1
|
Williams TL, Verdon G, Kuc RE, Currinn H, Bender B, Solcan N, Schlenker O, Macrae RGC, Brown J, Schütz M, Zhukov A, Sinha S, de Graaf C, Gräf S, Maguire JJ, Brown AJH, Davenport AP. Structural and functional determination of peptide versus small molecule ligand binding at the apelin receptor. Nat Commun 2024; 15:10714. [PMID: 39730334 DOI: 10.1038/s41467-024-55381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
We describe a structural and functional study of the G protein-coupled apelin receptor, which binds two endogenous peptide ligands, apelin and Elabela/Toddler (ELA), to regulate cardiovascular development and function. Characterisation of naturally occurring apelin receptor variants from the UK Genomics England 100,000 Genomes Project, and AlphaFold2 modelling, identifies T892.64 as important in the ELA binding site, and R1684.64 as forming extensive interactions with the C-termini of both peptides. Base editing to introduce an R/H1684.64 variant into human stem cell-derived cardiomyocytes demonstrates that this residue is critical for receptor binding and function. Additionally, we present an apelin receptor crystal structure bound to the G protein-biased, small molecule agonist, CMF-019, which reveals a deeper binding mode versus the endogenous peptides at lipophilic pockets between transmembrane helices associated with GPCR activation. Overall, the data provide proof-of-principle for using genetic variation to identify key sites regulating receptor-ligand engagement.
Collapse
Affiliation(s)
- Thomas L Williams
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Grégory Verdon
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Rhoda E Kuc
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Heather Currinn
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Brian Bender
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Nicolae Solcan
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Oliver Schlenker
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Robyn G C Macrae
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Jason Brown
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Marco Schütz
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Andrei Zhukov
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Chris de Graaf
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Stefan Gräf
- NIHR BioResource for Translational Research - Rare Diseases, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, NHS Blood and Transplant, Long Road, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Cambridge, UK
| | - Janet J Maguire
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Alastair J H Brown
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK.
| | - Anthony P Davenport
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Abubakar M, Irfan U, Abdelkhalek A, Javed I, Khokhar MI, Shakil F, Raza S, Salim SS, Altaf MM, Habib R, Ahmed S, Ahmed F. Comprehensive Quality Analysis of Conventional and Novel Biomarkers in Diagnosing and Predicting Prognosis of Coronary Artery Disease, Acute Coronary Syndrome, and Heart Failure, a Comprehensive Literature Review. J Cardiovasc Transl Res 2024; 17:1258-1285. [PMID: 38995611 DOI: 10.1007/s12265-024-10540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Coronary artery disease (CAD), acute coronary syndrome (ACS), and heart failure (HF) are major global health issues with high morbidity and mortality rates. Biomarkers like cardiac troponins (cTn) and natriuretic peptides (NPs) are crucial tools in cardiology, but numerous new biomarkers have emerged, proving increasingly valuable in CAD/ACS. These biomarkers are classified based on their mechanisms, such as fibrosis, metabolism, inflammation, and congestion. The integration of established and emerging biomarkers into clinical practice is an ongoing process, and recognizing their strengths and limitations is crucial for their accurate interpretation, incorporation into clinical settings, and improved management of CVD patients. We explored established biomarkers like cTn, NPs, and CRP, alongside newer biomarkers such as Apo-A1, IL-17E, IgA, Gal-3, sST2, GDF-15, MPO, H-FABP, Lp-PLA2, and ncRNAs; provided evidence of their utility in CAD/ACS diagnosis and prognosis; and empowered clinicians to confidently integrate these biomarkers into clinical practice based on solid evidence.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan.
| | - Umema Irfan
- Department of Internal Medicine, Deccan College of Medical Sciences, Hyderabad, India
| | - Ahmad Abdelkhalek
- Department of Internal Medicine, Zhejiang University, Zhejiang, China
| | - Izzah Javed
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | | | - Fraz Shakil
- Department of Emergency Medicine, Mayo Hospital, Lahore, Pakistan
| | - Saud Raza
- Department of Anesthesia, Social Security Teaching Hospital, Lahore, Punjab, Pakistan
| | - Siffat Saima Salim
- Department of Surgery, Holy Family Red Crescent Medical College Hospital, Dhaka, Bangladesh
| | - Muhammad Mahran Altaf
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | - Rizwan Habib
- Department of Internal Medicine and Emergency, Indus Hospital, Lahore, Pakistan
| | - Simra Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| | - Farea Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| |
Collapse
|
3
|
Williams TL, Nyimanu D, Kuc RE, Foster R, Glen RC, Maguire JJ, Davenport AP. The biased apelin receptor agonist, MM07, reverses Sugen/hypoxia-induced pulmonary arterial hypertension as effectively as the endothelin antagonist macitentan. Front Pharmacol 2024; 15:1369489. [PMID: 38655187 PMCID: PMC11035786 DOI: 10.3389/fphar.2024.1369489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: Pulmonary arterial hypertension (PAH) is characterised by endothelial dysfunction and pathological vascular remodelling, resulting in the occlusion of pulmonary arteries and arterioles, right ventricular hypertrophy, and eventually fatal heart failure. Targeting the apelin receptor with the novel, G protein-biased peptide agonist, MM07, is hypothesised to reverse the developed symptoms of elevated right ventricular systolic pressure and right ventricular hypertrophy. Here, the effects of MM07 were compared with the clinical standard-of-care endothelin receptor antagonist macitentan. Methods: Male Sprague-Dawley rats were randomised and treated with either normoxia/saline, or Sugen/hypoxia (SuHx) to induce an established model of PAH, before subsequent treatment with either saline, macitentan (30 mg/kg), or MM07 (10 mg/kg). Rats were then anaesthetised and catheterised for haemodynamic measurements, and tissues collected for histopathological assessment. Results: The SuHx/saline group presented with significant increases in right ventricular hypertrophy, right ventricular systolic pressure, and muscularization of pulmonary arteries compared to normoxic/saline controls. Critically, MM07 was as at least as effective as macitentan in significantly reversing detrimental structural and haemodynamic changes after 4 weeks of treatment. Discussion: These results support the development of G protein-biased apelin receptor agonists with improved pharmacokinetic profiles for use in human disease.
Collapse
Affiliation(s)
- Thomas L. Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rhoda E. Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Richard Foster
- School of Chemistry, Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Robert C. Glen
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery and Cancer, Biomolecular Medicine, Imperial College London, London, United Kingdom
| | - Janet J. Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Anthony P. Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
4
|
Chapman FA, Maguire JJ, Newby DE, Davenport AP, Dhaun N. Targeting the apelin system for the treatment of cardiovascular diseases. Cardiovasc Res 2023; 119:2683-2696. [PMID: 37956047 PMCID: PMC10757586 DOI: 10.1093/cvr/cvad171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Its prevalence is rising due to ageing populations and the increasing incidence of diseases such as chronic kidney disease, obesity, and diabetes that are associated with elevated cardiovascular risk. Despite currently available treatments, there remains a huge burden of cardiovascular disease-associated morbidity for patients and healthcare systems, and newer treatments are needed. The apelin system, comprising the apelin receptor and its two endogenous ligands apelin and elabela, is a broad regulator of physiology that opposes the actions of the renin-angiotensin and vasopressin systems. Activation of the apelin receptor promotes endothelium-dependent vasodilatation and inotropy, lowers blood pressure, and promotes angiogenesis. The apelin system appears to protect against arrhythmias, inhibits thrombosis, and has broad anti-inflammatory and anti-fibrotic actions. It also promotes aqueous diuresis through direct and indirect (central) effects in the kidney. Thus, the apelin system offers therapeutic promise for a range of cardiovascular, kidney, and metabolic diseases. This review will discuss current cardiovascular disease targets of the apelin system and future clinical utility of apelin receptor agonism.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
| | | | - Neeraj Dhaun
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Rafaqat S. Adipokines and Their Role in Heart Failure: A Literature Review. J Innov Card Rhythm Manag 2023; 14:5657-5669. [PMID: 38058391 PMCID: PMC10697129 DOI: 10.19102/icrm.2023.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/12/2023] [Indexed: 12/08/2023] Open
Abstract
Obesity is a major risk factor for heart failure (HF). The relationship between adipokines and HF has been implicated in many previous studies and reviews. However, this review article summarizes the basic role of major adipokines, such as apelin, adiponectin, chemerin, resistin, retinol-binding protein 4 (RBP4), vaspin, visfatin, plasminogen activator inhibitor-1, monocyte chemotactic protein-1, nesfatin-1, progranulin, leptin, omentin-1, lipocalin-2, and follistatin-like 1 (FSTL1), in the pathogenesis of HF. Apelin is reduced in patients with HF and upregulated following favorable left ventricular (LV) remodeling. Higher levels of adiponectin have been found in patients with HF compared to in control patients. Also, high plasma chemerin levels are linked to a higher risk of HF. Serum resistin is related to the severity of HF and associated with a high risk for adverse cardiac events. Evidence indicates that RBP4 can contribute to inflammation and damage heart muscle cells, potentially leading to HF. Vaspin might stop the progression of cardiac degeneration, fibrosis, and HF according to experiments on rats with experimental isoproterenol-induced chronic HF. The serum concentrations of visfatin are significantly lower in patients with systolic HF. Leptin levels were found to be correlated with low LV mass and myocardial stiffness, both of which are significant risk factors for the development of HF with preserved ejection fraction (HFpEF). Measuring serum omentin-1 levels appears to be a novel prognostic indicator for risk stratification in HF patients. Increased expression of neutrophil gelatinase-associated lipocalin in both systemic circulation and myocardium in clinical and experimental HF suggests that innate immune responses may contribute to the development of HF. FSTL1 was elevated in patients with HF with reduced ejection fraction and associated with an increase in the size of the left ventricle of the heart. However, other adipokines, such as plasminogen activator inhibitor-1, monocyte chemotactic protein-1, nesfatin-1, and progranulin, have not yet been studied for HF.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
6
|
Rossin D, Vanni R, Lo Iacono M, Cristallini C, Giachino C, Rastaldo R. APJ as Promising Therapeutic Target of Peptide Analogues in Myocardial Infarction- and Hypertension-Induced Heart Failure. Pharmaceutics 2023; 15:pharmaceutics15051408. [PMID: 37242650 DOI: 10.3390/pharmaceutics15051408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The widely expressed G protein-coupled apelin receptor (APJ) is activated by two bioactive endogenous peptides, apelin and ELABELA (ELA). The apelin/ELA-APJ-related pathway has been found involved in the regulation of many physiological and pathological cardiovascular processes. Increasing studies are deepening the role of the APJ pathway in limiting hypertension and myocardial ischaemia, thus reducing cardiac fibrosis and adverse tissue remodelling, outlining APJ regulation as a potential therapeutic target for heart failure prevention. However, the low plasma half-life of native apelin and ELABELA isoforms lowered their potential for pharmacological applications. In recent years, many research groups focused their attention on studying how APJ ligand modifications could affect receptor structure and dynamics as well as its downstream signalling. This review summarises the novel insights regarding the role of APJ-related pathways in myocardial infarction and hypertension. Furthermore, recent progress in designing synthetic compounds or analogues of APJ ligands able to fully activate the apelinergic pathway is reported. Determining how to exogenously regulate the APJ activation could help to outline a promising therapy for cardiac diseases.
