1
|
Criel Y, Depuydt E, Miatton M, Santens P, van Mierlo P, De Letter M. Cortical Generators and Connections Underlying Phoneme Perception: A Mismatch Negativity and P300 Investigation. Brain Topogr 2024; 37:1089-1117. [PMID: 38958833 DOI: 10.1007/s10548-024-01065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
The cortical generators of the pure tone MMN and P300 have been thoroughly studied. Their nature and interaction with respect to phoneme perception, however, is poorly understood. Accordingly, the cortical sources and functional connections that underlie the MMN and P300 in relation to passive and active speech sound perception were identified. An inattentive and attentive phonemic oddball paradigm, eliciting a MMN and P300 respectively, were administered in 60 healthy adults during simultaneous high-density EEG recording. For both the MMN and P300, eLORETA source reconstruction was performed. The maximal cross-correlation was calculated between ROI-pairs to investigate inter-regional functional connectivity specific to passive and active deviant processing. MMN activation clusters were identified in the temporal (insula, superior temporal gyrus and temporal pole), frontal (rostral middle frontal and pars opercularis) and parietal (postcentral and supramarginal gyrus) cortex. Passive discrimination of deviant phonemes was aided by a network connecting right temporoparietal cortices to left frontal areas. For the P300, clusters with significantly higher activity were found in the frontal (caudal middle frontal and precentral), parietal (precuneus) and cingulate (posterior and isthmus) cortex. Significant intra- and interhemispheric connections between parietal, cingulate and occipital regions constituted the network governing active phonemic target detection. A predominantly bilateral network was found to underly both the MMN and P300. While passive phoneme discrimination is aided by a fronto-temporo-parietal network, active categorization calls on a network entailing fronto-parieto-cingulate cortices. Neural processing of phonemic contrasts, as reflected by the MMN and P300, does not appear to show pronounced lateralization to the language-dominant hemisphere.
Collapse
Affiliation(s)
- Yana Criel
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.
| | - Emma Depuydt
- Medical Imaging and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Marijke Miatton
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Pieter van Mierlo
- Medical Imaging and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Riel H, Rudolph ED, MacPhee C, Tibbo PG, Fisher DJ. Reduced duration mismatch negativity elicited by the multi-feature 'optimal' paradigm in early-phase psychosis. Biol Psychol 2023; 180:108570. [PMID: 37116608 DOI: 10.1016/j.biopsycho.2023.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND MMN and P3a are EEG-derived event related potentials that are thought to be prospective biomarkers for schizophrenia and, potentially, early-phase psychosis (EPP). METHODS EPP (n = 12) and healthy control (n = 35) participants listened to a multi-feature optimal paradigm with five deviant types (gap, duration, location, intensity, and frequency). RESULTS There was a significant amplitude difference between the EPP and HC group with duration MMN (p =.02). No significant amplitude differences between groups were found for the P3a waveform. There were several correlations for the EPP group with the BNSS, SOFAS, and PANSS-general questionnaires. Length of illness was not associated with MMN or P3a. CONCLUSIONS The optimal paradigm is suitable for eliciting multiple deviant types within a short amount of time in both clinical and healthy populations. This study confirms duration MMN deficits within an EPP group and that MMN is related to functional outcomes and positive and negative symptomology.
Collapse
Affiliation(s)
- Hayley Riel
- Department of Psychiatry, Dalhousie University, Halifax NS, Canada
| | - Erica D Rudolph
- Department of Psychology, Saint Mary's University, Halifax NS, Canada
| | - Catrina MacPhee
- Department of Psychiatry, Dalhousie University, Halifax NS, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax NS, Canada
| | - Derek J Fisher
- Department of Psychiatry, Dalhousie University, Halifax NS, Canada; Department of Psychology, Saint Mary's University, Halifax NS, Canada; Department of Psychology, Mount Saint Vincent University, Halifax NS, Canada.
| |
Collapse
|
3
|
Ford TC, Hugrass LE, Jack BN. The Relationship Between Affective Visual Mismatch Negativity and Interpersonal Difficulties Across Autism and Schizotypal Traits. Front Hum Neurosci 2022; 16:846961. [PMID: 35399350 PMCID: PMC8983815 DOI: 10.3389/fnhum.2022.846961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Sensory deficits are a feature of autism and schizophrenia, as well as the upper end of their non-clinical spectra. The mismatch negativity (MMN), an index of pre-attentive auditory processing, is particularly sensitive in detecting such deficits; however, little is known about the relationship between the visual MMN (vMMN) to facial emotions and autism and schizophrenia spectrum symptom domains. We probed the vMMN to happy, sad, and neutral faces in 61 healthy adults (18-40 years, 32 female), and evaluated their degree of autism and schizophrenia spectrum traits using the Autism Spectrum Quotient (AQ) and Schizotypal Personality Questionnaire (SPQ). The vMMN to happy faces was significantly larger than the vMMNs to sad and neutral faces. The vMMN to happy faces was associated with interpersonal difficulties as indexed by AQ Communication and Attention to Detail subscales, and SPQ associated with more interpersonal difficulties. These data suggest that pre-attentive processing of positive affect might be more specific to the interpersonal features associated with autism and schizophrenia. These findings add valuable insights into the growing body of literature investigating symptom-specific neurobiological markers of autism and schizophrenia spectrum conditions.
Collapse
Affiliation(s)
- Talitha C. Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Laila E. Hugrass
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Bradley N. Jack
- Research School of Psychology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
4
|
Lecaignard F, Bertrand R, Brunner P, Caclin A, Schalk G, Mattout J. Dynamics of Oddball Sound Processing: Trial-by-Trial Modeling of ECoG Signals. Front Hum Neurosci 2022; 15:794654. [PMID: 35221952 PMCID: PMC8866734 DOI: 10.3389/fnhum.2021.794654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
Recent computational models of perception conceptualize auditory oddball responses as signatures of a (Bayesian) learning process, in line with the influential view of the mismatch negativity (MMN) as a prediction error signal. Novel MMN experimental paradigms have put an emphasis on neurophysiological effects of manipulating regularity and predictability in sound sequences. This raises the question of the contextual adaptation of the learning process itself, which on the computational side speaks to the mechanisms of gain-modulated (or precision-weighted) prediction error. In this study using electrocorticographic (ECoG) signals, we manipulated the predictability of oddball sound sequences with two objectives: (i) Uncovering the computational process underlying trial-by-trial variations of the cortical responses. The fluctuations between trials, generally ignored by approaches based on averaged evoked responses, should reflect the learning involved. We used a general linear model (GLM) and Bayesian Model Reduction (BMR) to assess the respective contributions of experimental manipulations and learning mechanisms under probabilistic assumptions. (ii) To validate and expand on previous findings regarding the effect of changes in predictability using simultaneous EEG-MEG recordings. Our trial-by-trial analysis revealed only a few stimulus-responsive sensors but the measured effects appear to be consistent over subjects in both time and space. In time, they occur at the typical latency of the MMN (between 100 and 250 ms post-stimulus). In space, we found a dissociation between time-independent effects in more anterior temporal locations and time-dependent (learning) effects in more posterior locations. However, we could not observe any clear and reliable effect of our manipulation of predictability modulation onto the above learning process. Overall, these findings clearly demonstrate the potential of trial-to-trial modeling to unravel perceptual learning processes and their neurophysiological counterparts.
Collapse
Affiliation(s)
- Françoise Lecaignard
- Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
- University Lyon 1, Lyon, France
| | - Raphaëlle Bertrand
- Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
- University Lyon 1, Lyon, France
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Albany Medical College, Albany, NY, United States
- National Center for Adaptive Neurotechnologies, Albany, NY, United States
| | - Anne Caclin
- Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
- University Lyon 1, Lyon, France
| | - Gerwin Schalk
- National Center for Adaptive Neurotechnologies, Albany, NY, United States
| | - Jérémie Mattout
- Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
- University Lyon 1, Lyon, France
| |
Collapse
|
5
|
Chang Q, Li C, Tian Q, Bo Q, Zhang J, Xiong Y, Wang C. Classification of First-Episode Schizophrenia, Chronic Schizophrenia and Healthy Control Based on Brain Network of Mismatch Negativity by Graph Neural Network. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1784-1794. [PMID: 34406943 DOI: 10.1109/tnsre.2021.3105669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mismatch negativity (MMN) has been consistently found deficit in schizophrenia, which was considered as a promising biomarker for assessing the impairments in pre-attentive auditory processing. However, the functional connectivity between brain regions based on MMN is not clear. This study provides an in-depth investigation in brain functional connectivity during MMN process among patients with first-episode schizophrenia (FESZ), chronic schizophrenia (CSZ) and healthy control (HC). Electroencephalography (EEG) data of 128 channels is recorded during frequency and duration MMN in 40 FESZ, 40 CSZ patients and 40 matched HC subjects. We reconstruct the cortical endogenous electrical activity from EEG recordings using exact low-resolution electromagnetic tomography and build functional brain networks based on source-level EEG data. Then, graph-theoretic features are extracted from the brain networks with the support vector machine (SVM) to classify FESZ, CSZ and HC groups, since the SVM has good generalization ability and robustness as a universally applicable nonlinear classifier. Furthermore, we introduce the graph neural network (GNN) model to directly learn for the network topology of brain network. Compared to HC, the damaged brain areas of CSZ are more extensive than FESZ, and the damaged area involved the auditory cortex. These results demonstrate the heterogeneity of the impacts of schizophrenia for different disease courses and the association between MMN and the auditory cortex. More importantly, the GNN classification results are significantly better than those of SVM, and hence the EEG-based GNN model of brain networks provides an effective method for discriminating among FESZ, CSZ and HC groups.
Collapse
|
6
|
Ochiai H, Shiga T, Hoshino H, Horikoshi S, Kanno K, Wada T, Osakabe Y, Miura I, Yabe H. Effect of oxytocin nasal spray on auditory automatic discrimination measured by mismatch negativity. Psychopharmacology (Berl) 2021; 238:1781-1789. [PMID: 33829308 DOI: 10.1007/s00213-021-05807-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/22/2021] [Indexed: 12/01/2022]
Abstract
RATIONALE As a treatment for cognitive dysfunction in schizophrenia, oxytocin nasal sprays potentially improve social cognition, facial expression recognition, and sense of smell. Mismatch negativity (MMN) is an event-related potential (ERP) reflecting auditory discrimination while MMN deficits reflect cognitive function decline in schizophrenia. OBJECTIVES To determine whether oxytocin nasal spray affects auditory MMN METHODS: We measured ERPs in healthy subjects during an auditory oddball task, both before and after oxytocin nasal spray administration. Forty healthy subjects were randomly assigned to either the oxytocin or placebo group. ERPs were recorded during the oddball task for all subjects before and after a 24 international unit (IU) intranasal administration, and MMN was compared between the two groups. RESULTS Participants who received oxytocin had significantly shorter MMN latencies than those who received a placebo. Oxytocin had no significant effect on the Change in MMN amplitude. CONCLUSIONS The shortened MMN latencies that were observed after oxytocin nasal spray administration suggest that oxytocin may promote the comparison-decision stage.
