status induced in rats by a high-fat-high-fructose (HFHF) diet. Both formulae decreased serum level of ALT and AST, as well as liver tissue total cholesterol, triglycerides and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels. They also decreased oxidative and nitrosative stresses along with a significant increase in the hepatocellular energy. The biochemical findings were further confirmed by histopathological examination. Finally from the obtained data it could be concluded that chitosan nicotinamide nanoparticles at a dose level (10 mg/kg, p.o.) demonstrated beneficial pharmacological effect with safer toxicity profile than chitosan ascorbic acid nanoparticles. SIGNIFICANCE Nicotinamide chitosan nanoparticles could be recommended as daily supplement in the recovery from NAFLD.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt.
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Bassant M M Ibrahim
- Department of Pharmacology, Medical Research Division, National Research Centre, (ID:60014618), Dokki, 12622 Giza, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Egypt; Instructor of Pathology, October University of Modern Sciences and Arts (MSA) University, Egypt
| | - Rania F Ahmed
- Department of Pharmacology, Medical Research Division, National Research Centre, (ID:60014618), Dokki, 12622 Giza, Egypt
| |
Collapse
|
36
|
Casagrande BP, Estadella D. Withdrawing from obesogenic diets: benefits and barriers in the short- and long-term in rodent models. Am J Physiol Endocrinol Metab 2020; 319:E485-E493. [PMID: 32663098 DOI: 10.1152/ajpendo.00174.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is accumulating evidence of dietary impact on several metabolic parameters. Unhealthy diets are estimated to be responsible for about 20% of the deaths worldwide. The recommendation is to improve the dietary pattern, aiming to prevent further harm. In this context, we reviewed the benefits and barriers of withdrawing from continuous obesogenic diet intake in the short- and long-term, which were found in rodent models. Although dietary modifications demand a re-establishment of the equilibrium, withdrawing was seen as a homeostatic insult and thus elicited several responses to protect the organism. In the short-term, withdrawal presented stressful and reward destimulating responses. The intake of obesogenic diets presented rewarding and stress destimulating responses. Whereas withdrawing in the long term ameliorated several biological functions and histopathologic features, it was not effective at reestablishing food intake and normalizing feeding behaviors or reward pathways. Altogether, terminating obesogenic diet intake does not immediately extinguish all negative consequences, and it even elicits brain behavioral and metabolic modifications. These modifications can hinder the maintenance of habits' change and prevent reaching the long-term benefits of diet improvement.
Collapse
Affiliation(s)
- Breno P Casagrande
- Biosciences Department, Institute of Health and Society, Federal University of Sao Paulo, Santos, Sao Paulo, Brazil
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of Sao Paulo, Santos, Sao Paulo, Brazil
| |
Collapse
|
37
|
Nicolas S, Léime CSÓ, Hoban AE, Hueston CM, Cryan JF, Nolan YM. Enduring effects of an unhealthy diet during adolescence on systemic but not neurobehavioural measures in adult rats. Nutr Neurosci 2020; 25:657-669. [PMID: 32723167 DOI: 10.1080/1028415x.2020.1796041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Adolescence is an important stage of maturation for various brain structures. It is during this time therefore that the brain may be more vulnerable to environmental factors such as diet that may influence mood and memory. Diets high in fat and sugar (termed a cafeteria diet) during adolescence have been shown to negatively impact upon cognitive performance, which may be reversed by switching to a standard diet during adulthood. Consumption of a cafeteria diet increases both peripheral and central levels of interleukin-1β (IL-1β), a pro-inflammatory cytokine which is also implicated in cognitive impairment during the ageing process. It is unknown whether adolescent exposure to a cafeteria diet potentiates the negative effects of IL-1β on cognitive function during adulthood.Methods: Male Sprague-Dawley rats consumed a cafeteria diet during adolescence after which time they received a lentivirus injection in the hippocampus to induce chronic low-grade overexpression of IL-1β. After viral integration, metabolic parameters, circulating and central pro-inflammatory cytokine levels, and cognitive behaviours were assessed.Results: Our data demonstrate that rats fed the cafeteria diet exhibit metabolic dysregulations in adulthood, which were concomitant with low-grade peripheral and central inflammation. Overexpression of hippocampal IL-1β in adulthood impaired spatial working memory. However, adolescent exposure to a cafeteria diet, combined with or without hippocampal IL-1β in adulthood did not induce any lasting cognitive deficits when the diet was replaced with a standard diet in adulthood. Discussion: These data demonstrate that cafeteria diet consumption during adolescence induces metabolic and inflammatory changes, but not behavioural changes in adulthood.
