1
|
Su W, Liu J, Wang A, Zhang H, Sun Y, Yan Z, Svensson M, Yu JG, Zhao L. Distinct lipidomic profiles but similar improvements in aerobic capacity following sprint interval training versus moderate-intensity continuous training in male adolescents. Front Physiol 2025; 16:1475391. [PMID: 39949665 PMCID: PMC11821953 DOI: 10.3389/fphys.2025.1475391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Background Exercise-induced metabolic changes, especially lipidomic changes are generally associated with improvements in cardiovascular health. Despite numerous previous studies, the differences in lipidomic profile response to different types of exercise training remain unclear. This study aimed to investigate how two different exercise intensities affect aerobic capacity and serum lipidomic profiles in healthy adolescents. Methods Twenty-four healthy untrained male adolescents (13.08 ± 0.88 years old) were recruited and randomly assigned to moderate-intensity continuous training (MICT) group or sprint interval training (SIT) group to complete a specific training on a cycle ergometer for 6 weeks. Peak oxygen uptake (VO2peak) and body composition were measured, and blood samples were collected for serum lipoproteins and lipidomic analysis. Anthropometric, VO2peak, and serum biochemical data were analyzed using two-way repeated analysis of variance, while targeted lipidomic analysis was performed by principal component analysis and paired-sample t-test. Results VO2peak significantly improved from 39.05 ± 8.17 to 47.52 ± 8.51 [F (1, 44) = 14.75, p < 0.05] for MICT and from 40.13 ± 6.37 to 48.42 ± 7.01 [F (1, 44) = 14.75, p < 0.05] for SIT. A total of 28 lipids in MICT and 5 lipids in SIT showed significant changes out of 276 identified lipids (FC > 1.5 or <1/1.5, FDR <0.05). In MICT, 21 lipids, including sphingolipid (SP) and phospholipid (PL), decreased, while 7 lipids increased. In SIT, all 5 lipids, which were free fatty acid (FFA), decreased. Conclusion Although both MICT and SIT induced similar and significant improvements in VO2peak, serum lipid adaptations to the training differed. The primary changes in serum lipidomic intermediates for both types of training were reductions; however, SIT affected FFA, while MICT predominantly influenced SPs and PLs.
Collapse
Affiliation(s)
- Wantang Su
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Jianming Liu
- School of Competitive Sports, Beijing Sport University, Beijing, China
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Aozhe Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Haifeng Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Yaqi Sun
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Zhiyi Yan
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Michael Svensson
- Department of Community Medicine and Rehabilitation, Section of Sports Medicine, Umeå University, Umeå, Sweden
| | - Ji-Guo Yu
- Department of Community Medicine and Rehabilitation, Section of Sports Medicine, Umeå University, Umeå, Sweden
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| |
Collapse
|
2
|
Frankish BP, Murphy RM. Does AMPK bind glycogen in skeletal muscle or is the relationship correlative? Essays Biochem 2024; 68:337-347. [PMID: 39192605 DOI: 10.1042/ebc20240006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Since its discovery over five decades ago, an emphasis on better understanding the structure and functional role of AMPK has been prevalent. In that time, the role of AMPK as a heterotrimeric enzyme that senses the energy state of various cell types has been established. Skeletal muscle is a dynamic, plastic tissue that adapts to both functional and metabolic demands of the human body, such as muscle contraction or exercise. With a deliberate focus on AMPK in skeletal muscle, this review places a physiological lens to the association of AMPK and glycogen that has been established biochemically. It discusses that, to date, no in vivo association of AMPK with glycogen has been shown and this is not altered with interventions, either by physiological or biochemical utilisation of glycogen in skeletal muscle. The reason for this is likely due to the persistent phosphorylation of Thr148 in the β-subunit of AMPK which prevents AMPK from binding to carbohydrate domains. This review presents the correlative data that suggests AMPK senses glycogen utilisation through a direct interaction with glycogen, the biochemical data showing that AMPK can bind carbohydrate in vitro, and highlights that in a physiological setting of rodent skeletal muscle, AMPK does not directly bind to glycogen.
Collapse
Affiliation(s)
- Barnaby P Frankish
- Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia Insert Affiliation Text Here
| |
Collapse
|
3
|
Meyler SJR, Swinton PA, Bottoms L, Dalleck LC, Hunter B, Sarzynski MA, Wellsted D, Williams CJ, Muniz-Pumares D. Changes in Cardiorespiratory Fitness Following Exercise Training Prescribed Relative to Traditional Intensity Anchors and Physiological Thresholds: A Systematic Review with Meta-analysis of Individual Participant Data. Sports Med 2024:10.1007/s40279-024-02125-x. [PMID: 39538060 DOI: 10.1007/s40279-024-02125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND It is unknown whether there are differences in maximal oxygen uptake ( V O2max) response when prescribing intensity relative to traditional (TRAD) anchors or to physiological thresholds (THR). OBJECTIVES The present meta-analysis sought to compare: (a) mean change in V O2max, (b) proportion of individuals increasing V O2max beyond a minimum important difference (MID) and (c) response variability in V O2max between TRAD and THR. METHODS Electronic databases were searched, yielding data for 1544 individuals from 42 studies. Two datasets were created, comprising studies with a control group ('controlled' studies), and without a control group ('non-controlled' studies). A Bayesian approach with multi-level distributional models was used to separately analyse V O2max change scores from the two datasets and inferences were made using Bayes factors (BF). The MID was predefined as one metabolic equivalent (MET; 3.5 mL kg-1 min-1). RESULTS In controlled studies, mean V O2max change was greater in the THR group compared with TRAD (4.1 versus 1.8 mL kg-1 min-1, BF > 100), with 64% of individuals in the THR group experiencing an increase in V O2max > MID, compared with 16% of individuals taking part in TRAD. Evidence indicated no difference in standard deviation of change between THR and TRAD (1.5 versus 1.7 mL kg-1 min-1, BF = 0.55), and greater variation in exercise groups relative to non-exercising controls (1.9 versus 1.3 mL kg-1 min-1, BF = 12.4). In non-controlled studies, mean V O2max change was greater in the THR group versus the TRAD group (4.4 versus 3.4 mL kg-1 min-1, BF = 35.1), with no difference in standard deviation of change (3.0 versus 3.2 mL kg-1 min-1, BF = 0.41). CONCLUSION Prescribing exercise intensity using THR approaches elicited superior mean changes in V O2max and increased the likelihood of increasing V O2max beyond the MID compared with TRAD. Researchers designing future exercise training studies should thus consider the use of THR approaches to prescribe exercise intensity where possible. Analysis comparing interventions with controls suggested the existence of intervention response heterogeneity; however, evidence was not obtained for a difference in response variability between THR and TRAD. Future primary research should be conducted with adequate power to investigate the scope of inter-individual differences in V O2max trainability, and if meaningful, the causative factors.
Collapse
Affiliation(s)
- Samuel J R Meyler
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, England, UK
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| | - Lindsay Bottoms
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, England, UK
| | - Lance C Dalleck
- Recreation, Exercise and Sport Science Department, Western Colorado University, Gunnison, CO, USA
| | - Ben Hunter
- School of Human Sciences, London Metropolitan University, London, UK
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - David Wellsted
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, England, UK
| | - Camilla J Williams
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Muniz-Pumares
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, England, UK.
| |
Collapse
|
4
|
Van der Stede T, Van de Loock A, Lievens E, Yigit N, Anckaert J, Van Thienen R, Weyns A, Mestdagh P, Vandesompele J, Derave W. Transcriptomic signatures of human single skeletal muscle fibers in response to high-intensity interval exercise. Am J Physiol Cell Physiol 2024; 327:C1249-C1262. [PMID: 39316684 DOI: 10.1152/ajpcell.00299.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
The heterogeneous fiber type composition of skeletal muscle makes it challenging to decipher the molecular signaling events driving the health- and performance benefits of exercise. We developed an optimized workflow for transcriptional profiling of individual human muscle fibers before, immediately after, and after 3 h of recovery from high-intensity interval cycling exercise. From a transcriptional point-of-view, we observe that there is no dichotomy in fiber activation, which could refer to a fiber being recruited or nonrecruited. Rather, the activation pattern displays a continuum with a more uniform response within fast versus slow fibers during the recovery from exercise. The transcriptome-wide response immediately after exercise is characterized by some distinct signatures for slow versus fast fibers, although the most exercise-responsive genes are common between the two fiber types. The temporal transcriptional waves further converge the gene signatures of both fiber types toward a more similar profile during the recovery from exercise. Furthermore, a large heterogeneity among all resting and exercised fibers was observed, with the principal drivers being independent of a slow/fast typology. This profound heterogeneity extends to distinct exercise responses of fibers beyond a classification based on myosin heavy chains. Collectively, our single-fiber methodological approach points to a substantial between-fiber diversity in muscle fiber responses to high-intensity interval exercise.NEW & NOTEWORTHY By development of a single-fiber transcriptomics technology, we assessed the transcriptional events in individual human skeletal muscle fibers upon high-intensity exercise. We demonstrate a large variability in transcriptional activation of fibers, with shared and distinct gene signatures for slow and fast fibers. The heterogeneous fiber-specific exercise response extends beyond this traditional slow/fast categorization. These findings expand on our understanding of exercise responses and uncover a profound between-fiber diversity in muscle fiber activation and transcriptional perturbations.
Collapse
Affiliation(s)
- Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Alexia Van de Loock
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Nurten Yigit
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ruud Van Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Anneleen Weyns
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Li Q, Li C, Zhang X. Research Progress on the Effects of Different Exercise Modes on the Secretion of Exerkines After Spinal Cord Injury. Cell Mol Neurobiol 2024; 44:62. [PMID: 39352588 PMCID: PMC11445308 DOI: 10.1007/s10571-024-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Exercise training is a conventional treatment strategy throughout the entire treatment process for patients with spinal cord injury (SCI). Currently, exercise modalities for SCI patients primarily include aerobic exercise, endurance training, strength training, high-intensity interval training, and mind-body exercises. These exercises play a positive role in enhancing skeletal muscle function, inducing neuroprotection and regeneration, thereby influencing neural plasticity, reducing limb spasticity, and improving motor function and daily living abilities in SCI patients. However, the mechanism by which exercise training promotes functional recovery after SCI is still unclear, and there is no consensus on a unified and standardized exercise treatment plan. Different exercise methods may bring different benefits. After SCI, patients' physical activity levels decrease significantly due to factors such as motor dysfunction, which may be a key factor affecting changes in exerkines. The changes in exerkines of SCI patients caused by exercise training are an important and highly relevant and visual evaluation index, which may provide a new research direction for revealing the intrinsic mechanism by which exercise promotes functional recovery after SCI. Therefore, this article summarizes the changes in the expression of common exerkines (neurotrophic factors, inflammatory factors, myokines, bioactive peptides) after SCI, and intends to analyze the impact and role of different exercise methods on functional recovery after SCI from the perspective of exerkines mechanism. We hope to provide theoretical basis and data support for scientific exercise treatment programs after SCI.
Collapse
Affiliation(s)
- Qianxi Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Chenyu Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Xin Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
6
|
Reisman EG, Botella J, Huang C, Schittenhelm RB, Stroud DA, Granata C, Chandrasiri OS, Ramm G, Oorschot V, Caruana NJ, Bishop DJ. Fibre-specific mitochondrial protein abundance is linked to resting and post-training mitochondrial content in the muscle of men. Nat Commun 2024; 15:7677. [PMID: 39227581 PMCID: PMC11371815 DOI: 10.1038/s41467-024-50632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Analyses of mitochondrial adaptations in human skeletal muscle have mostly used whole-muscle samples, where results may be confounded by the presence of a mixture of type I and II muscle fibres. Using our adapted mass spectrometry-based proteomics workflow, we provide insights into fibre-specific mitochondrial differences in the human skeletal muscle of men before and after training. Our findings challenge previous conclusions regarding the extent of fibre-type-specific remodelling of the mitochondrial proteome and suggest that most baseline differences in mitochondrial protein abundances between fibre types reported by us, and others, might be due to differences in total mitochondrial content or a consequence of adaptations to habitual physical activity (or inactivity). Most training-induced changes in different mitochondrial functional groups, in both fibre types, were no longer significant in our study when normalised to changes in markers of mitochondrial content.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Javier Botella
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, VIC, Australia
| | - Cesare Granata
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Owala S Chandrasiri
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Georg Ramm
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Viola Oorschot
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nikeisha J Caruana
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - David J Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Arhen BB, Renwick JRM, Zedic AK, Menezes ES, Preobrazenski N, Simpson CA, Stokes T, McGlory C, Gurd BJ. AMPK and PGC- α following maximal and supramaximal exercise in men and women: a randomized cross-over study. Appl Physiol Nutr Metab 2024; 49:526-538. [PMID: 38113478 DOI: 10.1139/apnm-2023-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
We tested the hypothesis that AMPK activation and peroxisome proliferator gamma coactivator 1 alpha (PGC-1α) expression are not augmented as exercise intensity (power output) increases from maximal to supramaximal intensities and conducted an exploratory analysis comparing AMPK activation and PGC-1α expression in males and females. Seventeen (n = 9 males; n = 8 females) recreationally active, healthy, young individuals volunteered to participate in the current study. Participants completed work matched interval exercise at 100% (Max) and 133% (Supra) of peak work rate (WRpeak). Intervals were 1 min in duration and participants were prescribed 6 and 8 intervals of Max and Supra, respectively, to equate external work across protocols. PGC-1α mRNA expression and activation of AMPK (p-ACC) were examined in muscle biopsy samples. Interval WR (watts; W), intensity (%WRpeak) and average HR (bpm), blood lactate (mmol/L) and rating of perceived exertion were all higher (all p < 0.05) in Supra. Fatigue was greater (p < 0.05) in Supra. PGC-1α mRNA expression significantly increased after exercise in Max (p < 0.01) and Supra (p < 0.01), but was not significantly different (p = 0.71) between intensities. A main effect of time (Pre - 0 h) (p < 0.01) was observed for p-ACC; however, no effect of intensity (p = 0.08) or interaction (p = 0.97) was observed. No significant effects of time (p = 0.05) intensity (p = 0.42), or interaction (p = 0.97) were observed for p-AMPK (Thr172). Exploratory sex analysis demonstrated a main effect of sex for p-ACC (greater p-ACC in males; p < 0.05) but not for p-AMPK or PGC-1α expression. Our results confirm that AMPK-PGC-1α signalling is not augmented following supramaximal exercise and provide novel data demonstrating a decrease in AMPK activation (p-ACC) in females compared to men. Trial registration: https://doi.org/10.17605/OSF.IO/U7PX9.