Collapse
Affiliation(s)
- Haruka Ochiai
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan.
| | - Tetsuya Shiga
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Hoshino
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Sho Horikoshi
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Kazuko Kanno
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Tomohiro Wada
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Yusuke Osakabe
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Itaru Miura
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
7
|
Cheng CH, Chang CC, Chao YP, Lu H, Peng SW, Wang PN. Altered mismatch response precedes gray matter atrophy in subjective cognitive decline. Psychophysiology 2021; 58:e13820. [PMID: 33792049 DOI: 10.1111/psyp.13820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023]
Abstract
The cross-sectional identification of subjective cognitive decline (SCD) in cognitively normal adults is particularly important for the early effective prevention or intervention of the future development of mild cognitive impairments (MCI) or Alzheimer's disease (AD). A pre-attentive neurophysiological signal that reflects the brain's ability to detect the changes of the environment is called mismatch negativity (MMN) or its magnetic counterpart (MMNm). It has been shown that patients with MCI or AD demonstrate reduced MMN/MMNm responses, while the exact profile of MMN/MMNm in SCD is substantially unknown. We applied magnetoencephalographic recordings to interrogate MMNm activities in healthy controls (HC, n = 29) and individuals with SCD (n = 26). Furthermore, we analyzed gray matter (GM) volumes in the MMNm-related regions through voxel-based morphometry and performed apolipoprotein E4 (APOE4) genotyping for all the participants. Our results showed that there were no significant differences in GM volume and proportions of APOE4 carriers between HC and SCD groups. However, individuals with SCD exhibited weakened z-corrected MMNm responses in the left inferior parietal lobule and right inferior frontal gyrus (IFG) as compared to HC. Based on the regions showing significant between-group differences, z-corrected MMNm amplitudes of the right IFG significantly correlated with the memory performance among the SCD participants. Our data suggest that neurophysiological changes of the brain, as indexed by MMNm, precede structural atrophy in the individuals with SCD compared to those without SCD.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology and Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ping Chao
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hsinjie Lu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Shih-Wei Peng
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Pei-Ning Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| |
Collapse
|
8
|
McMackin R, Dukic S, Costello E, Pinto-Grau M, McManus L, Broderick M, Chipika R, Iyer PM, Heverin M, Bede P, Muthuraman M, Pender N, Hardiman O, Nasseroleslami B. Cognitive network hyperactivation and motor cortex decline correlate with ALS prognosis. Neurobiol Aging 2021; 104:57-70. [PMID: 33964609 DOI: 10.1016/j.neurobiolaging.2021.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
We aimed to quantitatively characterize progressive brain network disruption in Amyotrophic Lateral Sclerosis (ALS) during cognition using the mismatch negativity (MMN), an electrophysiological index of attention switching. We measured the MMN using 128-channel EEG longitudinally (2-5 timepoints) in 60 ALS patients and cross-sectionally in 62 healthy controls. Using dipole fitting and linearly constrained minimum variance beamforming we investigated cortical source activity changes over time. In ALS, the inferior frontal gyri (IFG) show significantly lower baseline activity compared to controls. The right IFG and both superior temporal gyri (STG) become progressively hyperactive longitudinally. By contrast, the left motor and dorsolateral prefrontal cortices are initially hyperactive, declining progressively. Baseline motor hyperactivity correlates with cognitive disinhibition, and lower baseline IFG activities correlate with motor decline rate, while left dorsolateral prefrontal activity predicted cognitive and behavioural impairment. Shorter survival correlates with reduced baseline IFG and STG activity and later STG hyperactivation. Source-resolved EEG facilitates quantitative characterization of symptom-associated and symptom-preceding motor and cognitive-behavioral cortical network decline in ALS.
Collapse
Affiliation(s)
- Roisin McMackin
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Stefan Dukic
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Emmet Costello
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Marta Pinto-Grau
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Lara McManus
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Michael Broderick
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Rangariroyashe Chipika
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Computational Neuroimaging Group, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Parameswaran M Iyer
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Beaumont Hospital Dublin, Department of Neurology, Dublin 9, Ireland
| | - Mark Heverin
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Peter Bede
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Computational Neuroimaging Group, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Muthuraman Muthuraman
- Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Johannes-Gutenberg-University Hospital, Mainz, Germany
| | - Niall Pender
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands; Beaumont Hospital Dublin, Department of Neurology, Dublin 9, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Beaumont Hospital Dublin, Department of Neurology, Dublin 9, Ireland.
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| |
Collapse
|
9
|
Lecaignard F, Bertrand O, Caclin A, Mattout J. Empirical Bayes evaluation of fused EEG-MEG source reconstruction: Application to auditory mismatch evoked responses. Neuroimage 2020; 226:117468. [PMID: 33075561 DOI: 10.1016/j.neuroimage.2020.117468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
We here turn the general and theoretical question of the complementarity of EEG and MEG for source reconstruction, into a practical empirical one. Precisely, we address the challenge of evaluating multimodal data fusion on real data. For this purpose, we build on the flexibility of Parametric Empirical Bayes, namely for EEG-MEG data fusion, group level inference and formal hypothesis testing. The proposed approach follows a two-step procedure by first using unimodal or multimodal inference to derive a cortical solution at the group level; and second by using this solution as a prior model for single subject level inference based on either unimodal or multimodal data. Interestingly, for inference based on the same data (EEG, MEG or both), one can then formally compare, as alternative hypotheses, the relative plausibility of the two unimodal and the multimodal group priors. Using auditory data, we show that this approach enables to draw important conclusions, namely on (i) the superiority of multimodal inference, (ii) the greater spatial sensitivity of MEG compared to EEG, (iii) the ability of EEG data alone to source reconstruct temporal lobe activity, (iv) the usefulness of EEG to improve MEG based source reconstruction. Importantly, we largely reproduce those findings over two different experimental conditions. We here focused on Mismatch Negativity (MMN) responses for which generators have been extensively investigated with little homogeneity in the reported results. Our multimodal inference at the group level revealed spatio-temporal activity within the supratemporal plane with a precision which, to our knowledge, has never been achieved before with non-invasive recordings.
Collapse
Affiliation(s)
- Françoise Lecaignard
- Lyon Neuroscience Research Center, CRNL; INSERM, U1028; CNRS, UMR5292; Brain Dynamics and Cognition Team, Lyon, F-69000, France; University Lyon 1, Lyon, F-69000, France.
| | - Olivier Bertrand
- Lyon Neuroscience Research Center, CRNL; INSERM, U1028; CNRS, UMR5292; Brain Dynamics and Cognition Team, Lyon, F-69000, France; University Lyon 1, Lyon, F-69000, France
| | - Anne Caclin
- Lyon Neuroscience Research Center, CRNL; INSERM, U1028; CNRS, UMR5292; Brain Dynamics and Cognition Team, Lyon, F-69000, France; University Lyon 1, Lyon, F-69000, France
| | - Jérémie Mattout
- Lyon Neuroscience Research Center, CRNL; INSERM, U1028; CNRS, UMR5292; Brain Dynamics and Cognition Team, Lyon, F-69000, France; University Lyon 1, Lyon, F-69000, France
| |
Collapse
|
10
|
Kubota M, Matsuzaki J, Dan I, Dan H, Zouridakis G. Head errors of syntactic dependency increase neuromagnetic mismatch intensities. Exp Brain Res 2020; 238:2137-2160. [PMID: 32661653 DOI: 10.1007/s00221-020-05872-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/04/2020] [Indexed: 11/26/2022]
Abstract
Mismatch-related brain activation in healthy individuals is an important area of neural investigation. Previously, we evaluated sentence-level syntactic dependencies, composed of a head and a dependent between two syntactically related words in head-initial English structures. We demonstrated that prominent mismatch effects were induced by within-category dependent errors when semantic interpretation was preserved. However, the following issues were not addressed: (1) whether head errors of syntactic dependency in head-final structures would elicit large mismatch field (MMF) intensities, and (2) whether an MMF effect of syntactic errors would be seen in the left superior temporal cortex alone. In this study, auditory MMFs were obtained by magnetocephalography (MEG) from healthy Japanese adults (n = 8) who were subjected to a passive auditory oddball paradigm with syntactically legal or illegal utterances and single words in Japanese. The results demonstrate that the source waveforms had significantly higher MMF cortical activation in response to the head error, which involved altered polarity of the predicate. This resulted in a syntactically incorrect and semantically incomprehensible expression, when compared to the syntactically correct expression and the non-structural lexical item. This mismatch effect, with a peak latency of 164 ms, was confined to the anterior region of the left superior temporal cortex. The current results clearly indicate that the representation of syntactic dependency is stored in long-term memory and tends to be activated in automatic auditory processing.
Collapse
Affiliation(s)
- Mikio Kubota
- Department of English, Seijo University, 6-1-20, Seijo, Setagaya-ku, Tokyo, 157-8511, Japan.
- Functional Brain Science Lab, Jichi Medical University, Tochigi, Japan.