Collapse
Affiliation(s)
- Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Caterina Cristallini
- Institute for Chemical and Physical Processes, IPCF ss Pisa, CNR, 56126 Pisa, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
7
|
Ligetvári R, Szokodi I, Far G, Csöndör É, Móra Á, Komka Z, Tóth M, Oláh A, Ács P. Apelin as a Potential Regulator of Peak Athletic Performance. Int J Mol Sci 2023; 24:ijms24098195. [PMID: 37175901 PMCID: PMC10179506 DOI: 10.3390/ijms24098195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Apelin, as a cardiokine/myokine, is emerging as an important regulator of cardiac and skeletal muscle homeostasis. Loss of apelin signaling results in premature cardiac aging and sarcopenia. However, the contribution of apelin to peak athletic performance remains largely elusive. In this paper, we assessed the impact of maximal cardiorespiratory exercise testing on the plasma apelin levels of 58 male professional soccer players. Circulating apelin-13 and apelin-36, on average, increased transiently after a single bout of treadmill exercise; however, apelin responses (Δapelin = peak - baseline values) showed a striking interindividual variability. Baseline apelin-13 levels were inversely correlated with those of Δapelin-13 and Δapelin-36. Δapelin-13 showed a positive correlation with the maximal metabolic equivalent, relative maximal O2 consumption, and peak circulatory power, whereas such an association in the case of Δapelin-36 could not be detected. In conclusion, we observed a pronounced individual-to-individual variation in exercise-induced changes in the plasma levels of apelin-13 and apelin-36. Since changes in plasma apelin-13 levels correlated with the indicators of physical performance, whole-body oxygen consumption and pumping capability of the heart, apelin, as a novel exerkine, may be a determinant of peak athletic performance.
Collapse
Affiliation(s)
- Roland Ligetvári
- Doctoral School of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - István Szokodi
- Heart Institute, Medical School, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Gabriella Far
- Doctoral School of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - Éva Csöndör
- Doctoral School of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Ákos Móra
- Doctoral School of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - Zsolt Komka
- Department of Health Sciences and Sport Medicine, Hungarian Sports University, 1123 Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Miklós Tóth
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1085 Budapest, Hungary
- Department of Health Sciences and Sport Medicine, Hungarian Sports University, 1123 Budapest, Hungary
| | - András Oláh
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - Pongrác Ács
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
8
|
Popov SV, Maslov LN, Mukhomedzyanov AV, Kurbatov BK, Gorbunov AS, Kilin M, Azev VN, Khlestkina MS, Sufianova GZ. Apelin Is a Prototype of Novel Drugs for the Treatment of Acute Myocardial Infarction and Adverse Myocardial Remodeling. Pharmaceutics 2023; 15:pharmaceutics15031029. [PMID: 36986889 PMCID: PMC10056827 DOI: 10.3390/pharmaceutics15031029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
In-hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) is 5-6%. Consequently, it is necessary to develop fundamentally novel drugs capable of reducing mortality in patients with acute myocardial infarction. Apelins could be the prototype for such drugs. Chronic administration of apelins mitigates adverse myocardial remodeling in animals with myocardial infarction or pressure overload. The cardioprotective effect of apelins is accompanied by blockage of the MPT pore, GSK-3β, and the activation of PI3-kinase, Akt, ERK1/2, NO-synthase, superoxide dismutase, glutathione peroxidase, matrix metalloproteinase, the epidermal growth factor receptor, Src kinase, the mitoKATP channel, guanylyl cyclase, phospholipase C, protein kinase C, the Na+/H+ exchanger, and the Na+/Ca2+ exchanger. The cardioprotective effect of apelins is associated with the inhibition of apoptosis and ferroptosis. Apelins stimulate the autophagy of cardiomyocytes. Synthetic apelin analogues are prospective compounds for the development of novel cardioprotective drugs.
Collapse
Affiliation(s)
- Sergey V Popov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Leonid N Maslov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Alexandr V Mukhomedzyanov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Boris K Kurbatov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Alexandr S Gorbunov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Michail Kilin
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Viacheslav N Azev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maria S Khlestkina
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia
| | - Galina Z Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia
| |
Collapse
|
9
|
Pisarenko OI, Studneva IM. Modified APJ Receptor Peptide Ligands as Postconditioning Drugs in Myocardial Ischaemia/Reperfusion Injury. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Williams TL, Macrae RGC, Kuc RE, Brown AJH, Maguire JJ, Davenport AP. Expanding the apelin receptor pharmacological toolbox using novel fluorescent ligands. Front Endocrinol (Lausanne) 2023; 14:1139121. [PMID: 36967803 PMCID: PMC10034064 DOI: 10.3389/fendo.2023.1139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
INTRODUCTION The apelin receptor binds two distinct endogenous peptides, apelin and ELA, which act in an autocrine/paracrine manner to regulate the human cardiovascular system. As a class A GPCR, targeting the apelin receptor is an attractive therapeutic strategy. With improvements in imaging techniques, and the stability and brightness of dyes, fluorescent ligands are becoming increasingly useful in studying protein targets. Here, we describe the design and validation of four novel fluorescent ligands; two based on [Pyr1]apelin-13 (apelin488 and apelin647), and two based on ELA-14 (ELA488 and ELA647). METHODS Fluorescent ligands were pharmacologically assessed using radioligand and functional in vitro assays. Apelin647 was validated in high content imaging and internalisation studies, and in a clinically relevant human embryonic stem cell-derived cardiomyocyte model. Apelin488 and ELA488 were used to visualise apelin receptor binding in human renal tissue. RESULTS All four fluorescent ligands retained the ability to bind and activate the apelin receptor and, crucially, triggered receptor internalisation. In high content imaging studies, apelin647 bound specifically to CHO-K1 cells stably expressing apelin receptor, providing proof-of-principle for a platform that could screen novel hits targeting this GPCR. The ligand also bound specifically to endogenous apelin receptor in stem cell-derived cardiomyocytes. Apelin488 and ELA488 bound specifically to apelin receptor, localising to blood vessels and tubules of the renal cortex. DISCUSSION Our data indicate that the described novel fluorescent ligands expand the pharmacological toolbox for studying the apelin receptor across multiple platforms to facilitate drug discovery.
Collapse
Affiliation(s)
- Thomas L. Williams
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom
| | - Robyn G. C. Macrae
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rhoda E. Kuc
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom
| | | | - Janet J. Maguire
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom
| | - Anthony P. Davenport
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Anthony P. Davenport,
| |
Collapse
|
11
|
Sahinturk S, Demirel S, Ozyener F, Isbil N. Vascular Functional Effect Mechanisms of Elabela in Rat Thoracic Aorta. Ann Vasc Surg 2022; 84:381-397. [PMID: 35472496 DOI: 10.1016/j.avsg.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Elabela is a recently discovered peptide hormone. The present study aims to investigate the vasorelaxant effect mechanisms of elabela in the rat thoracic aorta. METHODS The vascular rings obtained from the thoracic aortas of the male Wistar albino rats were placed in the isolated tissue bath system. Resting tension was set to 1 gram. After the equilibration period, the vessel rings were contracted with phenylephrine or potassium chloride. Once a stable contraction was achieved, elabela-32 was applied cumulatively (10-9-10-6 molar) to the vascular rings. The experimental protocol was repeated in the presence of specific signaling pathway inhibitors or potassium channel blockers to determine the effect mechanisms of elabela. RESULTS Elabela showed a significant vasorelaxant effect in a concentration-dependent manner (P < 0.001). The vasorelaxant effect level of elabela was significantly reduced by the apelin receptor antagonist F13A, cyclooxygenase inhibitor indomethacin, adenosine monophosphate-activated protein kinase inhibitor dorsomorphin, protein kinase C inhibitor bisindolmaleimide, large-conductance calcium-activated potassium channel blocker iberiotoxin, and intermediate-conductance calcium-activated potassium channel blocker TRAM-34 (P < 0.001). However, the vasorelaxant effect level of elabela was not significantly affected by the endothelial nitric oxide synthase inhibitor nitro-L-arginine methyl ester and mitogen-activated protein kinase inhibitor U0126. CONCLUSIONS Elabela exhibits a prominent vasodilator effect in rat thoracic aorta. Apelin receptor, prostanoids, adenosine monophosphate-activated protein kinase, protein kinase C, and calcium-activated potassium channels are involved in the vasorelaxant effect mechanisms of elabela.
Collapse
Affiliation(s)
- Serdar Sahinturk
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey.
| | - Sadettin Demirel
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Fadil Ozyener
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Naciye Isbil
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| |
Collapse
|
12
|
Fernandez Rico C, Konate K, Josse E, Nargeot J, Barrère-Lemaire S, Boisguérin P. Therapeutic Peptides to Treat Myocardial Ischemia-Reperfusion Injury. Front Cardiovasc Med 2022; 9:792885. [PMID: 35252383 PMCID: PMC8891520 DOI: 10.3389/fcvm.2022.792885] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVD) including acute myocardial infarction (AMI) rank first in worldwide mortality and according to the World Health Organization (WHO), they will stay at this rank until 2030. Prompt revascularization of the occluded artery to reperfuse the myocardium is the only recommended treatment (by angioplasty or thrombolysis) to decrease infarct size (IS). However, despite beneficial effects on ischemic lesions, reperfusion leads to ischemia-reperfusion (IR) injury related mainly to apoptosis. Improvement of revascularization techniques and patient care has decreased myocardial infarction (MI) mortality however heart failure (HF) morbidity is increasing, contributing to the cost-intense worldwide HF epidemic. Currently, there is no treatment for reperfusion injury despite promising results in animal models. There is now an obvious need to develop new cardioprotective strategies to decrease morbidity/mortality of CVD, which is increasing due to the aging of the population and the rising prevalence rates of diabetes and obesity. In this review, we will summarize the different therapeutic peptides developed or used focused on the treatment of myocardial IR injury (MIRI). Therapeutic peptides will be presented depending on their interacting mechanisms (apoptosis, necroptosis, and inflammation) reported as playing an important role in reperfusion injury following myocardial ischemia. The search and development of therapeutic peptides have become very active, with increasing numbers of candidates entering clinical trials. Their optimization and their potential application in the treatment of patients with AMI will be discussed.
Collapse
Affiliation(s)
- Carlota Fernandez Rico
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, Valbonne, France
| | - Karidia Konate
- PHYMEDEXP, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emilie Josse
- PHYMEDEXP, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, Valbonne, France
| | - Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, Valbonne, France
| | - Prisca Boisguérin
- PHYMEDEXP, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
13
|
de Oliveira AA, Vergara A, Wang X, Vederas JC, Oudit GY. Apelin pathway in cardiovascular, kidney, and metabolic diseases: Therapeutic role of apelin analogs and apelin receptor agonists. Peptides 2022; 147:170697. [PMID: 34801627 DOI: 10.1016/j.peptides.2021.170697] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The apelin/apelin receptor (ApelinR) signal transduction pathway exerts essential biological roles, particularly in the cardiovascular system. Disturbances in the apelin/ApelinR axis are linked to vascular, heart, kidney, and metabolic disorders. Therefore, the apelinergic system has surfaced as a critical therapeutic strategy for cardiovascular diseases (including pulmonary arterial hypertension), kidney disease, insulin resistance, hyponatremia, preeclampsia, and erectile dysfunction. However, apelin peptides are susceptible to rapid degradation through endogenous peptidases, limiting their use as therapeutic tools and translational potential. These proteases include angiotensin converting enzyme 2, neutral endopeptidase, and kallikrein thereby linking the apelin pathway with other peptide systems. In this context, apelin analogs with enhanced proteolytic stability and synthetic ApelinR agonists emerged as promising pharmacological alternatives. In this review, we focus on discussing the putative roles of the apelin pathway in various physiological systems from function to dysfunction, and emphasizing the therapeutic potential of newly generated metabolically stable apelin analogs and non-peptide ApelinR agonists.
