1
|
Sánchez Carretero L, Cardeñosa Pérez ÀC, Peces-Barba G, Pérez-Rial S. Differential lung gene expression identified Zscan2 and Bag6 as novel tissue repair players in an experimental COPD model. PLoS One 2024; 19:e0309166. [PMID: 39172905 PMCID: PMC11340952 DOI: 10.1371/journal.pone.0309166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Chronic obstructive pulmonary disease is a common chronic lung disease with an ever-increasing incidence. Despite years of drug research and approvals, we are still not able to halt progress or restore normal lung function. Our previous studies have demonstrated that liver growth factor-LGF has an effect on the repair of the affected tissue in a mouse model of cigarette smoke exposure, but by what pathways it achieves this is unknown. The present study aimed to identify differentially expressed genes between emphysematous mice treated with LGF to identify potential therapeutic targets for the treatment of pulmonary emphysema. The emphysema mouse model was induced by prolonged exposure to cigarette smoke. To determine the gene expression profile of the lung in smokers treated or not with LGF, lung messenger RNA gene expression was assessed with the Agilent Array platform. We carried out differentially expressed gene analysis, functional enrichment and validated in treated mouse lung samples. The treated group significantly improved lung function (~35%) and emphysema level (~20%), consistent with our previous published studies. Microarray analysis demonstrated 290 differentially expressed genes in total (2.0-fold over or lower expressed). Injury repair-associated genes and pathways were further enhanced in the lung of LGF treated mice. The expression trends of two genes (Zscan2 and Bag6) were different in emphysematous lungs treated with LGF compared to untreated lungs. Therefore, Zscan2 and Bag6 genes could play a role in regulating inflammation and the immune response in the lung that undergoes partial lung regeneration. However, further studies are necessary to demonstrate this causal relationship.
Collapse
Affiliation(s)
- Laura Sánchez Carretero
- Respiratory Research Unit, Health Research Institute–Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Àdele Chole Cardeñosa Pérez
- Respiratory Research Unit, Health Research Institute–Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Germán Peces-Barba
- Respiratory Research Unit, Health Research Institute–Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Sandra Pérez-Rial
- Molecular Genetics Department, Ramón y Cajal University Hospital–IRYCIS, Madrid, Spain
- Network Biomedical Research Center for Rare Diseases, Carlos III Health Institute (CIBERER, ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
3
|
Badejo PO, Umphres SS, Ali HEA, Alarabi AB, Qadri S, Alshbool FZ, Khasawneh FT. Exposure to Electronic Waterpipes Increases the Risk of Occlusive Cardiovascular Disease in C57BL/6J Mice. J Cardiovasc Pharmacol Ther 2024; 29:10742484241242702. [PMID: 38592084 DOI: 10.1177/10742484241242702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
INTRODUCTION It is well documented that cardiovascular disease (CVD) is the leading cause of death in the US and worldwide, with smoking being the most preventable cause. Additionally, most smokers die from thrombotic-based diseases, in which platelets play a major role. To this end, because of the proven harm of smoking, several novel tobacco products such as electronic(e)-waterpipe have been gaining popularity among different sectors of the population, partly due to their "false" safety claims. While many investigators have focused on the negative health effects of traditional cigarettes and e-cigarettes on the cardiovascular system, virtually little or nothing is known about e-waterpipes, which we investigated herein. METHODS AND MATERIALS To investigate their occlusive CVD effects, we employed a whole-body mouse exposure model of e-waterpipe vape/smoke and exposed C57BL/6J male mice (starting at 7 weeks of age) for 1 month, with the controls exposed to clean air. Exposures took place seven times a week, according to the well-known Beirut protocol, which has been employed in many studies, as it mimics real-life waterpipe exposure scenarios; specifically, 171 puffs of 530 ml volume of the e-liquid at 2.6 s puff duration and 17 s puff interval. RESULTS The e-waterpipe exposed mice had shortened bleeding and occlusion times, when compared to the clean air controls, indicating a prothrombotic phenotype. As for the mechanism underlying this phenotype, we found that e-waterpipe exposed platelets exhibited enhanced agonist-triggered aggregation and dense granule secretion. Also, flow cytometry analysis of surface markers of platelet activation showed that both P-selectin and integrin GPIIb-IIIa activation were enhanced in the e-waterpipe exposed platelets, relative to the controls. Finally, platelet spreading and Akt phosphorylation were also more pronounced in the exposed mice. CONCLUSION We document that e-waterpipe exposure does exert untoward effects in the context of thrombosis-based CVD, in part, via promoting platelet hyperreactivity.
Collapse
Affiliation(s)
- Precious O Badejo
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Shelby S Umphres
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Hamdy E A Ali
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Ahmed B Alarabi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Shahnaz Qadri
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Fatima Z Alshbool
- Department of Pharmacy Practice, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| |
Collapse
|
4
|
Shields PG. Role of untargeted omics biomarkers of exposure and effect for tobacco research. ADDICTION NEUROSCIENCE 2023; 7:100098. [PMID: 37396411 PMCID: PMC10310069 DOI: 10.1016/j.addicn.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Tobacco research remains a clear priority to improve individual and population health, and has recently become more complex with emerging combustible and noncombustible tobacco products. The use of omics methods in prevention and cessation studies are intended to identify new biomarkers for risk, compared risks related to other products and never use, and compliance for cessation and reinitation. to assess the relative effects of tobacco products to each other. They are important for the prediction of reinitiation of tobacco use and relapse prevention. In the research setting, both technical and clinical validation is required, which presents a number of complexities in the omics methodologies from biospecimen collection and sample preparation to data collection and analysis. When the results identify differences in omics features, networks or pathways, it is unclear if the results are toxic effects, a healthy response to a toxic exposure or neither. The use of surrogate biospecimens (e.g., urine, blood, sputum or nasal) may or may not reflect target organs such as the lung or bladder. This review describes the approaches for the use of omics in tobacco research and provides examples of prior studies, along with the strengths and limitations of the various methods. To date, there is little consistency in results, likely due to small number of studies, limitations in study size, the variability in the analytic platforms and bioinformatic pipelines, differences in biospecimen collection and/or human subject study design. Given the demonstrated value for the use of omics in clinical medicine, it is anticipated that the use in tobacco research will be similarly productive.
Collapse
Affiliation(s)
- Peter G. Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH
| |
Collapse
|
5
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
6
|
Solorio-Rodriguez SA, Williams A, Poulsen SS, Knudsen KB, Jensen KA, Clausen PA, Danielsen PH, Wallin H, Vogel U, Halappanavar S. Single-Walled vs. Multi-Walled Carbon Nanotubes: Influence of Physico-Chemical Properties on Toxicogenomics Responses in Mouse Lungs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061059. [PMID: 36985953 PMCID: PMC10057402 DOI: 10.3390/nano13061059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/27/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are nanomaterials with one or multiple layers of carbon sheets. While it is suggested that various properties influence their toxicity, the specific mechanisms are not completely known. This study was aimed to determine if single or multi-walled structures and surface functionalization influence pulmonary toxicity and to identify the underlying mechanisms of toxicity. Female C57BL/6J BomTac mice were exposed to a single dose of 6, 18, or 54 μg/mouse of twelve SWCNTs or MWCNTs of different properties. Neutrophil influx and DNA damage were assessed on days 1 and 28 post-exposure. Genome microarrays and various bioinformatics and statistical methods were used to identify the biological processes, pathways and functions altered post-exposure to CNTs. All CNTs were ranked for their potency to induce transcriptional perturbation using benchmark dose modelling. All CNTs induced tissue inflammation. MWCNTs were more genotoxic than SWCNTs. Transcriptomics analysis showed similar responses across CNTs at the pathway level at the high dose, which included the perturbation of inflammatory, cellular stress, metabolism, and DNA damage responses. Of all CNTs, one pristine SWCNT was found to be the most potent and potentially fibrogenic, so it should be prioritized for further toxicity testing.
Collapse
Affiliation(s)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Per Axel Clausen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Pernille Høgh Danielsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Håkan Wallin
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
- Department of Public Health, University of Copenhagen, 1353 Copenhagen, Denmark
- National Institute of Occupational Health, 0304 Oslo, Norway
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
7
|
Gu J, Gong D, Wang Y, Feng T, Zhang J, Hu S, Min L. Chronic exposure to IQOS results in impaired pulmonary function and lung tissue damage in mice. Toxicol Lett 2023; 374:1-10. [PMID: 36462770 DOI: 10.1016/j.toxlet.2022.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The use of IQOS brand heated tobacco products (HTPs) is increasing worldwide; however, little is known about the long-term effects of HTPs aerosol exposure on the lungs. Herein, we exposed C57BL/6 J mice for 24 weeks to clean air, IQOS aerosol, or cigarette smoke, and determined pulmonary function, lung tissue pathology, inflammation, and oxidative stress. Compared with the control group mice, IQOS group mice showed substantially decreased weight and lung function. Levels of IL-6 and TNF-a, as well as oxidative stress markers, were comparable to those found in the cigarette group. In addition, hematoxylin and eosin staining showed that the alveolar space was enlarged and that emphysema had formed in the IQOS group. Masson staining showed that collagen deposition areas were substantially increased in the airway walls in the IQOS group than in the control group. Immunohistochemical staining showed epithelial-mesenchymal transition in the airways of mice in the IQOS group. In conclusion, chronic exposure to IQOS aerosol results in impaired pulmonary function and lung tissue damage; hence, concern should be raised regarding the long-term safety of this product.