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Engineering Technology, University of Houston, Houston, TX, USA.
| | - Junko Matsuzaki
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ippeita Dan
- Functional Brain Science Lab, Jichi Medical University, Tochigi, Japan
- Department of Integrated Sciences and Engineering for Sustainable Society, Chuo University, Tokyo, Japan
| | - Haruka Dan
- Functional Brain Science Lab, Jichi Medical University, Tochigi, Japan
| | - George Zouridakis
- Department of Engineering Technology, University of Houston, Houston, TX, USA
| |
Collapse
|
11
|
Abnormal Effective Connectivity Underlying Auditory Mismatch Negativity Impairments in Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1028-1039. [PMID: 32830097 DOI: 10.1016/j.bpsc.2020.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Auditory mismatch negativity (MMN) is a translatable event-related potential biomarker, and its reduction in schizophrenia is associated with the severity of clinical symptoms. While MMN recorded at the scalp is generated by a distributed network of temporofrontal neural sources, the primary contributing sources and the dynamic interactions among sources underlying MMN impairments in schizophrenia have not been previously characterized. METHODS A novel data-driven analytic framework was applied to large cohorts of healthy comparison subjects (n = 449) and patients with schizophrenia (n = 589) to identify the independent contributing sources of MMN, characterize the patterns of effective connectivity underlying reduced MMN in patients, and explore the clinical significance of these abnormal source dynamics in schizophrenia. RESULTS A network of 11 independent contributing sources underlying MMN distributed across temporofrontal cortices was identified. Orderly shifts in peak source activity were detected in a steplike manner, starting at temporal structures and progressing across frontal brain regions. MMN reduction in patients was predominantly associated with reduced contributions from 3 frontal midline sources: orbitofrontal, anterior cingulate, and middle cingulate cortices. Patients showed increased connectivity from temporal to prefrontal regions in conjunction with decreased cross-hemispheric connectivity to prefrontal regions. The decreased connectivity strength of precentral to prefrontal regions in patients with schizophrenia was associated with greater severity of negative symptoms. CONCLUSIONS Alterations in the dynamic interactions among temporofrontal sources underlie MMN abnormalities in schizophrenia. These results advance our understanding of the neural substrates and temporal dynamics of normal and impaired information processing with novel applications for translatable biomarkers of neuropsychiatric disorders.
Collapse
|
12
|
Roach BJ, Hamilton HK, Bachman P, Belger A, Carrión RE, Duncan E, Johannesen J, Kenney JG, Light G, Niznikiewicz M, Addington J, Bearden CE, Owens EM, Cadenhead KS, Cannon TD, Cornblatt BA, McGlashan TH, Perkins DO, Seidman L, Tsuang M, Walker EF, Woods SW, Mathalon DH. Stability of mismatch negativity event-related potentials in a multisite study. Int J Methods Psychiatr Res 2020; 29:e1819. [PMID: 32232944 PMCID: PMC7301288 DOI: 10.1002/mpr.1819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/16/2020] [Accepted: 01/31/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Mismatch negativity (MMN), an auditory event-related potential sensitive to deviance detection, is smaller in schizophrenia and psychosis risk. In a multisite study, a regression approach to account for effects of site and age (12-35 years) was evaluated alongside the one-year stability of MMN. METHODS Stability of frequency, duration, and frequency + duration (double) deviant MMN was assessed in 167 healthy subjects, tested on two occasions, separated by 52 weeks, at one of eight sites. Linear regression models predicting MMN with age and site were validated and used to derive standardized MMN z-scores. Variance components estimated for MMN amplitude and latency measures were used to calculate Generalizability (G) coefficients within each site to assess MMN stability. Trait-like aspects of MMN were captured by averaging across occasions and correlated with subject traits. RESULTS Age and site accounted for less than 7% of MMN variance. G-coefficients calculated at electrode Fz were stable (G = 0.63) across deviants and sites for amplitude measured in a fixed window, but not for latency (G = 0.37). Frequency deviant MMN z-scores averaged across tests negatively correlated with averaged global assessment of functioning. CONCLUSION MMN amplitude is stable and can be standardized to facilitate longitudinal multisite studies of patients and clinical features.
Collapse
Affiliation(s)
- Brian J. Roach
- Department of PsychiatrySan Francisco Veterans Affairs Healthcare SystemSan FranciscoCaliforniaUSA
| | - Holly K. Hamilton
- Department of PsychiatrySan Francisco Veterans Affairs Healthcare SystemSan FranciscoCaliforniaUSA
- Department of PsychiatryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Peter Bachman
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Aysenil Belger
- Department of PsychiatryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Ricardo E. Carrión
- Division of Psychiatry ResearchThe Zucker Hillside Hospital, North Shore‐Long Island Jewish Health SystemGlen OaksNew YorkUSA
- Center for Psychiatric NeuroscienceFeinstein Institute for Medical Research, North Shore‐Long Island Jewish Health SystemManhassetNew YorkUSA
- Department of PsychiatryHofstra North Shore‐LIJ School of MedicineHempsteadNew YorkUSA
| | - Erica Duncan
- Department of PsychiatryAtlanta Veterans Affairs Medical CenterDecaturGeorgiaUSA
- Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaGeorgiaUSA
| | - Jason Johannesen
- Department of PsychiatryYale University, School of MedicineNew HavenConnecticutUSA
| | - Joshua G. Kenney
- Department of PsychiatryYale University, School of MedicineNew HavenConnecticutUSA
| | - Gregory Light
- Department of PsychiatryUniversity of CaliforniaSan DiegoCaliforniaUSA
- Department of PsychiatryVeterans Affairs San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Margaret Niznikiewicz
- Department of PsychiatryHarvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General HospitalBostonMassachusettsUSA
| | - Jean Addington
- Hotchkiss Brain Institute Department of PsychiatryUniversity of CalgaryCalgaryAlbertaCanada
| | - Carrie E. Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of PsychologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Emily M. Owens
- Semel Institute for Neuroscience and Human Behavior and Department of PsychologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Tyrone D. Cannon
- Department of PsychiatryYale University, School of MedicineNew HavenConnecticutUSA
- Department of PsychologyYale University, School of MedicineNew HavenConnecticutUSA
| | - Barbara A. Cornblatt
- Division of Psychiatry ResearchThe Zucker Hillside Hospital, North Shore‐Long Island Jewish Health SystemGlen OaksNew YorkUSA
- Center for Psychiatric NeuroscienceFeinstein Institute for Medical Research, North Shore‐Long Island Jewish Health SystemManhassetNew YorkUSA
- Department of PsychiatryHofstra North Shore‐LIJ School of MedicineHempsteadNew YorkUSA
- Department of Molecular MedicineHofstra North Shore‐LIJ School of MedicineHempsteadNew YorkUSA
| | - Thomas H. McGlashan
- Department of PsychiatryYale University, School of MedicineNew HavenConnecticutUSA
| | - Diana O. Perkins
- Department of PsychiatryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Larry Seidman
- Department of PsychiatryHarvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General HospitalBostonMassachusettsUSA
| | - Ming Tsuang
- Department of PsychiatryUniversity of CaliforniaSan DiegoCaliforniaUSA
| | | | - Scott W. Woods
- Department of PsychiatryYale University, School of MedicineNew HavenConnecticutUSA
| | - Daniel H. Mathalon
- Department of PsychiatrySan Francisco Veterans Affairs Healthcare SystemSan FranciscoCaliforniaUSA
- Department of PsychiatryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
13
|
Shiga T, Horikoshi S, Kanno K, Kanno-Nozaki K, Hikita M, Itagaki S, Miura I, Yabe H. Plasma levels of dopamine metabolite correlate with mismatch negativity in patients with schizophrenia. Psychiatry Clin Neurosci 2020; 74:289-293. [PMID: 31994282 DOI: 10.1111/pcn.12984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/20/2019] [Accepted: 01/17/2020] [Indexed: 01/10/2023]
Abstract
AIM Mismatch negativity (MMN) deficit is one of the most robust and replicable findings in schizophrenia, and primarily reflects deficient functioning of the N-methyl-D-aspartate (NMDA) receptor system. Although the dopamine receptor is known not to modulate MMN over the short term, it is unclear whether the dopamine system affects MMN in the long term. METHODS We explored correlations between MMN and levels of plasma dopamine and serotonin metabolites in 18 patients with schizophrenia psychiatrically evaluated with the Positive and Negative Syndrome Scale (PANSS). RESULTS A significant negative correlation exists between MMN amplitude and plasma levels of dopamine metabolites. Plasma serotonin metabolite levels were not correlated with MMN. The PANSS total score and Negative score also showed negative correlations with MMN amplitude. CONCLUSION The usual strong therapeutic blockade of dopamine receptors applied in cases of schizophrenia may reduce MMN over the long term.
Collapse
Affiliation(s)
- Tetsuya Shiga
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Sho Horikoshi
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Kazuko Kanno
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Keiko Kanno-Nozaki
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Masayuki Hikita
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Shuntaro Itagaki
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Itaru Miura
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
14
|
Kim HK, Blumberger DM, Daskalakis ZJ. Neurophysiological Biomarkers in Schizophrenia-P50, Mismatch Negativity, and TMS-EMG and TMS-EEG. Front Psychiatry 2020; 11:795. [PMID: 32848953 PMCID: PMC7426515 DOI: 10.3389/fpsyt.2020.00795] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Impaired early auditory processing is a well characterized finding in schizophrenia that is theorized to contribute to clinical symptoms, cognitive impairment, and social dysfunction in patients. Two neurophysiological measures of early auditory processing, P50 gating ("P50") and mismatch negativity (MMN), which measure sensory gating and detection of change in auditory stimuli, respectively, are consistently shown to be impaired in patients with schizophrenia. Transcranial magnetic stimulation (TMS) may also be a potential method by which sensory processing can be assessed, since TMS paradigms can be used to measure GABAB-mediated cortical inhibition that is linked with sensory gating. In this review, we examine the potential of P50, MMN and two TMS paradigms, cortical silent period (CSP) and long-interval intracortical inhibition (LICI), as endophenotypes as well as their ability to be used as predictive markers for interventions targeted at cognitive and psychosocial functioning. Studies consistently support a link between MMN, P50, and cognitive dysfunction, with robust evidence for a link between MMN and psychosocial functioning in schizophrenia as well. Importantly, studies have demonstrated that MMN can be used to predict performance in social and cognitive training tasks. A growing body of studies also supports the potential of MMN to be used as an endophenotype, and future studies are needed to determine if MMN can be used as an endophenotype specifically in schizophrenia. P50, however, has weaker evidence supporting its use as an endophenotype. While CSP and LICI are not as extensively investigated, growing evidence is supporting their potential to be used as an endophenotype in schizophrenia. Future studies that assess the ability of P50, MMN, and TMS neurophysiological measures to predict performance in cognitive and social training programs may identify markers that inform clinical decisions in the treatment of neurocognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Helena K Kim
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
de la Salle S, Shah D, Choueiry J, Bowers H, McIntosh J, Ilivitsky V, Knott V. NMDA Receptor Antagonist Effects on Speech-Related Mismatch Negativity and Its Underlying Oscillatory and Source Activity in Healthy Humans. Front Pharmacol 2019; 10:455. [PMID: 31139075 PMCID: PMC6517681 DOI: 10.3389/fphar.2019.00455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/11/2019] [Indexed: 11/18/2022] Open
Abstract
Background: Previous studies in schizophrenia have consistently shown that deficits in the generation of the auditory mismatch negativity (MMN) – a pre-attentive, event-related potential (ERP) typically elicited by changes to simple sound features – are linked to N-methyl-D-aspartate (NMDA) receptor hypofunction. Concomitant with extensive language dysfunction in schizophrenia, patients also exhibit MMN deficits to changes in speech but their relationship to NMDA-mediated neurotransmission is not clear. Accordingly, our study aimed to investigate speech MMNs in healthy humans and their underlying electrophysiological mechanisms in response to NMDA antagonist treatment. We also evaluated the relationship between baseline MMN/electrocortical activity and emergent schizophrenia-like symptoms associated with NMDA receptor blockade. Methods: In a sample of 18 healthy volunteers, a multi-feature Finnish language paradigm incorporating changes in syllables, vowels and consonant stimuli was used to assess the acute effects of the NMDA receptor antagonist ketamine and placebo on the MMN. Further, measures of underlying neural activity, including evoked theta power, theta phase locking and source-localized current density in cortical regions of interest were assessed. Subjective symptoms were assessed with the Clinician Administered Dissociative States Scale (CADSS). Results: Participants exhibited significant ketamine-induced increases in psychosis-like symptoms and depending on temporal or frontal recording region, co-occurred with reductions in MMN generation in response to syllable frequency/intensity, vowel duration, across vowel and consonant deviants. MMN attenuation was associated with decreases in evoked theta power, theta phase locking and diminished current density in auditory and inferior frontal (language-related cortical) regions. Baseline (placebo) MMN and underlying electrophysiological features associated with the processing of changes in syllable intensity correlated with the degree of psychotomimetic response to ketamine. Conclusion: Ketamine-induced impairments in healthy human speech MMNs and their underlying electrocortical mechanisms closely resemble those observed in schizophrenia and support a model of dysfunctional NMDA receptor-mediated neurotransmission of language processing deficits in schizophrenia.