Collapse
Affiliation(s)
- Amanda A de Oliveira
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ander Vergara
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaopu Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Chapman FA, Nyimanu D, Maguire JJ, Davenport AP, Newby DE, Dhaun N. The therapeutic potential of apelin in kidney disease. Nat Rev Nephrol 2021; 17:840-853. [PMID: 34389827 PMCID: PMC8361827 DOI: 10.1038/s41581-021-00461-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a leading cause of global morbidity and mortality and is independently associated with cardiovascular disease. The mainstay of treatment for CKD is blockade of the renin-angiotensin-aldosterone system (RAAS), which reduces blood pressure and proteinuria and slows kidney function decline. Despite this treatment, many patients progress to kidney failure, which requires dialysis or kidney transplantation, and/or die as a result of cardiovascular disease. The apelin system is an endogenous physiological regulator that is emerging as a potential therapeutic target for many diseases. This system comprises the apelin receptor and its two families of endogenous ligands, apelin and elabela/toddler. Preclinical and clinical studies show that apelin receptor ligands are endothelium-dependent vasodilators and potent inotropes, and the apelin system has a reciprocal relationship with the RAAS. In preclinical studies, apelin regulates glomerular haemodynamics and acts on the tubule to promote aquaresis. In addition, apelin is protective in several kidney injury models. Although the apelin system has not yet been studied in patients with CKD, the available data suggest that apelin is a promising potential therapeutic target for kidney disease.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Duuamene Nyimanu
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK
| | - Neeraj Dhaun
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK.
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
15
|
El Mathari B, Briand P, Corbier A, Poirier B, Briand V, Raffenne-Devillers A, Harnist MP, Guillot E, Guilbert F, Janiak P. Apelin improves cardiac function mainly through peripheral vasodilation in a mouse model of dilated cardiomyopathy. Peptides 2021; 142:170568. [PMID: 33965442 DOI: 10.1016/j.peptides.2021.170568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/13/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022]
Abstract
There is growing evidence that apelin plays a role in the regulation of the cardiovascular system by increasing myocardial contractility and acting as a vasodilator. However, it remains unclear whether apelin improves cardiac contractility in a load-dependent or independent manner in pathological conditions. For this purpose we investigated the cardiovascular effects of apelin in α-actin transgenic mice (mActin-Tg mice), a model of cardiomyopathy. [Pyr1]apelin-13 was administered by continuous infusion at 2 mg/kg/d for 3 weeks. Effects on cardiac function were determined by echocardiography and a Pressure-Volume (PV) analysis. mActin-Tg mice showed a dilated cardiomyopathy (DCM) phenotype similar to that encountered in patients expressing the same mutation. Compared to WT animals, mActin-Tg mice displayed cardiac systolic impairment [significant decrease in ejection fraction (EF), cardiac output (CO), and stroke volume (SV)] associated with cardiac ventricular dilation and diastolic dysfunction, characterized by an impairment in mitral flow velocity (E/A) and in deceleration time (DT). Load-independent myocardial contractility was strongly decreased in mActin-Tg mice while total peripheral vascular resistance (TPR) was significantly increased. As compared to vehicle-treated animals, a 3-week treatment with [Pyr1]apelin-13 significantly improved EF%, SV, E/A, DT and corrected TPR, with no significant effect on load-independent indices of myocardial contractility, blood pressure and heart rate. In conclusion [Pyr1]apelin-13 displayed no intrinsic contractile effect but improved cardiac function in dilated cardiomyopathy mainly by reducing peripheral vascular resistance, with no change in blood pressure.
Collapse
Affiliation(s)
- Brahim El Mathari
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Pascale Briand
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Alain Corbier
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Bruno Poirier
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Véronique Briand
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Alice Raffenne-Devillers
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Marie-Pierre Harnist
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Etienne Guillot
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Frederique Guilbert
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Philip Janiak
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France.
| |
Collapse
|
16
|
Mehrabadi ME, Hemmati R, Tashakor A, Homaei A, Yousefzadeh M, Hemati K, Hosseinkhani S. Induced dysregulation of ACE2 by SARS-CoV-2 plays a key role in COVID-19 severity. Biomed Pharmacother 2021; 137:111363. [PMID: 33582450 PMCID: PMC7862910 DOI: 10.1016/j.biopha.2021.111363] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of COVID-19, is reported to increase the rate of mortality worldwide. COVID-19 is associated with acute respiratory symptoms as well as blood coagulation in the vessels (thrombosis), heart attack and stroke. Given the requirement of angiotensin converting enzyme 2 (ACE2) receptor for SARS-CoV-2 entry into host cells, here we discuss how the downregulation of ACE2 in the COVID-19 patients and virus-induced shift in ACE2 catalytic equilibrium, change the concentrations of substrates such as angiotensin II, apelin-13, dynorphin-13, and products such as angiotensin (1-7), angiotensin (1-9), apelin-12, dynorphin-12 in the human body. Substrates accumulation ultimately induces inflammation, angiogenesis, thrombosis, neuronal and tissue damage while diminished products lead to the loss of the anti-inflammatory, anti-thrombotic and anti-angiogenic responses. In this review, we focus on the viral-induced imbalance between ACE2 substrates and products which exacerbates the severity of COVID-19. Considering the roadmap, we propose multiple therapeutic strategies aiming to rebalance the products of ACE2 and to ameliorate the symptoms of the disease.
Collapse
Affiliation(s)
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Sharekord, Iran; Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran; COVID-19 research group, Faculty of Basic Sciences, Shahrekord Univesity, Shahrekord, Iran.
| | - Amin Tashakor
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | | | - Karim Hemati
- Department of Anesthesiology and Pain, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Coquerel D, Delile E, Dumont L, Chagnon F, Murza A, Sainsily X, Salvail D, Sarret P, Marsault E, Auger-Messier M, Lesur O. Gαi-biased apelin analog protects against isoproterenol-induced myocardial dysfunction in rats. Am J Physiol Heart Circ Physiol 2021; 320:H1646-H1656. [PMID: 33635165 DOI: 10.1152/ajpheart.00688.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Apelin receptor (APJ) activation by apelin-13 (APLN-13) engages both Gαi proteins and β-arrestins, stimulating distinct intracellular pathways and triggering physiological responses like enhanced cardiac contractility. Substituting the C-terminal phenylalanine of APLN-13 with α-methyl-l-phenylalanine [(l-α-Me)Phe] or p-benzoyl-l-phenylalanine (Bpa) generates biased analogs inducing APJ functional selectivity toward Gαi proteins. Using these original analogs, we proposed to investigate how the canonical Gαi signaling of APJ regulates the cardiac function and to assess their therapeutic impact in a rat model of isoproterenol-induced myocardial dysfunction. In vivo and ex vivo infusions of either Bpa or (l-α-Me)Phe analogs failed to enhance rats' left ventricular (LV) contractility compared with APLN-13. Inhibition of Gαi with pertussis toxin injection optimized the cardiotropic effect of APLN-13 and revealed the inotropic impact of Bpa. Moreover, both APLN-13 and Bpa efficiently limited the forskolin-induced and PKA-dependent phosphorylation of phospholamban at the Ser16 in neonatal rat ventricular myocytes. However, only Bpa significantly reduced the inotropic effect of forskolin infusion in isolated-perfused heart, highlighting its efficient bias toward Gαi. Compared with APLN-13, Bpa also markedly improved isoproterenol-induced myocardial systolic and diastolic dysfunctions. Bpa prevented cardiac weight increase, normalized both ANP and BNP mRNA expressions, and decreased LV fibrosis in isoproterenol-treated rats. Our results show that APJ-driven Gαi/adenylyl cyclase signaling is functional in cardiomyocytes and acts as negative feedback of the APLN-APJ-dependent inotropic response. Biased APJ signaling toward Gαi over the β-arrestin pathway offers a promising strategy in the treatment of cardiovascular diseases related to myocardial hypertrophy and high catecholamine levels.NEW & NOTEWORTHY By using more potent Gαi-biased APJ agonists that strongly inhibit cAMP production, these data point to the negative inotropic effect of APJ-mediated Gαi signaling in the heart and highlight the potential protective impact of APJ-dependent Gαi signaling in cardiovascular diseases associated with left ventricular hypertrophy.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Apelin/analogs & derivatives
- Apelin/pharmacology
- Apelin Receptors/agonists
- Apelin Receptors/metabolism
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Disease Models, Animal
- GTP-Binding Protein alpha Subunits/metabolism
- Intercellular Signaling Peptides and Proteins/pharmacology
- Isolated Heart Preparation
- Isoproterenol
- Ligands
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left/drug effects
- Rats
Collapse
Affiliation(s)
- David Coquerel
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eugénie Delile
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lauralyne Dumont
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Frédéric Chagnon
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alexandre Murza
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Xavier Sainsily
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dany Salvail
- IPS Therapeutique Inc., Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Marsault
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mannix Auger-Messier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Olivier Lesur
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
18
|
Frump AL, Albrecht M, Yakubov B, Breuils-Bonnet S, Nadeau V, Tremblay E, Potus F, Omura J, Cook T, Fisher A, Rodriguez B, Brown RD, Stenmark KR, Rubinstein CD, Krentz K, Tabima DM, Li R, Sun X, Chesler NC, Provencher S, Bonnet S, Lahm T. 17β-Estradiol and estrogen receptor α protect right ventricular function in pulmonary hypertension via BMPR2 and apelin. J Clin Invest 2021; 131:129433. [PMID: 33497359 DOI: 10.1172/jci129433] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
Women with pulmonary arterial hypertension (PAH) exhibit better right ventricular (RV) function and survival than men; however, the underlying mechanisms are unknown. We hypothesized that 17β-estradiol (E2), through estrogen receptor α (ER-α), attenuates PAH-induced RV failure (RVF) by upregulating the procontractile and prosurvival peptide apelin via a BMPR2-dependent mechanism. We found that ER-α and apelin expression were decreased in RV homogenates from patients with RVF and from rats with maladaptive (but not adaptive) RV remodeling. RV cardiomyocyte apelin abundance increased in vivo or in vitro after treatment with E2 or ER-α agonist. Studies employing ER-α-null or ER-β-null mice, ER-α loss-of-function mutant rats, or siRNA demonstrated that ER-α is necessary for E2 to upregulate RV apelin. E2 and ER-α increased BMPR2 in pulmonary hypertension RVs and in isolated RV cardiomyocytes, associated with ER-α binding to the Bmpr2 promoter. BMPR2 is required for E2-mediated increases in apelin abundance, and both BMPR2 and apelin are necessary for E2 to exert RV-protective effects. E2 or ER-α agonist rescued monocrotaline pulmonary hypertension and restored RV apelin and BMPR2. We identified what we believe to be a novel cardioprotective E2/ER-α/BMPR2/apelin axis in the RV. Harnessing this axis may lead to novel RV-targeted therapies for PAH patients of either sex.