Collapse
Affiliation(s)
- Benjamin B Arhen
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - J R M Renwick
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - A K Zedic
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - E S Menezes
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - N Preobrazenski
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - C A Simpson
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - T Stokes
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - C McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
8
|
Yin M, Li H, Bai M, Liu H, Chen Z, Deng J, Deng S, Meng C, Vollaard NBJ, Little JP, Li Y. Is low-volume high-intensity interval training a time-efficient strategy to improve cardiometabolic health and body composition? A meta-analysis. Appl Physiol Nutr Metab 2024; 49:273-292. [PMID: 37939367 DOI: 10.1139/apnm-2023-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The present meta-analysis aimed to assess the effects of low-volume high-intensity interval training (LV-HIIT; i.e., ≤5 min high-intensity exercise within a ≤15 min session) on cardiometabolic health and body composition. A systematic search was performed in accordance with PRISMA guidelines to assess the effect of LV-HIIT on cardiometabolic health and body composition. Twenty-one studies (moderate to high quality) with a total of 849 participants were included in this meta-analysis. LV-HIIT increased cardiorespiratory fitness (CRF, SMD = 1.19 [0.87, 1.50]) while lowering systolic blood pressure (SMD = -1.44 [-1.68, -1.20]), diastolic blood pressure (SMD = -1.51 [-1.75, -1.27]), mean arterial pressure (SMD = -1.55 [-1.80, -1.30]), MetS z-score (SMD = -0.76 [-1.02, -0.49]), fat mass (kg) (SMD = -0.22 [-0.44, 0.00]), fat mass (%) (SMD = -0.22 [-0.41, -0.02]), and waist circumference (SMD = -0.53 [-0.75, -0.31]) compared to untrained control (CONTROL). Despite a total time-commitment of LV-HIIT of only 14%-47% and 45%-94% compared to moderate-intensity continuous training and HV-HIIT, respectively, there were no statistically significant differences observed for any outcomes in comparisons between LV-HIIT and moderate-intensity continuous training (MICT) or high-volume HIIT. Significant inverse dose-responses were observed between the change in CRF with LV-HIIT and sprint repetitions (β = -0.52 [-0.76, -0.28]), high-intensity duration (β = -0.21 [-0.39, -0.02]), and total duration (β = -0.19 [-0.36, -0.02]), while higher intensity significantly improved CRF gains. LV-HIIT can improve cardiometabolic health and body composition and represent a time-efficient alternative to MICT and HV-HIIT. Performing LV-HIIT at a higher intensity drives higher CRF gains. More repetitions, longer time at high intensity, and total session duration did not augment gains in CRF.
Collapse
Affiliation(s)
- Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Hansen Li
- Department of Physical Education, Southwest University, Chongqing, China
| | - Mingyang Bai
- School of Physical Education, Sichuan Agriculture University, Yaan, China
| | - Hengxian Liu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Zhili Chen
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Jianfeng Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Shengji Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Chuan Meng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Niels B J Vollaard
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
| | - Yongming Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- China Institute of Sport Science, Beijing, China
| |
Collapse
|
9
|
Rosenblat MA, Arnold J, Nelson H, Watt J, Seiler S. The Additional Effect of Training Above the Maximal Metabolic Steady State on VO2peak, Wpeak and Time-Trial Performance in Endurance-Trained Athletes: A Systematic Review, Meta-analysis, and Reality Check. Sports Med 2024; 54:429-446. [PMID: 37737543 DOI: 10.1007/s40279-023-01924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND To improve sport performance, athletes use training regimens that include exercise below and above the maximal metabolic steady state (MMSS). OBJECTIVE The objective of this review was to determine the additional effect of training above MMSS on VO2peak, Wpeak and time-trial (TT) performance in endurance-trained athletes. METHODS Studies were included in the review if they (i) were published in academic journals, (ii) were in English, (iii) were prospective, (iv) included trained participants, (v) had an intervention group that contained training above and below MMSS, (vi) had a comparator group that only performed training below MMSS, and (vii) reported results for VO2peak, Wpeak, or TT performance. Medline and SPORTDiscus were searched from inception until February 23, 2023. RESULTS Fourteen studies that ranged from 2 to 12 weeks were included in the review. There were 171 recreational and 128 competitive endurance athletes. The mean age and VO2peak of participants ranged from 15 to 43 years and 38 to 68 mL·kg-1·min-1, respectively. The inclusion of training above MMSS led to a 2.5 mL·kg-1·min-1 (95% CI 1.4-3.6; p < 0.01; I2 = 0%) greater improvement in VO2peak. A minimum of 81 participants per group would be required to obtain sufficient power to determine a significant effect (SMD 0.44) for VO2peak. No intensity-specific effect was observed for Wpeak or TT performance, in part due to a smaller sample size. CONCLUSION A single training meso-cycle that includes training above MMSS can improve VO2peak in endurance-trained athletes more than training only below MMSS. However, we do not have sufficient evidence to conclude that concurrent adaptation occurs for Wpeak or TT performance.
Collapse
Affiliation(s)
| | - Jem Arnold
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, BC, Canada
| | - Hannah Nelson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Watt
- Knowledge Translation Program, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
- Division of Geriatric Medicine, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Stephen Seiler
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
10
|
Bostad W, Williams JS, Van Berkel EK, Richards DL, MacDonald MJ, Gibala MJ. Biological sex does not influence the peak cardiac output response to twelve weeks of sprint interval training. Sci Rep 2023; 13:22995. [PMID: 38151488 PMCID: PMC10752867 DOI: 10.1038/s41598-023-50016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
Sprint interval training (SIT) increases peak oxygen uptake (V̇O2peak) but the mechanistic basis is unclear. We have reported that 12 wk of SIT increased V̇O2peak and peak cardiac output (Q̇peak) and the changes in these variables were correlated. An exploratory analysis suggested that Q̇peak increased in males but not females. The present study incorporated best practices to examine the potential influence of biological sex on the Q̇peak response to SIT. Male and female participants (n = 10 each; 21 ± 4 y) performed 33 ± 2 sessions of SIT over 12 wk. Each 10-min session involved 3 × 20-s 'all-out' sprints on an ergometer. V̇O2peak increased after SIT (3.16 ± 1.0 vs. 2.89 ± 1.0 L/min, η2p = 0.53, p < 0.001) with no sex × time interaction (p = 0.61). Q̇peak was unchanged after training (15.2 ± 3.3 vs. 15.1 ± 3.0 L/min, p = 0.85), in contrast to our previous study. The peak estimated arteriovenous oxygen difference increased after training (204 ± 30 vs. 187 ± 36 ml/L, p = 0.006). There was no effect of training or sex on measures of endothelial function. We conclude that 12 wk of SIT increases V̇O2peak but the mechanistic basis remains unclear. The capacity of inert gas rebreathing to assess changes in Q̇peak may be limited and invasive studies that use more direct measures are needed.
Collapse
Affiliation(s)
- William Bostad
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jennifer S Williams
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Emily K Van Berkel
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Douglas L Richards
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Maureen J MacDonald
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
11
|
Pengam M, Goanvec C, Moisan C, Simon B, Albacète G, Féray A, Guernec A, Amérand A. Moderate intensity continuous versus high intensity interval training: Metabolic responses of slow and fast skeletal muscles in rat. PLoS One 2023; 18:e0292225. [PMID: 37792807 PMCID: PMC10550171 DOI: 10.1371/journal.pone.0292225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
The healthy benefits of regular physical exercise are mainly mediated by the stimulation of oxidative and antioxidant capacities in skeletal muscle. Our understanding of the cellular and molecular responses involved in these processes remain often uncomplete particularly regarding muscle typology. The main aim of the present study was to compare the effects of two types of exercise training protocol: a moderate-intensity continuous training (MICT) and a high-intensity interval training (HIIT) on metabolic processes in two muscles with different typologies: soleus and extensor digitorum longus (EDL). Training effects in male Wistar rats were studied from whole organism level (maximal aerobic speed, morphometric and systemic parameters) to muscle level (transcripts, protein contents and enzymatic activities involved in antioxidant defences, aerobic and anaerobic metabolisms). Wistar rats were randomly divided into three groups: untrained (UNTR), n = 7; MICT, n = 8; and HIIT, n = 8. Rats of the MICT and HIIT groups ran five times a week for six weeks at moderate and high intensity, respectively. HIIT improved more than MICT the endurance performance (a trend to increased maximal aerobic speed, p = 0.07) and oxidative capacities in both muscles, as determined through protein and transcript assays (AMPK-PGC-1α signalling pathway, antioxidant defences, mitochondrial functioning and dynamics). Whatever the training protocol, the genes involved in these processes were largely more significantly upregulated in soleus (slow-twitch fibres) than in EDL (fast-twitch fibres). Solely on the basis of the transcript changes, we conclude that the training protocols tested here lead to specific muscular responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Annie Féray
- EA 4324 ORPHY, Université de Brest, Brest, France
| | | | | |
Collapse
|
12
|
Gurd BJ, Menezes ES, Arhen BB, Islam H. Impacts of altered exercise volume, intensity, and duration on the activation of AMPK and CaMKII and increases in PGC-1α mRNA. Semin Cell Dev Biol 2023; 143:17-27. [PMID: 35680515 DOI: 10.1016/j.semcdb.2022.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/11/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
The purpose of this review is to explore and discuss the impacts of augmented training volume, intensity, and duration on the phosphorylation/activation of key signaling protein - AMPK, CaMKII and PGC-1α - involved in the initiation of mitochondrial biogenesis. Specifically, we explore the impacts of augmented exercise protocols on AMP/ADP and Ca2+ signaling and changes in post exercise PGC - 1α gene expression. Although AMP/ADP concentrations appear to increase with increasing intensity and during extended durations of higher intensity exercise AMPK activation results are varied with some results supporting and intensity/duration effect and others not. Similarly, CaMKII activation and signaling results following exercise of different intensities and durations are inconsistent. The PGC-1α literature is equally inconsistent with only some studies demonstrating an effect of intensity on post exercise mRNA expression. We present a novel meta-analysis that suggests that the inconsistency in the PGC-1α literature may be due to sample size and statistical power limitations owing to the effect of intensity on PGC-1α expression being small. There is little data available regarding the impact of exercise duration on PGC-1α expression. We highlight the need for future well designed, adequately statistically powered, studies to clarify our understanding of the effects of volume, intensity, and duration on the induction of mitochondrial biogenesis by exercise.
Collapse
Affiliation(s)
- Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.
| | | | - Benjamin B Arhen
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
13
|
Zhu H, Jin J, Zhao G. The effects of water-based exercise on body composition: A systematic review and meta-analysis. Complement Ther Clin Pract 2023; 52:101766. [PMID: 37167802 DOI: 10.1016/j.ctcp.2023.101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
AIMS This study aimed to investigate the effects of water-based exercise (WBE) on body composition. METHODS Trials published up to October 28, 2022 were searched using the PubMed, EMBASE, Web of Science, Cochrane, Scopus, and Ovid databases. Randomized controlled trials of healthy adults published in English, comparing WBE and control groups, were included. Other studies with different research designs and participants with medical diagnoses were excluded. The main outcome measures were body weight (BW), body fat mass (BFM), body fat percentage (BFP), lean mass (LM), and skeletal muscle mass (SMM). RESULTS Overall, 17,458 potential studies were identified. After a closer inspection, 79 full-length articles were considered for further screening. Finally, 20 studies, involving 565 participants, were included in the meta-analysis. The WBE was beneficial in reducing BW, BFM, and BFP and increasing LM and SMM. Subgroup analyses were conducted based on different exercise intensities and times per week. Moderate- or moderate-vigorous-intensity exercise helped improve body composition, while lower-intensity WBE or aquatic high-intensity interval training (HIIT) seemed less helpful. Training for <120 min/week was insufficient to improve body composition. Training for >120 min/week was associated with improvements in body composition. CONCLUSIONS Moderate- or moderate-vigorous-intensity WBE helps improve body composition. Adults are encouraged to exercise for >120 min/week.