Collapse
Affiliation(s)
- Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Ciarán S Ó Léime
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Alan E Hoban
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: what is the best choice? Nutr Diabetes 2020; 10:24. [PMID: 32616730 PMCID: PMC7331639 DOI: 10.1038/s41387-020-0127-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MS) is a condition that includes obesity, insulin resistance, dyslipidemias among other, abnormalities that favors type 2 Diabetes Mellitus (T2DM) and cardiovascular diseases development. Three main diet-induced metabolic syndrome models in rats exist: High carbohydrate diet (HCHD), high fat diet (HFD), and high carbohydrate-high fat diet (HCHHFD). We analyzed data from at least 35 articles per diet, from different research groups, to determine their effect on the development of the MS, aimed to aid researchers in choosing the model that better suits their research question; and also the best parameter that defines obesity, as there is no consensus to determine this condition in rats. For the HCHD we found a mild effect on body weight gain and fasting blood glucose levels (FBG), but significant increases in triglycerides, fasting insulin, insulin resistance and visceral fat accumulation. HFD had the greater increase in the parameters previously mentioned, followed by HCHHFD, which had a modest effect on FBG levels. Therefore, to study early stages of MS a HCHD is recommended, while HFD and HCHHFD better reproduce more severe stages of MS. We recommend the assessment of visceral fat accumulation as a good estimate for obesity in the rat.
Collapse
|
39
|
Teixeira AE, Rocha-Gomes A, Pereira dos Santos T, Amaral BLS, da Silva AA, Malagutti AR, Leite FRF, Stuckert-Seixas SR, Riul TR. Cafeteria diet administered from lactation to adulthood promotes a change in risperidone sensitivity on anxiety, locomotion, memory, and social interaction of Wistar rats. Physiol Behav 2020; 220:112874. [DOI: 10.1016/j.physbeh.2020.112874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/24/2023]
|
40
|
Sucedaram Y, Johns EJ, Husain R, Sattar MA, Abdulla M, Khalilpourfarshbafi M, Abdullah NA. Comparison of high-fat style diet-induced dysregulation of baroreflex control of renal sympathetic nerve activity in intact and ovariectomized female rats: Renal sympathetic nerve activity in high-fat style diet fed intact and ovariectomized female rats. Exp Biol Med (Maywood) 2020; 245:761-776. [PMID: 32212858 DOI: 10.1177/1535370220915673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
IMPACT STATEMENT Over activation of renal sensory nerve in obesity blunts the normal regulation of renal sympathetic nerve activity. To date, there is no investigation that has been carried out on baroreflex regulation of renal sympathetic nerve activity in obese ovarian hormones deprived rat model, and the effect of renal denervation on the baroreflex regulation of renal sympathetic nerve activity. Thus, we investigated the role of renal innervation on baroreflex regulation of renal sympathetic nerve activity in obese intact and ovariectomized female rats. Our data demonstrated that in obese states, the impaired baroreflex control is indistinguishable between ovarian hormones deprived and non-deprived states. This study will be of substantial interest to researchers working on the impact of diet-induced hypertension in pre- and postmenopausal women. This study provides insight into health risks amongst obese women regardless of their ovarian hormonal status and may be integrated in preventive health strategies.