Collapse
Affiliation(s)
- Andrea L Frump
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marjorie Albrecht
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bakhtiyor Yakubov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Valérie Nadeau
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Junichi Omura
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Todd Cook
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amanda Fisher
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brooke Rodriguez
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - R Dale Brown
- Department of Pediatrics, University of Colorado-Denver, Aurora, Colorado, USA
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado-Denver, Aurora, Colorado, USA
| | - C Dustin Rubinstein
- Genome Editing and Animal Models Core, University of Wisconsin Biotechnology Center
| | - Kathy Krentz
- Genome Editing and Animal Models Core, University of Wisconsin Biotechnology Center
| | | | - Rongbo Li
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xin Sun
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Steeve Provencher
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
19
|
Mareedu S, Pachon R, Thilagavathi J, Fefelova N, Balakrishnan R, Niranjan N, Xie LH, Babu GJ. Sarcolipin haploinsufficiency prevents dystrophic cardiomyopathy in mdx mice. Am J Physiol Heart Circ Physiol 2021; 320:H200-H210. [PMID: 33216625 PMCID: PMC7847070 DOI: 10.1152/ajpheart.00601.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
Sarcolipin (SLN) is an inhibitor of sarco/endoplasmic reticulum (SR) Ca2+-ATPase (SERCA) and expressed at high levels in the ventricles of animal models for and patients with Duchenne muscular dystrophy (DMD). The goal of this study was to determine whether the germline ablation of SLN expression improves cardiac SERCA function and intracellular Ca2+ (Ca2+i) handling and prevents cardiomyopathy in the mdx mouse model of DMD. Wild-type, mdx, SLN-haploinsufficient mdx (mdx:sln+/-), and SLN-deficient mdx (mdx:sln-/-) mice were used for this study. SERCA function and Ca2+i handling were determined by Ca2+ uptake assays and by measuring single-cell Ca2+ transients, respectively. Age-dependent disease progression was determined by histopathological examinations and by echocardiography in 6-, 12-, and 20-mo-old mice. Gene expression changes in the ventricles of mdx:sln+/- mice were determined by RNA-Seq analysis. SERCA function and Ca2+i cycling were improved in the ventricles of mdx:sln+/- mice. Fibrosis and necrosis were significantly decreased, and cardiac function was enhanced in the mdx:sln+/- mice until the study endpoint. The mdx:sln-/- mice also exhibited similar beneficial effects. RNA-Seq analysis identified distinct gene expression changes including the activation of the apelin pathway in the ventricles of mdx:sln+/- mice. Our findings suggest that reducing SLN expression is sufficient to improve cardiac SERCA function and Ca2+i cycling and prevent cardiomyopathy in mdx mice.NEW & NOTEWORTHY First, reducing sarcopolin (SLN) expression improves sarco/endoplasmic reticulum Ca2+ uptake and intracellular Ca2+ handling and prevents cardiomyopathy in mdx mice. Second, reducing SLN expression prevents diastolic dysfunction and improves cardiac contractility in mdx mice Third, reducing SLN expression activates apelin-mediated cardioprotective signaling pathways in mdx heart.
Collapse
Affiliation(s)
- Satvik Mareedu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Ronald Pachon
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Jayapalraj Thilagavathi
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Rekha Balakrishnan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Nandita Niranjan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
20
|
Girault-Sotias PE, Gerbier R, Flahault A, de Mota N, Llorens-Cortes C. Apelin and Vasopressin: The Yin and Yang of Water Balance. Front Endocrinol (Lausanne) 2021; 12:735515. [PMID: 34880830 PMCID: PMC8645901 DOI: 10.3389/fendo.2021.735515] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Apelin, a (neuro)vasoactive peptide, plays a prominent role in controlling body fluid homeostasis and cardiovascular functions. Experimental data performed in rodents have shown that apelin has an aquaretic effect via its central and renal actions. In the brain, apelin inhibits the phasic electrical activity of vasopressinergic neurons and the release of vasopressin from the posterior pituitary into the bloodstream and in the kidney, apelin regulates renal microcirculation and counteracts in the collecting duct, the antidiuretic effect of vasopressin occurring via the vasopressin receptor type 2. In humans and rodents, if plasma osmolality is increased by hypertonic saline infusion/water deprivation or decreased by water loading, plasma vasopressin and apelin are conversely regulated to maintain body fluid homeostasis. In patients with the syndrome of inappropriate antidiuresis, in which vasopressin hypersecretion leads to hyponatremia, the balance between apelin and vasopressin is significantly altered. In order to re-establish the correct balance, a metabolically stable apelin-17 analog, LIT01-196, was developed, to overcome the problem of the very short half-life (in the minute range) of apelin in vivo. In a rat experimental model of vasopressin-induced hyponatremia, subcutaneously (s.c.) administered LIT01-196 blocks the antidiuretic effect of vasopressin and the vasopressin-induced increase in urinary osmolality, and induces a progressive improvement in hyponatremia, suggesting that apelin receptor activation constitutes an original approach for hyponatremia treatment.
Collapse
|
21
|
Read C, Yang P, Kuc RE, Nyimanu D, Williams TL, Glen RC, Holt LJ, Arulanantham H, Smart A, Davenport AP, Maguire JJ. Apelin peptides linked to anti-serum albumin domain antibodies retain affinity in vitro and are efficacious receptor agonists in vivo. Basic Clin Pharmacol Toxicol 2020; 126 Suppl 6:96-103. [PMID: 30901161 DOI: 10.1111/bcpt.13227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
The apelin receptor is a potential target in the treatment of heart failure and pulmonary arterial hypertension where levels of endogenous apelin peptides are reduced but significant receptor levels remain. Our aim was to characterise the pharmacology of a modified peptide agonist, MM202, designed to have high affinity for the apelin receptor and resistance to peptidase degradation and linked to an anti-serum albumin domain antibody (AlbudAb) to extend half-life in the blood. In competition, binding experiments in human heart MM202-AlbudAb (pKi = 9.39 ± 0.09) bound with similar high affinity as the endogenous peptides [Pyr1 ]apelin-13 (pKi = 8.83 ± 0.06) and apelin-17 (pKi = 9.57 ± 0.08). [Pyr1 ]apelin-13 was tenfold more potent in the cAMP (pD2 = 9.52 ± 0.05) compared to the β-arrestin (pD2 = 8.53 ± 0.03) assay, whereas apelin-17 (pD2 = 10.31 ± 0.28; pD2 = 10.15 ± 0.13, respectively) and MM202-AlbudAb (pD2 = 9.15 ± 0.12; pD2 = 9.26 ± 0.03, respectively) were equipotent in both assays, with MM202-AlbudAb tenfold less potent than apelin-17. MM202-AlbudAb bound to immobilised human serum albumin with high affinity (pKD = 9.02). In anaesthetised, male Sprague Dawley rats, MM202-AlbudAb (5 nmol, n = 15) significantly reduced left ventricular systolic pressure by 6.61 ± 1.46 mm Hg and systolic arterial pressure by 14.12 ± 3.35 mm Hg and significantly increased cardiac contractility by 533 ± 170 mm Hg/s, cardiac output by 1277 ± 190 RVU/min, stroke volume by 3.09 ± 0.47 RVU and heart rate by 4.64 ± 2.24 bpm. This study demonstrates that conjugating an apelin mimetic peptide to the AlbudAb structure retains receptor and in vivo activity and may be a new strategy for development of apelin peptides as therapeutic agents.
Collapse
Affiliation(s)
- Cai Read
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Robert C Glen
- The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Seo K, Parikh VN, Ashley EA. Stretch-Induced Biased Signaling in Angiotensin II Type 1 and Apelin Receptors for the Mediation of Cardiac Contractility and Hypertrophy. Front Physiol 2020; 11:181. [PMID: 32231588 PMCID: PMC7082839 DOI: 10.3389/fphys.2020.00181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
The myocardium has an intrinsic ability to sense and respond to mechanical load in order to adapt to physiological demands. Primary examples are the augmentation of myocardial contractility in response to increased ventricular filling caused by either increased venous return (Frank-Starling law) or aortic resistance to ejection (the Anrep effect). Sustained mechanical overload, however, can induce pathological hypertrophy and dysfunction, resulting in heart failure and arrhythmias. It has been proposed that angiotensin II type 1 receptor (AT1R) and apelin receptor (APJ) are primary upstream actors in this acute myocardial autoregulation as well as the chronic maladaptive signaling program. These receptors are thought to have mechanosensing capacity through activation of intracellular signaling via G proteins and/or the multifunctional transducer protein, β-arrestin. Importantly, ligand and mechanical stimuli can selectively activate different downstream signaling pathways to promote inotropic, cardioprotective or cardiotoxic signaling. Studies to understand how AT1R and APJ integrate ligand and mechanical stimuli to bias downstream signaling are an important and novel area for the discovery of new therapeutics for heart failure. In this review, we provide an up-to-date understanding of AT1R and APJ signaling pathways activated by ligand versus mechanical stimuli, and their effects on inotropy and adaptive/maladaptive hypertrophy. We also discuss the possibility of targeting these signaling pathways for the development of novel heart failure therapeutics.
Collapse
Affiliation(s)
- Kinya Seo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Victoria N. Parikh
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Euan A. Ashley
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Genetics, Stanford University, Stanford, CA, United States
| |
Collapse
|
23
|
Tune JD, Baker HE, Berwick Z, Moberly SP, Casalini ED, Noblet JN, Zhen E, Kowala MC, Christe ME, Goodwill AG. Distinct hemodynamic responses to (pyr)apelin-13 in large animal models. Am J Physiol Heart Circ Physiol 2020; 318:H747-H755. [PMID: 32108522 DOI: 10.1152/ajpheart.00365.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study tested the hypothesis that (pyr)apelin-13 dose-dependently augments myocardial contractility and coronary blood flow, irrespective of changes in systemic hemodynamics. Acute effects of intravenous (pyr)apelin-13 administration (10 to 1,000 nM) on blood pressure, heart rate, left ventricular pressure and volume, and coronary parameters were measured in dogs and pigs. Administration of (pyr)apelin-13 did not influence blood pressure (P = 0.59), dP/dtmax (P = 0.26), or dP/dtmin (P = 0.85) in dogs. However, heart rate dose-dependently increased > 70% (P < 0.01), which was accompanied by a significant increase in coronary blood flow (P < 0.05) and reductions in left ventricular end-diastolic volume and stroke volume (P < 0.001). In contrast, (pyr)apelin-13 did not significantly affect hemodynamics, coronary blood flow, or indexes of contractile function in pigs. Furthermore, swine studies found no effect of intracoronary (pyr)apelin-13 administration on coronary blood flow (P = 0.83) or vasorelaxation in isolated, endothelium-intact (P = 0.89) or denuded (P = 0.38) coronary artery rings. Examination of all data across (pyr)apelin-13 concentrations revealed an exponential increase in cardiac output as peripheral resistance decreased across pigs and dogs (P < 0.001; R2 = 0.78). Assessment of the Frank-Starling relationship demonstrated a significant linear relationship between left ventricular end-diastolic volume and stroke volume across species (P < 0.001; R2 = 0.70). Taken together, these findings demonstrate that (pyr)apelin-13 does not directly influence myocardial contractility or coronary blood flow in either dogs or pigs.NEW & NOTEWORTHY Our findings provide much needed insight regarding the pharmacological cardiac and coronary effects of (pyr)apelin-13 in larger animal preparations. In particular, data highlight distinct hemodynamic responses of apelin across species, which are independent of any direct effect on myocardial contractility or perfusion.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hana E Baker
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Zachary Berwick
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven P Moberly
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eli D Casalini
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jillian N Noblet
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eugene Zhen
- Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Mark C Kowala
- Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Michael E Christe
- Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
24
|
10 km running race induces an elevation in the plasma myokine level of nonprofessional runners. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-019-00608-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Marsault E, Llorens-Cortes C, Iturrioz X, Chun HJ, Lesur O, Oudit GY, Auger-Messier M. The apelinergic system: a perspective on challenges and opportunities in cardiovascular and metabolic disorders. Ann N Y Acad Sci 2019; 1455:12-33. [PMID: 31236974 PMCID: PMC6834863 DOI: 10.1111/nyas.14123] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
The apelinergic pathway has been generating increasing interest in the past few years for its potential as a therapeutic target in several conditions associated with the cardiovascular and metabolic systems. Indeed, preclinical and, more recently, clinical evidence both point to this G protein-coupled receptor as a target of interest in the treatment of not only cardiovascular disorders such as heart failure, pulmonary arterial hypertension, atherosclerosis, or septic shock, but also of additional conditions such as water retention/hyponatremic disorders, type 2 diabetes, and preeclampsia. While it is a peculiar system with its two classes of endogenous ligand, the apelins and Elabela, its intricacies are a matter of continuing investigation to finely pinpoint its potential and how it enables crosstalk between the vasculature and organ systems of interest. In this perspective article, we first review the current knowledge on the role of the apelinergic pathway in the above systems, as well as the associated therapeutic indications and existing pharmacological tools. We also offer a perspective on the challenges and potential ahead to advance the apelinergic system as a target for therapeutic intervention in several key areas.