Collapse
Affiliation(s)
- Haifeng Zhu
- Taizhou People's Hospital, Taizhou City, Jiangsu Province, China
| | - Jing Jin
- Taizhou People's Hospital, Taizhou City, Jiangsu Province, China
| | - Gaonian Zhao
- Taizhou People's Hospital, Taizhou City, Jiangsu Province, China.
| |
Collapse
|
14
|
Skelly LE, MacInnis MJ, Bostad W, McCarthy DG, Jenkins EM, Archila LR, Tarnopolsky MA, Gibala MJ. Human skeletal muscle mitochondrial responses to single-leg intermittent or continuous cycle exercise training matched for absolute intensity and total work. Scand J Med Sci Sports 2023; 33:872-881. [PMID: 36779702 DOI: 10.1111/sms.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
There is renewed interest in the potential for interval (INT) training to increase skeletal muscle mitochondrial content including whether the response differs from continuous (CONT) training. Comparisons of INT and CONT exercise are impacted by the manner in which protocols are "matched", particularly with respect to exercise intensity, as well as inter-individual differences in training responses. We employed single-leg cycling to facilitate a within-participant design and test the hypothesis that short-term INT training would elicit a greater increase in mitochondrial content than work- and intensity-matched CONT training. Ten young healthy adults (five males and five females) completed 12 training sessions over 4 weeks with each leg. Legs were randomly assigned to complete either 30 min of CONT exercise at a challenging sustainable workload (~50% single-leg peak power output; Wpeak) or INT exercise that involved 10 × 3-min bouts at the same absolute workload. INT bouts were interspersed with 1 min of recovery at 10% Wpeak and each CONT session ended with 10 min at 10% Wpeak. Absolute and mean intensity, total training time, and volume were thus matched between legs but the pattern of exercise differed. Contrary to our hypothesis, biomarkers of mitochondrial content including citrate synthase maximal activity, mitochondrial protein content and subsarcolemmal mitochondrial volume increased after CONT (p < 0.05) but not INT training. Both training modes increased single-leg Wpeak (p < 0.01) and time to exhaustion at 70% of single-leg Wpeak (p < 0.01). In a work- and intensity-matched comparison, short-term CONT training increased skeletal muscle mitochondrial content whereas INT training did not.
Collapse
Affiliation(s)
- Lauren E Skelly
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - William Bostad
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Devin G McCarthy
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Linda R Archila
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Ross M, Kargl CK, Ferguson R, Gavin TP, Hellsten Y. Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. Eur J Appl Physiol 2023:10.1007/s00421-022-05128-6. [PMID: 36715739 DOI: 10.1007/s00421-022-05128-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/25/2022] [Indexed: 01/31/2023]
Abstract
Exercise-induced skeletal muscle angiogenesis is a well-known physiological adaptation that occurs in humans in response to exercise training and can lead to endurance performance benefits, as well as improvements in cardiovascular and skeletal tissue health. An increase in capillary density in skeletal muscle improves diffusive oxygen exchange and waste extraction, and thus greater fatigue resistance, which has application to athletes but also to the general population. Exercise-induced angiogenesis can significantly contribute to improvements in cardiovascular and metabolic health, such as the increase in muscle glucose uptake, important for the prevention of diabetes. Recently, our understanding of the mechanisms by which angiogenesis occurs with exercise has grown substantially. This review will detail the biochemical, cellular and biomechanical signals for exercise-induced skeletal muscle angiogenesis, including recent work on extracellular vesicles and circulating angiogenic cells. In addition, the influence of age, sex, exercise intensity/duration, as well as recent observations with the use of blood flow restricted exercise, will also be discussed in detail. This review will provide academics and practitioners with mechanistic and applied evidence for optimising training interventions to promote physical performance through manipulating capillarisation in skeletal muscle.
Collapse
Affiliation(s)
- Mark Ross
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, Scotland, UK.
| | - Christopher K Kargl
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, USA.,Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Richard Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Timothy P Gavin
- Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Wongkitikamjorn W, Wada E, Hosomichi J, Maeda H, Satrawaha S, Hong H, Yoshida KI, Ono T, Hayashi YK. Metabolic dysregulation and decreased capillarization in skeletal muscles of male adolescent offspring rats exposed to gestational intermittent hypoxia. Front Physiol 2023; 14:1067683. [PMID: 36711021 PMCID: PMC9878705 DOI: 10.3389/fphys.2023.1067683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Gestational intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea that occurs frequently during pregnancy, and effects caused by this environmental change during pregnancy may be transmitted to the offspring. In this study, we aimed to clarify the effects of IH in pregnant rats on the skeletal muscle of adolescent offspring rats. Mother rats underwent IH from gestation day 7-21, and their 5-weeks-old male offspring were analyzed. All male offspring rats were born and raised under normoxia conditions. Although no general growth retardation was observed, we found that exposure to gestational IH reduces endurance running capacity of adolescent offspring rats. Both a respiratory muscle (diaphragm; DIA) and a limb muscle (tibialis anterior; TA) showed no histological abnormalities, including fiber size and fiber type distribution. To identify the possible mechanism underlying the reduced running capacity, regulatory factors associated with energy metabolism were analyzed in different parts of skeletal muscles. Compared with rats born under conditions of gestational normoxia, gestational IH offspring rats showed significantly lower expression of genes associated with glucose and lipid metabolism, and lower protein levels of phosphorylated AMPK and AKT. Furthermore, gene expression of adiponectin receptors one and two was significantly decreased in the DIA and TA muscles. In addition, the DIA muscle from adolescent rats had significantly decreased capillary density as a result of gestational IH. However, these changes were not observed in a sucking muscle (geniohyoid) and a masticating muscle (masseter) of these rats. These results suggest that respiratory and limb muscles are vulnerable to gestational IH, which induces altered energy metabolism with decreased aerobic motor function. These changes were partially owing to the decreased expression of adiponectin receptors and decreased capillary density in adolescent offspring rats.
Collapse
Affiliation(s)
- Wirongrong Wongkitikamjorn
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Eiji Wada
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hideyuki Maeda
- Department of Forensic Medicine, Tokyo Medical University, Tokyo, Japan
| | - Sirichom Satrawaha
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Haixin Hong
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, China
| | - Ken-ichi Yoshida
- Department of Forensic Medicine, Tokyo Medical University, Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yukiko K. Hayashi
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
17
|
A Systematic Review and Meta-Analysis of the Effectiveness of High-Intensity Interval Training in People with Cardiovascular Disease at Improving Depression and Anxiety. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8322484. [PMID: 36248418 PMCID: PMC9560824 DOI: 10.1155/2022/8322484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Background To assess the effects of high-intensity interval training (HIIT) on depression and anxiety symptom in people with cardiovascular diseases (CVDs) compared with usual care (UC) and traditional aerobic continuous training (CT). Methods Randomized controlled trials (RCTs) that investigated the effectiveness of HIIT on depression and/or anxiety outcomes before and after treatment in people with CVDs were included. A systematic search of database containing PubMed, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE, SPORTSDiscus, and CINAHL (EBSCOhost) was performed up to December 2021. The analyses of study characteristics, heterogeneity, and forest plot in analyses analogous were conducted via the pooled standardized mean difference (SMD) in random- or fixed-effect models as the measure of effectiveness. Results Twelve independent studies (515 participants) were included. One study was rated as low quality, and four studies were evaluated as high quality. The other studies were rated as moderate quality. Visual interpretation of funnel plots and Egger test indicated no evidence of publication bias. There was a statistically significant reduction in the severity of depression (12 studies, SMD = -0.42 [Random], 95% CI, -0.69 to -0.16, p=0.002, I 2 = 52%) rather than that of anxiety symptoms (8 studies, SMD = -0.14 [Fixed], 95% CI, -0.35 to 0.06, p=0.18, I 2 = 0%) following HIIT compared with UC and CT control groups. Subgroup analysis revealed that high-intensity treadmill training significantly improved (p=0.01) the depression symptom instead of training with a cycle ergometer (p=0.07) and strength training (p=0.40). Conclusions High-intensity interval treadmill training can significantly improve symptoms of depression rather than anxiety in cardiovascular patients compared to usual care and conventional aerobic continuous training.
Collapse
|
18
|
Bonafiglia JT, Islam H, Preobrazenski N, Gurd BJ. Risk of bias and reporting practices in studies comparing VO 2max responses to sprint interval vs. continuous training: A systematic review and meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:552-566. [PMID: 33722760 PMCID: PMC9532877 DOI: 10.1016/j.jshs.2021.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND It remains unclear whether studies comparing maximal oxygen uptake (VO2max) response to sprint interval training (SIT) vs. moderate-intensity continuous training (MICT) are associated with a high risk of bias and poor reporting quality. The purpose of this study was to evaluate the risk of bias and quality of reporting in studies comparing changes in VO2max between SIT and MICT. METHODS We conducted a comprehensive literature search of 4 major databases: AMED, CINAHL, EMBASE, and MEDLINE. Studies were excluded if participants were not healthy adult humans or if training protocols were unsupervised, lasted less than 2 weeks, or utilized mixed exercise modalities. We used the Cochrane Collaboration tool and the CONSORT checklist for non-pharmacological trials to evaluate the risk of bias and reporting quality, respectively. RESULTS Twenty-eight studies with 30 comparisons (3 studies included 2 SIT groups) were included in our meta-analysis (n = 360 SIT participants: body mass index (BMI) = 25.9 ± 3.7 kg/m2, baseline VO2max = 37.9 ± 8.0 mL/kg/min; n = 359 MICT participants: BMI = 25.5 ± 3.8 kg/m2, baseline VO2max = 38.3 ± 8.0 mL/kg/min; all mean ± SD). All studies had an unclear risk of bias and poor reporting quality. CONCLUSION Although we observed a lack of superiority between SIT and MICT for improving VO2max (weighted Hedge's g = -0.004, 95% confidence interval (95%CI): -0.08 to 0.07), the overall unclear risk of bias calls the validity of this conclusion into question. Future studies using robust study designs are needed to interrogate the possibility that SIT and MICT result in similar changes in VO2max.
Collapse
Affiliation(s)
- Jacob T Bonafiglia
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Hashim Islam
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Nicholas Preobrazenski
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
19
|
High-intensity interval training with or without chlorella vulgaris supplementation in obese and overweight women: effects on mitochondrial biogenesis, performance and body composition. Br J Nutr 2022; 128:200-210. [PMID: 34433510 DOI: 10.1017/s0007114521003287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The beneficial effects of high-intensity interval training (HIIT) and chlorella vulgaris (CV) on body composition and mitochondrial biogenesis have been shown in some mechanistic studies. This study aimed to determine the effects of CV and/or HIIT on mitochondrial biogenesis, performance and body composition among overweight/obese women. There was a significant reduction in the fat mass (FM) of the CV + HIIT group, as compared with the placebo group (P = 0·005). A marginal significant increase in body water (P = 0·050) and PPAR-γ coactivator-1α (P = 0·050) was also found only in the CV + HIIT group, as compared with the placebo. Relative (P < 0·001) and absolute (P < 0·001) VO2max, as well as Bruce MET (P < 0·001), were significantly increased in the HIIT and HIIT + CV groups. Besides, the synergistic effect of CV and HIIT on the Bruce MET increment was found (interaction P-value = 0·029). No significant changes were observed in BMI, fat-free mass, visceral fat, silent information regulator 1 and fibroblast growth factor-21. In this randomised clinical trial, forty-six overweight/obese women were assigned to four groups including CV + HIIT and HIIT + placebo groups that received three capsules of CV (300 mg capsules, three times a day) or corn starch, in combination with three sessions/week of HIIT. CV and placebo groups only received 900 mg of CV or corn starch, daily, for 8 weeks. Biochemical assessments, performance assessment and body composition were obtained at the beginning and end of the intervention. HIIT may be, therefore, effective in improving mitochondrial biogenesis, performance and body composition in overweight/obese women.
Collapse
|
20
|
Mandić M, Hansson B, Lovrić A, Sundblad P, Vollaard NBJ, Lundberg TR, Gustafsson T, Rullman E. Improvements in Maximal Oxygen Uptake After Sprint-Interval Training Coincide with Increases in Central Hemodynamic Factors. Med Sci Sports Exerc 2022; 54:944-952. [PMID: 35136000 DOI: 10.1249/mss.0000000000002872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Sprint-interval training has been shown to improve maximal oxygen uptake, in part through peripheral muscle adaptations that increase oxygen utilization. In contrast, the adaptations of central hemodynamic factors in this context remain unexplored. PURPOSE The aim of the current study was to explore the effects of sprint-interval training on maximal oxygen uptake and central hemodynamic factors. METHODS Healthy men and women (n = 29; mean age, 27 ± 5 yr; height, 175 ± 8 cm; body mass, 72.5 ± 12.0 kg) performed 6 wk of sprint-interval training consisting of three weekly sessions of 10-min low-intensity cycling interspersed with 3 × 30-s all-out sprints. Maximal oxygen uptake, total blood volume, and maximal cardiac output were measured before and after the intervention. RESULTS Maximal oxygen uptake increased by 10.3% (P < 0.001). Simultaneously, plasma volume, blood volume, total hemoglobin mass, and cardiac output increased by 8.1% (276 ± 234 mL; P < 0.001), 6.8% (382 ± 325 mL; P < 0.001), 5.7% (42 ± 41 g; P < 0.001), and 8.5% (1.0 ± 0.9 L·min-1; P < 0.001), respectively. Increased total hemoglobin mass along with measures of body surface area had a significant impact on the improvements in maximal oxygen uptake. CONCLUSIONS Six weeks of sprint-interval training results in significant increases in hemoglobin mass, blood volume, and cardiac output. Because these changes were associated with marked improvements in maximal oxygen uptake, we conclude that central hemodynamic adaptations contribute to the improvement in maximal oxygen uptake during sprint-interval training.