Collapse
Affiliation(s)
- Yamuna Sucedaram
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Edward James Johns
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | - Ruby Husain
- Department of Physiology, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Munavvar Abdul Sattar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM Pulau Pinang 11800, Malaysia.,Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Malaysia
| | - Mohammed Abdulla
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | | | - Nor Azizan Abdullah
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
41
|
Epigenetic Dysregulation of Dopaminergic System by Maternal Cafeteria Diet During Early Postnatal Development. Neuroscience 2020; 424:12-23. [DOI: 10.1016/j.neuroscience.2019.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022]
|
42
|
Lazzarino GP, Acutain MF, Canesini G, Andreoli MF, Ramos JG. Cafeteria diet induces progressive changes in hypothalamic mechanisms involved in food intake control at different feeding periods in female rats. Mol Cell Endocrinol 2019; 498:110542. [PMID: 31430504 DOI: 10.1016/j.mce.2019.110542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023]
Abstract
We studied the effects of cafeteria diet (CAF) intake from weaning on mRNA levels and DNA methylation state of feeding-related neuropeptides and hormone receptors in individual hypothalamic nuclei at different feeding periods. Four weeks of CAF (short-term) increased energy intake and adiposity, without affecting neuropeptides' expression. Eleven weeks of CAF (medium-term) increased energy intake, adiposity, leptinemia, and body weight, with an orexigenic response of the lateral hypothalamus, paraventricular and ventromedial nuclei, given by upregulation of Orexins, AgRP, and NPY opposed by an anorectic signal of the arcuate nucleus, which displayed a higher POMC expression. The changes in neuropeptidic mRNA levels were related to epigenetic modifications in their promoter regions. Metabolic and molecular changes were intensified after 20 weeks of diet (long-term). The alterations in these hypothalamic brain nuclei could add information about their differential role in food intake control, and how their action is disrupted during the development of obesity.
Collapse
Affiliation(s)
- Gisela Paola Lazzarino
- Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| | - María Florencia Acutain
- Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| | - Guillermina Canesini
- Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional Del Litoral (UNL), Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| | - María Florencia Andreoli
- Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina; Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| |
Collapse
|
43
|
Moreton E, Baron P, Tiplady S, McCall S, Clifford B, Langley-Evans S, Fone K, Voigt J. Impact of early exposure to a cafeteria diet on prefrontal cortex monoamines and novel object recognition in adolescent rats. Behav Brain Res 2019; 363:191-198. [DOI: 10.1016/j.bbr.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022]
|
44
|
Buyukdere Y, Gulec A, Akyol A. Cafeteria diet increased adiposity in comparison to high fat diet in young male rats. PeerJ 2019; 7:e6656. [PMID: 30984479 PMCID: PMC6452846 DOI: 10.7717/peerj.6656] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Background Dietary intervention studies in animal models of obesity are crucial to elucidate the mechanistic effects of specific nutrients and diets. Although several models of diet induced obesity have been examined in rodents to assess obesity, there are few studies that have researched influence of different high fat and/or westernized diets. The aim of this study was to compare a high fat diet and a cafeteria diet on obesity related biochemical and physiological parameters in young male rats. Methods Five week old Wistar male rats were fed a control chow diet (C), butter-based high fat diet (HF) or cafeteria diet (CAF) for twelve weeks. In HF, 40% of energy came from fat and this ratio was 46% in CAF. CAF composed of highly energetic and palatable human foods along with chow diet. At the end of the feeding protocol all animals were culled using CO2 asphyxia and cervical dislocation after an overnight fasting. Results Total energy and fat intake of CAF was significantly higher than C and HF. CAF was more effective in inducing obesity, as demonstrated by increased weight gain, Lee index, fat depot weights and total body fat in comparison to C and HF. Despite increased adiposity in CAF, plasma glucose, insulin and HOMA-IR levels were similar between the groups. Plasma leptin and cholesterol levels were markedly higher in CAF than C and HF. Discussion We have demonstrated that there are differential effects of high fat diet and cafeteria diet upon obesity and obesity-related parameters, with CAF leading to a more pronounced adiposity in comparison to high fat diet in young male rats. Future studies should consider the varied outcomes of different diet induced obesity models and development of a standardized approach in similar research practices.