Collapse
Affiliation(s)
- Eric Marsault
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Catherine Llorens-Cortes
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Xavier Iturrioz
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Hyung J. Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Departments of Internal Medicine and Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Olivier Lesur
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Intensive Care Units, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gavin Y. Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Mannix Auger-Messier
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Cardiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
26
|
Read C, Nyimanu D, Williams TL, Huggins DJ, Sulentic P, Macrae RGC, Yang P, Glen RC, Maguire JJ, Davenport AP. International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand. Pharmacol Rev 2019; 71:467-502. [PMID: 31492821 PMCID: PMC6731456 DOI: 10.1124/pr.119.017533] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.
Collapse
Affiliation(s)
- Cai Read
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - David J Huggins
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Petra Sulentic
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robyn G C Macrae
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robert C Glen
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| |
Collapse
|
27
|
Neumann J, Hofmann B, Gergs U. On inotropic effects of UTP in the human heart. Heliyon 2019; 5:e02197. [PMID: 31406941 PMCID: PMC6684494 DOI: 10.1016/j.heliyon.2019.e02197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/07/2019] [Accepted: 07/29/2019] [Indexed: 02/03/2023] Open
Abstract
Uridine 5'-triphosphate (UTP) exerts a positive inotropic effect (PIE) in isolated electrically driven isolated right atrial trabeculae carneae from patients undergoing heart surgery. This review discusses some aspects of the current knowledge on the putative receptor(s) involved and the potential biochemical transduction steps leading to the PIE.
Collapse
Affiliation(s)
- J Neumann
- Institute for Pharmacology and Toxicology, Germany
| | - B Hofmann
- Cardiac Surgery, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06097, Halle (Saale), Germany
| | - U Gergs
- Institute for Pharmacology and Toxicology, Germany
| |
Collapse
|
28
|
Effects of Apelin on Left Ventricular-Arterial Coupling and Mechanical Efficiency in Rats with Ischemic Heart Failure. DISEASE MARKERS 2019; 2019:4823156. [PMID: 31316680 PMCID: PMC6604493 DOI: 10.1155/2019/4823156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/06/2018] [Indexed: 01/13/2023]
Abstract
Apelin plays important roles in cardiovascular homeostasis. However, its effects on the mechanoenergetics of heart failure (HF) are unavailable. We attempted to investigate the effects of apelin on the left ventricular-arterial coupling (VAC) and mechanical efficiency in rats with HF. HF was induced in rats by the ligation of the left coronary artery. The ischemic HF rats were treated with apelin or saline for 12 weeks. The sham-operated animals served as the control. The left ventricular (LV) afterload and the systolic and diastolic functions, as well as the mechanoenergetic indices were estimated from the pressure-volume loops. Myocardial fibrosis by Masson's trichrome staining, myocardial apoptosis by TUNEL, and collagen content in the aorta as well as media area in the aorta and the mesenteric arteries were determined. Our data indicated that HF rats manifested an increased arterial load (Ea), a declined systolic function (reduced ejection fraction, +dP/dtmax, end-systolic elastance, and stroke work), an abnormal diastolic function (elevated end-diastolic pressure, τ, and declined −dP/dtmax), and decreased mechanical efficiency. Apelin treatment improved those indices. Concomitantly, increased fibrosis in the LV myocardium and the aorta and enhanced apoptosis in the LV were partially restored by apelin treatment. A declined wall-to-lumen ratio in the mesenteric arteries of the untreated HF rats was further reduced in the apelin-treated group. We concluded that the rats with ischemic HF were characterized by deteriorated LV mechanoenergetics. Apelin improved mechanical efficiency, at least in part, due to the inhibiting cardiac fibrosis and apoptosis in the LV myocardium, reducing collagen deposition in the aorta and dilating the resistant artery.
Collapse
|
29
|
Systemic Outcomes of (Pyr 1)-Apelin-13 Infusion at Mid-Late Pregnancy in a Rat Model with Preeclamptic Features. Sci Rep 2019; 9:8579. [PMID: 31189936 PMCID: PMC6561917 DOI: 10.1038/s41598-019-44971-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/29/2019] [Indexed: 01/27/2023] Open
Abstract
Preeclampsia is a syndrome with diverse clinical presentation that currently has no cure. The apelin receptor system is a pleiotropic pathway with a potential for therapeutic targeting in preeclampsia. We established the systemic outcomes of (Pyr1)-apelin-13 administration in rats with preeclamptic features (TGA-PE, female transgenic for human angiotensinogen mated to male transgenic for human renin). (Pyr1)-apelin-13 (2 mg/kg/day) or saline was infused in TGA-PE rats via osmotic minipumps starting at day 13 of gestation (GD). At GD20, TGA-PE rats had higher blood pressure, proteinuria, lower maternal and pup weights, lower pup number, renal injury, and a larger heart compared to a control group (pregnant Sprague-Dawley rats administered vehicle). (Pyr1)-apelin-13 did not affect maternal or fetal weights in TGA-PE. The administration of (Pyr1)-apelin-13 reduced blood pressure, and normalized heart rate variability and baroreflex sensitivity in TGA-PE rats compared to controls. (Pyr1)-apelin-13 increased ejection fraction in TGA-PE rats. (Pyr1)-apelin-13 normalized proteinuria in association with lower renal cortical collagen deposition, improved renal pathology and lower immunostaining of oxidative stress markers (4-HNE and NOX-4) in TGA-PE. This study demonstrates improved hemodynamic responses and renal injury without fetal toxicity following apelin administration suggesting a role for apelin in the regulation of maternal outcomes in preeclampsia.
Collapse
|
30
|
Yang P, Read C, Kuc RE, Nyimanu D, Williams TL, Crosby A, Buonincontri G, Southwood M, Sawiak SJ, Glen RC, Morrell NW, Davenport AP, Maguire JJ. A novel cyclic biased agonist of the apelin receptor, MM07, is disease modifying in the rat monocrotaline model of pulmonary arterial hypertension. Br J Pharmacol 2019; 176:1206-1221. [PMID: 30710493 PMCID: PMC6468262 DOI: 10.1111/bph.14603] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Apelin is an endogenous vasodilatory and inotropic peptide that is down-regulated in human pulmonary arterial hypertension, although the density of the apelin receptor is not significantly attenuated. We hypothesised that a G protein-biased apelin analogue MM07, which is more stable than the endogenous apelin peptide, may be beneficial in this condition with the advantage of reduced β-arrestin-mediated receptor internalisation with chronic use. EXPERIMENTAL APPROACH Male Sprague-Dawley rats received either monocrotaline to induce pulmonary arterial hypertension or saline and then daily i.p. injections of either MM07 or saline for 21 days. The extent of disease was assessed by right ventricular catheterisation, cardiac MRI, and histological analysis of the pulmonary vasculature. The effect of MM07 on signalling, proliferation, and apoptosis of human pulmonary artery endothelial cells was investigated. KEY RESULTS MM07 significantly reduced the elevation of right ventricular systolic pressure and hypertrophy induced by monocrotaline. Monocrotaline-induced changes in cardiac structure and function, including right ventricular end-systolic and end-diastolic volumes, ejection fraction, and left ventricular end-diastolic volume, were attenuated by MM07. MM07 also significantly reduced monocrotaline-induced muscularisation of small pulmonary blood vessels. MM07 stimulated endothelial NOS phosphorylation and expression, promoted proliferation, and attenuated apoptosis of human pulmonary arterial endothelial cells in vitro. CONCLUSION AND IMPLICATIONS Our findings suggest that chronic treatment with MM07 is beneficial in this animal model of pulmonary arterial hypertension by addressing disease aetiology. These data support the development of G protein-biased apelin receptor agonists with improved pharmacokinetic profiles for use in human disease.
Collapse
Affiliation(s)
- Peiran Yang
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Cai Read
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Rhoda E. Kuc
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Duuamene Nyimanu
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Thomas L. Williams
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Alexi Crosby
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Guido Buonincontri
- Wolfson Brain Imaging Centre, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Mark Southwood
- Department of PathologyPapworth Hospital NHS Foundation TrustCambridgeUK
| | - Stephen J. Sawiak
- Wolfson Brain Imaging Centre, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Robert C. Glen
- The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, CambridgeUK and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College LondonUK
| | | | | | - Janet J. Maguire
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| |
Collapse
|
31
|
Ren X, Johns RA, Gao WD. EXPRESS: Right Heart in Pulmonary Hypertension: From Adaptation to Failure. Pulm Circ 2019; 9:2045894019845611. [PMID: 30942134 PMCID: PMC6681271 DOI: 10.1177/2045894019845611] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/27/2019] [Indexed: 01/24/2023] Open
Abstract
Right ventricular (RV) failure (RVF) has garnered significant attention in recent years because of its negative impact on clinical outcomes in patients with pulmonary hypertension (PH). PH triggers a series of events, including activation of several signaling pathways that regulate cell growth, metabolism, extracellular matrix remodeling, and energy production. These processes render the RV adaptive to PH. However, RVF develops when PH persists, accompanied by RV ischemia, alterations in substrate and mitochondrial energy metabolism, increased free oxygen radicals, increased cell loss, downregulation of adrenergic receptors, increased inflammation and fibrosis, and pathologic microRNAs. Diastolic dysfunction is also an integral part of RVF. Emerging non-invasive technologies such as molecular or metallic imaging, cardiac MRI, and ultrafast Doppler coronary flow mapping will be valuable tools to monitor RVF, especially the transition to RVF. Most PH therapies cannot treat RVF once it has occurred. A variety of therapies are available to treat acute and chronic RVF, but they are mainly supportive, and no effective therapy directly targets the failing RV. Therapies that target cell growth, cellular metabolism, oxidative stress, and myocyte regeneration are being tested preclinically. Future research should include establishing novel RVF models based on existing models, increasing use of human samples, creating human stem cell-based in vitro models, and characterizing alterations in cardiac excitation–contraction coupling during transition from adaptive RV to RVF. More successful strategies to manage RVF will likely be developed as we learn more about the transition from adaptive remodeling to maladaptive RVF in the future.
Collapse
Affiliation(s)
- Xianfeng Ren
- Department of Anesthesiology,
China-Japan
Friendship Hospital, Beijing, China
| | - Roger A. Johns
- Department of Anesthesiology and
Critical Care Medicine,
Johns
Hopkins University School of Medicine,
Baltimore, MD, USA
| | - Wei Dong Gao
- Department of Anesthesiology and
Critical Care Medicine,
Johns
Hopkins University School of Medicine,
Baltimore, MD, USA
| |
Collapse
|
32
|
Cardioprotective apelin effects and the cardiac-renal axis: review of existing science and potential therapeutic applications of synthetic and native regulated apelin. J Hum Hypertens 2019; 33:429-435. [PMID: 30659278 DOI: 10.1038/s41371-019-0163-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/28/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
First described in 1998, apelin is one of the endogenous ligands of the apelinergic receptor. Since its discovery, its possible role in human physiology and disease has been intensively studied. Apelin is a native cardioprotective agent that the body synthesizes to create atheroprotective, antihypertensive, and regenerative effects in the body. By antagonizing the RAA system, apelin could play an important role in heart failure and hypertension. It is also involved in myocardial protection against ischemia/reperfusion injury, post-ischemic remodeling, and myocardial fibrosis. A small number of studies even suggest that serum apelin levels may be involved the development of life-threatening arrhythmias. All this information generated excitement about potential therapeutic effects in patients with heart failure and myocardial infarction. The therapeutic index of apelin is unknown but is anticipated to be favorable based on the small number of studies. In this review, we summarize the mechanisms by which apelin exerts its cardioprotective effects and its connection with the cardiorenal axis. Also, we report the potential therapeutic applications of synthetic and native regulated apelin. If larger studies can be performed, it is possible that apelin-mediated drug treatment may play a major role for a large number of patients worldwide in the future.