Collapse
Affiliation(s)
- Jianjun Gu
- Department of Respiratory and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Daohui Gong
- Department of Respiratory and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Yuxiu Wang
- Department of Respiratory and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Tingting Feng
- Department of Respiratory and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Jun Zhang
- Department of Respiratory and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Suwei Hu
- Medical Genetic Center, Yangzhou Maternal and Child Health Care Service Centre, The Affiliated Hospital of Yangzhou University Medical College, Yangzhou, Jiangsu, China
| | - Lingfeng Min
- Department of Respiratory and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou University, Yangzhou 225001, Jiangsu, China.
| |
Collapse
|
8
|
Vlahos R, Wang H, Bozinovski S. Assessing Lung Inflammation and Pathology in Preclinical Models of Chronic Obstructive Pulmonary Disease. Methods Mol Biol 2023; 2691:97-109. [PMID: 37355540 DOI: 10.1007/978-1-0716-3331-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable disease that is a major cause of mortality and morbidity worldwide. Cigarette smoking is a major cause of COPD and triggers progressive airflow limitation, chronic lung inflammation, and irreversible lung damage and decline in lung function. COPD patients often experience various extrapulmonary comorbid diseases, including cardiovascular disease, skeletal muscle wasting, lung cancer, and cognitive decline which markedly impact on disease morbidity, progression, and mortality. People with COPD are also susceptible to respiratory infections which cause exacerbations of the underlying disease (AECOPD). The mechanisms and mediators underlying COPD and its comorbidities are poorly understood and current COPD therapy is relatively ineffective. We and others have used animal modelling systems to explore the mechanisms underlying COPD, AECOPD, and comorbidities of COPD with the goal of identifying novel therapeutic targets. Here we provide a preclinical model and protocols to assess the cellular, molecular, and pathological consequences of cigarette smoke exposure and the development of comorbidities of COPD.
Collapse
Affiliation(s)
- Ross Vlahos
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| | - Hao Wang
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Steven Bozinovski
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
9
|
Zhu Y, Han Y, Almuntashiri S, Dutta S, Wang X, Owen CA, Zhang D. Dysregulation of miR-103a Mediates Cigarette Smoking-induced Lipid-laden Macrophage Formation. Am J Respir Cell Mol Biol 2022; 67:695-707. [PMID: 36066909 PMCID: PMC9743184 DOI: 10.1165/rcmb.2022-0202oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
Cigarette smoke (CS) is considered a major risk factor for chronic obstructive pulmonary disease (COPD) that is currently the third leading cause of death in the United States. Studies have indicated that patients with COPD have elevated blood low-density lipoprotein levels, which may contribute to the dysregulation of lipid metabolism. Accumulating data show that microRNAs (miRNAs) are involved in various human diseases. However, the role of microRNAs in the pathogenesis of COPD remains poorly defined. In this study, we found that miR-103a expression was significantly reduced in alveolar macrophages from smokers and patients with COPD versus that in alveolar macrophages from nonsmokers. Our data indicated that reactive oxygen species negatively regulate miR-103a in macrophages. Functionally, miR-103a modulates the expressions of genes involved in lipid metabolism and directly targets low-density lipoprotein receptors in macrophages. Furthermore, overexpression of miR-103a suppressed the accumulation of lipid droplets and reduced the reactive oxygen species, both in vitro and in vivo. Taken together, our findings indicate that downregulation of miR-103a contributes to cigarette smoke-induced lipid-laden macrophage formation and plays a critical role in lipid homeostasis in lung macrophages in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Saugata Dutta
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
10
|
Hussain SS, Edwards YJK, Libby EF, Stanford D, Byzek SA, Sin DD, McDonald ML, Raju SV, Rowe SM. Comparative transcriptomics in human COPD reveals dysregulated genes uniquely expressed in ferrets. Respir Res 2022; 23:277. [PMID: 36217144 PMCID: PMC9552453 DOI: 10.1186/s12931-022-02198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a progressive lung disease with poor treatment options. However, most mouse models of COPD produce a primarily emphysematous disease not recapitulating clinically meaningful COPD features like chronic bronchitis. METHODS Wild-type ferrets (Mustela putorius furo) were divided randomly into two groups: whole body cigarette smoke exposure and air controls. Ferrets were exposed to smoke from 1R6F research cigarettes, twice daily for six months. RNA-sequencing was performed on RNA isolated from lung tissue. Comparative transcriptomics analyses of COPD in ferrets, mice, and humans were done to find the uniquely expressed genes. Further, Real-time PCR was performed to confirmed RNA-Seq data on multiple selected genes. RESULTS RNA-sequence analysis identified 420 differentially expressed genes (DEGs) that were associated with the development of COPD in ferrets. By comparative analysis, we identified 25 DEGs that are uniquely expressed in ferrets and humans, but not mice. Among DEGs, a number were related to mucociliary clearance (NEK-6, HAS1, and KL), while others have been correlated with abnormal lung function (IL-18), inflammation (TREM1, CTSB), or oxidative stress (SRX1, AHRR). Multiple cellular pathways were aberrantly altered in the COPD ferret model, including pathways associated with COPD pathogenesis in humans. Validation of these selected unique DEGs using real-time PCR demonstrated > absolute 2-fold changes in mRNA versus air controls, consistent with RNA-seq analysis. CONCLUSION Cigarette smoke-induced COPD in ferrets modulates gene expression consistent with human COPD and suggests that the ferret model may be uniquely well suited for the study of aspects of the disease.
Collapse
Affiliation(s)
- Shah S Hussain
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Yvonne J K Edwards
- Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily Falk Libby
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Denise Stanford
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Stephen A Byzek
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Don D Sin
- Centre for Heart Lung Innovation and Division of Respiratory Medicine, University of British Columbia, Vancouver, Canada
| | - Merry-Lynn McDonald
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - S Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA.
- Department of Cell Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Bhattacharya SS, Yadav B, Yadav E, Hus A, Yadav N, Kaur P, Rosen L, Jandarov R, Yadav JS. Differential modulation of lung aquaporins among other pathophysiological markers in acute (Cl2 gas) and chronic (carbon nanoparticles, cigarette smoke) respiratory toxicity mouse models. Front Physiol 2022; 13:880815. [PMID: 36246134 PMCID: PMC9554232 DOI: 10.3389/fphys.2022.880815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Inhaled toxic chemicals and particulates are known to disrupt lung homeostasis causing pulmonary toxicity and tissue injury. However, biomarkers of such exposures and their underlying mechanisms are poorly understood, especially for emerging toxicants such as engineered nanoparticles and chemical threat agents such as chlorine gas (Cl2). Aquaporins (AQPs), commonly referred to as water channels, are known to play roles in lung homeostasis and pathophysiology. However, little is known on their regulation in toxicant-induced lung injuries. Here, we compared four lung toxicity models namely, acute chemical exposure (Cl2)-, chronic particulate exposure (carbon nanotubes/CNT)-, chronic chemical exposure (cigarette smoke extract/CSE)-, and a chronic co-exposure (CNT + CSE)- model, for modulation of lung aquaporins (AQPs 1, 3, 4, and 5) in relation to other pathophysiological endpoints. These included markers of compromised state of lung mucosal lining [mucin 5b (MUC5B) and surfactant protein A (SP-A)] and lung-blood barrier [protein content in bronchoalveolar lavage (BAL) fluid and, cell tight junction proteins occludin and zona-occludens]. The results showed toxicity model-specific regulation of AQPs measured in terms of mRNA abundance. A differential upregulation was observed for AQP1 in acute Cl2 exposure model (14.71-fold; p = 0.002) and AQP3 in chronic CNT exposure model (3.83-fold; p = 0.044). In contrast, AQP4 was downregulated in chronic CSE model whereas AQP5 showed no significant change in any of the models. SP-A and MUC5B expression showed a decreasing pattern across all toxicity models except the acute Cl2 toxicity model, which showed a highly significant upregulation of MUC5B (25.95-fold; p = 0.003). This was consistent with other significant pathophysiological changes observed in this acute model, particularly a compromised lung epithelial-endothelial barrier indicated by significantly increased protein infiltration and expression of tight junction proteins, and more severe histopathological (structural and immunological) changes. To our knowledge, this is the first report on lung AQPs as molecular targets of the study toxicants. The differentially regulated AQPs, AQP1 in acute Cl2 exposure versus AQP3 in chronic CNT nanoparticle exposure, in conjunction with the corresponding differentially impacted pathophysiological endpoints (particularly MUC5B) could potentially serve as predictive markers of toxicant type-specific pulmonary injury and as candidates for future investigation for clinical intervention.
Collapse
Affiliation(s)
- Sukanta S. Bhattacharya
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brijesh Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ekta Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ariel Hus
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Niket Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Perminder Kaur
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lauren Rosen
- Department of Pathology and Laboratory Medicine, University of Cincinnati, UC Health University Hospital Laboratory Medicine Building, Cincinnati, OH, United States
| | - Roman Jandarov
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jagjit S. Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Jagjit S. Yadav,
| |
Collapse
|
12
|
Nitta NA, Sato T, Komura M, Yoshikawa H, Suzuki Y, Mitsui A, Kuwasaki E, Takahashi F, Kodama Y, Seyama K, Takahashi K. Exposure to the heated tobacco product IQOS generates apoptosis-mediated pulmonary emphysema in murine lungs. Am J Physiol Lung Cell Mol Physiol 2022; 322:L699-L711. [PMID: 35380471 DOI: 10.1152/ajplung.00215.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Pulmonary emphysema is predominantly caused by chronic exposure to cigarette smoke (CS). Novel tobacco substitutes, such as heated tobacco products (HTPs), have emerged as healthier alternatives to cigarettes. IQOS, the most popular HTP in Japan, is advertised as harmless compared with conventional cigarettes. Although some studies have reported its toxicity, few in vivo studies have been conducted. Here, 12-wk-old C57BL6/J male mice were divided into three groups and exposed to air (as control), IQOS aerosol, or CS for 6 mo. After exposure, the weight gain was significantly suppressed in the IQOS and CS groups compared with the control (-4.93 g; IQOS vs. air and -5.504 g; CS vs. air). The serum cotinine level was significantly higher in the IQOS group than in the control group. The neutrophils and lymphocyte count increased in the bronchoalveolar lavage fluid of the IQOS and CS groups compared with those in the control group. Chronic IQOS exposure induced pulmonary emphysema similar to that observed in the CS group. Furthermore, expression levels of the genes involved in the apoptosis-related pathways were significantly upregulated in the lungs of the IQOS-exposed mice. Cytochrome c, cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase-1 were overexpressed in the IQOS group compared with the control. Single-stranded DNA and TdT-mediated dUTP nick-end labeling-positive alveolar septal cell count significantly increased in the IQOS group compared with the control. In conclusion, chronic exposure to IQOS aerosol induces pulmonary emphysema predominantly via apoptosis-related pathways. This suggests that HTPs are not completely safe tobacco products.