Collapse
Affiliation(s)
- Yucel Buyukdere
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Atila Gulec
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Asli Akyol
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
45
|
de Oliveira C, de Freitas JS, Macedo IC, Scarabelot VL, Ströher R, Santos DS, Souza A, Fregni F, Caumo W, Torres ILS. Transcranial direct current stimulation (tDCS) modulates biometric and inflammatory parameters and anxiety-like behavior in obese rats. Neuropeptides 2019; 73:1-10. [PMID: 30446297 DOI: 10.1016/j.npep.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/14/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
Abstract
Obesity is a multifactorial disease associated with metabolic dysfunction and the prevention and treatment of obesity are often unsatisfactory. Transcranial direct-current stimulation (tDCS) is a non-invasive brain stimulation technique that has proven promising in the treatment of eating disorders such as obesity. We investigate the effects of tDCS on locomotor and exploratory activities, anxiety-like and feeding behavior, and levels of brain-derived neurotrophic factor (BDNF), IL (interleukin)-10, IL-1β, and tumor necrosis factor-alpha (TNF-α) in the cerebral cortex of obese rats. A total of 40 adult male Wistar rats were used in our study. Animals were divided into groups of three or four animals per cage and allocated to four treatment groups: standard diet plus sham tDCS treatment (SDS), standard diet plus tDCS treatment (SDT), hypercaloric diet plus sham tDCS treatment (HDS), hypercaloric diet plus tDCS treatment (HDT). After 40 days on a hypercaloric diet and/or standard diet were to assessed the locomotor and exploratory activity and anxiety-like behavior to by the open field (OF) and elevated plus maze (EPM) tests respectively before and after exposure to tDCS treatment. The experimental groups were submitted to active or sham treatment tDCS during eight days. Palatable food consumption test (PFT) was performed 24 h after the last tDCS session under fasting and feeding conditions. Obese animals submitted to tDCS treatment showed a reduction in the Lee index, visceral adipose tissue weight, and food craving. In addition, bicephalic tDCS decreased the cerebral cortex levels of IL-1β and TNF-α in these animals. Exposure to a hypercaloric diet produced an anxiolytic effect, which was reversed by bicephalic tDCS treatment. These results suggest that, in accordance with studies in humans, bicephalic tDCS could modulate biometric and inflammatory parameters, as well as anxiety-like and feeding behavior, of rats subjected to the consumption of a hypercaloric diet.
Collapse
Affiliation(s)
- Carla de Oliveira
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joice Soares de Freitas
- Post-Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Isabel Cristina Macedo
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Vanessa Leal Scarabelot
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Roberta Ströher
- Post-Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Daniela Silva Santos
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andressa Souza
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Felipe Fregni
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wolnei Caumo
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Iraci L S Torres
- Post-Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
46
|
Cherry consumption out of season alters lipid and glucose homeostasis in normoweight and cafeteria-fed obese Fischer 344 rats. J Nutr Biochem 2019; 63:72-86. [DOI: 10.1016/j.jnutbio.2018.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/30/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
|
47
|
Pinheiro-Castro N, Silva LBAR, Novaes GM, Ong TP. Hypercaloric Diet-Induced Obesity and Obesity-Related Metabolic Disorders in Experimental Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:149-161. [DOI: 10.1007/978-3-030-12668-1_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Gastiazoro MP, Guerrero-Schimpf M, Durando M, Lazzarino GP, Andreoli MF, Zierau O, Luque EH, Ramos JG, Varayoud J. Induction of uterine hyperplasia after cafeteria diet exposure. Mol Cell Endocrinol 2018; 477:112-120. [PMID: 29908751 DOI: 10.1016/j.mce.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022]
Abstract
Our aim was to evaluate whether chronic administration of CAF affects the uterus and induces the morphological and molecular changes associated with endometrial hyperplasia. Female Wistar rats exposed to CAF from weaning for 20 weeks displayed increased energy intake, body weight and fat depots, but did not develop metabolic syndrome. The adult uteri showed an increase in glandular volume fraction and stromal area. The epithelial proliferation rate and protein expression of oestrogen receptor alpha (ERα) were also increased. The CAF diet enhanced leptin serum levels and the long form of leptin receptor (Ob-Rb) mRNA expression in the uterus. No changes were detected in either insulin serum levels or those of insulin growth factor I (IGF-I) mRNA expression. However the levels of IGF-I receptor (IGF-IR) mRNA were lower in CAF-fed animals. Overall, the results indicate that our rat model of the CAF diet produces morphological and molecular changes associated with uterine hyperplasia and could predispose to endometrial carcinogenesis.