Collapse
|
33
|
Liu Y, Wang L, Shi H. The biological function of ELABELA and APJ signaling in the cardiovascular system and pre-eclampsia. Hypertens Res 2019; 42:928-934. [PMID: 30626933 DOI: 10.1038/s41440-018-0193-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 12/02/2018] [Indexed: 01/12/2023]
Abstract
Pre-eclampsia (PE) is a pregnancy-specific syndrome that is characterized by hypertension and proteinuria. The etiology of PE is not completely understood but is believed to involve placental insufficiency and maternal vascular damage. Growing evidence supports an important role for the apelin receptor (APJ) system in regulating cardiovascular physiology. There are two vertebrate APJ ligands, APELIN and ELABELA, both of which mediate vasodilatory functions. A recent study linked deficient ELABELA signaling and the development of PE, though the molecular mechanism remains largely unknown. In this review, we summarize the biological function of the ELABELA and APJ system in cardiovascular homeostasis and discuss the potential mechanisms by which ELABELA and APJ regulate placenta trophoblast invasion and vascular functions and participate in the development of PE.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liquan Wang
- Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongjun Shi
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
34
|
Kuba K, Sato T, Imai Y, Yamaguchi T. Apelin and Elabela/Toddler; double ligands for APJ/Apelin receptor in heart development, physiology, and pathology. Peptides 2019; 111:62-70. [PMID: 29684595 DOI: 10.1016/j.peptides.2018.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022]
Abstract
Apelin is an endogenous peptide ligand for the G protein-coupled receptor APJ/AGTRL1/APLNR and is widely expressed throughout human body. In adult hearts Apelin-APJ/Apelin receptor axis is potently inotropic, vasodilatory, and pro-angiogenic and thereby contributes to maintaining homeostasis in normal and pathological hearts. Apelin-APJ/Apelin receptor is also involved in heart development including endoderm differentiation, heart morphogenesis, and coronary vascular formation. APJ/Apelin receptor had been originally identified as an orphan receptor for its sequence similarity to Angiotensin II type 1 receptor, and it was later deorphanized by identification of Apelin in 1998. Both Apelin and Angiotensin II are substrates for Angiotensin converting enzyme 2 (ACE2), which degrades the peptides and thus negatively regulates their agonistic activities. Elabela/Toddler, which shares little sequence homology with Apelin, has been recently identified as a second endogenous APJ ligand. Elabela plays crucial roles in heart development and disease conditions presumably at time points or at areas of the heart different from Apelin. Apelin and Elabela seem to constitute a spatiotemporal double ligand system to control APJ/Apelin receptor signaling in the heart. These expanding knowledges of Apelin systems would further encourage therapeutic applications of Apelin, Elabela, or their synthetic derivatives for cardiovascular diseases.
Collapse
Affiliation(s)
- Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Teruki Sato
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan; Department of Cardiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yumiko Imai
- Laboratory of Regulation of Intractable Infectious Diseases, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
35
|
Sato T, Kuba K. [The functional role of endogenous APJ agonists; Apelin and Elabela/Toddler in cardiovascular diseases]. Nihon Yakurigaku Zasshi 2019; 153:172-178. [PMID: 30971657 DOI: 10.1254/fpj.153.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Apelin is an endogenous peptide ligand for APJ receptor, which is widely expressed in human body, and exerts various physiological effects such as vasodilation, inotropic effect, water balance, heart development, angiogenesis and energy metabolism. The beneficial effects of Apelin in cardiovascular diseases have been elucidated, and the roles of Apelin in aging-associated diseases are recently implicated. The mechanisms for therapeutic effects of Aplein include an antagonistic action to renin-angiotensin system (RAS) in addition to inotropic and vasodilatory actions. We have revealed that endogenous Apelin negatively regulates RAS via upregulation of Angiotensin converting enzyme 2 (ACE2). In addition, a second ligand for APJ receptor, Elabela/Toddler, was identified as an essential hormone for heart development, and it has been reported to have physiological effects similar to Apelin. We and others have shown that Elabela exerts inotropic and protective effects in the heart. Although the number of heart failure patients is rapidly increasing, the pathophysiology of heart failure remains elusive and further development of new therapeutic option is awaited. Apelin is a unique bifunctional molecule, which has both inotropic and cardioprotective effects in heart failure, and thus further elucidation of the mechanisms for Apelin/Elabela-APJ signaling would contribute to development of a novel therapeutics for heart failure patients.
Collapse
Affiliation(s)
- Teruki Sato
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine
- Department of Cardiology, Akita University Graduate School of Medicine
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine
| |
Collapse
|
36
|
Ferdinal F, Limanan D, Rini RD, Alexsandro R, Helmi R. Elevated Levels of Apelin-36 in Heart Failure Due to Chronic Systemic Hypoxia. Int J Angiol 2018; 28:194-199. [PMID: 31452587 DOI: 10.1055/s-0038-1676340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Apelin is a novel adipokine identified as an endogenous ligand of the specific orphan receptor APJ. Among the various isoforms of apelin, an increase in the apelin-36 plasma level has been associated with oxidative stress, and this isoform has various biological effects, such as positive inotropic, vasodilatory, and antiatherosclerotic effects. Therefore, apelin-36 may be used as a biomarker of heart failure (HF). Advances in the understanding of the molecular mechanisms underlying HF cannot be achieved without the use of animal models. However, it is unclear whether chronic systemic hypoxia can cause HF in rats. The present study aimed to determine whether chronic systemic hypoxia can cause HF in rats and whether apelin-36 can be used as a biomarker of HF. The study included Sprague-Dawley rats. The rats were randomly divided into seven groups ( n = 4). One of the groups was a control group, and the six other groups were exposed to hypoxia (8% O2) for different durations (6 hours, 1 day, 3 days, 5 days, 7 days, and 14 days). The exposure groups showed ventricular hypertrophy accompanied by myocardial structural damage, which indicated ventricular remodeling. In addition, the exposure groups showed elevated apelin-36 plasma levels and signs of oxidative stress. Moreover, gel electrophoresis of heart tissue showed five bands that corresponded to apelin isotypes, including apelin-36. In an experimental rat HF model with chronic systemic hypoxia, apelin-36 was elevated along with oxidative stress. Apelin-36 along with oxidative stress may serve as a biomarker of HF in this model.
Collapse
Affiliation(s)
- Frans Ferdinal
- Department of Biochemisty and Molecular Biology, School of Medicine, Tarumanagara University, Jakarta, Indonesia
| | - David Limanan
- Department of Biochemisty and Molecular Biology, School of Medicine, Tarumanagara University, Jakarta, Indonesia
| | - Retno Dwi Rini
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Indonesia, Jakarta Pusat, Indonesia
| | - Rio Alexsandro
- Department of Biochemisty and Molecular Biology, School of Medicine, Tarumanagara University, Jakarta, Indonesia
| | - Rizal Helmi
- Department of Biochemisty and Molecular Biology, School of Medicine, Tarumanagara University, Jakarta, Indonesia
| |
Collapse
|
37
|
van Gastel J, Hendrickx JO, Leysen H, Santos-Otte P, Luttrell LM, Martin B, Maudsley S. β-Arrestin Based Receptor Signaling Paradigms: Potential Therapeutic Targets for Complex Age-Related Disorders. Front Pharmacol 2018; 9:1369. [PMID: 30546309 PMCID: PMC6280185 DOI: 10.3389/fphar.2018.01369] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
Abstract
G protein coupled receptors (GPCRs) were first characterized as signal transducers that elicit downstream effects through modulation of guanine (G) nucleotide-binding proteins. The pharmacotherapeutic exploitation of this signaling paradigm has created a drug-based field covering nearly 50% of the current pharmacopeia. Since the groundbreaking discoveries of the late 1990s to the present day, it is now clear however that GPCRs can also generate productive signaling cascades through the modulation of β-arrestin functionality. β-Arrestins were first thought to only regulate receptor desensitization and internalization - exemplified by the action of visual arrestin with respect to rhodopsin desensitization. Nearly 20 years ago, it was found that rather than controlling GPCR signal termination, productive β-arrestin dependent GPCR signaling paradigms were highly dependent on multi-protein complex formation and generated long-lasting cellular effects, in contrast to G protein signaling which is transient and functions through soluble second messenger systems. β-Arrestin signaling was then first shown to activate mitogen activated protein kinase signaling in a G protein-independent manner and eventually initiate protein transcription - thus controlling expression patterns of downstream proteins. While the possibility of developing β-arrestin biased or functionally selective ligands is now being investigated, no additional research has been performed on its possible contextual specificity in treating age-related disorders. The ability of β-arrestin-dependent signaling to control complex and multidimensional protein expression patterns makes this therapeutic strategy feasible, as treating complex age-related disorders will likely require therapeutics that can exert network-level efficacy profiles. It is our understanding that therapeutically targeting G protein-independent effectors such as β-arrestin will aid in the development of precision medicines with tailored efficacy profiles for disease/age-specific contextualities.
Collapse
Affiliation(s)
- Jaana van Gastel
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Jhana O Hendrickx
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Hanne Leysen
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt University of Berlin, Berlin, Germany
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, Charleston, SC, United States
| | - Bronwen Martin
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| |
Collapse
|
38
|
Mitchell BF, Chi M, Surgent E, Sorochan BM, Tracey CN, Aguilar HN, Mongin M, Zielnik B. Differential Regulation of Myosin Regulatory Light Chain Phosphorylation by Protein Kinase C Isozymes in Human Uterine Myocytes. Reprod Sci 2018; 26:988-996. [PMID: 30428777 DOI: 10.1177/1933719118802062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Preterm birth is the most common cause of neonatal morbidity and mortality and a common precedent to lifelong disability. Current treatment has minimal efficacy. OBJECTIVE We assessed the role of isozymes of the protein kinase C (PKC) family in regulating the phosphorylation of myosin regulatory light chains (RLCs), which regulate uterine contractility. We also explored the mechanisms through which these isozymes function. STUDY DESIGN We used a previously characterized and validated quantitative in-cell Western (ICW) assay to measure site-specific phosphorylations on myosin RLC and CPI-17. Cultures of human uterine myocytes (hUM) were treated with the potent contractile stimulant oxytocin to induce uterine contractility or a pharmacological mimic of diacyl-glycerol to stimulate the conventional and novel isozymes of the PKC family. Combinations of isozyme-selective inhibitors were used to determine the effects of the conventional and novel classes of isozymes. RESULTS Stimulation of PKC using phospho-dibutyrate caused immediate, concentration-dependent inhibition of uterine activity ex vivo. Using the ICW assay with hUM, the oxytocin-stimulated increase in the pro-contractile phosphorylations of myosin RLCs at serine19 and threonine18 was completely inhibited by prior treatment with phorbol-12-myristate-13-acetate, which stimulates both convention and novel classes of isozymes. Our results suggest that the conventional class of isozymes cause a reduction in phosphorylations at serine19 and threonine18 by reducing activity of myosin light chain kinase. The novel class of isozymes has 2 mechanisms of action: the first is activation of CPI-17 through phosphorylation at threonine38, which results in reduced activity of myosin light chain phosphatase and increased levels of activated myosin RLC; the second is increased phosphorylation of the N-terminal region of myosin RLC. CONCLUSIONS Specific agonists for the conventional isozymes or inhibitors of the novel isozymes of the PKC family could be useful pharmacological agents for regulation of uterine activity.