Collapse
Affiliation(s)
- Mirko Mandić
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Björn Hansson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Alen Lovrić
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Patrik Sundblad
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Niels B J Vollaard
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UNITED KINGDOM
| | - Tommy R Lundberg
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| |
Collapse
|
21
|
Rothschild JA, Islam H, Bishop DJ, Kilding AE, Stewart T, Plews DJ. Factors Influencing AMPK Activation During Cycling Exercise: A Pooled Analysis and Meta-Regression. Sports Med 2022; 52:1273-1294. [PMID: 34878641 DOI: 10.1007/s40279-021-01610-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND The 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a cellular energy sensor that is activated by increases in the cellular AMP/adenosine diphosphate:adenosine triphosphate (ADP:ATP) ratios and plays a key role in metabolic adaptations to endurance training. The degree of AMPK activation during exercise can be influenced by many factors that impact on cellular energetics, including exercise intensity, exercise duration, muscle glycogen, fitness level, and nutrient availability. However, the relative importance of these factors for inducing AMPK activation remains unclear, and robust relationships between exercise-related variables and indices of AMPK activation have not been established. OBJECTIVES The purpose of this analysis was to (1) investigate correlations between factors influencing AMPK activation and the magnitude of change in AMPK activity during cycling exercise, (2) investigate correlations between commonly reported measures of AMPK activation (AMPK-α2 activity, phosphorylated (p)-AMPK, and p-acetyl coenzyme A carboxylase (p-ACC), and (3) formulate linear regression models to determine the most important factors for AMPK activation during exercise. METHODS Data were pooled from 89 studies, including 982 participants (93.8% male, maximal oxygen consumption [[Formula: see text]] 51.9 ± 7.8 mL kg-1 min-1). Pearson's correlation analysis was performed to determine relationships between effect sizes for each of the primary outcome markers (AMPK-α2 activity, p-AMPK, p-ACC) and factors purported to influence AMPK signaling (muscle glycogen, carbohydrate ingestion, exercise duration and intensity, fitness level, and muscle metabolites). General linear mixed-effect models were used to examine which factors influenced AMPK activation. RESULTS Significant correlations (r = 0.19-0.55, p < .05) with AMPK activity were found between end-exercise muscle glycogen, exercise intensity, and muscle metabolites phosphocreatine, creatine, and free ADP. All markers of AMPK activation were significantly correlated, with the strongest relationship between AMPK-α2 activity and p-AMPK (r = 0.56, p < 0.001). The most important predictors of AMPK activation were the muscle metabolites and exercise intensity. CONCLUSION Muscle glycogen, fitness level, exercise intensity, and exercise duration each influence AMPK activity during exercise when all other factors are held constant. However, disrupting cellular energy charge is the most influential factor for AMPK activation during endurance exercise.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
22
|
Tripp TR, Frankish BP, Lun V, Wiley JP, Shearer J, Murphy RM, MacInnis MJ. Time course and fibre type-dependent nature of calcium-handling protein responses to sprint interval exercise in human skeletal muscle. J Physiol 2022; 600:2897-2917. [PMID: 35556249 DOI: 10.1113/jp282739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sprint interval training (SIT) has been shown to cause fragmentation of the sarcoplasmic reticulum calcium-release channel, ryanodine receptor 1 (RyR1) 24 hours post-exercise, which may act as a signal for mitochondrial biogenesis. In this study, we examined the time course of RyR1 fragmentation in human whole muscle and pooled type I and type II skeletal muscle fibres following a single session of SIT. Full-length RyR1 protein content was significantly lower than pre-exercise by 6 h post-SIT in whole muscle, and fragmentation was detectable in type II but not type I fibres, though to a lesser extent than in whole muscle. The peak in PGC1A mRNA expression occurred earlier than RyR1 fragmentation. The increased temporal resolution and fibre type-specific responses for RyR1 fragmentation provide insights into its importance to mitochondrial biogenesis in humans. ABSTRACT Sprint interval training (SIT) causes fragmentation of the skeletal muscle sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 1 (RyR1), 24h post-exercise, potentially signaling mitochondrial biogenesis by increasing cytosolic [Ca2+ ]. Yet, the time course and skeletal muscle fibre type-specific patterns of RyR1 fragmentation following a session of SIT remain unknown. Ten participants (n = 4 females; n = 6 males) performed a session of SIT (6 × 30 s "all-out" with 4.5 min rest after each sprint) with vastus lateralis muscle biopsy samples collected before and 3, 6, and 24h after exercise. In whole muscle, full-length RyR1 protein content was significantly reduced 6 h (mean [SD]; -38 [38]%; p<0.05) and 24 h post-SIT (-30 [48]%; p<0.05) compared to pre-exercise. Examining each participant's largest response in pooled samples, full-length RyR1 protein content was reduced in type II (-26 [30]%; p<0.05) but not type I fibres (-11 [40]%; p>0.05). 3h post-SIT, there was also a decrease in SERCA1 in type II fibres (-23 [17]%; p<0.05) and SERCA2a in type I fibres (-19 [21]%; p<0.05), despite no time effect for either protein in whole muscle samples (p>0.05). PGC1A mRNA content was elevated 3h and 6h post-SIT (5.3- and 3.7-fold change from pre, respectively; p<0.05 for both), but peak PGC1A mRNA expression was not significantly correlated with peak RyR1 fragmentation (r2 = 0.10; p>0.05). In summary, altered Ca2+ -handling protein expression, which occurs primarily in type II muscle fibres, may influence signals for mitochondrial biogenesis as early as 3-6 h post-SIT in humans. Abstract figure legend Western blotting was performed on whole muscle and pooled type I and II muscle fibre preparations derived from human vastus lateralis muscle biopsy samples collected before and after a single session of sprint interval training (SIT). Full-length ryanodine receptor 1 (RyR1) protein content was reduced 6 and 24 h post-exercise in whole muscle samples compared to baseline, despite a heterogeneous time course among individuals. This RyR1 fragmentation proceeded and outlasted the increase in peroxisome proliferator-activated γ receptor coactivator 1α (PGC1A) mRNA expression. When examining the time point of each individual's peak response, RyR1 fragmentation was evident in type II, but not type I, muscle fibres. These findings suggest that, in humans, mitochondrial biogenesis could be influenced by RyR1 fragmentation 3-6 h post-SIT in a fibre type-dependent manner. Created with BioRender.com. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Barnaby P Frankish
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Melbourne, Australia
| | - Victor Lun
- University of Calgary Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,University of Calgary Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robyn M Murphy
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Barrett JS, Whytock KL, Strauss JA, Wagenmakers AJM, Shepherd SO. High intramuscular triglyceride turnover rates and the link to insulin sensitivity: influence of obesity, type 2 diabetes and physical activity. Appl Physiol Nutr Metab 2022; 47:343-356. [PMID: 35061523 DOI: 10.1139/apnm-2021-0631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large intramuscular triglyceride (IMTG) stores in sedentary, obese individuals have been linked to insulin resistance, yet well-trained athletes exhibit high IMTG levels whilst maintaining insulin sensitivity. Contrary to previous assumptions, it is now known that IMTG content per se does not result in insulin resistance. Rather, insulin resistance is caused, at least in part, by the presence of high concentrations of harmful lipid metabolites, such as diacylglycerols and ceramides in muscle. Several mechanistic differences between obese sedentary individuals and their highly trained counterparts have been identified, which determine the differential capacity for IMTG synthesis and breakdown in these populations. In this review, we first describe the most up-to-date mechanisms by which a low IMTG turnover rate (both breakdown and synthesis) leads to the accumulation of lipid metabolites and results in skeletal muscle insulin resistance. We then explore current and potential exercise and nutritional strategies that target IMTG turnover in sedentary obese individuals, to improve insulin sensitivity. Overall, improving IMTG turnover should be an important component of successful interventions that aim to prevent the development of insulin resistance in the ever-expanding sedentary, overweight and obese populations. Novelty: A description of the most up-to-date mechanisms regulating turnover of the IMTG pool. An exploration of current and potential exercise/nutritional strategies to target and enhance IMTG turnover in obese individuals. Overall, highlights the importance of improving IMTG turnover to prevent the development of insulin resistance.
Collapse
Affiliation(s)
- J S Barrett
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - K L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - J A Strauss
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - A J M Wagenmakers
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - S O Shepherd
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
24
|
Bogdanis GC, Nevill ME, Aphamis G, Stavrinou PS, Jenkins DG, Giannaki CD, Lakomy HKA, Williams C. Effects of Oral Creatine Supplementation on Power Output during Repeated Treadmill Sprinting. Nutrients 2022; 14:nu14061140. [PMID: 35334797 PMCID: PMC8950892 DOI: 10.3390/nu14061140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to examine the effects of creatine (Cr) supplementation on power output during repeated sprints on a non-motorized treadmill. Sixteen recreationally active males volunteered for this study (age 25.5 ± 4.8 y, height 179 ± 5 cm, body mass 74.8 ± 6.8 kg). All participants received placebo supplementation (75 mg of glucose·kg-1·day-1) for 5 days and then performed a baseline repeated sprints test (6 × 10 s sprints on a non-motorised treadmill). Thereafter, they were randomly assigned into a Cr (75 mg of Cr monohydrate·kg-1·day-1) or placebo supplementation, as above, and the repeated sprints test was repeated. After Cr supplementation, body mass was increased by 0.99 ± 0.83 kg (p = 0.007), peak power output and peak running speed remained unchanged throughout the test in both groups, while the mean power output and mean running speed during the last 5 s of the sprints increased by 4.5% (p = 0.005) and 4.2% to 7.0%, respectively, during the last three sprints (p = 0.005 to 0.001). The reduction in speed within each sprint was also blunted by 16.2% (p = 0.003) following Cr supplementation. Plasma ammonia decreased by 20.1% (p = 0.037) after Cr supplementation, despite the increase in performance. VO2 and blood lactate during the repeated sprints test remained unchanged after supplementation, suggesting no alteration of aerobic or glycolytic contribution to adenosine triphosphate production. In conclusion, Cr supplementation improved the mean power and speed in the second half of a repeated sprint running protocol, despite the increased body mass. This improvement was due to the higher power output and running speed in the last 5 s of each 10 s sprint.
Collapse
Affiliation(s)
- Gregory C. Bogdanis
- School of P.E. and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
- Correspondence: ; Tel.: +30-2107276115
| | - Mary E. Nevill
- Sport, Health and Performance Enhancement (SHAPE) Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - George Aphamis
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (G.A.); (P.S.S.); (C.D.G.)
| | - Pinelopi S. Stavrinou
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (G.A.); (P.S.S.); (C.D.G.)
| | - David G. Jenkins
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Christoforos D. Giannaki
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (G.A.); (P.S.S.); (C.D.G.)
| | - Henryk K. A. Lakomy
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leics LE11 3TU, UK; (H.K.A.L.); (C.W.)
| | - Clyde Williams
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leics LE11 3TU, UK; (H.K.A.L.); (C.W.)
| |
Collapse
|
25
|
Effect of Interval Training on the Factors Influencing Maximal Oxygen Consumption: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:1329-1352. [PMID: 35041180 DOI: 10.1007/s40279-021-01624-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The maximal rate of oxygen consumption (VO2max) is an important measure in exercise science as it is an indicator of cardiorespiratory fitness. Individual studies have identified central and peripheral adaptions to interval training that may underlie improvements in VO2max, but there is no compilation of results. OBJECTIVE We aimed to systematically review the adaptive responses to high-intensity interval training (HIIT) and sprint interval training (SIT) on the central and peripheral factors influencing VO2max in healthy individuals. DATA SOURCES SPORTDiscus and MEDLINE (up to and including 13 June, 2020) were explored to conduct the literature search. STUDY SELECTION Reviewed studies met the following criteria: (1) were in the English language; (2) prospective in nature; (3) included at least three interval sessions or were at least 1 week in duration; (4) contained HIIT or SIT; (5) involved participants between the ages of 18 and 65 years; and (6) included at least one of the following central (blood volume, plasma volume, hemoglobin mass, left ventricular mass, maximal stroke volume, maximal cardiac output) or peripheral factors (capillary density, maximal citrate synthase activity, mitochondrial respiration associated with VO2max). RESULTS Thirty-two studies (369 participants, 49 were female) were included in the quantitative analyses, consisting of both HIIT (n = 18) and SIT (n = 17) interventions. There were only statistically significant changes in hematological measures (plasma volume) following HIIT. There was a significant increase in left ventricular mass following HIIT (7.4%, p < 0.001) and SIT (5.3%, p = 0.007) in inactive individuals, though the change following SIT may be misleading. There was only a significant increase in maximal stroke volume (14.1%, p = 0.015) and maximal cardiac output (12.6%, p = 0.002) following HIIT. In addition to central factors, there was a significant increase in capillary density (13.8%, p < 0.001) following SIT in active individuals. With respect to maximal citrate synthase activity, there were improvements following HIIT (20.8%, p < 0.001) and SIT (15.7%, p < 0.001, I2 = 97%) in active individuals. The results for mitochondrial respiration suggested that there was no statistically significant improvement following HIIT (5.0%, p = 0.585). CONCLUSIONS Improvements in the central and peripheral factors influencing VO2max were dependent on the interval type. Only HIIT led to a statistically significant improvement in cardiac function. Both HIIT and SIT increased maximal citrate synthase activity, while changes in other peripheral measures (capillary density, mitochondrial respiration) only occurred with SIT.