Collapse
Affiliation(s)
- Naoko Arano Nitta
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadashi Sato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Moegi Komura
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitomi Yoshikawa
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yohei Suzuki
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aki Mitsui
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eriko Kuwasaki
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzo Kodama
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kuniaki Seyama
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Takizawa M, Nakano M, Fukami T, Nakajima M. Decrease in ADAR1 expression by exposure to cigarette smoke enhances susceptibility to oxidative stress. Toxicol Lett 2020; 331:22-32. [PMID: 32439581 DOI: 10.1016/j.toxlet.2020.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, is the most frequent type of post-transcriptional nucleotide conversion in humans. It is known that innate abnormalities of A-to-I RNA editing are associated with the risk of certain diseases, such as amyotrophic lateral sclerosis. Extrinsic factors that modulate ADAR-mediated RNA editing remain to be clarified. In this study, we investigated the possibility that cigarette smoking may influence the expression of ADAR and that the changes may be biologically significant. Treatment of human lung adenocarcinoma A549 cells with cigarette smoke extract (CSE) induced a significant 50% decrease in ADAR1 protein levels. Since the decrease was counteracted by cotreatment with chloroquine, the CSE-dependent decrease in the ADAR1 protein levels may be due to the activation of autophagy. In addition to the in vitro study, we performed an in vivo study in mice and found a decrease in pulmonary Adar1 protein expression induced by cigarette smoking. Then, we investigated the biological significance of decreased ADAR1 expression. We found that knockdown of ADAR1 in A549 cells by siRNA resulted in an increase in the levels of protein carbonyl, a marker of oxidative stress. Moreover, knockdown of ADAR1 triggered a decrease in super oxide dismutase activity and heme oxygenase-1 expression, suggesting that ADAR1 plays a role to suppress oxidative stress. In conclusion, we show that ADAR1 expression is decreased by cigarette smoking and is a factor that contributes to the enhanced intracellular oxidative stress caused by cigarette smoking.
Collapse
Affiliation(s)
- Masashi Takizawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
14
|
Qayyum MA, Farooq Z, Yaseen M, Mahmood MH, Irfan A, Zafar MN, Khawaja M, Naeem K, Kisa D. Statistical Assessment of Toxic and Essential Metals in the Serum of Female Patients with Lung Carcinoma from Pakistan. Biol Trace Elem Res 2020; 197:367-383. [PMID: 31848922 DOI: 10.1007/s12011-019-01998-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023]
Abstract
Lung cancer (LC) is the number one cancer killer of women both in the USA and around the world. Besides cigarette smoking, an important feature in the etiology of LC is its strong association with exposure of toxic metals. The primary objective of the present investigation was to assess the concentrations of toxic/essential elements (Ni, Ca, Se, Zn, Co, K, Cr, As, Cu, Na, Fe, Hg, Cd, Mg, Mn, and Pb) in the serum samples of LC female patients with female controls by atomic absorption spectrometry after wet-acid digestion procedure. Carcinoembryonic antigen (CEA) was also measured in the serum of the patients using immunoradiometric method. Comparative appraisal of the data revealed that concentrations of Cr, Mg, Cd, Pb, Hg, As, and Ni were noted to be high significantly in serum of LC female patients, while the average Fe, Co, Mn, Na, K, Zn, Ca, and Se were observed at higher levels in female controls (p < 0.05). The correlation study revealed significantly different mutual associations among the elements in the both donor groups. Markedly, variations in the elemental levels were also noted for different types (non-small cell lung cancer and small cell lung cancer) and stages (I, II, III, & IV) of LC patients. Multivariate analyses showed substantially diverse apportionment of the metals in the female patients and female controls. Hence, present findings suggest that the toxic and essential metals accumulated in the body may pose a high risk for LC progression in Pakistani females.
Collapse
Affiliation(s)
- Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan.
| | - Zahid Farooq
- Department of Physics, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Muhammad Yaseen
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Mian Hr Mahmood
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Ahmad Irfan
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Research Center for Advanced Materials Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | | - Muddassir Khawaja
- Division of Pulmonary Critical Care and Sleep Medicine, University of Tennessee Health Science Center , Memphis, TN, 38163, USA
| | - Kashif Naeem
- Central Analytical Facility Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O Nilore, Islamabad, 45650, Pakistan
| | - Dursun Kisa
- Department of Molecular Biology and Genetics, Bartin University Kutlubey Campus Yazcilar, Merkez , Bartin 74110, Turkey
| |
Collapse
|
15
|
Alarabi AB, Karim ZA, Ramirez JEM, Hernandez KR, Lozano PA, Rivera JO, Alshbool FZ, Khasawneh FT. Short-Term Exposure to Waterpipe/Hookah Smoke Triggers a Hyperactive Platelet Activation State and Increases the Risk of Thrombogenesis. Arterioscler Thromb Vasc Biol 2020; 40:335-349. [PMID: 31941383 DOI: 10.1161/atvbaha.119.313435] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Cardiovascular disease is a major public health problem. Among cardiovascular disease's risk factors, tobacco smoking is considered the single most preventable cause of death, with thrombosis being the main mechanism of cardiovascular disease mortality in smokers. While tobacco smoking has been on the decline, the use of waterpipes/hookah has been rising, mainly due to the perception that they are less harmful than regular cigarettes. Strikingly, there are few studies on the negative effects of waterpipes on the cardiovascular system, and none regarding their direct contribution to thrombus formation. Approach and Results: We used a waterpipe whole-body exposure protocol that mimics real-life human exposure scenarios and investigated its effects, relative to clean air, on platelet function, hemostasis, and thrombogenesis. We found that waterpipe smoke (WPS)-exposed mice exhibited both shortened thrombus occlusion and bleeding times. Further, our results show that platelets from WPS-exposed mice are hyperactive, with enhanced agonist-induced aggregation, dense and α-granule secretion, αIIbβ3 integrin activation, phosphatidylserine expression, and platelet spreading, when compared with clean air-exposed platelets. Finally, at the molecular level, it was found that Akt (protein kinase B) and ERK (extracellular signal-regulated kinases) phosphorylation are enhanced in the WPS and in nicotine-treated platelets. CONCLUSIONS Our findings demonstrate that WPS exposure directly modulates hemostasis and increases the risk of thrombosis and that this is mediated, in part, via a state of platelet hyperactivity. The negative health impact of WPS/hookah, therefore, should not be underestimated. Moreover, this study should also help in raising public awareness of the toxic effects of waterpipe/hookah.
Collapse
Affiliation(s)
- Ahmed B Alarabi
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Zubair A Karim
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Jean E Montes Ramirez
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Keziah R Hernandez
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Patricia A Lozano
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - José O Rivera
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Fatima Z Alshbool
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Fadi T Khasawneh
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| |
Collapse
|
16
|
Vanderstocken G, Dvorkin-Gheva A, Shen P, Brandsma CA, Obeidat M, Bossé Y, Hassell JA, Stampfli MR. Identification of Drug Candidates to Suppress Cigarette Smoke-induced Inflammation via Connectivity Map Analyses. Am J Respir Cell Mol Biol 2019; 58:727-735. [PMID: 29256623 DOI: 10.1165/rcmb.2017-0202oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease, and to date, existing pharmacologic interventions have been ineffective at controlling inflammatory processes associated with the disease. To address this issue, we used the Connectivity Map (cMap) database to identify drug candidates with the potential to attenuate cigarette smoke-induced inflammation. We queried cMap using three independent in-house cohorts of healthy nonsmokers and smokers. Potential drug candidates were validated against four publicly available human datasets, as well as six independent datasets from cigarette smoke-exposed mice. Overall, these analyses yielded two potential drug candidates: kaempferol and bethanechol. Subsequently, the efficacy of each drug was validated in vivo in a model of cigarette smoke-induced inflammation. BALB/c mice were exposed to room air or cigarette smoke and treated with each of the two candidate drugs either prophylactically or therapeutically. We found that kaempferol, but not bethanechol, was able to reduce cigarette smoke-induced neutrophilia, both when administered prophylactically and when administered therapeutically. Mechanistically, kaempferol decreased expression of IL-1α and CXCL5 concentrations in the lung. Our data suggest that cMap analyses may serve as a useful tool to identify novel drug candidates against cigarette smoke-induced inflammation.