Collapse
Affiliation(s)
- María Paula Gastiazoro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Marlise Guerrero-Schimpf
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Gisela Paola Lazzarino
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - María Florencia Andreoli
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Oliver Zierau
- Molecular Cell Physiology and Endocrinology, Institute for Zoology, Technische Universität Dresden, 01062, Dresden, Germany.
| | - Enrique Hugo Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Jorge Guillermo Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| |
Collapse
|
49
|
Mariné-Casadó R, Domenech-Coca C, Del Bas JM, Bladé C, Arola L, Caimari A. Intake of an Obesogenic Cafeteria Diet Affects Body Weight, Feeding Behavior, and Glucose and Lipid Metabolism in a Photoperiod-Dependent Manner in F344 Rats. Front Physiol 2018; 9:1639. [PMID: 30534077 PMCID: PMC6275206 DOI: 10.3389/fphys.2018.01639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that chronic exposure to different photoperiods induced marked variations in several glucose and lipid metabolism-related parameters in normoweight Fischer 344 (F344) rats. Here, we examined the effects of the combination of an obesogenic cafeteria diet (CAF) and the chronic exposure to three different day lengths (L12, 12 h light/day; L18, 18 h light/day; and L6, 6 h light/day) in this rat strain. Although no changes were observed during the first 4 weeks of adaptation to the different photoperiods in which animals were fed a standard diet, the addition of the CAF for the subsequent 7 weeks triggered profound physiologic and metabolic alterations in a photoperiod-dependent manner. Compared with L12 rats, both L6 and L18 animals displayed lower body weight gain and cumulative food intake in addition to decreased energy expenditure and locomotor activity. These changes were accompanied by differences in food preferences and by a sharp upregulation of the orexigenic genes Npy and Ghsr in the hypothalamus, which could be understood as a homeostatic mechanism for increasing food consumption to restore body weight control. L18 rats also exhibited higher glycemia than the L6 group, which could be partly attributed to the decreased pAkt2 levels in the soleus muscle and the downregulation of Irs1 mRNA levels in the gastrocnemius muscle. Furthermore, L6 animals displayed lower whole-body lipid utilization than the L18 group, which could be related to the lower lipid intake and to the decreased mRNA levels of the fatty acid transporter gene Fatp1 observed in the soleus muscle. The profound differences observed between L6 and L18 rats could be related with hepatic and muscular changes in the expression of circadian rhythm-related genes Cry1, Bmal1, Per2, and Nr1d1. Although further research is needed to elucidate the pathophysiologic relevance of these findings, our study could contribute to emphasize the impact of the consumption of highly palatable and energy dense foods regularly consumed by humans on the physiological and metabolic adaptations that occur in response to seasonal variations of day length, especially in diseases associated with changes in food intake and preference such as obesity and seasonal affective disorder.