Collapse
Affiliation(s)
- Bryan F Mitchell
- Department of Obstetrics and Gynecology, The Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada. .,Department of Physiology, The Women and Children's Health Research Institute, University of Albert, Edmonton, Alberta, Canada.
| | - Mei Chi
- Department of Obstetrics and Gynecology, The Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Elle Surgent
- Department of Obstetrics and Gynecology, The Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bailey M Sorochan
- Department of Obstetrics and Gynecology, The Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Curtis N Tracey
- Department of Physiology, The Women and Children's Health Research Institute, University of Albert, Edmonton, Alberta, Canada
| | - Hector N Aguilar
- Department of Physiology, The Women and Children's Health Research Institute, University of Albert, Edmonton, Alberta, Canada
| | - Maily Mongin
- Department of Obstetrics and Gynecology, The Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Barbara Zielnik
- Department of Obstetrics and Gynecology, The Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
39
|
Parikh VN, Liu J, Shang C, Woods C, Chang AC, Zhao M, Charo DN, Grunwald Z, Huang Y, Seo K, Tsao PS, Bernstein D, Ruiz-Lozano P, Quertermous T, Ashley EA. Apelin and APJ orchestrate complex tissue-specific control of cardiomyocyte hypertrophy and contractility in the hypertrophy-heart failure transition. Am J Physiol Heart Circ Physiol 2018; 315:H348-H356. [PMID: 29775410 PMCID: PMC6139625 DOI: 10.1152/ajpheart.00693.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
The G protein-coupled receptor APJ is a promising therapeutic target for heart failure. Constitutive deletion of APJ in the mouse is protective against the hypertrophy-heart failure transition via elimination of ligand-independent, β-arrestin-dependent stretch transduction. However, the cellular origin of this stretch transduction and the details of its interaction with apelin signaling remain unknown. We generated mice with conditional elimination of APJ in the endothelium (APJendo-/-) and myocardium (APJmyo-/-). No baseline difference was observed in left ventricular function in APJendo-/-, APJmyo-/-, or control (APJendo+/+, APJmyo+/+) mice. After exposure to transaortic constriction, APJendo-/- mice displayed decreased left ventricular systolic function and increased wall thickness, whereas APJmyo-/- mice were protected. At the cellular level, carbon fiber stretch of freshly isolated single cardiomyocytes demonstrated decreased contractile responses to stretch in APJ-/- cardiomyocytes compared with APJ+/+ cardiomyocytes. Ca2+ transients did not change with stretch in either APJ-/- or APJ+/+ cardiomyocytes. Application of apelin to APJ+/+ cardiomyocytes resulted in decreased Ca2+ transients. Furthermore, hearts of mice treated with apelin exhibited decreased phosphorylation in cardiac troponin I NH2-terminal residues (Ser22 and Ser23) consistent with increased Ca2+ sensitivity. These data establish that APJ stretch transduction is mediated specifically by myocardial APJ, that APJ is necessary for stretch-induced increases in contractility, and that apelin opposes APJ's stretch-mediated hypertrophy signaling by lowering Ca2+ transients while maintaining contractility through myofilament Ca2+ sensitization. These findings underscore apelin's unique potential as a therapeutic agent that can simultaneously support cardiac function and protect against the hypertrophy-heart failure transition. NEW & NOTEWORTHY These data address fundamental gaps in our understanding of apelin-APJ signaling in heart failure by localizing APJ's ligand-independent stretch sensing to the myocardium, identifying a novel mechanism of apelin-APJ inotropy via myofilament Ca2+ sensitization, and identifying potential mitigating effects of apelin in APJ stretch-induced hypertrophic signaling.
Collapse
Affiliation(s)
- Victoria N Parikh
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Jing Liu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Ching Shang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | | | - Alex C Chang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Mingming Zhao
- Department of Pediatric Cardiology, Lucile Packard Children's Hospital of Stanford University , Palo Alto, California
| | - David N Charo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Zachary Grunwald
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Yong Huang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Kinya Seo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Daniel Bernstein
- Department of Pediatric Cardiology, Lucile Packard Children's Hospital of Stanford University , Palo Alto, California
| | | | - Thomas Quertermous
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
| | - Euan A Ashley
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, California
- Department of Genetics, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
40
|
Takano S, Uchida K, Inoue G, Matsumoto T, Aikawa J, Iwase D, Mukai M, Miyagi M, Takaso M. Vascular endothelial growth factor expression and their action in the synovial membranes of patients with painful knee osteoarthritis. BMC Musculoskelet Disord 2018; 19:204. [PMID: 29945585 PMCID: PMC6020436 DOI: 10.1186/s12891-018-2127-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Research suggests that vascular endothelial growth factor (VEGF) levels in the synovial fluid of knee osteoarthritis (KOA) patients are positively correlated with KOA severity. The relationship between synovial VEGF levels and pain in human KOA patients is not fully understood, and the role of VEGF in the pain pathway remains unclear. METHODS We harvested synovial membrane (SM) from 102 patients with radiographic evidence of KOA (unilateral Kellgren/Lawrence [K/L] grade 2-4) during total knee arthroplasty. Patients scored their pain on a 0 to 10 cm visual analog scale (VAS). VEGF levels in the SM of KOA patients with strong/severe (VAS ≥ 6) and mild/moderate pain (VAS < 6) were compared. Correlations between VAS and VEGF mRNA expression were investigated. To investigate a possible mechanism for VEGF-induced pain, the distribution of VEGF and the neuropeptide apelin was determined by immunohistochemical analyses. To investigate the role of VEGF in regulating apelin expression, SM cells were exposed to VEGF. RESULTS VEGF expression in the VAS ≥ 6 group was significantly greater than expression in the VAS < 6 group. Expression levels of VEGF were also positively correlated with VAS. VEGF-positive cells were identified in the lining of the SM. Expression of apelin mRNA and protein were significantly elevated in SM cells treated with exogenous VEGF compared to those treated with vehicle. CONCLUSION Synovial VEGF may be involved in pain pathways in KOA and its action may be mediated by apelin.
Collapse
Affiliation(s)
- Shotaro Takano
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, 252-0374, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, 252-0374, Japan.
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, 252-0374, Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, 252-0374, Japan
| | - Jun Aikawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, 252-0374, Japan
| | - Dai Iwase
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, 252-0374, Japan
| | - Manabu Mukai
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, 252-0374, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, 252-0374, Japan
| |
Collapse
|
41
|
Strength Training Session Induces Important Changes on Physiological, Immunological, and Inflammatory Biomarkers. J Immunol Res 2018; 2018:9675216. [PMID: 30046617 PMCID: PMC6038656 DOI: 10.1155/2018/9675216] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/30/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Strength exercise is a strategy applied in sports and physical training processes. It may induce skeletal muscle hypertrophy. The hypertrophy is dependent on the eccentric muscle actions and on the inflammatory response. Here, we evaluate the physiological, immunological, and inflammatory responses induced by a session of strength training with a focus on predominance of the eccentric muscle actions. Twenty volunteers were separated into two groups: the untrained group (UTG) and the trained group (TG). Both groups hold 4 sets of leg press, knee extensor, and leg curl at 65% of personal one-repetition maximum (1RM), 90 s of recovery, and 2″conc/3″eccen of duration of execution in each repetition. Blood samples were collected immediately before and after, 2 hours after, and 24 h after the end of the exercise session. The single session of strength training elevated the heart rate (HR), rating of perceived exertion (RPE), visual analog scale (VAS), and lactate blood level in UTG and TG. Creatine kinase (CK) levels were higher at 2 and 24 h after the end of the exercise in UTG and, in TG, only at 24 h. The number of white blood cells (WBC) and neutrophils increased in UTG and TG, post and 2 h after exercise. Lymphocytes increased postexercise but reduced 2 h after exercise in both groups, while the number of monocytes increased only immediately after the exercise session in UTG and TG. The strength training session elevated the levels of apelin and fatty acid-binding proteins-3 (FABP3) in both groups and brain-derived neurotrophic factor (BDNF) in TG. The single exercise session was capable of inducing elevated HR, RPE, lactate level, and CK levels. This protocol changed the count/total number of circulating immune cells in both groups (UTG and TG) and also increased the level of plasmatic apelin, BDNF, and FLTS1 only in TG and FABP3 myokines in both groups.
Collapse
|
42
|
Gergs U, Rothkirch D, Hofmann B, Treede H, Robaye B, Simm A, Müller CE, Neumann J. Mechanism underlying the contractile activity of UTP in the mammalian heart. Eur J Pharmacol 2018; 830:47-58. [PMID: 29673908 DOI: 10.1016/j.ejphar.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022]
Abstract
We previously reported that uridine 5'-triphosphate (UTP), a pyrimidine nucleoside triphosphate produced a concentration- and time-dependent increase in the contraction force in isolated right atrial preparations from patients undergoing cardiac bypass surgery due to angina pectoris. The stimulation of the force of contraction was sustained rather than transient. In the present study, we tried to elucidate the underlying receptor and signal transduction for this effect of UTP. Therefore, we measured the effect of UTP on force of contraction, phosphorylation of p38 and ERK1/2, in human atrial preparations, atrial preparations from genetically modified mice, cardiomyocytes from adult mice and cardiomyocytes from neonatal rats. UTP exerted a positive inotropic effect in isolated electrically driven left atrial preparations from wild-type (WT) mice and P2Y2-, P2Y4- and P2Y6-receptor knockout mice. Therefore, we concluded that these P2Y receptors did not mediate the inotropic effects of UTP in atrial preparations from mice. However, UTP (like ATP) increased the phosphorylation states of p38 and ERK1/2 in neonatal rat cardiomyocytes, adult mouse cardiomyocytes and human atrial tissue in vitro. U0126, a MEK 1/2- signal cascade inhibitor, attenuated this phosphorylation and the positive inotropic effects of UTP in murine and human atrial preparations. We suggest that presently unknown receptors mediate the positive inotropic effect of UTP in murine and human atria. We hypothesize that UTP stimulates inotropy via p38 or ERK1/2 phosphorylation. We speculate that UTP may be a valuable target in the development of new drugs aimed at treating human systolic heart failure.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Daniel Rothkirch
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Britt Hofmann
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Hendrik Treede
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Bernard Robaye
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Andreas Simm
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany.
| |
Collapse
|
43
|
Różycka M, Kurowska P, Grzesiak M, Kotula-Balak M, Tworzydło W, Rame C, Gregoraszczuk E, Dupont J, Rak A. Apelin and apelin receptor at different stages of corpus luteum development and effect of apelin on progesterone secretion and 3β-hydroxysteroid dehydrogenase (3β-HSD) in pigs. Anim Reprod Sci 2018; 192:251-260. [PMID: 29576467 DOI: 10.1016/j.anireprosci.2018.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 01/01/2023]
Abstract
Recent studies have suggested that apelin has a role in controlling female reproduction. The aims of the present study were, firstly, to investigate the gene expression (mRNA and protein) and immunolocalization of apelin and its receptor APJ in corpora lutea (CL) of pigs collected during the early (CL1), middle (CL2) and late (CL3) luteal phase. Using real time PCR and immunoblotting techniques, it was observed that apelin gene expression was similar in CL1 and CL2, and less in CL3, while relative abundance APJ mRNA and abundance of the protein were similar in CL1 and CL3 and greater in CL2. There was apelin staining in the cytoplasm of both small (SC) and large (LC) luteal cells with the greatest intensity in CL2. In the cytoplasm of CL1, only a few SC cells stained for APJ; in CL2, APJ was located in the cell membrane of LC and in the cytoplasm of SC; and in CL3 was located in the membrane with moderate cytoplasmic APJ staining. Intense APJ staining was noted in epithelium of blood vessels of CL2-3. Secondly, there was an effect of apelin on progesterone (P4) secretion in CL2 and on the molecular mechanisms of these cells. Stimulatory effects of apelin on P4 secretion, 3β-hydroxysteroid dehydrogenase (HSD) activity and protein abundance were observed and this was inhibited in response to APJ and adenosine 5'-monophosphate-activated protein kinase (AMPKα) kinase blockers. In conclusion, the presence of apelin/APJ in the CL of pigs and stimulatory effects of apelin on P4 secretion and 3β-HSD levels suggest potential auto/paracrine regulation by apelin in the luteal phase of the estrous cycle. Moreover, the involvement of APJ and AMPKα kinase in apelin activity in CL was confirmed.