Collapse
|
26
|
Brown F, Jeffries O, Gissane C, Howatson G, van Someren K, Pedlar C, Myers T, Hill JA. Custom-Fitted Compression Garments Enhance Recovery From Muscle Damage in Rugby Players. J Strength Cond Res 2022; 36:212-219. [PMID: 32091467 DOI: 10.1519/jsc.0000000000003408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
ABSTRACT Brown, F, Jeffries, O, Gissane, C, Howatson, G, van Someren, K, Pedlar, C, Myers, T, and Hill, JA. Custom-fitted compression garments enhance recovery from muscle damage in rugby players. J Strength Cond Res 36(1): 212-219, 2022-to evaluate the effects of custom-fitted compression garments (CG) on recovery from muscle damage in rugby players. Forty-five players were tested for lower-body strength, power, and indices of muscle damage before completing a damaging protocol (20 × 20-m sprints with 5-m deceleration, 100 drop jumps). Players were randomly assigned to wear either custom-fitted (CF, n = 13), or standard-sized CG (SSG, n = 16), or to receive sham ultrasound therapy (CON, n = 16) immediately after exercise. Players were retested immediately, then after 24 and 48 hours. Strength recovery was significantly different between groups (F = 2.7, p = 0.02), with only CF recovering to baseline values by 48 hours (p = 0.973). Time × condition effects were also apparent for creatine kinase activity (χ2 = 30.4, p < 0.001) and midthigh girth (F = 3.7, p = 0.005), with faster recovery apparent in CF compared with both CON and SSG (p < 0.05). Custom-fitted CG improved strength recovery and indices of muscle damage in rugby players, compared with controls and standard-sized garments. Athletes and coaches would be advised to use appropriately fitted CG to enhance strength recovery after damaging exercise.
Collapse
Affiliation(s)
- Freddy Brown
- School of Sport, Health and Applied Science, St. Mary's University, Twickenham, United Kingdom
- Faculty of Health & Life Sciences, Coventry University, Coventry, United Kingdom
| | - Owen Jeffries
- School of Sport, Health and Applied Science, St. Mary's University, Twickenham, United Kingdom
- School of Biomedical Science, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Conor Gissane
- School of Sport, Health and Applied Science, St. Mary's University, Twickenham, United Kingdom
| | - Glyn Howatson
- Faculty of Health and Life of Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
- Water Research Group, Northwest University, Potchefstroom, South Africa
| | - Ken van Someren
- Faculty of Health and Life of Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Charles Pedlar
- School of Sport, Health and Applied Science, St. Mary's University, Twickenham, United Kingdom
- Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Tony Myers
- Physical Education and Sports Studies, Newman University College, Birmingham, United Kingdom
| | - Jessica A Hill
- School of Sport, Health and Applied Science, St. Mary's University, Twickenham, United Kingdom
| |
Collapse
|
27
|
Affiliation(s)
- Derek Ball
- Institute of Education in Medicine and Dental Sciences, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
28
|
Skelly LE, Bailleul C, Gillen JB. Physiological Responses to Low-Volume Interval Training in Women. SPORTS MEDICINE - OPEN 2021; 7:99. [PMID: 34940959 PMCID: PMC8702506 DOI: 10.1186/s40798-021-00390-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Interval training is a form of exercise that involves intermittent bouts of relatively intense effort interspersed with periods of rest or lower-intensity exercise for recovery. Low-volume high-intensity interval training (HIIT) and sprint interval training (SIT) induce physiological and health-related adaptations comparable to traditional moderate-intensity continuous training (MICT) in healthy adults and those with chronic disease despite a lower time commitment. However, most studies within the field have been conducted in men, with a relatively limited number of studies conducted in women cohorts across the lifespan. This review summarizes our understanding of physiological responses to low-volume interval training in women, including those with overweight/obesity or type 2 diabetes, with a focus on cardiorespiratory fitness, glycemic control, and skeletal muscle mitochondrial content. We also describe emerging evidence demonstrating similarities and differences in the adaptive response between women and men. Collectively, HIIT and SIT have consistently been demonstrated to improve cardiorespiratory fitness in women, and most sex-based comparisons demonstrate similar improvements in men and women. However, research examining insulin sensitivity and skeletal muscle mitochondrial responses to HIIT and SIT in women is limited and conflicting, with some evidence of blunted improvements in women relative to men. There is a need for additional research that examines physiological adaptations to low-volume interval training in women across the lifespan, including studies that directly compare responses to MICT, evaluate potential mechanisms, and/or assess the influence of sex on the adaptive response. Future work in this area will strengthen the evidence-base for physical activity recommendations in women.
Collapse
|
29
|
Petrick HL, King TJ, Pignanelli C, Vanderlinde TE, Cohen JN, Holloway GP, Burr JF. Endurance and Sprint Training Improve Glycemia and V˙O2peak but only Frequent Endurance Benefits Blood Pressure and Lipidemia. Med Sci Sports Exerc 2021; 53:1194-1205. [PMID: 33315809 DOI: 10.1249/mss.0000000000002582] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Sprint interval training (SIT) has gained popularity as a time-effective alternative to moderate-intensity endurance training (END). However, whether SIT is equally effective for decreasing cardiometabolic risk factors remains debatable, as many beneficial effects of exercise are thought to be transient, and unlike END, SIT is not recommended daily. Therefore, in line with current exercise recommendations, we examined the ability of SIT and END to improve cardiometabolic health in overweight/obese males. METHODS Twenty-three participants were randomized to perform 6 wk of constant workload SIT (3 d·wk-1, 4-6 × 30 s ~170% Wpeak, 2 min recovery, n = 12) or END (5 d·wk-1, 30-40 min, ~60% Wpeak, n = 11) on cycle ergometers. Aerobic capacity (V˙O2peak), body composition, blood pressure (BP), arterial stiffness, endothelial function, glucose and lipid tolerance, and free-living glycemic regulation were assessed pre- and posttraining. RESULTS Both END and SIT increased V˙O2peak (END ~15%, SIT ~5%) and glucose tolerance (~20%). However, only END decreased diastolic BP, abdominal fat, and improved postprandial lipid tolerance, representing improvements in cardiovascular risk factors that did not occur after SIT. Although SIT, but not END, increased endothelial function, arterial stiffness was not altered in either group. Indices of free-living glycemic regulation were improved after END and trended toward an improvement after SIT (P = 0.06-0.09). However, glycemic control was better on exercise compared with rest days, highlighting the importance of exercise frequency. Furthermore, in an exploratory nature, favorable individual responses (V˙O2peak, BP, glucose tolerance, lipidemia, and body fat) were more prevalent after END than low-frequency SIT. CONCLUSION As only high-frequency END improved BP and lipid tolerance, free-living glycemic regulation was better on days that participants exercised, and favorable individual responses were consistent after END, high-frequency END may favorably improve cardiometabolic health.
Collapse
Affiliation(s)
| | - Trevor J King
- Human Performance and Health Research Laboratory, Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, CANADA
| | - Christopher Pignanelli
- Human Performance and Health Research Laboratory, Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, CANADA
| | - Tara E Vanderlinde
- Human Performance and Health Research Laboratory, Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, CANADA
| | - Jeremy N Cohen
- Human Performance and Health Research Laboratory, Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, CANADA
| | - Graham P Holloway
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, CANADA
| | - Jamie F Burr
- Human Performance and Health Research Laboratory, Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, CANADA
| |
Collapse
|
30
|
Callahan MJ, Parr EB, Hawley JA, Camera DM. Can High-Intensity Interval Training Promote Skeletal Muscle Anabolism? Sports Med 2021; 51:405-421. [PMID: 33512698 DOI: 10.1007/s40279-020-01397-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exercise training in combination with optimal nutritional support is an effective strategy to maintain or increase skeletal muscle mass. A single bout of resistance exercise undertaken with adequate protein availability increases rates of muscle protein synthesis and, when repeated over weeks and months, leads to increased muscle fiber size. While resistance-based training is considered the 'gold standard' for promoting muscle hypertrophy, other modes of exercise may be able to promote gains in muscle mass. High-intensity interval training (HIIT) comprises short bouts of exercise at or above the power output/speed that elicits individual maximal aerobic capacity, placing high tensile stress on skeletal muscle, and somewhat resembling the demands of resistance exercise. While HIIT induces rapid increases in skeletal muscle oxidative capacity, the anabolic potential of HIIT for promoting concurrent gains in muscle mass and cardiorespiratory fitness has received less scientific inquiry. In this review, we discuss studies that have determined muscle growth responses after HIIT, with a focus on molecular responses, that provide a rationale for HIIT to be implemented among populations who are susceptible to muscle loss (e.g. middle-aged or older adults) and/or in clinical settings (e.g. pre- or post-surgery).
Collapse
Affiliation(s)
- Marcus J Callahan
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring street, Melbourne, VIC, 3000, Australia
| | - Evelyn B Parr
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring street, Melbourne, VIC, 3000, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring street, Melbourne, VIC, 3000, Australia.
| | - Donny M Camera
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Bostad W, Valentino SE, McCarthy DG, Richards DL, MacInnis MJ, MacDonald MJ, Gibala MJ. Twelve weeks of sprint interval training increases peak cardiac output in previously untrained individuals. Eur J Appl Physiol 2021; 121:2449-2458. [PMID: 34014402 DOI: 10.1007/s00421-021-04714-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Sprint interval training (SIT), characterized by brief bouts of 'supramaximal' exercise interspersed with recovery periods, increases peak oxygen uptake ([Formula: see text]) despite a low total exercise volume. Per the Fick principle, increased [Formula: see text] is attributable to increased peak cardiac output ([Formula: see text]) and/or peak arterio-venous oxygen difference (a-vO2diff). There are limited and equivocal data regarding the physiological basis for SIT-induced increases in [Formula: see text], with most studies lasting ≤ 6 weeks. PURPOSE To determine the effect of 12 weeks of SIT on [Formula: see text], measured using inert gas rebreathing, and the relationship between changes in [Formula: see text] and [Formula: see text]. METHODS 15 healthy untrained adults [6 males, 9 females; 21 ± 2 y (mean ± SD)] performed 28 ± 3 training sessions. Each session involved a 2-min warm-up at 50 W, 3 × 20-s 'all-out' cycling bouts (581 ± 221 W) interspersed with 2-min of recovery, and a 3-min cool-down at 50 W. RESULTS Measurements performed before and after training showed that 12 weeks of SIT increased [Formula: see text] (17.0 ± 3.7 vs 18.1 ± 4.6 L/min, p = 0.01, partial η2 = 0.28) and [Formula: see text] (2.63 ± 0.78 vs 3.18 ± 1.1 L/min, p < 0.01, partial η2 = 0.58). The changes in these two variables were correlated (r2 = 0.46, p < 0.01). Calculated peak a-vO2diff also increased after training (154 ± 22 vs 174 ± 23 ml O2/L; p < 0.01) and was correlated with the change in [Formula: see text] (r2 = 0.33, p = 0.03). Exploratory analyses revealed an interaction (p < 0.01) such that [Formula: see text] increased in male (+ 10%, p < 0.01) but not female participants (+ 0.6%, p = 0.96), suggesting potential sex-specific differences. CONCLUSION Twelve weeks of SIT increased [Formula: see text] by 6% in previously untrained participants and the change was correlated with the larger 21% increase in [Formula: see text].