Collapse
Affiliation(s)
- Gilles Vanderstocken
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre
| | - Anna Dvorkin-Gheva
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre.,2 Department of Pathology and Molecular Medicine, Centre for Functional Genomics, and
| | - Pamela Shen
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre
| | - Corry-Anke Brandsma
- 3 Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ma'en Obeidat
- 4 The University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Yohan Bossé
- 5 Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada; and.,6 Department of Molecular Medicine, Laval University, Québec City, Québec, Canada
| | - John A Hassell
- 2 Department of Pathology and Molecular Medicine, Centre for Functional Genomics, and
| | - Martin R Stampfli
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre.,7 Department of Medicine, Firestone Institute for Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Jubinville É, Routhier J, Maranda-Robitaille M, Pineault M, Milad N, Talbot M, Beaulieu MJ, Aubin S, Paré MÈ, Laplante M, Morissette MC. Pharmacological activation of liver X receptor during cigarette smoke exposure adversely affects alveolar macrophages and pulmonary surfactant homeostasis. Am J Physiol Lung Cell Mol Physiol 2019; 316:L669-L678. [PMID: 30702343 DOI: 10.1152/ajplung.00482.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Smoking alters pulmonary reverse lipid transport and leads to intracellular lipid accumulation in alveolar macrophages. We investigated whether stimulating reverse lipid transport with an agonist of the liver X receptor (LXR) would help alveolar macrophages limit lipid accumulation and dampen lung inflammation in response to cigarette smoke. Mice were exposed to cigarette smoke and treated intraperitoneally with the LXR agonist T0901317. Expression of lipid capture and lipid export genes was assessed in lung tissue and alveolar macrophages. Pulmonary inflammation was assessed in the bronchoalveolar lavage (BAL). Finally, cholesterol efflux capacity and pulmonary surfactant levels were determined. In room air-exposed mice, T0901317 increased the expression of lipid export genes in macrophages and the whole lung and increased cholesterol efflux capacity without inducing inflammation or affecting the pulmonary surfactant. However, cigarette smoke-exposed mice treated with T0901317 showed a marked increase in BAL neutrophils, IL-1α, C-C motif chemokine ligand 2, and granulocyte-colony-stimulating factor levels. T0901317 treatment in cigarette smoke-exposed mice failed to increase the ability of alveolar macrophages to export cholesterol and markedly exacerbated IL-1α release. Finally, T0901317 led to pulmonary surfactant depletion only in cigarette smoke-exposed mice. This study shows that hyperactivation of LXR and the associated lipid capture/export mechanisms only have minor pulmonary effects on the normal lung. However, in the context of cigarette smoke exposure, where the pulmonary surfactant is constantly oxidized, hyperactivation of LXR has dramatic adverse effects, once again showing the central role of lipid homeostasis in the pulmonary response to cigarette smoke exposure.
Collapse
Affiliation(s)
- Éric Jubinville
- Faculty of Medicine, Université Laval , Quebec City, Quebec , Canada
- Quebec Heart and Lung Institute, Université Laval , Quebec City, Quebec , Canada
| | - Joanie Routhier
- Faculty of Medicine, Université Laval , Quebec City, Quebec , Canada
- Quebec Heart and Lung Institute, Université Laval , Quebec City, Quebec , Canada
| | | | - Marie Pineault
- Faculty of Medicine, Université Laval , Quebec City, Quebec , Canada
- Quebec Heart and Lung Institute, Université Laval , Quebec City, Quebec , Canada
| | - Nadia Milad
- Faculty of Medicine, Université Laval , Quebec City, Quebec , Canada
- Quebec Heart and Lung Institute, Université Laval , Quebec City, Quebec , Canada
| | - Maude Talbot
- Faculty of Medicine, Université Laval , Quebec City, Quebec , Canada
- Quebec Heart and Lung Institute, Université Laval , Quebec City, Quebec , Canada
| | - Marie-Josée Beaulieu
- Quebec Heart and Lung Institute, Université Laval , Quebec City, Quebec , Canada
| | - Sophie Aubin
- Quebec Heart and Lung Institute, Université Laval , Quebec City, Quebec , Canada
| | - Marie-Ève Paré
- Quebec Heart and Lung Institute, Université Laval , Quebec City, Quebec , Canada
| | - Mathieu Laplante
- Quebec Heart and Lung Institute, Université Laval , Quebec City, Quebec , Canada
- Department of Medicine, Université Laval , Quebec City, Quebec , Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, Quebec, Canada
| | - Mathieu C Morissette
- Quebec Heart and Lung Institute, Université Laval , Quebec City, Quebec , Canada
- Department of Medicine, Université Laval , Quebec City, Quebec , Canada
| |
Collapse
|
18
|
Engle ML, Monk JN, Jania CM, Martin JR, Gomez JC, Dang H, Parker JS, Doerschuk CM. Dynamic changes in lung responses after single and repeated exposures to cigarette smoke in mice. PLoS One 2019; 14:e0212866. [PMID: 30818335 PMCID: PMC6395068 DOI: 10.1371/journal.pone.0212866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoke is well recognized to cause injury to the airways and the alveolar walls over time. This injury usually requires many years of exposure, suggesting that the lungs may rapidly develop responses that initially protect it from this repetitive injury. Our studies tested the hypotheses that smoke induces an inflammatory response and changes in mRNA profiles that are dependent on sex and the health status of the lung, and that the response of the lungs to smoke differs after 1 day compared to 5 days of exposure. Male and female wildtype (WT) and Scnn1b-transgenic (βENaC) mice, which have chronic bronchitis and emphysematous changes due to dehydrated mucus, were exposed to cigarette smoke or sham air conditions for 1 or 5 days. The inflammatory response and gene expression profiles were analyzed in lung tissue. Overall, the inflammatory response to cigarette smoke was mild, and changes in mediators were more numerous after 1 than 5 days. βENaC mice had more airspace leukocytes than WT mice, and smoke exposure resulted in additional significant alterations. Many genes and gene sets responded similarly at 1 and 5 days: genes involved in oxidative stress responses were upregulated while immune response genes were downregulated. However, certain genes and biological processes were regulated differently after 1 compared to 5 days. Extracellular matrix biology genes and gene sets were upregulated after 1 day but downregulated by 5 days of smoke compared to sham exposure. There was no difference in the transcriptional response to smoke between WT and βENaC mice or between male and female mice at either 1 or 5 days. Taken together, these studies suggest that the lungs rapidly alter gene expression after only one exposure to cigarette smoke, with few additional changes after four additional days of repeated exposure. These changes may contribute to preventing lung damage.
Collapse
Affiliation(s)
- Michelle L. Engle
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Justine N. Monk
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Pathobiology and Translational Science Graduate Program, University of North Carolina, Chapel Hill, NC, United States of America
| | - Corey M. Jania
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Jessica R. Martin
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - John C. Gomez
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Joel S. Parker
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Claire M. Doerschuk
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
19
|
The Overlap of Lung Tissue Transcriptome of Smoke Exposed Mice with Human Smoking and COPD. Sci Rep 2018; 8:11881. [PMID: 30089872 PMCID: PMC6082828 DOI: 10.1038/s41598-018-30313-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/23/2018] [Indexed: 01/09/2023] Open
Abstract
Genome-wide mRNA profiling in lung tissue from human and animal models can provide novel insights into the pathogenesis of chronic obstructive pulmonary disease (COPD). While 6 months of smoke exposure are widely used, shorter durations were also reported. The overlap of short term and long-term smoke exposure in mice is currently not well understood, and their representation of the human condition is uncertain. Lung tissue gene expression profiles of six murine smoking experiments (n = 48) were obtained from the Gene Expression Omnibus (GEO) and analyzed to identify the murine smoking signature. The "human smoking" gene signature containing 386 genes was previously published in the lung eQTL study (n = 1,111). A signature of mild COPD containing 7 genes was also identified in the same study. The lung tissue gene signature of "severe COPD" (n = 70) contained 4,071 genes and was previously published. We detected 3,723 differentially expressed genes in the 6 month-exposure mice datasets (FDR <0.1). Of those, 184 genes (representing 48% of human smoking) and 1,003 (representing 27% of human COPD) were shared with the human smoking-related genes and the COPD severity-related genes, respectively. There was 4-fold over-representation of human and murine smoking-related genes (P = 6.7 × 10-26) and a 1.4 fold in the severe COPD -related genes (P = 2.3 × 10-12). There was no significant enrichment of the mice and human smoking-related genes in mild COPD signature. These data suggest that murine smoke models are strongly representative of molecular processes of human smoking but less of COPD.
Collapse
|
20
|
Qasim H, Karim ZA, Silva-Espinoza JC, Khasawneh FT, Rivera JO, Ellis CC, Bauer SL, Almeida IC, Alshbool FZ. Short-Term E-Cigarette Exposure Increases the Risk of Thrombogenesis and Enhances Platelet Function in Mice. J Am Heart Assoc 2018; 7:JAHA.118.009264. [PMID: 30021806 PMCID: PMC6201451 DOI: 10.1161/jaha.118.009264] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Cardiovascular disease is the main cause of death in the United States, with smoking being the primary preventable cause of premature death, and thrombosis being the main mechanism of cardiovascular mortality in smokers. Due to the perception that electronic/e‐cigarettes are “safer/less harmful” than conventional cigarettes, their usage—among a variety of ages—has increased tremendously during the past decade. Notably, there are limited studies regarding the negative effects of e‐cigarettes on the cardiovascular system, which is also the subject of significant debate. Methods and Results We employed a passive e‐VapeTM vapor inhalation system and developed an in vivo whole‐body e‐cigarette mouse exposure protocol that mimics real‐life human exposure scenarios/conditions and investigated the effects of e‐cigarettes and clean air on platelet function and thrombogenesis. Our results show that platelets from e‐cigarette–exposed mice are hyperactive, with enhanced aggregation, dense and α granule secretion, activation of the αIIbβ3 integrin, phosphatidylserine expression, and Akt and ERK activation, when compared with clean air–exposed platelets. E‐cigarette–exposed platelets were also found to be resistant to inhibition by prostacyclin, relative to clean air. Furthermore, the e‐cigarette–exposed mice exhibited a shortened thrombosis occlusion and bleeding times. Conclusions Taken together, our data demonstrate for the first time that e‐cigarettes alter physiological hemostasis and increase the risk of thrombogenic events. This is attributable, at least in part, to the hyperactive state of platelets. Thus, the negative health consequences of e‐cigarette exposure should not be underestimated and warrant further investigation.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| | - Zubair A Karim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| | - Juan C Silva-Espinoza
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| | - José O Rivera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| | - Cameron C Ellis
- Border Biomedical Research Center, Department of Biological Sciences, College of Science, University of Texas El Paso, TX
| | - Stephanie L Bauer
- Border Biomedical Research Center, Department of Biological Sciences, College of Science, University of Texas El Paso, TX
| | - Igor C Almeida
- Border Biomedical Research Center, Department of Biological Sciences, College of Science, University of Texas El Paso, TX
| | - Fatima Z Alshbool
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| |
Collapse
|
21
|
Talbot M, Hamel-Auger M, Beaulieu MJ, Gazzola M, Lechasseur A, Aubin S, Paré MÈ, Marsolais D, Bossé Y, Morissette MC. Impact of immunization against OxLDL on the pulmonary response to cigarette smoke exposure in mice. Respir Res 2018; 19:131. [PMID: 29970083 PMCID: PMC6029023 DOI: 10.1186/s12931-018-0833-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Background Cigarette smoke exposure can affect pulmonary lipid homeostasis and cause a progressive increase in pulmonary antibodies against oxidized low-density lipoproteins (OxLDL). Similarly, increased anti-OxLDL antibodies are observed in atherosclerosis, a pathology also tightly associated with smoking and lipid homeostasis disruption. Several immunization strategies against oxidized lipid species to help with their clearance have been shown to reduce the formation of atherosclerotic lesions. Since oxidized lipids are generated during cigarette smoke exposure, we investigated the impact of a prophylactic immunization protocol against OxLDL on the pulmonary effects of cigarette smoke exposure in mice. Methods Mice were immunized systemically with a mixture of human OxLDL (antigen source) and AddaVax (adjuvant) or PBS alone prior to the initiation of acute (2 week) or sub-chronic (8 weeks) cigarette smoke exposure protocols. Anti-OxLDL antibodies were measured in the bronchoalveolar lavage (BAL) fluid and serum by direct ELISA. Pulmonary impacts of cigarette smoke exposure and OxLDL immunization were assessed by measuring BAL inflammatory cells, lung functions, and changes in lung structure and gene levels of matrix/matrix-related genes. Results Immunization to OxLDL led to a marked increase in circulating and pulmonary antibodies against OxLDL that persisted during cigarette smoke exposure. OxLDL immunization did not exacerbate or reduce the inflammatory response following acute or sub-chronic exposure to cigarette smoke. OxLDL immunization alone had effects similar to cigarette smoke exposure on lung functions but OxLDL immunization and cigarette smoke exposure had no additive effects on these parameters. No obvious changes in lung histology, airspace or levels of matrix and matrix-related genes were caused by OxLDL immunization compared to vehicle treatment. Conclusions Overall, this study shows for the first time that a prophylactic immunization protocol against OxLDL can potentially have detrimental effects lung functions, without having additive effects over cigarette smoke exposure. This work sheds light on a complex dynamic between anti-OxLDL antibodies and the pulmonary response to cigarette smoke exposure.