Collapse
Affiliation(s)
| | - Dhrasti Shah
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Joelle Choueiry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hayley Bowers
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Judy McIntosh
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | | | - Verner Knott
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.,Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| |
Collapse
|
16
|
Horikoshi S, Shiga T, Hoshino H, Ochiai H, Kanno-Nozaki K, Kanno K, Kaneko H, Kunii Y, Miura I, Yabe H. The Relationship between Mismatch Negativity and the COMTVal108/158Met Genotype in Schizophrenia. Neuropsychobiology 2019; 77:192-196. [PMID: 30326466 DOI: 10.1159/000493738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 11/19/2022]
Abstract
Mismatch negativity (MMN) is a component of auditory event-related potentials that reflects automatic change detection in the brain, showing qualities of endophenotypes in schizophrenia. MMN deficiency is one of the robust findings in patients, and it reflects both cognitive and functional decline. Catechol-o-methyltransferase (COMT) is a key enzyme involved in regulating dopamine transmission within the prefrontal cortex. A preliminary study suggested that the COMTVal108/158Met genotype (rs4680) is related to cognitive function in schizophrenia. Both the COMTVal108/158Met genotype and MMN are related to cognitive function, but no studies have reported on the relationship between MMN and the COMTVal108/158Met genotype in schizophrenia. This study therefore examined the relationship between COMTVal108/158Met genotype and MMN. The duration of MMN was measured, and the COMTVal108/158Met polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism in 49 Japanese schizophrenia patients (Val/Val, n = 21; Met carriers, n = 28). Amplitude and latency of MMN were compared between Val/Val and Met carriers.
Collapse
Affiliation(s)
- Sho Horikoshi
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan,
| | - Tetsuya Shiga
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Hoshino
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Haruka Ochiai
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Keiko Kanno-Nozaki
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazuko Kanno
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Haruka Kaneko
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuto Kunii
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Itaru Miura
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
17
|
Randau M, Oranje B, Miyakoshi M, Makeig S, Fagerlund B, Glenthøj B, Bak N. Attenuated mismatch negativity in patients with first-episode antipsychotic-naive schizophrenia using a source-resolved method. Neuroimage Clin 2019; 22:101760. [PMID: 30927608 PMCID: PMC6444292 DOI: 10.1016/j.nicl.2019.101760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/06/2019] [Accepted: 03/10/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mismatch negativity (MMN) is a measure of pre-attentive auditory information processing related to change detection. Traditional scalp-level EEG methods consistently find attenuated MMN in patients with chronic but not first-episode schizophrenia. In the current paper, we use a source-resolved method to assess MMN and hypothesize that more subtle changes can be identified with this analysis method. METHOD Fifty-six first-episode antipsychotic-naïve schizophrenia (FEANS) patients (31 males, 25 females, mean age 24.6) and 64 matched controls (37 males, 27 females, mean age 24.8) were assessed for duration-, frequency- and combined-type MMN and P3a as well as 4 clinical, 3 cognitive and 3 psychopathological measures. To evaluate and correlate MMN at source-level, independent component analysis (ICA) was applied to the continuous EEG data to derive equivalent current dipoles which were clustered into 19 clusters based on cortical location. RESULTS No scalp channel group MMN or P3a amplitude differences were found. Of the localized clusters, several were in or near brain areas previously suggested to be involved in the MMN response, including frontal and anterior cingulate cortices and superior temporal and inferior frontal gyri. For duration deviants, MMN was attenuated at the right superior temporal gyrus in patients compared to healthy controls (p = 0.01), as was P3a at the superior frontal cortex (p = 0.01). No individual patient correlations with clinical, cognitive, or psychopathological measures survived correction for multiple comparisons. CONCLUSION Attenuated source-localized MMN and P3a peak contributions can be identified in FEANS patients using a method based on independent component analysis (ICA). This indicates that deficits in pre-attentive auditory information processing are present at this early stage of schizophrenia and are not the result of disease chronicity or medication. This is to our knowledge the first study on FEANS patients using this more detailed method.
Collapse
Affiliation(s)
- M Randau
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark
| | - B Oranje
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - M Miyakoshi
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - S Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - B Fagerlund
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Denmark
| | - B Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - N Bak
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark
| |
Collapse
|
18
|
Electrophysiological assessment methodology of sensory processing dysfunction in schizophrenia and dementia of the Alzheimer type. Neurosci Biobehav Rev 2019; 97:70-84. [DOI: 10.1016/j.neubiorev.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
|
19
|
Peleh T, Ike KG, Wams EJ, Lebois EP, Hengerer B. The reverse translation of a quantitative neuropsychiatric framework into preclinical studies: Focus on social interaction and behavior. Neurosci Biobehav Rev 2019; 97:96-111. [DOI: 10.1016/j.neubiorev.2018.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/29/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022]
|
20
|
Solmi M, Köhler CA, Stubbs B, Koyanagi A, Bortolato B, Monaco F, Vancampfort D, Machado MO, Maes M, Tzoulaki I, Firth J, Ioannidis JPA, Carvalho AF. Environmental risk factors and nonpharmacological and nonsurgical interventions for obesity: An umbrella review of meta-analyses of cohort studies and randomized controlled trials. Eur J Clin Invest 2018; 48:e12982. [PMID: 29923186 DOI: 10.1111/eci.12982] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Multiple environmental factors have been implicated in obesity, and multiple interventions, besides drugs and surgery, have been assessed in obese patients. Results are scattered across many studies and meta-analyses, and they often mix obese and overweight individuals. MATERIALS AND METHODS PubMed and Cochrane Database of Systematic Reviews were searched through 21 January 2017 for meta-analyses of cohort studies assessing environmental risk factors for obesity, and randomized controlled trials investigating nonpharmacological and nonsurgical therapeutic interventions for obesity. We excluded data on overweight participants. Evidence from observational studies was graded according to criteria that included the statistical significance of the random-effects summary estimate and of the largest study in a meta-analysis, the number of obesity cases, heterogeneity between studies, 95% prediction intervals, small-study effects and excess significance. The evidence of intervention studies for obesity was assessed with the GRADE framework. RESULTS Fifty-four articles met eligibility criteria, including 26 meta-analyses of environmental risk factors (166 studies) and 46 meta-analyses of nondrug, nonsurgical interventions (206 trials). In adults, the only risk factor with convincing evidence was depression, and childhood obesity, adolescent obesity, childhood abuse and short sleep duration had highly suggestive evidence. Infancy weight gain during the first year of life, depression and low maternal education had convincing evidence for association with paediatric obesity. All interventions had low or very-low-quality evidence with one exception of moderate-quality evidence for one comparison (no differences in efficacy between brief lifestyle primary care interventions and other interventions for paediatric obesity). Summary effect sizes were mostly small across compared interventions (maximum 5.1 kg in adults and 1.78 kg in children) and even these estimates may be inflated. CONCLUSIONS Depression, obesity in earlier age groups, short sleep duration, childhood abuse and low maternal education have the strongest support among proposed risk factors for obesity. Furthermore, there is no high-quality evidence to recommend treating obesity with a specific nonpharmacological and nonsurgical intervention among many available, and whatever benefits in terms of magnitude of weight loss appear small.
Collapse
Affiliation(s)
- Marco Solmi
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Cristiano A Köhler
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK.,Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Fundació Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Francesco Monaco
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Davy Vancampfort
- Department of Rehabilitation Sciences, KU Leuven, University of Leuven, Leuven, Belgium.,University Psychiatric Centre, KU Leuven, University of Leuven, Leuven-Kortenberg, Belgium
| | - Myrela O Machado
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,IMPACT Strategic Research Center, Deakin University, Geelong, Vic., Australia
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.,MRC-PHE Centre for Environment, School of Public Health, Imperial College London, London, UK.,Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Joseph Firth
- NICM, School of Science and Health, University of Western Sydney, Sydney, NSW, Australia.,Division of Psychology and Mental Health, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - John P A Ioannidis
- Department of Medicine, Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, California.,Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California.,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California.,Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California
| | - André F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
21
|
Zhang Y, Yan F, Wang L, Wang Y, Wang C, Wang Q, Huang L. Cortical Areas Associated With Mismatch Negativity: A Connectivity Study Using Propofol Anesthesia. Front Hum Neurosci 2018; 12:392. [PMID: 30333738 PMCID: PMC6176496 DOI: 10.3389/fnhum.2018.00392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/10/2018] [Indexed: 02/04/2023] Open
Abstract
Auditory mismatch negativity (MMN) is an event-related potential (ERP) waveform induced by rare deviant stimuli that occur in a stream of regular auditory stimuli. The generators of MMN are believed to include several different cortical regions like the bilateral temporal and the right inferior frontal gyrus (IFG). However, exact cortical regions associated with MMN remain controversial. In this study, we compared the number of long-distance connections induced by the standard and deviant stimuli during awake state and propofol anesthesia state to identify the cortical areas associated with the generation of MMN. In awake state, we find that deviant stimuli synchronize more information between the right frontal and temporal than standard stimuli. Moreover, we find that the deviant stimuli in awake state activate the bilateral frontal, central areas, the left temporal and parietal areas as compared to the anesthesia state, whereas the standard stimuli do not. These results suggest that, in addition to the bilateral temporal and the right IFG, the bilateral frontal and centro-parietal regions also contribute to the generation of MMN.