Collapse
Affiliation(s)
- William Bostad
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Sydney E Valentino
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Devin G McCarthy
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | | | | - Maureen J MacDonald
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
32
|
Bonafiglia JT, Islam H, Preobrazenski N, Ma A, Deschenes M, Erlich AT, Quadrilatero J, Hood DA, Gurd BJ. Examining interindividual differences in select muscle and whole-body adaptations to continuous endurance training. Exp Physiol 2021; 106:2168-2176. [PMID: 33998072 DOI: 10.1113/ep089421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/12/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of the study? Do interindividual differences in trainability exist for morphological and molecular skeletal muscle responses to aerobic exercise training? What is the main finding and its importance? Interindividual differences in trainability were present for some, but not all, morphological and molecular outcomes included in our study. Our findings suggest that is inappropriate, and perhaps erroneous, to assume that variability in observed responses reflects interindividual differences in trainability in skeletal muscle responses to aerobic exercise training. ABSTRACT Studies have interpreted a wide range of morphological and molecular changes in human skeletal muscle as evidence of interindividual differences in trainability. However, these interpretations fail to account for the influence of random measurement error and within-subject variability. The purpose of the present study was to use the standard deviation of individual response (SDIR ) statistic to test the hypothesis that interindividual differences in trainability are present for some but not all skeletal muscle outcomes. Twenty-nine recreationally-active males (age: 21±2 years; BMI: 24±3; VO2 peak: 45±7 mL/kg/min) completed four weeks of continuous training (REL; n = 14) or control (CTRL; n = 15). Maximal enzyme activities (citrate synthase and β-HAD), capillary density, fibre type composition, fibre-specific SDH activity and substrate storage (IMTG and glycogen), and markers of mitophagy (BNIP3, NIX, PRKN, and PINK1) were measured in vastus lateralis samples collected before and after the intervention. We also calculated SDIR values for VO2 peak, peak work rate, and the onset of blood lactate accumulation for REL and a separate group that exercised at the negative talk test (TT) stage. Although positive SDIR values - indicating interindividual differences in trainability - were obtained for aerobic capacity outcomes, maximal enzyme activities, capillary density, all fibre-specific outcomes, and BNIP3 protein content, the remaining outcomes produced negative SDIR values indicating a large degree of random measurement error and/or within-subject variability. Our findings question the interpretation of heterogeneity in observed responses as evidence of interindividual differences in trainability and highlight the importance of including control groups when analyzing individual skeletal muscle response to exercise training. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jacob T Bonafiglia
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Hashim Islam
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.,School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, BC, Canada
| | - Nicholas Preobrazenski
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew Ma
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Madeleine Deschenes
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Avigail T Erlich
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
33
|
Williams CJ, Li Z, Harvey N, Lea RA, Gurd BJ, Bonafiglia JT, Papadimitriou I, Jacques M, Croci I, Stensvold D, Wisloff U, Taylor JL, Gajanand T, Cox ER, Ramos JS, Fassett RG, Little JP, Francois ME, Hearon CM, Sarma S, Janssen SLJE, Van Craenenbroeck EM, Beckers P, Cornelissen VA, Howden EJ, Keating SE, Yan X, Bishop DJ, Bye A, Haupt LM, Griffiths LR, Ashton KJ, Brown MA, Torquati L, Eynon N, Coombes JS. Genome wide association study of response to interval and continuous exercise training: the Predict-HIIT study. J Biomed Sci 2021; 28:37. [PMID: 33985508 PMCID: PMC8117553 DOI: 10.1186/s12929-021-00733-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low cardiorespiratory fitness (V̇O2peak) is highly associated with chronic disease and mortality from all causes. Whilst exercise training is recommended in health guidelines to improve V̇O2peak, there is considerable inter-individual variability in the V̇O2peak response to the same dose of exercise. Understanding how genetic factors contribute to V̇O2peak training response may improve personalisation of exercise programs. The aim of this study was to identify genetic variants that are associated with the magnitude of V̇O2peak response following exercise training. METHODS Participant change in objectively measured V̇O2peak from 18 different interventions was obtained from a multi-centre study (Predict-HIIT). A genome-wide association study was completed (n = 507), and a polygenic predictor score (PPS) was developed using alleles from single nucleotide polymorphisms (SNPs) significantly associated (P < 1 × 10-5) with the magnitude of V̇O2peak response. Findings were tested in an independent validation study (n = 39) and compared to previous research. RESULTS No variants at the genome-wide significance level were found after adjusting for key covariates (baseline V̇O2peak, individual study, principal components which were significantly associated with the trait). A Quantile-Quantile plot indicates there was minor inflation in the study. Twelve novel loci showed a trend of association with V̇O2peak response that reached suggestive significance (P < 1 × 10-5). The strongest association was found near the membrane associated guanylate kinase, WW and PDZ domain containing 2 (MAGI2) gene (rs6959961, P = 2.61 × 10-7). A PPS created from the 12 lead SNPs was unable to predict V̇O2peak response in a tenfold cross validation, or in an independent (n = 39) validation study (P > 0.1). Significant correlations were found for beta coefficients of variants in the Predict-HIIT (P < 1 × 10-4) and the validation study (P < × 10-6), indicating that general effects of the loci exist, and that with a higher statistical power, more significant genetic associations may become apparent. CONCLUSIONS Ongoing research and validation of current and previous findings is needed to determine if genetics does play a large role in V̇O2peak response variance, and whether genomic predictors for V̇O2peak response trainability can inform evidence-based clinical practice. Trial registration Australian New Zealand Clinical Trials Registry (ANZCTR), Trial Id: ACTRN12618000501246, Date Registered: 06/04/2018, http://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374601&isReview=true .
Collapse
Affiliation(s)
- Camilla J Williams
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Zhixiu Li
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Woolloongabba, Brisbane, QLD, Australia
| | - Nicholas Harvey
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia.,Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, QLD, Australia
| | - Rodney A Lea
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, QLD, Australia
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Jacob T Bonafiglia
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Ioannis Papadimitriou
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Ilaria Croci
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, QLD, Australia.,Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Sport, Movement and Health, University of Basel, Basel, Switzerland
| | - Dorthe Stensvold
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisloff
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, QLD, Australia.,Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jenna L Taylor
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Trishan Gajanand
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Emily R Cox
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Joyce S Ramos
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, QLD, Australia.,Caring Futures Institute, SHAPE Research Centre, Exercise Science and Clinical Exercise Physiology, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Robert G Fassett
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Monique E Francois
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Christopher M Hearon
- Internal Medicine, Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Satyam Sarma
- Internal Medicine, Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sylvan L J E Janssen
- Internal Medicine, Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Physiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Paul Beckers
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Véronique A Cornelissen
- Department of Rehabilitation Sciences - Research Group for Rehabilitation in Internal Disorders, Catholic University of Leuven, Leuven, Belgium
| | - Erin J Howden
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Shelley E Keating
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia.,Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne, VIC, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anja Bye
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
| | - Larisa M Haupt
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, QLD, Australia
| | - Kevin J Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Matthew A Brown
- Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Luciana Torquati
- Department of Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Jeff S Coombes
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, QLD, Australia.
| |
Collapse
|
34
|
Bagley L, Al-Shanti N, Bradburn S, Baig O, Slevin M, McPhee JS. Sex Comparison of Knee Extensor Size, Strength, and Fatigue Adaptation to Sprint Interval Training. J Strength Cond Res 2021. [PMID: 29533360 DOI: 10.1519/jsc.0000000000002496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ABSTRACT Bagley, L, Al-Shanti, N, Bradburn, S, Baig, O, Slevin, M, and McPhee, JS. Sex comparison of knee extensor size, strength, and fatigue adaptation to sprint interval training. J Strength Cond Res 35(1): 64-71, 2021-Regular sprint interval training (SIT) improves whole-body aerobic capacity and muscle oxidative potential, but very little is known about knee extensor anabolic or fatigue resistance adaptations, or whether effects are similar for men and women. The purpose of this study was to compare sex-related differences in knee extensor size, torque-velocity relationship, and fatigability adaptations to 12-week SIT. Sixteen men and 15 women (mean [SEM] age: 41 [±2.5] years) completed measurements of total body composition assessed by dual energy X-ray absorptiometry, quadriceps muscle cross-sectional area (CSAQ) assessed by magnetic resonance imaging, the knee extensor torque-velocity relationship (covering 0-240°·s-1) and fatigue resistance, which was measured as the decline in torque from the first to the last of 60 repeated concentric knee extensions performed at 180°·s-1. Sprint interval training consisted of 4 × 20-second sprints on a cycle ergometer set at an initial power output of 175% of power at V̇o2max, 3 times per week for 12 weeks. Quadriceps muscle cross-sectional area increased by 5% (p = 0.023) and fatigue resistance improved 4.8% (p = 0.048), with no sex differences in these adaptations (sex comparisons: p = 0.140 and p = 0.282, respectively). Knee extensor isometric and concentric torque was unaffected by SIT in both men and women (p > 0.05 for all velocities). Twelve-week SIT, totaling 4 minutes of very intense cycling per week, significantly increased fatigue resistance and CSAQ similarly in men and women, but did not significantly increase torque in men or women. These results suggest that SIT is a time-effective training modality for men and women to increase leg muscle size and fatigue resistance.
Collapse
Affiliation(s)
- Liam Bagley
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Preobrazenski N, Islam H, Gurd BJ. Molecular regulation of skeletal muscle mitochondrial biogenesis following blood flow-restricted aerobic exercise: a call to action. Eur J Appl Physiol 2021; 121:1835-1847. [PMID: 33830325 DOI: 10.1007/s00421-021-04669-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Blood flow-restricted (BFR) exercise can induce training adaptations comparable to those observed following training in free flow conditions. However, little is known about the acute responses within skeletal muscle following BFR aerobic exercise (AE). Moreover, although preliminary evidence suggests chronic BFR AE may augment certain training adaptations in skeletal muscle mitochondria more than non-BFR AE, the underlying mechanisms are poorly understood. In this review, we summarise the acute BFR AE literature examining mitochondrial biogenic signalling pathways and provide insight into mechanisms linked to skeletal muscle remodelling following BFR AE. Specifically, we focus on signalling pathways potentially contributing to augmented peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA following work-rate-matched BFR AE compared with non-BFR AE. We present evidence suggesting reductions in muscle oxygenation during acute BFR AE lead to increased intracellular energetic stress, AMP-activated protein kinase (AMPK) activation and PGC-1α mRNA. In addition, we briefly discuss mitochondrial adaptations to BFR aerobic training, and we assess the risk of bias using the Cochrane Collaboration risk of bias assessment tool. We ultimately call for several straightforward modifications to help minimise bias in future BFR AE studies.
Collapse
Affiliation(s)
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
36
|
Mattioni Maturana F, Martus P, Zipfel S, NIEß AM. Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk Factors in Health and Disease: A Meta-analysis. Med Sci Sports Exerc 2021; 53:559-573. [PMID: 32890201 DOI: 10.1249/mss.0000000000002506] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE We aimed to investigate differences between high-intensity interval exercise (HIIE, including high-intensity interval training and sprint interval training) and moderate-intensity continuous training (MICT) on physical fitness, body composition, blood pressure, blood lipids, insulin and glucose metabolism, inflammation, and endothelial function. METHODS Differences between HIIE and MICT were summarized using a random-effects meta-analysis on the effect size (Cohen's d). A meta-regression was conducted using the following subgroups: population, age, training duration, men ratio, exercise type, baseline values (clinical relevant ranges), and type of HIIE. Studies were included if at least one of the following outcomes were reported: maximal oxygen uptake (V˙O2max), flow-mediated dilation (FMD), body mass index (BMI), body mass, percent body fat, systolic and diastolic blood pressure, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, total cholesterol, C-reactive protein (CRP), fasting glucose and insulin, glycated hemoglobin (HbA1c), and insulin resistance (HOMA-IR). A total of 55 studies were included. RESULTS Overall, HIIE was superior to MICT in improving V˙O2max (d = 0.40, P < 0.001) and FMD (d = 0.54, P < 0.05). Oppositely, MICT was superior to HIIE in improving HbA1c (d = -0.27, P < 0.05). No differences were observed in BMI (d = -0.02), body mass (d = -0.05), percent body fat (d = 0.04), systolic blood pressure (d = -0.04), diastolic blood pressure (d = 0.03), HDL (d = -0.05), LDL (d = 0.08), triglycerides (d = 0.03), total cholesterol (d = 0.14), CRP (d = -0.11), fasting insulin (d = 0.02), fasting glucose (d = 0.02), and HOMA-IR (d = -0.04). Moderator analyses indicated that the difference between HIIE and MICT was affected by different subgroups. CONCLUSION Overall, HIIE showed to be more effective in improving cardiovascular health and cardiorespiratory fitness, whereas MICT was superior in improving long-term glucose metabolism. In the process of personalized training counseling, health-enhancing effects of exercise training may be improved by considering the individual risk profiles.