Collapse
Affiliation(s)
- Maude Talbot
- Faculty of Medicine, Université Laval, Quebec City, Canada.,Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Mélanie Hamel-Auger
- Faculty of Medicine, Université Laval, Quebec City, Canada.,Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Marie-Josée Beaulieu
- Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Morgan Gazzola
- Faculty of Medicine, Université Laval, Quebec City, Canada.,Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Ariane Lechasseur
- Faculty of Medicine, Université Laval, Quebec City, Canada.,Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Sophie Aubin
- Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Marie-Ève Paré
- Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - David Marsolais
- Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada.,Department of Medicine, Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Ynuk Bossé
- Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada.,Department of Medicine, Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Mathieu C Morissette
- Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada. .,Department of Medicine, Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada.
| |
Collapse
|
22
|
López-Hernández Y, Rivas-Santiago CE, López JA, Mendoza-Almanza G, Hernandez-Pando R. Tuberculosis and cigarette smoke exposure: An update of in vitro and in vivo studies. Exp Lung Res 2018; 44:113-126. [PMID: 29565741 DOI: 10.1080/01902148.2018.1444824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) has been declared the first cause of death by an infectious agent. Annually, 10.4 million people suffer active TB. Most infected individuals live in low-income countries, where social and economic conditions enhance the dissemination and progression of the disease. These countries have a high percentage of smokers. Thousands of studies have linked cigarette smoke (CS) with increased risk of many diseases, such as cancer and lung diseases. Numerous in vitro studies have been conducted to evaluate the general and specific toxic effects of CS in lung immune function. Smoke exposure increases the risk of TB development three-fold. However, until now, only few animal studies have been performed to analyze the association between smoke and TB. In the present work, we review in vitro and in vivo studies whose aim was to analyze the molecular basis of TB susceptibility caused by exposure to CS.
Collapse
Affiliation(s)
- Y López-Hernández
- a CONACyT, Unidad Academica de Ciencias Biologicas , Universidad Autónoma de Zacatecas , Zacatecas , Mexico
| | - C E Rivas-Santiago
- a CONACyT, Unidad Academica de Ciencias Biologicas , Universidad Autónoma de Zacatecas , Zacatecas , Mexico
| | - J A López
- b Laboratorio de MicroRNAs, Unidad Academica de Ciencias Biologicas , Universidad Autónoma de Zacatecas , Zacatecas , Mexico
| | - G Mendoza-Almanza
- a CONACyT, Unidad Academica de Ciencias Biologicas , Universidad Autónoma de Zacatecas , Zacatecas , Mexico
| | - R Hernandez-Pando
- c Departamento de Patologia, Unidad de Patologia Experimental , Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran , Mexico
| |
Collapse
|
23
|
Zeng Z, Li M, Chen J, Li Q, Ning Q, Zhao J, Xu Y, Xie J, Yu J. Reduced MBD2 expression enhances airway inflammation in bronchial epithelium in COPD. Int J Chron Obstruct Pulmon Dis 2018. [PMID: 29535511 PMCID: PMC5836663 DOI: 10.2147/copd.s148595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a common inflammatory lung disease characterized by inflammatory cells activation and production of inflammatory mediators. Methyl-CpG-binding domain protein 2 (MBD2) plays an important role in diverse immunological disorders by regulating immune cell functions, such as differentiation and mediator secretion. However, the role of MBD2 in COPD remains unknown. Methods MBD2 protein expression in lung tissues of patients with COPD and cigarette smoke (CS)-exposed mice were evaluated by Western blot and immunohistochemistry. The role of MBD2 in cigarette smoke extract (CSE)-induction of inflammatory mediator expression in the human bronchial epithelial (HBE) cell line was assessed by silencing MBD2 expression in vitro. The involvement of signaling pathways in mediation of inflammation was tested with signaling inhibitors. Results Compared with controls, MBD2 expression was distinctly reduced in the bronchial epithelium of both patients with COPD and CS-exposed mice. Moreover, MBD2 expression was decreased in HBE after CSE stimulation in vitro. Moreover, MBD2 knockdown enhanced interleukin (IL)-6 and IL-8 expression in HBE in the presence and absence of CSE treatment by the ERK signaling pathway. Conclusion MBD2 protein expression was reduced in the airway epithelium of COPD. In HBE, this reduced expression was associated with increased levels of IL-6 and IL-8 mediated by the ERK pathway. These results suggest that MBD2 could contribute to chronic airway inflammation in COPD.
Collapse
Affiliation(s)
- Zhilin Zeng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease.,Department of Infectious Disease, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Miao Li
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease
| | - Jinkun Chen
- Acadia Junior High School, Winnipeg, MB, Canada
| | - Qinghai Li
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease
| | - Qin Ning
- Department of Infectious Disease, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
24
|
Vlahos R, Bozinovski S. Protocols to Evaluate Cigarette Smoke-Induced Lung Inflammation and Pathology in Mice. Methods Mol Biol 2018; 1725:53-63. [PMID: 29322408 DOI: 10.1007/978-1-4939-7568-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cigarette smoking is a major cause of chronic obstructive pulmonary disease (COPD). Inhalation of cigarette smoke causes inflammation of the airways, airway wall remodelling, mucus hypersecretion and progressive airflow limitation. Much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and infectious (viral and bacterial) exacerbations (AECOPD). Comorbidities, in particular skeletal muscle wasting, cardiovascular disease and lung cancer markedly impact on disease morbidity, progression and mortality. The mechanisms and mediators underlying COPD and its comorbidities are poorly understood and current COPD therapy is relatively ineffective. Many researchers have used animal modelling systems to explore the mechanisms underlying COPD, AECOPD and comorbidities of COPD with the goal of identifying novel therapeutic targets. Here we describe a mouse model that we have developed to define the cellular, molecular and pathological consequences of cigarette smoke exposure and the development of comorbidities of COPD.
Collapse
Affiliation(s)
- Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
25
|
Boorsma CE, van der Veen TA, Putri KSS, de Almeida A, Draijer C, Mauad T, Fejer G, Brandsma CA, van den Berge M, Bossé Y, Sin D, Hao K, Reithmeier A, Andersson G, Olinga P, Timens W, Casini A, Melgert BN. A Potent Tartrate Resistant Acid Phosphatase Inhibitor to Study the Function of TRAP in Alveolar Macrophages. Sci Rep 2017; 7:12570. [PMID: 28974738 PMCID: PMC5626781 DOI: 10.1038/s41598-017-12623-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 09/13/2017] [Indexed: 12/03/2022] Open
Abstract
The enzyme tartrate resistant acid phosphatase (TRAP, two isoforms 5a and 5b) is highly expressed in alveolar macrophages, but its function there is unclear and potent selective inhibitors of TRAP are required to assess functional aspects of the protein. We found higher TRAP activity/expression in lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma compared to controls and more TRAP activity in lungs of mice with experimental COPD or asthma. Stimuli related to asthma and/or COPD were tested for their capacity to induce TRAP. Receptor activator of NF-κb ligand (RANKL) and Xanthine/Xanthine Oxidase induced TRAP mRNA expression in mouse macrophages, but only RANKL also induced TRAP activity in mouse lung slices. Several Au(III) coordination compounds were tested for their ability to inhibit TRAP activity and [Au(4,4′-dimethoxy-2,2′-bipyridine)Cl2][PF6] (AubipyOMe) was found to be the most potent inhibitor of TRAP5a and 5b activity reported to date (IC50 1.3 and 1.8 μM respectively). AubipyOMe also inhibited TRAP activity in murine macrophage and human lung tissue extracts. In a functional assay with physiological TRAP substrate osteopontin, AubipyOMe inhibited mouse macrophage migration over osteopontin-coated membranes. In conclusion, higher TRAP expression/activity are associated with COPD and asthma and TRAP is involved in regulating macrophage migration.