Collapse
Affiliation(s)
- Yun Zhang
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Fei Yan
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liu Wang
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Chunshu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
22
|
Newton R, Rouleau A, Nylander AG, Loze JY, Resemann HK, Steeves S, Crespo-Facorro B. Diverse definitions of the early course of schizophrenia-a targeted literature review. NPJ SCHIZOPHRENIA 2018; 4:21. [PMID: 30323274 PMCID: PMC6189105 DOI: 10.1038/s41537-018-0063-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder and patients experience significant comorbidity, especially cognitive and psychosocial deficits, already at the onset of disease. Previous research suggests that treatment during the earlier stages of disease reduces disease burden, and that a longer time of untreated psychosis has a negative impact on treatment outcomes. A targeted literature review was conducted to gain insight into the definitions currently used to describe patients with a recent diagnosis of schizophrenia in the early course of disease ('early' schizophrenia). A total of 483 relevant English-language publications of clinical guidelines and studies were identified for inclusion after searches of MEDLINE, MEDLINE In-Process, relevant clinical trial databases and Google for records published between January 2005 and October 2015. The extracted data revealed a wide variety of terminology and definitions used to describe patients with 'early' or 'recent-onset' schizophrenia, with no apparent consensus. The most commonly used criteria to define patients with early schizophrenia included experience of their first episode of schizophrenia or disease duration of less than 1, 2 or 5 years. These varied definitions likely result in substantial disparities of patient populations between studies and variable population heterogeneity. Better agreement on the definition of early schizophrenia could aid interpretation and comparison of studies in this patient population and consensus on definitions should allow for better identification and management of schizophrenia patients in the early course of their disease.
Collapse
Affiliation(s)
- Richard Newton
- Austin Health, University of Melbourne, Melbourne, VIC, Australia.,Peninsula Health, Frankston, VIC, Australia
| | | | | | | | | | | | - Benedicto Crespo-Facorro
- Department of Medicine & Psychiatry, University Hospital Marqués de Valdecilla, IDIVAL, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| |
Collapse
|
23
|
Randeniya R, Oestreich LKL, Garrido MI. Sensory prediction errors in the continuum of psychosis. Schizophr Res 2018; 191:109-122. [PMID: 28457774 DOI: 10.1016/j.schres.2017.04.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 11/26/2022]
Abstract
Sensory prediction errors are fundamental brain responses that signal a violation of expectation in either the internal or external sensory environment, and are therefore crucial for survival and adaptive behaviour. Patients with schizophrenia show deficits in these internal and external sensory prediction errors, which can be measured using electroencephalography (EEG) components such as N1 and mismatch negativity (MMN), respectively. New evidence suggests that these deficits in sensory prediction errors are more widely distributed on a continuum of psychosis, whereas psychotic experiences exist to varying degrees throughout the general population. In this paper, we review recent findings in sensory prediction errors in the auditory domain across the continuum of psychosis, and discuss these in light of the predictive coding hypothesis.
Collapse
Affiliation(s)
- R Randeniya
- Queensland Brain Institute, The University of Queensland, Australia
| | - L K L Oestreich
- Queensland Brain Institute, The University of Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Australia; ARC Centre for Integrative Brain Function, Australia
| | - M I Garrido
- Queensland Brain Institute, The University of Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Australia; School of Mathematics and Physics, The University of Queensland, Australia; ARC Centre for Integrative Brain Function, Australia.
| |
Collapse
|
24
|
Avissar M, Xie S, Vail B, Lopez-Calderon J, Wang Y, Javitt DC. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr Res 2018; 191:25-34. [PMID: 28709770 PMCID: PMC5745291 DOI: 10.1016/j.schres.2017.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022]
Abstract
Mismatch negativity (MMN) deficits in schizophrenia (SCZ) have been studied extensively since the early 1990s, with the vast majority of studies using simple auditory oddball task deviants that vary in a single acoustic dimension such as pitch or duration. There has been a growing interest in using more complex deviants that violate more abstract rules to probe higher order cognitive deficits. It is still unclear how sensory processing deficits compare to and contribute to higher order cognitive dysfunction, which can be investigated with later attention-dependent auditory event-related potential (ERP) components such as a subcomponent of P300, P3b. In this meta-analysis, we compared MMN deficits in SCZ using simple deviants to more complex deviants. We also pooled studies that measured MMN and P3b in the same study sample and examined the relationship between MMN and P3b deficits within study samples. Our analysis reveals that, to date, studies using simple deviants demonstrate larger deficits than those using complex deviants, with effect sizes in the range of moderate to large. The difference in effect sizes between deviant types was reduced significantly when accounting for magnitude of MMN measured in healthy controls. P3b deficits, while large, were only modestly greater than MMN deficits (d=0.21). Taken together, our findings suggest that MMN to simple deviants may still be optimal as a biomarker for SCZ and that sensory processing dysfunction contributes significantly to MMN deficit and disease pathophysiology.
Collapse
Affiliation(s)
- Michael Avissar
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States.
| | - Shanghong Xie
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Blair Vail
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Javier Lopez-Calderon
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Yuanjia Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Daniel C Javitt
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States; Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, United States
| |
Collapse
|
25
|
Neural mechanisms of mismatch negativity dysfunction in schizophrenia. Mol Psychiatry 2017; 22:1585-1593. [PMID: 28167837 PMCID: PMC5547016 DOI: 10.1038/mp.2017.3] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/26/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023]
Abstract
Schizophrenia is associated with cognitive deficits that reflect impaired cortical information processing. Mismatch negativity (MMN) indexes pre-attentive information processing dysfunction at the level of primary auditory cortex. This study investigates mechanisms underlying MMN impairments in schizophrenia using event-related potential, event-related spectral decomposition (ERSP) and resting state functional connectivity (rsfcMRI) approaches. For this study, MMN data to frequency, intensity and duration-deviants were analyzed from 69 schizophrenia patients and 38 healthy controls. rsfcMRI was obtained from a subsample of 38 patients and 23 controls. As expected, schizophrenia patients showed highly significant, large effect size (P=0.0004, d=1.0) deficits in MMN generation across deviant types. In ERSP analyses, responses to deviants occurred primarily the theta (4-7 Hz) frequency range consistent with distributed corticocortical processing, whereas responses to standards occurred primarily in alpha (8-12 Hz) range consistent with known frequencies of thalamocortical activation. Independent deficits in schizophrenia were observed in both the theta response to deviants (P=0.021) and the alpha-response to standards (P=0.003). At the single-trial level, differential patterns of response were observed for frequency vs duration/intensity deviants, along with At the network level, MMN deficits engaged canonical somatomotor, ventral attention and default networks, with a differential pattern of engagement across deviant types (P<0.0001). Findings indicate that deficits in thalamocortical, as well as corticocortical, connectivity contribute to auditory dysfunction in schizophrenia. In addition, differences in ERSP and rsfcMRI profiles across deviant types suggest potential differential engagement of underlying generator mechanisms.
Collapse
|
26
|
Seol JJ, Kim M, Lee KH, Hur JW, Cho KIK, Lee TY, Chung CK, Kwon JS. Is There an Association Between Mismatch Negativity and Cortical Thickness in Schizophrenia Patients? Clin EEG Neurosci 2017; 48:383-392. [PMID: 28612661 DOI: 10.1177/1550059417714705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Mismatch negativity (MMN) is thought to reflect preattentive, automatic auditory processing. Reduced MMN amplitude is among the most robust findings in schizophrenia research. MMN generators have been shown to be located in the temporal and frontal cortices, which are key areas in the pathophysiology of schizophrenia. This study investigated whether frontotemporal cortical thickness was associated with reduced MMN current source density (CSD) strength in patients with schizophrenia. METHODS Sixteen schizophrenia patients and 18 healthy controls (HCs) were examined using magnetoencephalography while they performed a passive auditory oddball paradigm. All participants underwent a T1 structural magnetic resonance imaging scan in a separate session. We evaluated MMN CSD and cortical thickness, and their associations, in the superior and transverse temporal gyri, as well as in the inferior and middle frontal gyri. RESULTS Patients exhibited significantly reduced CSD strength in all temporal and frontal areas of interest relative to HCs. There was a positive correlation between CSD strength and cortical thickness in both temporal and frontal areas in HCs. However, schizophrenia patients showed negative correlations between CSD strength and cortical thickness in the bilateral inferior frontal gyri. Additionally, we found positive correlations between frontal cortical thickness and negative and total scores on the Positive and Negative Syndrome Scale (PANSS). CONCLUSIONS Our findings provide evidence for deficient temporal and frontal MMN generators and a disruption of normal structure-function relationship in patients with schizophrenia.
Collapse
Affiliation(s)
- Jiyoon J Seol
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minah Kim
- 2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwang Hyuk Lee
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Ji-Won Hur
- 3 Department of Psychology, Chung-Ang University, Seoul, Republic of Korea
| | - Kang Ik K Cho
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Tae Young Lee
- 2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chun Kee Chung
- 4 Magnetoencephalography Center, Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.,2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,5 Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
27
|
Ford TC, Nibbs R, Crewther DP. Increased glutamate/GABA+ ratio in a shared autistic and schizotypal trait phenotype termed Social Disorganisation. Neuroimage Clin 2017; 16:125-131. [PMID: 28794973 PMCID: PMC5537407 DOI: 10.1016/j.nicl.2017.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 01/01/2023]
Abstract
Autism and schizophrenia are multi-dimensional spectrum disorders that have substantial phenotypic overlap. This overlap is readily identified in the non-clinical population, and has been conceptualised as Social Disorganisation (SD). This study investigates the balance of excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) concentrations in a non-clinical sample with high and low trait SD, as glutamate and GABA abnormalities are reported across the autism and schizophrenia spectrum disorders. Participants were 18 low (10 females) and 19 high (9 females) SD scorers aged 18 to 40 years who underwent 1H-MRS for glutamate and GABA+macromolecule (GABA+) concentrations in right and left hemisphere superior temporal (ST) voxels. Reduced GABA+ concentration (p = 0.03) and increased glutamate/GABA+ ratio (p = 0.003) in the right ST voxel for the high SD group was found, and there was increased GABA+ concentration in the left compared to right ST voxel (p = 0.047). Bilateral glutamate concentration was increased for the high SD group (p = 0.006); there was no hemisphere by group interaction (p = 0.772). Results suggest that a higher expression of the SD phenotype may be associated with increased glutamate/GABA+ ratio in the right ST region, which may affect speech prosody processing, and lead behavioural characteristics that are shared within the autistic and schizotypal spectra.