Collapse
Affiliation(s)
| | - Peter Martus
- Clinical Epidemiology and Applied Biometrics Department, University Hospital of Tübingen, Tübingen, GERMANY
| | - Stephan Zipfel
- Psychosomatic Medicine and Psychotherapy Department, University Hospital of Tübingen, Tübingen, GERMANY
| | - Andreas M NIEß
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, GERMANY
| |
Collapse
|
37
|
Skelly LE, Gillen JB, Frankish BP, MacInnis MJ, Godkin FE, Tarnopolsky MA, Murphy RM, Gibala MJ. Human skeletal muscle fiber type-specific responses to sprint interval and moderate-intensity continuous exercise: acute and training-induced changes. J Appl Physiol (1985) 2021; 130:1001-1014. [PMID: 33630680 DOI: 10.1152/japplphysiol.00862.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There are limited and equivocal data regarding potential fiber type-specific differences in the human skeletal muscle response to sprint interval training (SIT), including how this compares with moderate-intensity continuous training (MICT). We examined mixed-muscle and fiber type-specific responses to a single session (study 1) and to 12 wk (study 2) of MICT and SIT using Western blot analysis. MICT consisted of 45 min of cycling at ∼70% of maximal heart rate, and SIT involved 3 × 20-s "all-out" sprints interspersed with 2 min of recovery. Changes in signaling proteins involved in mitochondrial biogenesis in mixed-muscle and pooled fiber samples were similar after acute MICT and SIT. This included increases in the ratios of phosphorylated to total acetyl-CoA carboxylase and p38 mitogen-activated protein kinase protein content (main effects, P < 0.05). Following training, mitochondrial content markers including the protein content of cytochrome c oxidase subunit IV and NADH:ubiquinone oxidoreductase subunit A9 were increased similarly in mixed-muscle and type IIa fibers (main effects, P < 0.05). In contrast, only MICT increased these markers of mitochondrial content in type I fibers (interactions, P < 0.05). MICT and SIT also similarly increased the content of mitochondrial fusion proteins optic atrophy 1 (OPA1) and mitofusin 2 in mixed-muscle, and OPA1 in pooled fiber samples (main effects, P < 0.02). In summary, acute MICT and SIT elicited similar fiber type-specific responses of signaling proteins involved in mitochondrial biogenesis, whereas 12 wk of training revealed differential responses of mitochondrial content markers in type I but not type IIa fibers.NEW & NOTEWORTHY We examined mixed-muscle and fiber type-specific responses to a single session and to 12 wk of moderate-intensity continuous training (MICT) and sprint interval training (SIT) in humans. Both interventions elicited generally similar responses, although the training-induced increases in type I fiber-specific markers of mitochondrial content were greater in MICT than in SIT. These findings advance our understanding of the potential role of fiber type-specific changes in determining the human skeletal muscle response to intermittent and continuous exercise.
Collapse
Affiliation(s)
- Lauren E Skelly
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jenna B Gillen
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Barnaby P Frankish
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia
| | - Martin J MacInnis
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - F Elizabeth Godkin
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
38
|
Harper C, Gopalan V, Goh J. Exercise rescues mitochondrial coupling in aged skeletal muscle: a comparison of different modalities in preventing sarcopenia. J Transl Med 2021; 19:71. [PMID: 33593349 PMCID: PMC7885447 DOI: 10.1186/s12967-021-02737-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/04/2021] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle aging is associated with a decline in motor function and loss of muscle mass- a condition known as sarcopenia. The underlying mechanisms that drive this pathology are associated with a failure in energy generation in skeletal muscle, either from age-related decline in mitochondrial function, or from disuse. To an extent, lifelong exercise is efficacious in preserving the energetic properties of skeletal muscle and thus may delay the onset of sarcopenia. This review discusses the cellular and molecular changes in skeletal muscle mitochondria during the aging process and how different exercise modalities work to reverse these changes. A key factor that will be described is the efficiency of mitochondrial coupling—ATP production relative to O2 uptake in myocytes and how that efficiency is a main driver for age-associated decline in skeletal muscle function. With that, we postulate the most effective exercise modality and protocol for reversing the molecular hallmarks of skeletal muscle aging and staving off sarcopenia. Two other concepts pertinent to mitochondrial efficiency in exercise-trained skeletal muscle will be integrated in this review, including- mitophagy, the removal of dysfunctional mitochondrial via autophagy, as well as the implications of muscle fiber type changes with sarcopenia on mitochondrial function.
Collapse
Affiliation(s)
- Colin Harper
- Clinical Translation Unit (CTU), Tulane University, New Orleans, USA
| | - Venkatesh Gopalan
- Agency for Science, Technology & Research (A*STAR), Singapore Bioimaging Consortium (SBIC), Singapore, Singapore
| | - Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore.
| |
Collapse
|
39
|
Increasing whole-body energetic stress does not augment fasting-induced changes in human skeletal muscle. Pflugers Arch 2021; 473:241-252. [PMID: 33420549 DOI: 10.1007/s00424-020-02499-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 11/27/2022]
Abstract
Fasting rapidly (≤ 6 h) activates mitochondrial biogenic pathways in rodent muscle, an effect that is absent in human muscle following prolonged (10-72 h) fasting. We tested the hypotheses that fasting-induced changes in human muscle occur shortly after food withdrawal and are modulated by whole-body energetic stress. Vastus lateralis biopsies were obtained from ten healthy males before, during (4 h), and after (8 h) two supervised fasts performed with (FAST+EX) or without (FAST) 2 h of arm ergometer exercise (~ 400 kcal of added energy expenditure). PGC-1α mRNA (primary outcome measure) was non-significantly reduced (p = 0.065 [ηp2 = 0.14]) whereas PGC-1α protein decreased (main effect of time: p < 0.01) during both FAST and FAST+EX. P53 acetylation increased in both conditions (main effect of time: p < 0.01) whereas ACC and SIRT1 phosphorylation were non-significantly decreased (both p < 0.06 [ηp2 = 0.15]). Fasting-induced increases in NFE2L2 and NRF1 protein were observed (main effects of time: p < 0.03), though TFAM and COXIV protein remained unchanged (p > 0.05). Elevating whole-body energetic stress blunted the increase in p53 mRNA, which was apparent during FAST only (condition × time interaction: p = 0.04). Select autophagy/mitophagy regulators (LC3BI, LC3BII, BNIP3) were non-significantly reduced at the protein level (p ≤ 0.09 [ηp2 > 0.13]) but the LC3II:I ratio was unchanged (p > 0.05). PDK4 mRNA (p < 0.01) and intramuscular triglyceride content in type IIA fibers (p = 0.04) increased similarly during both conditions. Taken together, human skeletal muscle signaling, mRNA/protein expression, and substrate storage appear to be unaffected by whole-body energetic stress during the initial hours of fasting.
Collapse
|
40
|
The effect of a periodized small-sided games intervention in hurling on physical and physiological measures of performance. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-020-00703-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Bonet JB, Magalhães J, Viscor G, Pagès T, Ventura JL, Torrella JR, Javierre C. Inter-Individual Different Responses to Continuous and Interval Training in Recreational Middle-Aged Women Runners. Front Physiol 2020; 11:579835. [PMID: 33192585 PMCID: PMC7642248 DOI: 10.3389/fphys.2020.579835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
A crucial subject in sports is identifying the inter-individual variation in response to training, which would allow creating individualized pre-training schedules, improving runner’s performance. We aimed to analyze heterogeneity in individual responses to two half-marathon training programs differing in running volume and intensity in middle-aged recreational women. 20 women (40 ± 7 years, 61 ± 7 kg, 167 ± 6 cm, and VO2max = 48 ± 6 mL⋅kg–1⋅min–1) underwent either moderate-intensity continuous (MICT) or high-intensity interval (HIIT) 12-week training. They were evaluated before and after training with maximal incremental tests in the laboratory (VO2max) and in the field (time to exhaustion, TTE; short interval series and long run). All the women participated in the same half-marathon and their finishing times were compared with their previous times. Although the improvements in the mean finishing times were not significant, MICT elicited a greater reduction (3 min 50 s, P = 0.298), with more women (70%) improving on their previous times, than HIIT (reduction of 2 min 34 s, P = 0.197, 50% responders). Laboratory tests showed more differences in the HIIT group (P = 0.008), while both groups presented homogeneous significant (P < 0.05) increases in TTE. Both in the short interval series and in the long run, HIIT induced better individual improvements, with a greater percentage of responders compared to MICT (100% vs 50% in the short series and 78% vs 38% in the long run). In conclusion, variability in inter-individual responses was observed after both MICT and HIIT, with some participants showing improvements (responders) while others did not (non-responders) in different performance parameters, reinforcing the idea that individualized training prescription is needed to optimize performance.
Collapse
Affiliation(s)
- Jèssica B Bonet
- Secció de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - José Magalhães
- LaMetEx-Laboratory of Metabolism and Exercise, Faculdade de Desporto, Centro de Investigação em Atividade Física e Lazer, Universidade do Porto, Porto, Portugal
| | - Ginés Viscor
- Secció de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Pagès
- Secció de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Josep L Ventura
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Joan R Torrella
- Secció de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Casimiro Javierre
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Tobias IS, Galpin AJ. Moving human muscle physiology research forward: an evaluation of fiber type-specific protein research methodologies. Am J Physiol Cell Physiol 2020; 319:C858-C876. [DOI: 10.1152/ajpcell.00107.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human skeletal muscle is a heterogeneous tissue composed of multiple fiber types that express unique contractile and metabolic properties. While analysis of mixed fiber samples predominates and holds value, increasing attention has been directed toward studying proteins segregated by fiber type, a methodological distinction termed “fiber type-specific.” Fiber type-specific protein studies have the advantage of uncovering key molecular effects that are often missed in mixed fiber homogenate studies but also require greater time and resource-intensive methods, particularly when applied to human muscle. This review summarizes and compares current methods used for fiber type-specific protein analysis, highlighting their advantages and disadvantages for human muscle studies, in addition to recent advances in these techniques. These methods can be grouped into three categories based on the initial processing of the tissue: 1) muscle-specific fiber homogenates, 2) cross sections of fiber bundles, and 3) isolated single fibers, with various subtechniques for performing fiber type identification and protein quantification. The relative implementation for each unique methodological approach is analyzed from 83 fiber type-specific studies of proteins in live human muscle found in the literature to date. These studies have investigated several proteins involved in a wide range of cellular functions that are important to muscle tissue. The second half of this review summarizes key findings from this ensemble of fiber type-specific human protein studies. We highlight examples of where this analytical approach has helped to improve understanding of important physiological topics such as insulin sensitivity, muscle hypertrophy, muscle fatigue, and adaptation to different exercise programs.
Collapse
Affiliation(s)
- Irene S. Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J. Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
43
|
Protzen GV, Bartel C, Coswig VS, Gentil P, Del Vecchio FB. Physiological aspects and energetic contribution in 20s:10s high-intensity interval exercise at different intensities. PeerJ 2020; 8:e9791. [PMID: 33083103 PMCID: PMC7560324 DOI: 10.7717/peerj.9791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Background One of the most popular high-intensity interval exercises is the called “Tabata Protocol”. However, most investigations have limitations in describing the work intensity, and this fact appears to be due to the protocol unfeasibility. Furthermore, the physiological demands and energetic contribution during this kind of exercise remain unclear. Methods Eight physically active students (21.8 ± 3.7 years) and eight well-trained cycling athletes (27.8 ± 6.4 years) were enrolled. In the first visit, we collected descriptive data and the peak power output (PPO). On the next three visits, in random order, participants performed interval training with the same time structure (effort:rest 20s:10s) but using different intensities (115%, 130%, and 170% of PPO). We collected the number of sprints, power output, oxygen consumption, blood lactate, and heart rate. Results The analysis of variance for multivariate test (number of sprints, power output, blood lactate, peak heart rate and percentage of maximal heart rate) showed significant differences between groups (F = 9.62; p = 0.001) and intensities (F = 384.05; p < 0.001), with no interactions (F = 0.94; p = 0.57). All three energetic contributions and intensities were different between protocols. The higher contribution was aerobic, followed by alactic and lactic. The aerobic contribution was higher at 115%PPO, while the alactic system showed higher contribution at 130%PPO. In conclusion, the aerobic system was predominant in the three exercise protocols, and we observed a higher contribution at lower intensities.
Collapse
Affiliation(s)
- Gabriel V Protzen
- Physical Education College, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Charles Bartel
- Physical Education College, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.,Physical Education Center Admiral Adalberto Nunes, Brazilian Navy, Rio de Janeiro, Brazil
| | - Victor S Coswig
- Faculty of Physical Education, Federal University of Para, Castanhal, Pará, Brazil
| | - Paulo Gentil
- Faculty of Physical Education and Dance, Federal University of Goias, Goiânia, Goiás
| | - Fabricio B Del Vecchio
- Physical Education College, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
44
|
Ryan BJ, Schleh MW, Ahn C, Ludzki AC, Gillen JB, Varshney P, Van Pelt DW, Pitchford LM, Chenevert TL, Gioscia-Ryan RA, Howton SM, Rode T, Hummel SL, Burant CF, Little JP, Horowitz JF. Moderate-Intensity Exercise and High-Intensity Interval Training Affect Insulin Sensitivity Similarly in Obese Adults. J Clin Endocrinol Metab 2020; 105:5850995. [PMID: 32492705 PMCID: PMC7347288 DOI: 10.1210/clinem/dgaa345] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/28/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVE We compared the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on insulin sensitivity and other important metabolic adaptations in adults with obesity. METHODS Thirty-one inactive adults with obesity (age: 31 ± 6 years; body mass index: 33 ± 3 kg/m2) completed 12 weeks (4 sessions/week) of either HIIT (10 × 1-minute at 90%HRmax, 1-minute active recovery; n = 16) or MICT (45 minutes at 70%HRmax; n = 15). To assess the direct effects of exercise independent of weight/fat loss, participants were required to maintain body mass. RESULTS Training increased peak oxygen uptake by ~10% in both HIIT and MICT (P < 0.0001), and body weight/fat mass were unchanged. Peripheral insulin sensitivity (hyperinsulinemic-euglycemic clamp) was ~20% greater the day after the final exercise session compared to pretraining (P < 0.01), with no difference between HIIT and MICT. When trained participants abstained from exercise for 4 days, insulin sensitivity returned to pretraining levels in both groups. HIIT and MICT also induced similar increases in abundance of many skeletal muscle proteins involved in mitochondrial respiration and lipid and carbohydrate metabolism. Training-induced alterations in muscle lipid profile were also similar between groups. CONCLUSION Despite large differences in training intensity and exercise time, 12 weeks of HIIT and MICT induce similar acute improvements in peripheral insulin sensitivity the day after exercise, and similar longer term metabolic adaptations in skeletal muscle in adults with obesity. These findings support the notion that the insulin-sensitizing effects of both HIIT and MICT are mediated by factors stemming from the most recent exercise session(s) rather than adaptations that accrue with training.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jenna B Gillen
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Pallavi Varshney
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Lisa M Pitchford
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | | | - Rachel A Gioscia-Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Suzette M Howton
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Thomas Rode
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Scott L Hummel
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Ann Arbor Veterans Affairs Health System, Ann Arbor, Michigan
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Correspondence and Reprint Requests: Jeffrey F. Horowitz, PhD, School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI, USA 48109-2214.