Collapse
Affiliation(s)
- Carian E Boorsma
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - T Anienke van der Veen
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Kurnia S S Putri
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | | | - Christina Draijer
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Thais Mauad
- São Paulo University, Department of Pathology, São Paulo, Brazil
| | - Gyorgy Fejer
- University of Plymouth, School of Biomedical and Healthcare Sciences, Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Yohan Bossé
- Laval University, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Molecular Medicine, Québec, Canada
| | - Don Sin
- University of British Columbia, James Hogg Research Center, Providence Heart+Lung Institute, St. Paul's Hospital, Vancouver, British Columbia, Canada.,University of British Columbia, Respiratory Division, Department of Medicine, Vancouver, British Columbia, Canada
| | - Ke Hao
- Merck Research Laboratories, Boston, Massachusetts, United States of America
| | - Anja Reithmeier
- Karolinska Institute, Department of Laboratory Medicine (LABMED), H5, Division of Pathology, F46, Karolinska University hospital, Huddinge, Stockholm, Sweden
| | - Göran Andersson
- Karolinska Institute, Department of Laboratory Medicine (LABMED), H5, Division of Pathology, F46, Karolinska University hospital, Huddinge, Stockholm, Sweden
| | - Peter Olinga
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Angela Casini
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands. .,School of Chemistry, Cardiff University, Cardiff, United Kingdom.
| | - Barbro N Melgert
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands. .,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands.
| |
Collapse
|
26
|
Oliveira da Silva C, Monte-Alto-Costa A, Renovato-Martins M, Viana Nascimento FJ, Dos Santos Valença S, Lagente V, Pôrto LC, Victoni T. Time Course of the Phenotype of Blood and Bone Marrow Monocytes and Macrophages in the Lung after Cigarette Smoke Exposure In Vivo. Int J Mol Sci 2017; 18:ijms18091940. [PMID: 28891938 PMCID: PMC5618589 DOI: 10.3390/ijms18091940] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 12/20/2022] Open
Abstract
Alveolar macrophages play a central role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Monocytes are recruited from blood during inflammation and then mature into alveolar macrophages. The aim of this study was to investigate the effect of cigarette smoke (CS) at different times in lung macrophages and monocytes from blood and bone marrow in mice. Male mice (C57BL/6, n = 45) were divided into groups: control, CS 5 days, CS 14 days and CS 30 days. Five days’ CS exposure induced a pronounced influx of neutrophils and macrophages in the lung associated with increased levels of keratinocyte chemoattractant (KC), tumor necrosis factor-α (TNF-α), nitric oxide (NO) and matrix metalloproteinase (MMP)-12. After 14 days of CS exposure, neutrophil recruitment and cytokine production were greatly reduced. Moreover, chronic CS exposure led to increased recruitment of macrophages (with high expression of CD206), transforming growth factor-β (TGF-β) production as well as no detection of TNF-α, interleukin (IL)-6 and KC. CS can also change the monocyte phenotype in the blood and bone marrow, with an increase in Ly6Clow cells. These results show for the first time that CS can change not only macrophage polarization but also monocyte. These results suggest that continued recruitment of Ly6Clow monocytes may help the distinct renewing macrophage M2 population required for COPD progression.
Collapse
Affiliation(s)
- Camila Oliveira da Silva
- Laboratório e Histocompatibilidade e Criopreservação, HLA/Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20950-000, Brazil.
| | - Andréa Monte-Alto-Costa
- Laboratório de Reparo Tecidual, DHE/IBRAG/Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20950-003, Brazil.
| | - Mariana Renovato-Martins
- Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20551-030, Brazil.
| | - Filipe Jorge Viana Nascimento
- Laboratório e Histocompatibilidade e Criopreservação, HLA/Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20950-000, Brazil.
| | - Samuel Dos Santos Valença
- Laboratório de Biologia Redox, ICB/Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Vincent Lagente
- Nutrition, Métabolismes et Cancer, NUMECAN Unité, Institut national de la santé et de la recherche médicale, INSERM 1241/Institut national de la recherche agronomique, INRA 1341/Université de Rennes 1, 35000 Rennes, France.
| | - Luís Cristóvão Pôrto
- Laboratório e Histocompatibilidade e Criopreservação, HLA/Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20950-000, Brazil.
| | - Tatiana Victoni
- Laboratório e Histocompatibilidade e Criopreservação, HLA/Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20950-000, Brazil.
- Nutrition, Métabolismes et Cancer, NUMECAN Unité, Institut national de la santé et de la recherche médicale, INSERM 1241/Institut national de la recherche agronomique, INRA 1341/Université de Rennes 1, 35000 Rennes, France.
| |
Collapse
|
27
|
Jay TR, von Saucken VE, Landreth GE. TREM2 in Neurodegenerative Diseases. Mol Neurodegener 2017; 12:56. [PMID: 28768545 PMCID: PMC5541421 DOI: 10.1186/s13024-017-0197-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
TREM2 variants have been identified as risk factors for Alzheimer's disease (AD) and other neurodegenerative diseases (NDDs). Because TREM2 encodes a receptor exclusively expressed on immune cells, identification of these variants conclusively demonstrates that the immune response can play an active role in the pathogenesis of NDDs. These TREM2 variants also confer the highest risk for developing Alzheimer's disease of any risk factor identified in nearly two decades, suggesting that understanding more about TREM2 function could provide key insights into NDD pathology and provide avenues for novel immune-related NDD biomarkers and therapeutics. The expression, signaling and function of TREM2 in NDDs have been extensively investigated in an effort to understand the role of immune function in disease pathogenesis and progression. We provide a comprehensive review of our current understanding of TREM2 biology, including new insights into the regulation of TREM2 expression, and TREM2 signaling and function across NDDs. While many open questions remain, the current body of literature provides clarity on several issues. While it is still often cited that TREM2 expression is decreased by pro-inflammatory stimuli, it is now clear that this is true in vitro, but inflammatory stimuli in vivo almost universally increase TREM2 expression. Likewise, while TREM2 function is classically described as promoting an anti-inflammatory phenotype, more than half of published studies demonstrate a pro-inflammatory role for TREM2, suggesting that its role in inflammation is much more complex. Finally, these components of TREM2 biology are applied to a discussion of how TREM2 impacts NDD pathologies and the latest assessment of how these findings might be applied to immune-directed clinical biomarkers and therapeutics.
Collapse
Affiliation(s)
- Taylor R. Jay
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Victoria E. von Saucken
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W 15th Street, Indianapolis, IN 46202 USA
| | - Gary E. Landreth
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W 15th Street, Indianapolis, IN 46202 USA
| |
Collapse
|
28
|
Yun JH, Morrow J, Owen CA, Qiu W, Glass K, Lao T, Jiang Z, Perrella MA, Silverman EK, Zhou X, Hersh CP. Transcriptomic Analysis of Lung Tissue from Cigarette Smoke-Induced Emphysema Murine Models and Human Chronic Obstructive Pulmonary Disease Show Shared and Distinct Pathways. Am J Respir Cell Mol Biol 2017; 57:47-58. [PMID: 28248572 DOI: 10.1165/rcmb.2016-0328oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD), the underlying molecular mechanisms for the significant variability in developing COPD in response to CS are incompletely understood. We performed lung gene expression profiling of two different wild-type murine strains (C57BL/6 and NZW/LacJ) and two genetic models with mutations in COPD genome-wide association study genes (HHIP and FAM13A) after 6 months of chronic CS exposure and compared the results to human COPD lung tissues. We identified gene expression patterns that correlate with severity of emphysema in murine and human lungs. Xenobiotic metabolism and nuclear erythroid 2-related factor 2-mediated oxidative stress response were commonly regulated molecular response patterns in C57BL/6, Hhip+/-, and Fam13a-/- murine strains exposed chronically to CS. The CS-resistant Fam13a-/- mouse and NZW/LacJ strain revealed gene expression response pattern differences. The Fam13a-/- strain diverged in gene expression compared with C57BL/6 control only after CS exposure. However, the NZW/LacJ strain had a unique baseline expression pattern, enriched for nuclear erythroid 2-related factor 2-mediated oxidative stress response and xenobiotic metabolism, and converged to a gene expression pattern similar to the more susceptible wild-type C57BL/6 after CS exposure. These results suggest that distinct molecular pathways may account for resistance to emphysema. Surprisingly, there were few genes commonly modulated in mice and humans. Our study suggests that gene expression responses to CS may be largely species and model dependent, yet shared pathways could provide biologically significant insights underlying individual susceptibility to CS.
Collapse
Affiliation(s)
- Jeong H Yun
- 1 Channing Division of Network Medicine, and.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Caroline A Owen
- 2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,3 The Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | | | | | - Taotao Lao
- 1 Channing Division of Network Medicine, and
| | | | - Mark A Perrella
- 2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,4 Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edwin K Silverman
- 1 Channing Division of Network Medicine, and.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xiaobo Zhou
- 1 Channing Division of Network Medicine, and.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Craig P Hersh
- 1 Channing Division of Network Medicine, and.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Gene and metabolite time-course response to cigarette smoking in mouse lung and plasma. PLoS One 2017; 12:e0178281. [PMID: 28575117 PMCID: PMC5456044 DOI: 10.1371/journal.pone.0178281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/10/2017] [Indexed: 12/15/2022] Open
Abstract
Prolonged cigarette smoking (CS) causes chronic obstructive pulmonary disease (COPD), a prevalent serious condition that may persist or progress after smoking cessation. To provide insight into how CS triggers COPD, we investigated temporal patterns of lung transcriptome expression and systemic metabolome changes induced by chronic CS exposure and smoking cessation. Whole lung RNA-seq data was analyzed at transcript and exon levels from C57Bl/6 mice exposed to CS for 1- or 7 days, for 3-, 6-, or 9 months, or for 6 months followed by 3 months of cessation using age-matched littermate controls. We identified previously unreported dysregulation of pyrimidine metabolism and phosphatidylinositol signaling pathways and confirmed alterations in glutathione metabolism and circadian gene pathways. Almost all dysregulated pathways demonstrated reversibility upon smoking cessation, except the lysosome pathway. Chronic CS exposure was significantly linked with alterations in pathways encoding for energy, phagocytosis, and DNA repair and triggered differential expression of genes or exons previously unreported to associate with CS or COPD, including Lox, involved in matrix remodeling, Gp2, linked to goblet cells, and Slc22a12 and Agpat3, involved in purine and glycerolipid metabolism, respectively. CS-induced lung metabolic pathways changes were validated using metabolomic profiles of matched plasma samples, indicating that dynamic metabolic gene regulation caused by CS is reflected in the plasma metabolome. Using advanced technologies, our study uncovered novel pathways and genes altered by chronic CS exposure, including those involved in pyrimidine metabolism, phosphatidylinositol signaling and lysosome function, highlighting their potential importance in the pathogenesis or diagnosis of CS-associated conditions.