Collapse
Affiliation(s)
- Talitha C. Ford
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Richard Nibbs
- Swinburne Neuroimaging, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - David P. Crewther
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Thiebes S, Leicht G, Curic S, Steinmann S, Polomac N, Andreou C, Eichler I, Eichler L, Zöllner C, Gallinat J, Hanganu-Opatz I, Mulert C. Glutamatergic deficit and schizophrenia-like negative symptoms: new evidence from ketamine-induced mismatch negativity alterations in healthy male humans. J Psychiatry Neurosci 2017; 42:273-283. [PMID: 28556775 PMCID: PMC5487274 DOI: 10.1503/jpn.160187] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Targeting the N-methyl-D-aspartate receptor (NMDAR) is a major translational approach for treating negative symptoms of schizophrenia. Ketamine comprehensively produces schizophrenia-like symptoms, such as positive, cognitive and negative symptoms in healthy volunteers. The amplitude of the mismatch negativity (MMN) is known to be significantly reduced not only in patients with schizophrenia, but also in healthy controls receiving ketamine. Accordingly, it was the aim of the present study to investigate whether changes of MMN amplitudes during ketamine administration are associated with the emergence of schizophrenia-like negative symptoms in healthy volunteers. METHODS We examined the impact of ketamine during an MMN paradigm with 64-channel electroencephalography (EEG) and assessed the psychopathological status using the Positive and Negative Syndrome Scale (PANSS) in healthy male volunteers using a single-blind, randomized, placebo-controlled crossover design. Low-resolution brain electromagnetic tomography was used for source localization. RESULTS Twenty-four men were included in our analysis. Significant reductions of MMN amplitudes and an increase in all PANSS scores were identified under the ketamine condition. Smaller MMN amplitudes were specifically associated with more pronounced negative symptoms. Source analysis of MMN generators indicated a significantly reduced current source density (CSD) under the ketamine condition in the primary auditory cortex, the posterior cingulate and the middle frontal gyrus. LIMITATIONS The sample included only men within a tight age range of 20-32 years. CONCLUSION The MMN might represent a biomarker for negative symptoms in schizophrenia related to an insufficient NMDAR system and could be used to identify patients with schizophrenia with negative symptoms due to NMDAR dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Christoph Mulert
- Correspondence to: C. Mulert, Martinistr. 52, D-20246 Hamburg, Germany;
| |
Collapse
|
29
|
Ford TC, Apputhurai P, Meyer D, Crewther DP. Confirmatory factor analysis of autism and schizophrenia spectrum traits. PERSONALITY AND INDIVIDUAL DIFFERENCES 2017. [DOI: 10.1016/j.paid.2017.01.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Spatio-temporal source cluster analysis reveals fronto-temporal auditory change processing differences within a shared autistic and schizotypal trait phenotype. NEUROIMAGE-CLINICAL 2017; 16:383-389. [PMID: 28861339 PMCID: PMC5568880 DOI: 10.1016/j.nicl.2017.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/19/2017] [Accepted: 04/22/2017] [Indexed: 11/20/2022]
Abstract
Social Disorganisation (SD) is a shared autistic and schizotypal phenotype that is present in the subclinical population. Auditory processing deficits, particularly in mismatch negativity/field (MMN/F) have been reported across both spectrum disorders. This study investigates differences in MMN/F cortical spatio-temporal source activity between higher and lower quintiles of the SD spectrum. Sixteen low (9 female) and 19 high (9 female) SD subclinical adults (18–40years) underwent magnetoencephalography (MEG) during an MMF paradigm where standard tones (50ms) were interrupted by infrequent duration deviants (100ms). Spatio-temporal source cluster analysis with permutation testing revealed no difference between the groups in source activation to the standard tone. To the deviant tone however, there was significantly reduced right hemisphere fronto-temporal and insular cortex activation for the high SD group (p= 0.038). The MMF, as a product of the cortical response to the deviant minus that to the standard, did not differ significantly between the high and low Social Disorganisation groups. These data demonstrate a deficit in right fronto-temporal processing of an auditory change for those with more of the shared SD phenotype, indicating that right fronto-temporal auditory processing may be associated with psychosocial functioning. Autism and schizotypal spectra share a trait phenotype, Social Disorganisation (SD). Auditory mismatch paradigm demonstrates processing differences between high and low SD. High SD scorers have reduced fronto-temporal response to auditory change. Reduced fronto-temporal source activation in high SD is right lateralised. Psychosocial function is related to auditory deviant processing.
Collapse
|
31
|
Li Z, Lei W, Deng W, Zheng Z, Li M, Ma X, Wang Q, Huang C, Li N, Collier DA, Gong Q, Li T. Aberrant spontaneous neural activity and correlation with evoked-brain potentials in first-episode, treatment-naïve patients with deficit and non-deficit schizophrenia. Psychiatry Res Neuroimaging 2017; 261:9-19. [PMID: 28092779 DOI: 10.1016/j.pscychresns.2017.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/03/2016] [Accepted: 01/02/2017] [Indexed: 02/05/2023]
Abstract
The goals of the study were to analyze spontaneous neural activity between deficit and non-deficit schizophrenia (DS, NDS) using resting-state fMRI, and to investigate the correlation of fMRI with clinical features and evoked brain potentials. The amplitude of low frequency fluctuation (ALFF) was measured in 41 DS participants, 42 NDS participants, and 42 healthy controls. ALFF in the bilateral cerebellum posterior lobe was significantly decreased in patients, while ALFF in the right fusiform gyrus and the bilateral putamen was significantly increased. In schizophrenia patients, ALFF in the right putamen positively correlated with excited/activation on Positive and Negative Syndrome Scale (PANSS-EXC/ACT). In DS patients, ALFF in the right insula was significantly increased than in controls and positively correlated with S2-P50 amplitude of sensory gating P50. ALFF in the left cerebellum posterior lobe negatively correlated with negative symptoms and withdrawn on PANSS (PANSS-NS, PANSS-WIT), ALFF in the right putamen positively correlated with PANSS-WIT. In NDS patients, ALFF in the middle temporal gyrus decreased than in controls and negatively correlated with P3b subcomponent of P300 latency. ALFF in the left cerebellum posterior lobe negatively correlated with PANSS-EXC/ACT. The middle temporal gyrus in NDS or the right insula in DS may show spatiotemporal defects.
Collapse
Affiliation(s)
- Zhe Li
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Lei
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; The Psychiatry Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wei Deng
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhong Zheng
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; The Neurobiological Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mingli Li
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaohong Ma
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiang Wang
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chaohua Huang
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; The Psychiatry Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Na Li
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - David A Collier
- Discovery Neuroscience Research, Eli Lilly and Company Ltd., Lilly Research Laboratories, Erl Wood Manor, Windlesham, Surrey, United Kingdom
| | - Qiyong Gong
- MRI Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Li
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
32
|
Ford TC, Woods W, Crewther DP. Mismatch field latency, but not power, may mark a shared autistic and schizotypal trait phenotype. Int J Psychophysiol 2017; 116:60-67. [PMID: 28235554 DOI: 10.1016/j.ijpsycho.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/07/2023]
Abstract
The auditory mismatch negativity (MMN), a preattentive processing potential, and its magnetic counterpart (MMF) are consistently reported as reduced in schizophrenia and autism spectrum disorders. This study investigates whether MMF characteristics differ between subclinically high and low scorers on the recently discovered shared autism and schizophrenia phenotype, Social Disorganisation. A total of 18 low (10 females) and 19 high (9 females) Social Disorganisation scorers underwent magnetoencephalography (MEG) during a MMF paradigm of 50ms standard (1000Hz, 85%) and 100ms duration deviant tones. MMF was measured from the strongest active magnetometer over the right and left hemispheres (consistent across groups) after 100ms. No differences in MMF power were found, however there was a significant delay in the MMF peak (p=0.007). The P3am (following the MMF) was significantly reduced across both hemispheres for the high Social Disorganisation group (p=0.025), there were no specific hemispheric differences in P3am power or latency. Right MMF peak latency increased with higher scores on the schizotypal subscales Odd Speech, Odd Behaviour and Constricted Affect. Findings suggest that MMF peak latency delay marks a convergence of the autism and schizophrenia spectra at a subclinical. These findings have significant implications for future research methodology, as well as clinical practice.
Collapse
Affiliation(s)
- Talitha C Ford
- Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - Will Woods
- Brain and Psychological Science Research Centre, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - David P Crewther
- Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| |
Collapse
|
33
|
Atkinson RJ, Fulham WR, Michie PT, Ward PB, Todd J, Stain H, Langdon R, Thienel R, Paulik G, Cooper G, Schall U. Electrophysiological, cognitive and clinical profiles of at-risk mental state: The longitudinal Minds in Transition (MinT) study. PLoS One 2017; 12:e0171657. [PMID: 28187217 PMCID: PMC5302824 DOI: 10.1371/journal.pone.0171657] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
The onset of schizophrenia is typically preceded by a prodromal period lasting several years during which sub-threshold symptoms may be identified retrospectively. Clinical interviews are currently used to identify individuals who have an ultra-high risk (UHR) of developing a psychotic illness with a view to provision of interventions that prevent, delay or reduce severity of future mental health issues. The utility of bio-markers as an adjunct in the identification of UHR individuals is not yet established. Several event-related potential measures, especially mismatch-negativity (MMN), have been identified as potential biomarkers for schizophrenia. In this 12-month longitudinal study, demographic, clinical and neuropsychological data were acquired from 102 anti-psychotic naive UHR and 61 healthy controls, of whom 80 UHR and 58 controls provided valid EEG data during a passive auditory task at baseline. Despite widespread differences between UHR and controls on demographic, clinical and neuropsychological measures, MMN and P3a did not differ between these groups. Of 67 UHR at the 12-month follow-up, 7 (10%) had transitioned to a psychotic illness. The statistical power to detect differences between those who did or did not transition was limited by the lower than expected transition rate. ERPs did not predict transition, with trends in the opposite direction to that predicted. In exploratory analysis, the strongest predictors of transition were measures of verbal memory and subjective emotional disturbance.