Collapse
Affiliation(s)
- Marta Różycka
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Małgorzata Grzesiak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, 30-059 Krakow, Poland
| | - Małgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Wacław Tworzydło
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Christelle Rame
- INRA, Unité Physiologie de la Reproduction et des Comportements, 37-380 Nouzilly, France
| | - Ewa Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Joelle Dupont
- INRA, Unité Physiologie de la Reproduction et des Comportements, 37-380 Nouzilly, France
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland.
| |
Collapse
|
44
|
Trân K, Murza A, Sainsily X, Coquerel D, Côté J, Belleville K, Haroune L, Longpré JM, Dumaine R, Salvail D, Lesur O, Auger-Messier M, Sarret P, Marsault É. A Systematic Exploration of Macrocyclization in Apelin-13: Impact on Binding, Signaling, Stability, and Cardiovascular Effects. J Med Chem 2018; 61:2266-2277. [DOI: 10.1021/acs.jmedchem.7b01353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kien Trân
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Alexandre Murza
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Xavier Sainsily
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - David Coquerel
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Jérôme Côté
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Karine Belleville
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Lounès Haroune
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Robert Dumaine
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Dany Salvail
- IPS Thérapeutique Inc., Sherbrooke J1G 5J6, Québec, Canada
| | - Olivier Lesur
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Mannix Auger-Messier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Éric Marsault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| |
Collapse
|
45
|
Disease severity impacts the relationship of apelin with arterial function in patients with rheumatoid arthritis. Clin Rheumatol 2018; 37:1481-1491. [DOI: 10.1007/s10067-018-4013-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/26/2022]
|
46
|
Folino A, Accomasso L, Giachino C, Montarolo PG, Losano G, Pagliaro P, Rastaldo R. Apelin-induced cardioprotection against ischaemia/reperfusion injury: roles of epidermal growth factor and Src. Acta Physiol (Oxf) 2018; 222. [PMID: 28748611 DOI: 10.1111/apha.12924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/31/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
Abstract
AIM Apelin, the ligand of the G-protein-coupled receptor (GPCR) APJ, exerts a post-conditioning-like protection against ischaemia/reperfusion injury through activation of PI3K-Akt-NO signalling. The pathway connecting APJ to PI3K is still unknown. As other GPCR ligands act through transactivation of epidermal growth factor receptor (EGFR) via a matrix metalloproteinase (MMP) or Src kinase, we investigated whether EGFR transactivation is involved in the following three features of apelin-induced cardioprotection: limitation of infarct size, suppression of contracture and improvement of post-ischaemic contractile recovery. METHOD Isolated rat hearts underwent 30 min of global ischaemia and 2 h of reperfusion. Apelin (0.5 μm) was infused during the first 20 min of reperfusion. EGFR, MMP or Src was inhibited to study the pathway connecting APJ to PI3K. Key components of RISK pathway, namely PI3K, guanylyl cyclase or mitochondrial K+ -ATP channels, were also inhibited. Apelin-induced EGFR and phosphatase and tensing homolog (PTEN) phosphorylation were assessed. Left ventricular pressure and infarct size were measured. RESULTS Apelin-induced reductions in infarct size and myocardial contracture were prevented by the inhibition of EGFR, Src, MMP or RISK pathway. The involvement of EGFR was confirmed by its phosphorylation. However, neither direct EGFR nor MMP inhibition affected apelin-induced improvement of early post-ischaemic contractile recovery, which was suppressed by Src and RISK inhibitors only. Apelin also increased PTEN phosphorylation, which was removed by Src inhibition. CONCLUSION While EGFR and MMP limit infarct size and contracture, Src or RISK pathway inhibition suppresses the three features of cardioprotection. Src does not only transactivate EGFR, but also inhibits PTEN by phosphorylation thus playing a crucial role in apelin-induced cardioprotection.
Collapse
Affiliation(s)
- A. Folino
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| | - L. Accomasso
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| | - C. Giachino
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| | - P. G. Montarolo
- Department of Neurosciences; University of Turin; Torino Italy
| | - G. Losano
- Department of Neurosciences; University of Turin; Torino Italy
| | - P. Pagliaro
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| | - R. Rastaldo
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| |
Collapse
|
47
|
Coquerel D, Sainsily X, Dumont L, Sarret P, Marsault É, Auger-Messier M, Lesur O. The apelinergic system as an alternative to catecholamines in low-output septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:10. [PMID: 29347994 PMCID: PMC5774146 DOI: 10.1186/s13054-018-1942-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
Catecholamines, in concert with fluid resuscitation, have long been recommended in the management of septic shock. However, not all patients respond positively and controversy surrounding the efficacy-to-safety profile of catecholamines has emerged, trending toward decatecholaminization. Contextually, it is time to re-examine the “maintaining blood pressure” paradigm by identifying safer and life-saving alternatives. We put in perspective the emerging and growing knowledge on a promising alternative avenue: the apelinergic system. This target exhibits invaluable pleiotropic properties, including inodilator activity, cardio-renal protection, and control of fluid homeostasis. Taken together, its effects are expected to be greatly beneficial for patients in septic shock.
Collapse
Affiliation(s)
- David Coquerel
- Division of Intensive Care Units, Department of Medicine, Université de Sherbrooke, 3001 - 12e Avenue Nord, Sherbrooke, QC, J1H 5 N4, Canada
| | - Xavier Sainsily
- Division of Cardiology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Pharmacology Institute of Sherbrooke, Faculty of Medecine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lauralyne Dumont
- Division of Intensive Care Units, Department of Medicine, Université de Sherbrooke, 3001 - 12e Avenue Nord, Sherbrooke, QC, J1H 5 N4, Canada.,Division of Cardiology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Pharmacology Institute of Sherbrooke, Faculty of Medecine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Éric Marsault
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Pharmacology Institute of Sherbrooke, Faculty of Medecine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mannix Auger-Messier
- Division of Cardiology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Olivier Lesur
- Division of Intensive Care Units, Department of Medicine, Université de Sherbrooke, 3001 - 12e Avenue Nord, Sherbrooke, QC, J1H 5 N4, Canada. .,Pharmacology Institute of Sherbrooke, Faculty of Medecine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
48
|
Abstract
Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G-protein-coupled receptor named the apelin receptor (AR/APJ/APLNR). Ligand-AR interactions have been implicated in regulation of the adipoinsular axis, cardiovascular system, and central nervous system alongside pathological processes. Each ligand may be processed into a variety of bioactive isoforms endogenously, with apelin ranging from 13 to 55 amino acids and apela from 11 to 32, typically being cleaved C-terminal to dibasic proprotein convertase cleavage sites. The C-terminal region of the respective precursor protein is retained and is responsible for receptor binding and subsequent activation. Interestingly, both apelin and apela exhibit isoform-dependent variability in potency and efficacy under various physiological and pathological conditions, but most studies focus on a single isoform. Biophysical behavior and structural properties of apelin and apela isoforms show strong correlations with functional studies, with key motifs now well determined for apelin. Unlike its ligands, the AR has been relatively difficult to characterize by biophysical techniques, with most characterization to date being focused on effects of mutagenesis. This situation may improve following a recently reported AR crystal structure, but there are still barriers to overcome in terms of comprehensive biophysical study. In this review, we summarize the three components of the apelinergic system in terms of structure-function correlation, with a particular focus on isoform-dependent properties, underlining the potential for regulation of the system through multiple endogenous ligands and isoforms, isoform-dependent pharmacological properties, and biological membrane-mediated receptor interaction. © 2018 American Physiological Society. Compr Physiol 8:407-450, 2018.
Collapse
Affiliation(s)
- Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Calem Kenward
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
49
|
Rostamzadeh F, Najafipour H, Yeganeh-Hajahmadi M, Joukar S. Opioid receptors mediate inotropic and depressor effects of apelin in rats with 2K1C-induced chronic renovascular hypertension. Clin Exp Pharmacol Physiol 2017; 45:187-197. [PMID: 28945940 DOI: 10.1111/1440-1681.12860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022]
Abstract
Apelin receptors (APJ) cross-talk with other G-protein-coupled receptors. However, the role of APJ interaction with opioid receptors (OPR) on the cardiovascular effects of apelin in hypertension is not clear. Renovascular hypertension was induced by placing a Plexiglas clip on the left kidney of rats. After 16 weeks, F13A (an APJ antagonist), naloxone (a general OPR inhibitor), and nor-binaltorphimine dihydrochloride (nor-BNI; a selective inhibitor of KOR) were given prior to injections of apelin at doses of 40 and 60 μg/kg. The arterial systolic/diastolic blood pressure and left ventricular contractility responses were then evaluated. The arterial systolic/diastolic blood pressure in sham and 2K1C rats was 110/71 mm Hg and 171/124 mm Hg, respectively. The hypotensive effects of apelin at both doses were inhibited by F13A and naloxone. Nor-BNI completely inhibited the effects of apelin 40 on arterial pressure, and decreased the effects of 60 μg/kg. KOR inhibition also prevented the compensation for the decrease in the left ventricle +dp/dt max and -dp/dt max caused by apelin 60. The simultaneous inhibition of OPR and APJ reduced arterial pressure and increased cardiac contractility. Findings showed that the OPR, particularly KOR, mediate the inotropic, lusitropic, and depressor effects of apelin. The interaction of the OPR and APJ augments the inotropic and vasodepressor effects of apelin. This interaction may have potential clinical applications in cardiac failure since opioids are currently used in the treatment of myocardial infarction and stroke, and apelin has been introduced as a potential therapeutic agent in cardiovascular complications.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences and Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboobeh Yeganeh-Hajahmadi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences and Department of Physiology and pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Physiology Research Center, Institute of Neuropharmacology and Department of Physiology and pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
50
|
Rostamzadeh F, Najafipour H, Yeganeh-Hajahmadi M, Esmaeili-Mahani S, Joukar S, Iranpour M. Heterodimerization of apelin and opioid receptors and cardiac inotropic and lusitropic effects of apelin in 2K1C hypertension: Role of pERK1/2 and PKC. Life Sci 2017; 191:24-33. [PMID: 28987634 DOI: 10.1016/j.lfs.2017.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/21/2017] [Accepted: 09/30/2017] [Indexed: 11/17/2022]
Abstract
AIMS Kappa Opioid receptors (KORs) change the impact of apelin on the phosphorylated ERK1/2 (pERK1/2). However, the role of interaction between KOR and apelin receptors (APJ) on the cardiac contractility effects of apelin and in regulation of pERK1/2 and PKC in the heart of renovascular hypertensive (2K1C) rats is unknown. MAIN METHODS Hemodynamic factors, the heterodimerization of KOR and APJ, the expression of KOR mRNA and protein and pERK1/2 in the left ventricle of 2K1C rats were measured following APJ, KOR, PKC and Gi path inhibition by F13A, nor-BNI, chelerythrine and PTX respectively. KEY FINDINGS Apelin in 40 and 60μg/kg doses increased cardiac contractility, and reduced mean arterial pressure. The cardiac impacts in both doses were reduced by F13A, nor-BNI and chelerytrine and blocked by PTX. Hypertension increased the expression of KORs and heterodimerization of APJ and KOR, and reduced pERK1/2 in the left ventricle. Apelin, in both doses reduced (normalized) heterodimerization and recovered the reduction in pERK1/2. The recovery of ERK1/2 phosphorylation was accompanied by reduction of KOR and APJ heterodimerization. SIGNIFICANCE 2K1C hypertension increased the expression of KORs and heterodimerization of APJ and KORs. The heterodimerization was associated by reduction of ERK phosphorylation and altered the cardiac inotropic and lusitropic effects of apelin. These changes may participate in pathophysiology of cardiac dysfunction in renovascular hypertension that is associated with subnormal level of serum apelin. Apelin- induced recovery of ERK1/2 phosphorylation and KOR-APJ dimerization may nominate apelin as a therapeutic goal in treatment of this kind of hypertension.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mahboobeh Yeganeh-Hajahmadi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Siyavash Joukar
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|