Collapse
|
30
|
Cai X, Li R. Concurrent profiling of polar metabolites and lipids in human plasma using HILIC-FTMS. Sci Rep 2016; 6:36490. [PMID: 27819279 PMCID: PMC5098236 DOI: 10.1038/srep36490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
Abstract
Blood plasma is the most popularly used sample matrix for metabolite profiling studies, which aim to achieve global metabolite profiling and biomarker discovery. However, most of the current studies on plasma metabolite profiling focused on either the polar metabolites or lipids. In this study, a comprehensive analysis approach based on HILIC-FTMS was developed to concurrently examine polar metabolites and lipids. The HILIC-FTMS method was developed using mixed standards of polar metabolites and lipids, the separation efficiency of which is better in HILIC mode than in C5 and C18 reversed phase (RP) chromatography. This method exhibits good reproducibility in retention times (CVs < 3.43%) and high mass accuracy (<3.5 ppm). In addition, we found MeOH/ACN/Acetone (1:1:1, v/v/v) as extraction cocktail could achieve desirable gathering of demanded extracts from plasma samples. We further integrated the MeOH/ACN/Acetone extraction with the HILIC-FTMS method for metabolite profiling and smoking-related biomarker discovery in human plasma samples. Heavy smokers could be successfully distinguished from non smokers by univariate and multivariate statistical analysis of the profiling data, and 62 biomarkers for cigarette smoke were found. These results indicate that our concurrent analysis approach could be potentially used for clinical biomarker discovery, metabolite-based diagnosis, etc.
Collapse
Affiliation(s)
- Xiaoming Cai
- School of Public Health, Soochow University, Suzhou 215123, China.,Department of Pharmacology, University of California, Irvine, Irvine, CA 92697, United States
| | - Ruibin Li
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
31
|
Dvorkin-Gheva A, Vanderstocken G, Yildirim AÖ, Brandsma CA, Obeidat M, Bossé Y, Hassell JA, Stampfli MR. Total particulate matter concentration skews cigarette smoke's gene expression profile. ERJ Open Res 2016; 2:00029-2016. [PMID: 27995131 PMCID: PMC5165723 DOI: 10.1183/23120541.00029-2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023] Open
Abstract
Exposure of small animals to cigarette smoke is widely used as a model to study the pathogenesis of chronic obstructive pulmonary disease. However, protocols and exposure systems utilised vary substantially and it is unclear how these different systems compare. We analysed the gene expression profile of six publically available murine datasets from different cigarette smoke-exposure systems and related the gene signatures to three clinical cohorts. 234 genes significantly regulated by cigarette smoke in at least one model were used to construct a 55-gene network containing 17 clusters. Increasing numbers of differentially regulated clusters were associated with higher total particulate matter concentrations in the different datasets. Low total particulate matter-induced genes mainly related to xenobiotic/detoxification responses, while higher total particulate matter activated immune/inflammatory processes in addition to xenobiotic/detoxification responses. To translate these observations to the clinic, we analysed the regulation of the revealed network in three human cohorts. Similar to mice, we observed marked differences in the number of regulated clusters between the cohorts. These differences were not determined by pack-year. Although none of the experimental models exhibited a complete alignment with any of the human cohorts, some exposure systems showed higher resemblance. Thus, depending on the cohort, clinically observed changes in gene expression may be mirrored more closely by specific cigarette smoke exposure systems. This study emphasises the need for careful validation of animal models.
Collapse
Affiliation(s)
- Anna Dvorkin-Gheva
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- Centre for Functional Genomics, McMaster University, Hamilton, ON, Canada
- These authors contributed equally
| | - Gilles Vanderstocken
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- These authors contributed equally
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum München, Neuherberg, Germany, Member of the German Center for Lung Research (DZL)
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, GRIAC research institute, Groningen, The Netherlands
| | - Ma'en Obeidat
- The University of British Columbia Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Yohan Bossé
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, QC, Canada
- Dept of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - John A. Hassell
- Centre for Functional Genomics, McMaster University, Hamilton, ON, Canada
| | - Martin R. Stampfli
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- Dept of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
32
|
Dalrymple A, Ordoñez P, Thorne D, Walker D, Camacho OM, Büttner A, Dillon D, Meredith C. Cigarette smoke induced genotoxicity and respiratory tract pathology: evidence to support reduced exposure time and animal numbers in tobacco product testing. Inhal Toxicol 2016; 28:324-38. [PMID: 27160659 PMCID: PMC4898166 DOI: 10.3109/08958378.2016.1170911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 11/13/2022]
Abstract
Many laboratories are working to develop in vitro models that will replace in vivo tests, but occasionally there remains a regulatory expectation of some in vivo testing. Historically, cigarettes have been tested in vivo for 90 days. Recently, methods to reduce and refine animal use have been explored. This study investigated the potential of reducing animal cigarette smoke (CS) exposure to 3 or 6 weeks, and the feasibility of separate lung lobes for histopathology or the Comet assay. Rats were exposed to sham air or CS (1 or 2 h) for 3 or 6 weeks. Respiratory tissues were processed for histopathological evaluation, and Alveolar type II cells (AEC II) isolated for the Comet assay. Blood was collected for Pig-a and micronucleus quantification. Histopathological analyses demonstrated exposure effects, which were generally dependent on CS dose (1 or 2 h, 5 days/week). Comet analysis identified that DNA damage increased in AEC II following 3 or 6 weeks CS exposure, and the level at 6 weeks was higher than 3 weeks. Pig-a mutation or micronucleus levels were not increased. In conclusion, this study showed that 3 weeks of CS exposure was sufficient to observe respiratory tract pathology and DNA damage in isolated AEC II. Differences between the 3 and 6 week data imply that DNA damage in the lung is cumulative. Reducing exposure time, plus analyzing separate lung lobes for DNA damage or histopathology, supports a strategy to reduce and refine animal use in tobacco product testing and is aligned to the 3Rs (replacement, reduction and refinement).
Collapse
Affiliation(s)
| | - Patricia Ordoñez
- Vivotecnia Research S.L., Parque Científico de Madrid,
Tres Cantos,
Madrid,
Spain
| | - David Thorne
- British American Tobacco, R&D,
Southampton,
Hampshire,
UK
| | - David Walker
- British American Tobacco, R&D,
Southampton,
Hampshire,
UK
| | | | | | - Debbie Dillon
- British American Tobacco, R&D,
Southampton,
Hampshire,
UK
| | - Clive Meredith
- British American Tobacco, R&D,
Southampton,
Hampshire,
UK
| |
Collapse
|
33
|
Nunez K, Kay J, Krotow A, Tong M, Agarwal AR, Cadenas E, de la Monte SM. Cigarette Smoke-Induced Alterations in Frontal White Matter Lipid Profiles Demonstrated by MALDI-Imaging Mass Spectrometry: Relevance to Alzheimer's Disease. J Alzheimers Dis 2016; 51:151-63. [PMID: 26836183 PMCID: PMC5575809 DOI: 10.3233/jad-150916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Meta-analysis has shown that smokers have significantly increased risks for Alzheimer's disease (AD), and neuroimaging studies showed that smoking alters white matter (WM) structural integrity. OBJECTIVE Herein, we characterize the effects of cigarette smoke (CS) exposures and withdrawal on WM myelin lipid composition using matrix assisted laser desorption and ionization-imaging mass spectrometry (MALDI-IMS). METHODS Young adult male A/J mice were exposed to air (8 weeks; A8), CS (4 or 8 weeks; CS4, CS8), or CS8 followed by 2 weeks recovery (CS8 + R). Frontal lobe WM was examined for indices of lipid and protein oxidation and lipid profile alterations by MALDI-IMS. Lipid ions were identified by MS/MS with the LIPID MAPS prediction tools database. Inter-group comparisons were made using principal component analysis and R-generated heatmap. RESULTS CS increased lipid and protein adducts such that higher levels were present in CS8 compared with CS4 samples. CS8 + R reversed CS8 effects and normalized the levels of oxidative stress. MALDI-IMS demonstrated striking CS-associated alterations in WM lipid profiles characterized by either reductions or increases in phospholipids (phosphatidylinositol, phosphatidylserine, phosphatidylcholine, or phosphatidylethanolamine) and sphingolipids (sulfatides), and partial reversal of CS's inhibitory effects with recovery. The heatmap hierarchical dendrogram and PCA distinguished CS exposure, duration, and withdrawal effects on WM lipid profiles. CONCLUSION CS-mediated WM degeneration is associated with lipid peroxidation, protein oxidative injury, and alterations in myelin lipid composition, including shifts in phospholipids and sphingolipids needed for membrane integrity, plasticity, and intracellular signaling. Future goals are to delineate WM abnormalities in AD using MALDI-IMS, and couple the findings with MRI-mass spectroscopy to improve in vivo diagnostics and early detection of brain biochemical responses to treatment.