Collapse
Affiliation(s)
- Rebbekah J. Atkinson
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
| | - W. Ross Fulham
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- * E-mail:
| | - Patricia T. Michie
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip B. Ward
- School of Medicine and Population Health, University of New South Wales, Sydney, New South Wales, Australia
- Schizophrenia Research Unit, South Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Juanita Todd
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| | - Helen Stain
- Centre for Rural and Remote Mental Health, Bloomfield Hospital, Orange, New South Wales, Australia
- School of Social and Health Sciences, Leeds Trinity University, Horsforth Leeds, United Kingdom
| | - Robyn Langdon
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- ARC Centre of Excellence in Cognition and Its Disorders, Macquarie University, Sydney, New South Wales, Australia
- Department of Cognitive Science, Macquarie University, Sydney, New South Wales, Australia
| | - Renate Thienel
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Institute for Mental Health, Newcastle, New South Wales, Australia
| | - Georgie Paulik
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, University of Western Australia, Nedlands, Western Australia, Australia
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia
| | - Gavin Cooper
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
| | | | - Ulrich Schall
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter New England Health, Newcastle, Australia
| |
Collapse
|
34
|
Kim M, Cho KIK, Yoon YB, Lee TY, Kwon JS. Aberrant temporal behavior of mismatch negativity generators in schizophrenia patients and subjects at clinical high risk for psychosis. Clin Neurophysiol 2016; 128:331-339. [PMID: 28056388 DOI: 10.1016/j.clinph.2016.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/23/2016] [Accepted: 11/26/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Although disconnection syndrome has been considered a core pathophysiologic mechanism of schizophrenia, little is known about the temporal behavior of mismatch negativity (MMN) generators in individuals with schizophrenia or clinical high risk (CHR) for psychosis. METHODS MMN was assessed in 29 schizophrenia patients, 40 CHR subjects, and 47 healthy controls (HCs). Individual realistic head models and the minimum L2 norm algorithm were used to generate a current source density (CSD) model of MMN. The strength and time course of MMN CSD activity were calculated separately for the frontal and temporal cortices and were compared across brain regions and groups. RESULTS Schizophrenia patients and CHR subjects displayed lower MMN CSD strength than HCs in both the temporal and frontal cortices. We found a significant time delay in MMN generator activity in the frontal cortex relative to that in the temporal cortex in HCs. However, the sequential temporo-frontal activities of MMN generators were disrupted in both the schizophrenia and CHR groups. CONCLUSIONS Impairments and altered temporal behavior of MMN multiple generators were observed even in individuals at risk for psychosis. SIGNIFICANCE These findings suggest that aberrant MMN generator activity might be helpful in revealing the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kang Ik Kevin Cho
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Youngwoo Bryan Yoon
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Kärgel C, Sartory G, Kariofillis D, Wiltfang J, Müller BW. The effect of auditory and visual training on the mismatch negativity in schizophrenia. Int J Psychophysiol 2016; 102:47-54. [DOI: 10.1016/j.ijpsycho.2016.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
|
36
|
Piazza C, Cantiani C, Akalin-Acar Z, Miyakoshi M, Benasich AA, Reni G, Bianchi AM, Makeig S. ICA-derived cortical responses indexing rapid multi-feature auditory processing in six-month-old infants. Neuroimage 2016; 133:75-87. [PMID: 26944858 DOI: 10.1016/j.neuroimage.2016.02.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/29/2016] [Accepted: 02/21/2016] [Indexed: 12/11/2022] Open
Abstract
The abilities of infants to perceive basic acoustic differences, essential for language development, can be studied using auditory event-related potentials (ERPs). However, scalp-channel averaged ERPs sum volume-conducted contributions from many cortical areas, reducing the functional specificity and interpretability of channel-based ERP measures. This study represents the first attempt to investigate rapid auditory processing in infancy using independent component analysis (ICA), allowing exploration of source-resolved ERP dynamics and identification of ERP cortical generators. Here, we recorded 60-channel EEG data in 34 typically developing 6-month-old infants during a passive acoustic oddball paradigm presenting 'standard' tones interspersed with frequency- or duration-deviant tones. ICA decomposition was applied to single-subject EEG data. The best-fitting equivalent dipole or bilaterally symmetric dipole pair was then estimated for each resulting independent component (IC) process using a four-layer infant head model. Similar brain-source ICs were clustered across subjects. Results showed ERP contributions from auditory cortex and multiple extra-auditory cortical areas (often, bilaterally paired). Different cortical source combinations contributed to the frequency- and duration-deviant ERP peak sequences. For ICs in an ERP-dominant source cluster located in or near the mid-cingulate cortex, source-resolved frequency-deviant response N2 latency and P3 amplitude at 6 months-of-age predicted vocabulary size at 20 months-of-age. The same measures for scalp channel F6 (though not for other frontal channels) showed similar but weaker correlations. These results demonstrate the significant potential of ICA analyses to facilitate a deeper understanding of the neural substrates of infant sensory processing.
Collapse
Affiliation(s)
- Caterina Piazza
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy; Bioengineering Lab, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.
| | - Chiara Cantiani
- Department of Developmental Neuropsychology, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Zeynep Akalin-Acar
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - Makoto Miyakoshi
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - April A Benasich
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Gianluigi Reni
- Bioengineering Lab, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Anna Maria Bianchi
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Scott Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Schoeler T, Monk A, Sami MB, Klamerus E, Foglia E, Brown R, Camuri G, Altamura AC, Murray R, Bhattacharyya S. Continued versus discontinued cannabis use in patients with psychosis: a systematic review and meta-analysis. Lancet Psychiatry 2016; 3:215-25. [PMID: 26777297 DOI: 10.1016/s2215-0366(15)00363-6] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Although the link between cannabis use and development of psychosis is well established, less is known about the effect of continued versus discontinued cannabis use after the onset of psychosis. We aimed to summarise available evidence focusing on the relationship between continued and discontinued cannabis use after onset of psychosis and its relapse. METHODS In this systematic review and meta-analysis, we searched MEDLINE for articles published in any language from the database inception date up until April 21, 2015 that included a sample of patients with a pre-existing psychotic disorder with a follow-up duration of at least 6 months. We used a combination of search terms for describing cannabis, the outcome of interest (relapse of psychosis), and the study population. We excluded studies if continued cannabis use or discontinued cannabis use could not be established. We compared relapse outcomes between those who continued (CC) or discontinued (DC) cannabis use or were non-users (NC). We used summary data (individual patient data were not sought out) to estimate Cohen's d, which was entered into random effects models (REM) to compare CC with NC, CC with DC, and DC with NC. Meta-regression and sensitivity analyses were used to address the issue of heterogeneity. FINDINGS Of 1903 citations identified, 24 studies (16 565 participants) met the inclusion criteria. Independent of the stage of illness, continued cannabis users had a greater increase in relapse of psychosis than did both non-users (dCC-NC=0·36, 95% CI 0·22-0·50, p<0·0001) and discontinued users (dCC-DC=0·28, 0·12-0·44, p=0·0005), as well as longer hospital admissions than non-users (dCC-NC=0·36, 0·13 to 0·58, p=0·02). By contrast, cannabis discontinuation was not associated with relapse (dDC-NC=0·02, -0·12 to 0·15; p=0·82). Meta-regression suggested greater effects of continued cannabis use than discontinued use on relapse (dCC-NC=0·36 vs dDC-NC=0·02, p=0·04), positive symptoms (dCC-NC=0·15 vs dDC-NC=-0·30, p=0·05) and level of functioning (dCC-NC=0·04 vs dDC-NC=-0·49, p=0·008) but not on negative symptoms (dCC-NC=-0·09 vs dDC-NC=-0·31, p=0·41). INTERPRETATION Continued cannabis use after onset of psychosis predicts adverse outcome, including higher relapse rates, longer hospital admissions, and more severe positive symptoms than for individuals who discontinue cannabis use and those who are non-users. These findings point to reductions in cannabis use as a crucial interventional target to improve outcome in patients with psychosis. FUNDING UK National Institute of Health Research.
Collapse
Affiliation(s)
- Tabea Schoeler
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anna Monk
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Musa B Sami
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ewa Klamerus
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Enrico Foglia
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ruth Brown
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Giulia Camuri
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Robin Murray
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sagnik Bhattacharyya
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
38
|
Rowland LM, Summerfelt A, Wijtenburg SA, Du X, Chiappelli JJ, Krishna N, West J, Muellerklein F, Kochunov P, Hong LE. Frontal Glutamate and γ-Aminobutyric Acid Levels and Their Associations With Mismatch Negativity and Digit Sequencing Task Performance in Schizophrenia. JAMA Psychiatry 2016; 73:166-74. [PMID: 26720179 PMCID: PMC4740214 DOI: 10.1001/jamapsychiatry.2015.2680] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Auditory mismatch negativity (MMN) is a biomarker for schizophrenia thought to reflect glutamatergic N-methyl-d-aspartate receptor function and excitatory-inhibitory neurotransmission balance. However, the association of glutamate level with MMN has not been directly examined in patients with schizophrenia, to our knowledge. OBJECTIVE To investigate the contributions of glutamate and γ-aminobutyric acid (GABA) to MMN and digit sequencing task (DST) performance, an assessment of verbal working memory, in schizophrenia. DESIGN, SETTING, AND PARTICIPANTS Fifty-three control participants from the community and 45 persons with schizophrenia from outpatient clinics completed an electroencephalographic session for MMN, magnetic resonance spectroscopy for glutamate and GABA, and a DST. The study dates were July 2011 to May 2014, and the dates of our analysis were May 2014 to August 2015. MAIN OUTCOMES AND MEASURES Glutamate, GABA, the ratio of glutamine to glutamate, MMN amplitude, and DST. Structural equation modeling was used to test the effects of neurochemistry and MMN amplitude on DST performance. RESULTS The 45 persons with schizophrenia were a mean (SD) of 37.7 (12.8) years and the control participants were 37.1 (13.1) years. The schizophrenia group had a mean (SD) of 14.7 (12.1) years of illness. Mismatch negativity amplitude (F = 4.39, P = .04) and glutamate (F = 9.69, P = .002) were reduced in the schizophrenia group. Smaller MMN amplitude was significantly associated with lower GABA level (P = .008), lower glutamate level (P = .05), and higher ratio of glutamine to glutamate (P = .003). Reduced MMN amplitude was linked to poor verbal working memory in schizophrenia (P = .002). Modeling revealed that a proxy of glutamatergic function, indexed by the ratio of glutamine to glutamate, influenced a path from the ratio of glutamine to glutamate to MMN to verbal working memory (P = .38 [root-mean-square error of approximation, P < .001] by χ2 test), supporting the contention that MMN serves as an intermediate biomarker linking glutamatergic function to DST performance in schizophrenia. CONCLUSIONS AND RELEVANCE The role of glutamate and GABA in MMN and verbal working memory deficits in schizophrenia has been frequently debated. These data provide in vivo evidence that support glutamatergic and GABAergic regulation of MMN and verbal working memory function in schizophrenia.