| |
Collapse
|
45
|
Physiological responses to moderate intensity continuous and high-intensity interval exercise in persons with paraplegia. Spinal Cord 2020; 59:26-33. [PMID: 32681118 DOI: 10.1038/s41393-020-0520-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
STUDY DESIGN Randomized crossover. OBJECTIVES To test differences in the duration and magnitude of physiological response to isocaloric moderate intensity continuous (MICE) and high-intensity interval exercise (HIIE) sessions in persons with spinal cord injury (SCI). SETTING Academic medical center in Miami, FL, USA. METHODS Ten adult men (mean ± s.d.; 39 ± 10 year old) with chronic (13.2 ± 8.8 year) paraplegia (T2-T10) completed a graded exercise test. Then, in a randomized order, participants completed MICE and HIIE for a cost of 120 kcal. MICE was performed at 24.6% POpeak. During HIIE, exercise was completed in 2 min work and recovery phases at 70%:10% POpeak. RESULTS MICE and HIIE were isocaloric (115.9 ± 21.8 and 116.6 ± 35.0 kcal, respectively; p = 0.903), but differed in duration (39.8 ± 4.6 vs 32.2 ± 6.2 min; p < 0.001) and average respiratory exchange ratio (RER; 0.90 ± 0.08 vs 1.01 ± 0.07; p = 0.002). During MICE, a workrate of 24.6 ± 6.7% POpeak elicited a V̇O2 of 53.1 ± 6.5% V̇O2peak (10.1 ± 2.2 ml kg-1 min-1). During HIIE, a workrate at 70% POpeak elicited 88.3 ± 6.7% V̇O2peak (16.9 ± 4.2 ml kg-1 min-1), and 29.4 ± 7.7% of the session was spent at or above 80% V̇O2peak. During HIIE working phase, RER declined from the first to last interval (1.08 ± 0.07 vs 0.98 ± 0.09; p < 0.001), reflecting an initially high but declining glycolytic rate. CONCLUSIONS Compared with MICE, HIIE imposed a greater physiological stimulus while requiring less time to achieve a target caloric expenditure. Thus, exercise intensity might be an important consideration in the tailoring of exercise prescription to address the cardiometabolic comorbidities of SCI.
Collapse
|
46
|
Ghasemi E, Afzalpour ME, Nayebifar S. Combined high-intensity interval training and green tea supplementation enhance metabolic and antioxidant status in response to acute exercise in overweight women. J Physiol Sci 2020; 70:31. [PMID: 32586268 PMCID: PMC10718018 DOI: 10.1186/s12576-020-00756-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/29/2020] [Indexed: 02/03/2023]
Abstract
Thirty sedentary overweight women were randomly assigned to three groups (n = 10), including HIIT + green tea, HIIT + placebo and green tea. The training program included 3 sessions/week HIIT while the supplement consuming groups took 3 * 500 mg of green tea tablets/day for 10 weeks. Results indicated that 10 weeks of HIIT and green tea meaningfully pronounced baseline serum levels of SIRT1 (P ≤ 0.0001), PGC-1α (P ≤ 0.0001) and CAT (P ≤ 0.0001). In addition, significant increase was observed in three indicators in HIIT + green tea group in comparison with two other research groups. Further, the responses of SIRT1 (P ≤ 0.01) and CAT (P ≤ 0.002) increased significantly to second acute exercise in all three groups. The combination of HIIT and green tea consumption may induce increasing SIRT1 and CAT in response to acute exercise and can improve antioxidant system, body composition and VO2 max results rather than green tea and training alone, in young sedentary overweight women.
Collapse
Affiliation(s)
- Elham Ghasemi
- Department of Sport Sciences, Faculty of Literature and Humanities, University of Zabol, Zabol, Iran
| | | | - Shila Nayebifar
- Department of Sport Sciences, Faculty of Educational Sciences and Psychology, University of Sistan and Baluchestan, Zahedan, Iran.
| |
Collapse
|
47
|
A comparison of pain responses, hemodynamic reactivity and fibre type composition between Bergström and microbiopsy skeletal muscle biopsies. Curr Res Physiol 2020; 3:1-10. [PMID: 34746815 PMCID: PMC8562142 DOI: 10.1016/j.crphys.2020.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 01/13/2023] Open
Abstract
This study tested the hypotheses that 1) skeletal muscle biopsies performed with the Bergström needle evoke larger perceptions of pain and greater hemodynamic reactivity compared to biopsies performed with the microbiopsy needle, and 2) both needles yield samples with similar fibre type compositions when samples are collected at similar skeletal muscle depths. Fourteen healthy (age: 21.6 ± 3.2 years; VO2peak: 41.5 ± 5.8 mL/kg/min) males (n = 7) and females (n = 7) provided two resting skeletal muscle biopsies, one with each needle type, following a randomized crossover design. Participants completed the short-form McGill Pain Questionnaire and the Brief Pain Inventory before, during, and after the skeletal muscle biopsies. Hemodynamic reactivity was assessed by measuring heart rate (HR) and mean arterial pressure (MAP) at rest and during the biopsy procedures. Immunofluorescence analysis was used to assess fibre type composition in vastus lateralis samples. Compared to the microbiopsy needle, the Bergström needle elicited a larger perception of pain but similar hemodynamic reactivity during the biopsy. Both needles yielded skeletal muscle samples with similar fibre type composition and resulted in similar perceptions of pain and pain-related interference during the post-biopsy recovery period. Collectively, these findings suggest that studies should consider using the microbiopsy needle rather than the Bergström needle unless large amounts of muscle tissue or certain muscle fibre lengths are required. However, future work should determine whether our findings are generalizable to biopsies performed with different procedures and/or types of Bergström/microbiopsy needles. The first characterization of responses to two muscle biopsy techniques. Compared to the Bergström, the microbiopsy needle evokes smaller pain responses. Both needles resulted in similar hemodynamic reactivity and fibre type composition. If analysis permits, future work should consider using the microbiopsy needle.
Collapse
Key Words
- BPI, Brief pain inventory
- BPI-6, Brief pain inventory question #6
- BPI-9, Brief pain inventory question #9
- HR, Heart rate
- Heart rate
- MAP, Mean arterial pressure
- McGill-D, Descriptors from the McGill Pain Questionnaire
- Mean arterial pressure
- PCS, Pain catastrophizing scale
- PPI, Present pain intensity
- Perceptions of pain
- Skeletal muscle biopsies
- VAS, Visual analog scale
- VO2peak, Peak oxygen consumption
Collapse
|
48
|
The Effect of Low-Volume High-Intensity Interval Training on Body Composition and Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. Sports Med 2020; 49:1687-1721. [PMID: 31401727 DOI: 10.1007/s40279-019-01167-w] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Evidence for the efficacy of low-volume high-intensity interval training (HIIT) for the modulation of body composition is unclear. OBJECTIVES We examined the effect of low-volume HIIT versus a non-exercising control and moderate-intensity continuous training (MICT) on body composition and cardiorespiratory fitness in normal weight, overweight and obese adults. We evaluated the impact of low-volume HIIT (HIIT interventions where the total amount of exercise performed during training was ≤ 500 metabolic equivalent minutes per week [MET-min/week]) compared to a non-exercising control and MICT. METHODS A database search was conducted in PubMed (MEDLINE), EMBASE, CINAHL, Web of Science, SPORTDiscus and Scopus from the earliest record to June 2019 for studies (randomised controlled trials and non-randomised controlled trials) with exercise training interventions with a minimum 4-week duration. Meta-analyses were conducted for between-group (low-volume HIIT vs. non-exercising control and low-volume HIIT vs. MICT) comparisons for change in total body fat mass (kg), body fat percentage (%), lean body mass (kg) and cardiorespiratory fitness. RESULTS From 11,485 relevant records, 47 studies were included. No difference was found between low-volume HIIT and a non-exercising control on total body fat mass (kg) (effect size [ES]: - 0.129, 95% confidence interval [CI] - 0.468 to 0.210; p = 0.455), body fat (%) (ES: - 0.063, 95% CI - 0.383 to 0.257; p = 0.700) and lean body mass (kg) (ES: 0.050, 95% CI - 0.250 to 0.351; p = 0.744), or between low-volume HIIT and MICT on total body fat mass (kg) (ES: - 0.021, 95% CI - 0.272 to 0.231; p = 0.872), body fat (%) (ES: 0.005, 95% CI - 0.294 to 0.304; p = 0.974) and lean body mass (kg) (ES: 0.030, 95% CI - 0.167 to 0.266; p = 0.768). However, low-volume HIIT significantly improved cardiorespiratory fitness compared with a non-exercising control (p < 0.001) and MICT (p = 0.017). CONCLUSION These data suggest that low-volume HIIT is inefficient for the modulation of total body fat mass or total body fat percentage in comparison with a non-exercise control and MICT. A novel finding of our meta-analysis was that there appears to be no significant effect of low-volume HIIT on lean body mass when compared with a non-exercising control, and while most studies tended to favour improvement in lean body mass with low-volume HIIT versus MICT, this was not significant. However, despite its lower training volume, low-volume HIIT induces greater improvements in cardiorespiratory fitness than a non-exercising control and MICT in normal weight, overweight and obese adults. Low-volume HIIT, therefore, appears to be a time-efficient treatment for increasing fitness, but not for the improvement of body composition.
Collapse
|
49
|
Gibala MJ. Physiological basis of interval training for performance enhancement. Exp Physiol 2020; 106:2324-2327. [PMID: 32362039 DOI: 10.1113/ep088190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 01/28/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review considers the physiological basis of interval training for performance enhancement, with an emphasis on the capacity for aerobic energy provision. What advances does it highlight? It highlights advances regarding the effect of interval training on primary physiological determinants of aerobic energy provision, which are associated with performance. ABSTRACT Interval training refers to an intermittent style of exercise, in which bouts of more intense effort are interspersed with recovery periods within a given training session. Physiological responses to interval training depend on numerous factors, including the specific nature of the intervention and the initial training state of the individual. Interval training improves performance in part by enhancing the capacity for aerobic energy provision, even in those who are already trained. Two primary mechanisms in this regard are an increased whole-body maximal oxygen uptake and an enhanced capacity for oxidative metabolism in skeletal muscle owing to an increase in mitochondria. In comparison to moderate-intensity continuous exercise, interval training can elicit superior responses when total work is matched, and similar responses despite a reduced training volume and time commitment.
Collapse
Affiliation(s)
- Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
50
|
Bellar A, Welch N, Dasarathy S. Exercise and physical activity in cirrhosis: opportunities or perils. J Appl Physiol (1985) 2020; 128:1547-1567. [PMID: 32240017 DOI: 10.1152/japplphysiol.00798.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reduced exercise capacity and impaired physical performance are observed in nearly all patients with liver cirrhosis. Physical activity and exercise are physiological anabolic stimuli that can reverse dysregulated protein homeostasis or proteostasis and potentially increase muscle mass and contractile function in healthy subjects. Cirrhosis is a state of anabolic resistance, and unlike the beneficial responses to exercise reported in physiological states, there are few systematic studies evaluating the response to exercise in cirrhosis. Hyperammonemia is a mediator of the liver-muscle axis with net skeletal muscle ammonia uptake in cirrhosis causing signaling perturbations, mitochondrial dysfunction with decreased ATP content, modifications of contractile proteins, and impaired ribosomal function, all of which contribute to anabolic resistance in cirrhosis and have the potential to impair the beneficial responses to exercise. English language-publications in peer-reviewed journals that specifically evaluated the impact of exercise in cirrhosis were reviewed. Most studies evaluated responses to endurance exercise, and readouts included peak or maximum oxygen utilization, grip strength, and functional capacity. Endurance exercise for up to 12 wk is clinically tolerated in well-compensated cirrhosis. Data on the safety of resistance exercise are conflicting. Nutritional supplements enhance the benefits of exercise in healthy subjects but have not been evaluated in cirrhosis. Whether the beneficial physiological responses with endurance exercise and increase in muscle mass with resistance exercise that occur in healthy subjects also occur in cirrhotics is not known. Specific organ-system responses, changes in body composition, or improved long-term clinical outcomes with exercise in cirrhosis need evaluation.
Collapse
Affiliation(s)
- Annette Bellar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Nicole Welch
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Gastroenterology, Hepatology Cleveland Clinic, Cleveland, Ohio
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Gastroenterology, Hepatology Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|