Collapse
Affiliation(s)
- Kavin Nunez
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Molecular Pharmacology, Physiology, and Biotechnology, Providence, RI, USA
| | - Jared Kay
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alexander Krotow
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Pathobiology Graduate Programs at Brown University, Providence, RI, USA
| | - Ming Tong
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Amit R. Agarwal
- The Department of Pharmacology Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Enrique Cadenas
- The Department of Pharmacology Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Suzanne M. de la Monte
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Divisions of Gastroenterology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Divisions of Neuropathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
34
|
Expression of epigenetic modifiers is not significantly altered by exposure to secondhand smoke. Lung Cancer 2015; 90:598-603. [PMID: 26525280 DOI: 10.1016/j.lungcan.2015.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Secondhand smoke (SHS) is a major risk factor for lung cancer in nonsmokers. DNA damage-derived mutagenicity is a well-established mechanism of SHS-carcinogenicity; however very little is known about the impact of SHS exposure on the epigenome. MATERIALS AND METHODS We have investigated whether exposure to SHS can modulate the expression of key epigenetic regulators responsible for the establishment and/or maintenance of DNA methylation and histone modification patterns in vivo. We have sub-chronically exposed mice to a mutagenic but non-tumorigenic dose of SHS, and subsequently determined the expression levels of major epigenetic modifiers in the lungs of SHS-exposed mice, immediately after termination of exposure and following 7-month recovery in clean air. RESULTS AND CONCLUSION Quantification of the expression of genes encoding DNA methyltransferases (Dnmt1, Dnmt3a, Dnmt3b and Dnmt3l), methyl binding domain proteins (Mecp2, Mbd2 and Mbd3) and histone deacetylases (Hdac1 and Hdac2) by quantitative reverse-transcription polymerase chain reaction analysis showed modest but not statistically significant differences in the relative transcription of these key epigenetic regulators between SHS-exposed mice and age-matched controls. The non-significant changes in the expression of main epigenetic modifiers in SHS-exposed mice imply that SHS may predominantly induce genotoxic effects, particularly at non-tumorigenic doses, whereas epigenetic effects may only be secondary and manifest en route to tumor formation.
Collapse
|
35
|
Camacho-Cáceres KI, Acevedo-Díaz JC, Pérez-Marty LM, Ortiz M, Irizarry J, Cabrera-Ríos M, Isaza CE. Multiple criteria optimization joint analyses of microarray experiments in lung cancer: from existing microarray data to new knowledge. Cancer Med 2015; 4:1884-900. [PMID: 26471143 PMCID: PMC4940807 DOI: 10.1002/cam4.540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 07/30/2015] [Accepted: 07/14/2015] [Indexed: 12/14/2022] Open
Abstract
Microarrays can provide large amounts of data for genetic relative expression in illnesses of interest such as cancer in short time. These data, however, are stored and often times abandoned when new experimental technologies arrive. This work reexamines lung cancer microarray data with a novel multiple criteria optimization‐based strategy aiming to detect highly differentially expressed genes. This strategy does not require any adjustment of parameters by the user and is capable to handle multiple and incommensurate units across microarrays. In the analysis, groups of samples from patients with distinct smoking habits (never smoker, current smoker) and different gender are contrasted to elicit sets of highly differentially expressed genes, several of which are already associated to lung cancer and other types of cancer. The list of genes is provided with a discussion of their role in cancer, as well as the possible research directions for each of them.
Collapse
Affiliation(s)
- Katia I Camacho-Cáceres
- Bio IE Lab, The Applied Optimization Group, Industrial Engineering Department, University of Puerto Rico, Mayaguez, Puerto Rico
| | - Juan C Acevedo-Díaz
- Bio IE Lab, The Applied Optimization Group, Industrial Engineering Department, University of Puerto Rico, Mayaguez, Puerto Rico
| | - Lynn M Pérez-Marty
- Bio IE Lab, The Applied Optimization Group, Industrial Engineering Department, University of Puerto Rico, Mayaguez, Puerto Rico
| | - Michael Ortiz
- Bio IE Lab, The Applied Optimization Group, Industrial Engineering Department, University of Puerto Rico, Mayaguez, Puerto Rico
| | - Juan Irizarry
- Bio IE Lab, The Applied Optimization Group, Industrial Engineering Department, University of Puerto Rico, Mayaguez, Puerto Rico
| | - Mauricio Cabrera-Ríos
- Bio IE Lab, The Applied Optimization Group, Industrial Engineering Department, University of Puerto Rico, Mayaguez, Puerto Rico
| | - Clara E Isaza
- Bio IE Lab, The Applied Optimization Group, Industrial Engineering Department, University of Puerto Rico, Mayaguez, Puerto Rico.,Public Health Program, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
36
|
Cabanski M, Fields B, Boue S, Boukharov N, DeLeon H, Dror N, Geertz M, Guedj E, Iskandar A, Kogel U, Merg C, Peck MJ, Poussin C, Schlage WK, Talikka M, Ivanov NV, Hoeng J, Peitsch MC. Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains. Inflamm Res 2015; 64:471-86. [PMID: 25962837 PMCID: PMC4464601 DOI: 10.1007/s00011-015-0820-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/15/2015] [Accepted: 04/11/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR). OBJECTIVE In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice. METHODS The lung transcriptomes of five mouse models (C57BL/6, ApoE (-/-) , A/J, CD1, and Nrf2 (-/-) ) were analyzed following 5-7 months of CS exposure. RESULTS We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPβ, PU.1, BRCA1, and STAT1. CONCLUSION These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Maciej Cabanski
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- />Novartis Pharma AG, Novartis Institutes for Biomedical Research (NIBR), 4002 Basel, Switzerland
| | - Brett Fields
- />Selventa, One Alewife Center, Cambridge, MA 02140 USA
| | - Stephanie Boue
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | | | - Hector DeLeon
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Natalie Dror
- />Selventa, One Alewife Center, Cambridge, MA 02140 USA
| | - Marcel Geertz
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- />Bayer Technology Services GmbH, 51368 Leverkusen, Germany
| | - Emmanuel Guedj
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Anita Iskandar
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Ulrike Kogel
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Celine Merg
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Michael J. Peck
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Carine Poussin
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Walter K. Schlage
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Marja Talikka
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V. Ivanov
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C. Peitsch
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
37
|
Morissette MC, Shen P, Thayaparan D, Stämpfli MR. Disruption of pulmonary lipid homeostasis drives cigarette smoke-induced lung inflammation in mice. Eur Respir J 2015; 46:1451-60. [DOI: 10.1183/09031936.00216914] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/07/2015] [Indexed: 01/09/2023]
Abstract
Overwhelming evidence links inflammation to the pathogenesis of smoking-related pulmonary diseases, especially chronic obstructive pulmonary disease (COPD). Despite an increased understanding of the disease pathogenesis, mechanisms initiating smoking-induced inflammatory processes remain incompletely understood.To investigate the mechanisms that initiate and propagate smoke-induced inflammation, we used a well-characterised mouse model of cigarette smoke exposure, mice deficient for interleukin (IL)-1α, IL-1β and Toll-like receptor 4, and antibodies blocking granulocyte-macrophage colony-stimulating factor (GM-CSF). Studies were also pursued using intranasal delivery of human oxidised low-density lipoprotein (hOxLDL), a source of oxidised lipids, to investigate the inflammatory processes associated with impaired lipid homeostasis.We found that cigarette smoke exposure rapidly led to lipid accumulation in pulmonary macrophages, a defining feature of foam cells, which in turn released high levels of IL-1α. In smoke-exposed IL-1α-deficient mice, phospholipids accumulated in the bronchoalveolar lavage, a phenomenon also observed when blocking GM-CSF. Intranasal administration of hOxLDL led to lipid accumulation in macrophages and initiated an inflammatory process that mirrored the characteristics of cigarette smoke-induced inflammation.These findings identify a link between lipid accumulation in macrophages, inflammation and damaged surfactant, suggesting that the response to damaged pulmonary surfactant is a central mechanism that drives cigarette smoke-induced inflammation. Further investigations are required to explore the role of distorted lipid homeostasis in the pathogenesis of COPD.
Collapse
|
38
|
Tommasi S, Zheng A, Besaratinia A. Exposure of mice to secondhand smoke elicits both transient and long-lasting transcriptional changes in cancer-related functional networks. Int J Cancer 2014; 136:2253-63. [PMID: 25346222 DOI: 10.1002/ijc.29284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022]
Abstract
Secondhand smoke (SHS) has long been linked to lung cancer and other diseases in nonsmokers. Yet, the underlying mechanisms of SHS carcinogenicity in nonsmokers remain to be elucidated. We investigated the immediate and long-lasting effects of SHS exposure on gene expression in mice in vivo. We exposed mice whole body to SHS for 5 h/day, 5 days/week for 4 months in exposure chambers of a microprocessor-controlled smoking machine. Subsequently, we performed microarray gene expression profiling, genome-wide, to construct the pulmonary transcriptome of SHS-exposed mice, immediately after discontinuation of exposure (T0) and following 1-month (T1) and 7-month (T2) recoveries in clean air. Sub-chronic exposure of mice to SHS elicited a robust transcriptomic response, including both reversible and irreversible changes in gene expression. There were 674 differentially expressed transcripts immediately after treatment (T0), of which the majority were involved in xenobiotic metabolism, signaling, and innate immune response. Reduced, yet, substantial numbers of differentially expressed transcripts were detectable in mice after cessation of SHS-exposure (254 transcripts at T1 and 30 transcripts at T2). Top biofunctional networks disrupted in SHS-exposed mice, even after termination of exposure, were implicated in cancer, respiratory disease, and inflammatory disease. Our data show that exposure of mice to SHS induces both transient and long-lasting changes in gene expression, which impact cancer-related functional networks. The pattern of transcriptional changes in SHS-exposed mice may provide clues on the underlying mechanisms of lung tumorigenesis in nonsmokers. Our findings underscore the importance of eliminating SHS from environments where nonsmokers are unavoidably exposed to this carcinogen.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | | |
Collapse
|