Collapse
Affiliation(s)
- Laura M. Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore2Department of Radiology and Radiological Sciences, the Johns Hopkins University School of Medicine, Baltimore, Maryland3Department of Psyc
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - S. Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Joshua J. Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Nithin Krishna
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Jeffrey West
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Florian Muellerklein
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore3Department of Psychology, University of Maryland, Baltimore County, Baltimore4Department of Physics, University of Maryland, Baltimore Cou
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
39
|
Weismüller B, Thienel R, Youlden AM, Fulham R, Koch M, Schall U. Psychophysiological Correlates of Developmental Changes in Healthy and Autistic Boys. J Autism Dev Disord 2016; 45:2168-75. [PMID: 25663626 DOI: 10.1007/s10803-015-2385-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study investigated neurodevelopmental changes in sound processing by recording mismatch negativity (MMN) in response to various degrees of sound complexity in 18 mildly to moderately autistic versus 15 healthy boys aged between 6 and 15 years. Autistic boys presented with lower IQ and poor performance on a range of executive and social function measures when compared to their healthy counterparts. We found that MMN in response to duration deviants was less lateralized in the clinical group whereas larger amplitudes correlated with advanced age, thus capturing neurodevelopmental changes. Larger MMN in response to speech-like sound deviants was associated with better verbal fluency and executive function performance, respectively, but did not reliably discriminate the two groups.
Collapse
Affiliation(s)
- Benjamin Weismüller
- Priority Centre for Translational Neuroscience and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Duffy FH, D'Angelo E, Rotenberg A, Gonzalez-Heydrich J. Neurophysiological differences between patients clinically at high risk for schizophrenia and neurotypical controls--first steps in development of a biomarker. BMC Med 2015; 13:276. [PMID: 26525736 PMCID: PMC4630963 DOI: 10.1186/s12916-015-0516-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schizophrenia is a severe, disabling and prevalent mental disorder without cure and with a variable, incomplete pharmacotherapeutic response. Prior to onset in adolescence or young adulthood a prodromal period of abnormal symptoms lasting weeks to years has been identified and operationalized as clinically high risk (CHR) for schizophrenia. However, only a minority of subjects prospectively identified with CHR convert to schizophrenia, thereby limiting enthusiasm for early intervention(s). This study utilized objective resting electroencephalogram (EEG) quantification to determine whether CHR constitutes a cohesive entity and an evoked potential to assess CHR cortical auditory processing. METHODS This study constitutes an EEG-based quantitative neurophysiological comparison between two unmedicated subject groups: 35 neurotypical controls (CON) and 22 CHR patients. After artifact management, principal component analysis (PCA) identified EEG spectral and spectral coherence factors described by associated loading patterns. Discriminant function analysis (DFA) determined factors' discrimination success between subjects in the CON and CHR groups. Loading patterns on DFA-selected factors described CHR-specific spectral and coherence differences when compared to controls. The frequency modulated auditory evoked response (FMAER) explored functional CON-CHR differences within the superior temporal gyri. RESULTS Variable reduction by PCA identified 40 coherence-based factors explaining 77.8% of the total variance and 40 spectral factors explaining 95.9% of the variance. DFA demonstrated significant CON-CHR group difference (P <0.00001) and successful jackknifed subject classification (CON, 85.7%; CHR, 86.4% correct). The population distribution plotted along the canonical discriminant variable was clearly bimodal. Coherence factors delineated loading patterns of altered connectivity primarily involving the bilateral posterior temporal electrodes. However, FMAER analysis showed no CON-CHR group differences. CONCLUSIONS CHR subjects form a cohesive group, significantly separable from CON subjects by EEG-derived indices. Symptoms of CHR may relate to altered connectivity with the posterior temporal regions but not to primary auditory processing abnormalities within these regions.
Collapse
Affiliation(s)
- Frank H Duffy
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, Massachusetts, 02115, USA.
| | - Eugene D'Angelo
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, Massachusetts, 02115, USA.
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, Massachusetts, 02115, USA.
| | - Joseph Gonzalez-Heydrich
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
41
|
Ranlund S, Adams RA, Díez Á, Constante M, Dutt A, Hall MH, Maestro Carbayo A, McDonald C, Petrella S, Schulze K, Shaikh M, Walshe M, Friston K, Pinotsis D, Bramon E. Impaired prefrontal synaptic gain in people with psychosis and their relatives during the mismatch negativity. Hum Brain Mapp 2015; 37:351-65. [PMID: 26503033 PMCID: PMC4843949 DOI: 10.1002/hbm.23035] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/30/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
The mismatch negativity (MMN) evoked potential, a preattentive brain response to a discriminable change in auditory stimulation, is significantly reduced in psychosis. Glutamatergic theories of psychosis propose that hypofunction of NMDA receptors (on pyramidal cells and inhibitory interneurons) causes a loss of synaptic gain control. We measured changes in neuronal effective connectivity underlying the MMN using dynamic causal modeling (DCM), where the gain (excitability) of superficial pyramidal cells is explicitly parameterised. EEG data were obtained during a MMN task—for 24 patients with psychosis, 25 of their first‐degree unaffected relatives, and 35 controls—and DCM was used to estimate the excitability (modeled as self‐inhibition) of (source‐specific) superficial pyramidal populations. The MMN sources, based on previous research, included primary and secondary auditory cortices, and the right inferior frontal gyrus. Both patients with psychosis and unaffected relatives (to a lesser degree) showed increased excitability in right inferior frontal gyrus across task conditions, compared to controls. Furthermore, in the same region, both patients and their relatives showed a reversal of the normal response to deviant stimuli; that is, a decrease in excitability in comparison to standard conditions. Our results suggest that psychosis and genetic risk for the illness are associated with both context‐dependent (condition‐specific) and context‐independent abnormalities of the excitability of superficial pyramidal cell populations in the MMN paradigm. These abnormalities could relate to NMDA receptor hypofunction on both pyramidal cells and inhibitory interneurons, and appear to be linked to the genetic aetiology of the illness, thereby constituting potential endophenotypes for psychosis. Hum Brain Mapp 37:351–365, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Siri Ranlund
- Division of Psychiatry, University College London, London, United Kingdom
| | - Rick A Adams
- Division of Psychiatry, University College London, London, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Álvaro Díez
- Division of Psychiatry, University College London, London, United Kingdom
| | - Miguel Constante
- Department of Psychiatry, Hospital Beatriz Angelo, Lisbon, Portugal
| | - Anirban Dutt
- The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Mei-Hua Hall
- Psychology Research Laboratory, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | - Amparo Maestro Carbayo
- The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Colm McDonald
- Department of Psychiatry, Clinical Science Institute, National University of Ireland, Galway, Ireland
| | - Sabrina Petrella
- The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.,Department of Psychiatry, Clinical and Experimental Science Institute, University of Foggia, Italy
| | - Katja Schulze
- The South London and Maudsley NHS Foundation Trust, University Hospital Lewisham, London, United Kingdom
| | - Madiha Shaikh
- The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.,Neuroepidemiology and Ageing Research Unit, Imperial College, London, United Kingdom
| | - Muriel Walshe
- Division of Psychiatry, University College London, London, United Kingdom.,The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Dimitris Pinotsis
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
42
|
Electrophysiological mismatch response recorded in awake pigeons from the avian functional equivalent of the primary auditory cortex. Neuroreport 2015; 26:239-44. [DOI: 10.1097/wnr.0000000000000323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
43
|
Garcia-Oscos F, Peña D, Housini M, Cheng D, Lopez D, Cuevas-Olguin R, Saderi N, Salgado Delgado R, Galindo Charles L, Salgado Burgos H, Rose-John S, Flores G, Kilgard MP, Atzori M. Activation of the anti-inflammatory reflex blocks lipopolysaccharide-induced decrease in synaptic inhibition in the temporal cortex of the rat. J Neurosci Res 2015; 93:859-65. [DOI: 10.1002/jnr.23550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Francisco Garcia-Oscos
- School of Behavioral and Brain Sciences; University of Texas at Dallas; Richardson Texas
- Department of Psychiatry; University of Texas Southwestern; Dallas Texas
| | - David Peña
- School of Behavioral and Brain Sciences; University of Texas at Dallas; Richardson Texas
| | - Mohammad Housini
- School of Behavioral and Brain Sciences; University of Texas at Dallas; Richardson Texas
| | - Derek Cheng
- School of Behavioral and Brain Sciences; University of Texas at Dallas; Richardson Texas
| | - Diego Lopez
- Department of Chemistry and Biochemistry; University of Texas at Arlington; Arlington Texas
| | - Roberto Cuevas-Olguin
- Facultad de Ciencias; Universidad Autónoma de San Luis Potosí; San Luis Potosí México
| | - Nadia Saderi
- Facultad de Ciencias; Universidad Autónoma de San Luis Potosí; San Luis Potosí México
| | | | | | - Humberto Salgado Burgos
- Centro de Investigaciones Regionales Hideyo Noguchi, Universidad Autonoma de Yucatan; Mérida Yucatán México
| | - Stefan Rose-John
- Department of Biochemistry; Christian Albrecht University; Kiel Germany
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad de Puebla; Puebla México
| | - Michael P. Kilgard
- School of Behavioral and Brain Sciences; University of Texas at Dallas; Richardson Texas
| | - Marco Atzori
- School of Behavioral and Brain Sciences; University of Texas at Dallas; Richardson Texas
- Facultad de Ciencias; Universidad Autónoma de San Luis Potosí; San Luis Potosí México
| |
Collapse
|