Collapse
Affiliation(s)
- Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Cristina Domenech-Coca
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep Maria Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Cinta Bladé
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Lluís Arola
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain.,Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| |
Collapse
|
50
|
Cardenas-Perez RE, Fuentes-Mera L, de la Garza AL, Torre-Villalvazo I, Reyes-Castro LA, Rodriguez-Rocha H, Garcia-Garcia A, Corona-Castillo JC, Tovar AR, Zambrano E, Ortiz-Lopez R, Saville J, Fuller M, Camacho A. Maternal overnutrition by hypercaloric diets programs hypothalamic mitochondrial fusion and metabolic dysfunction in rat male offspring. Nutr Metab (Lond) 2018; 15:38. [PMID: 29991958 PMCID: PMC5987395 DOI: 10.1186/s12986-018-0279-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Background Maternal overnutrition including pre-pregnancy, pregnancy and lactation promotes a lipotoxic insult leading to metabolic dysfunction in offspring. Diet-induced obesity models (DIO) show that changes in hypothalamic mitochondria fusion and fission dynamics modulate metabolic dysfunction. Using three selective diet formula including a High fat diet (HFD), Cafeteria (CAF) and High Sugar Diet (HSD), we hypothesized that maternal diets exposure program leads to selective changes in hypothalamic mitochondria fusion and fission dynamics in male offspring leading to metabolic dysfunction which is exacerbated by a second exposure after weaning. Methods We exposed female Wistar rats to nutritional programming including Chow, HFD, CAF, or HSD for 9 weeks (pre-mating, mating, pregnancy and lactation) or to the same diets to offspring after weaning. We determined body weight, food intake and metabolic parameters in the offspring from 21 to 60 days old. Hypothalamus was dissected at 60 days old to determine mitochondria-ER interaction markers by mRNA expression and western blot and morphology by transmission electron microscopy (TEM). Mitochondrial-ER function was analyzed by confocal microscopy using hypothalamic cell line mHypoA-CLU192. Results Maternal programming by HFD and CAF leads to failure in glucose, leptin and insulin sensitivity and fat accumulation. Additionally, HFD and CAF programming promote mitochondrial fusion by increasing the expression of MFN2 and decreasing DRP1, respectively. Further, TEM analysis confirms that CAF exposure after programing leads to an increase in mitochondria fusion and enhanced mitochondrial-ER interaction, which partially correlates with metabolic dysfunction and fat accumulation in the HFD and CAF groups. Finally, we identified that lipotoxic palmitic acid stimulus in hypothalamic cells increases Ca2+ overload into mitochondria matrix leading to mitochondrial dysfunction. Conclusions We concluded that maternal programming by HFD induces hypothalamic mitochondria fusion, metabolic dysfunction and fat accumulation in male offspring, which is exacerbated by HFD or CAF exposure after weaning, potentially due to mitochondria calcium overflux.
Collapse
Affiliation(s)
- Robbi E Cardenas-Perez
- 1Departmento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico.,2Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo Leon, Monterrey, Mexico
| | - Lizeth Fuentes-Mera
- 1Departmento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Ana Laura de la Garza
- 3Centro de Investigacion en Nutricion y Salud Publica, Facultad de Salud Publica y Nutricion, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Ivan Torre-Villalvazo
- 4Departamento Fisiología de la Nutrición, Instituto Nacional de Ciencias Medicas y Nutrición, Mexico City, Mexico
| | - Luis A Reyes-Castro
- 5Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubiran, México City, Mexico
| | - Humberto Rodriguez-Rocha
- 6Departmento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Aracely Garcia-Garcia
- 6Departmento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | | | - Armando R Tovar
- 4Departamento Fisiología de la Nutrición, Instituto Nacional de Ciencias Medicas y Nutrición, Mexico City, Mexico
| | - Elena Zambrano
- 5Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubiran, México City, Mexico
| | - Rocio Ortiz-Lopez
- 8Escuela de Medicina y Ciencias de la Salud, Instituto Tecnologico de Monterrey, Monterrey, Mexico
| | - Jennifer Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Adelaide, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Adelaide, Australia
| | - Alberto Camacho
- 1Departmento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico.,2Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo Leon, Monterrey, Mexico.,10Departamento de Bioquimica y Medicina Molecular. Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Francisco I Madero y Dr. Eduardo Aguirre Pequeño s/n. Colonia Mitras Centro, C.P. 64460 Monterrey, Nuevo Leon Mexico
| |
Collapse
|