1
|
Sun Z, Wang H, Fan M. Stoichiometric theory in aquatic carbon sequestration under elevated carbon dioxide. Math Biosci 2024; 376:109285. [PMID: 39179022 DOI: 10.1016/j.mbs.2024.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Global climate change projections indicate that the atmospheric concentration of carbon dioxide will increase twofold by the end of this century. However, how the elevated carbon dioxide affects aquatic carbon sequestration and species composition within aquatic microbial communities remains inconclusive. To address this knowledge gap, we formulate a bacteria-algae interaction model to characterize the effects of elevated carbon dioxide on aquatic ecosystems and rigorously derive the thresholds determining the persistence and extinction of algae or bacteria. We explore the impacts of abiotic factors, such as light intensity, nutrient concentration, inorganic carbon concentration and water depth, on algae and bacteria dynamics. The main findings indicate that the elevated atmospheric carbon dioxide will increase algae biomass and thus facilitate carbon sequestration. On the other hand, the elevated atmospheric carbon dioxide will reduce bacterial biomass, and excessive carbon dioxide concentrations can even destroy bacterial communities. Numerical simulations indicate that eutrophication and intensified light intensity can reduce aquatic carbon sequestration, while elevated atmospheric carbon dioxide levels can mitigate eutrophication. Furthermore, higher algae respiration and death rates are detrimental to carbon sequestration, whereas the increased bacterial respiration rates promote carbon sequestration.
Collapse
Affiliation(s)
- Zhenyao Sun
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, PR China; Interdisciplinary Lab for Mathematical Ecology and Epidemiology, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton T6G 2G1, Canada
| | - Hao Wang
- Interdisciplinary Lab for Mathematical Ecology and Epidemiology, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton T6G 2G1, Canada
| | - Meng Fan
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, PR China.
| |
Collapse
|
2
|
Bai F, Li J, Li T, Sha J, Liu J, Li L, Dai G, Jia Y, Song L. Unveiling the susceptibility mechanism of Microcystis to consecutive sub-lethal oxidative stress-Enhancing oxidation technology for cyanobacterial bloom control. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135993. [PMID: 39353270 DOI: 10.1016/j.jhazmat.2024.135993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The use of H2O2 to mitigate cyanobacterial blooms has gained popularity due to its selectivity. Previous research has shown that consecutive low-dose H2O2 are far more effective in suppressing cyanobacteria than a single higher dose, minimizing damage to co-existing organisms in the aquatic ecosystem. However, the underlying mechanism remains unclear. This study aimed to investigate the mechanism underlying this sensitivity by monitoring the progression from oxidative stress to cell death in Microcystis induced by consecutive low doses of H2O2 (3 + 5 mg/L, with an interval time of 4 h). The initial application of H2O2 (3 mg/L) resulted in a rapid increase in the transcription of antioxidant genes (gpx, 2-cys prx, trxA and sod) within 1 h, and returned to baseline levels within 8 h. The addition of a second H2O2 led to a significant increase in glutathione peroxidase (gene and product) and glutathione within 24 h. The cell death following consecutive H2O2 stress was classified as regulated cell death (RCD), characterized by the upregulated metacaspase genes, increased caspase-like activity, modulation of the mazEF system, DNA fragmentation, cell vacuolization, and membrane disruption. Interestingly, the RCD process coincided with the fluctuation of glutathione cycle. Validation experiments demonstrated that exogenous glutathione can promote the gene expression and activity of metacaspase, while inhibition of glutathione biosynthesis led to decreased intracellular glutathione and suppressed metacaspase activity and gene expression. Therefore, glutathione may play a vital role in the connection between oxidative stress and RCD during consecutive H2O2 treatment. These results reveal the inherent vulnerability of Microcystis to consecutive oxidative stress, providing a biological mechanism for a sustainable strategy to mitigate cyanobacterial bloom.
Collapse
Affiliation(s)
- Fang Bai
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, China
| | - Jie Li
- School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Tianli Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Sha
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jin Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lin Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guofei Dai
- Jiangxi Academy of Water Science and Engineering, Nanchang 330029, China
| | - Yunlu Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lirong Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Zhang J, Wang N, Zhang Z, Gao Y, Dong J, Gao X, Yuan H, Li X. Combined effects of toxic Microcystis aeruginosa and high pH on antioxidant responses, immune responses, and apoptosis of the edible freshwater bivalve Corbicula fluminea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116568. [PMID: 38850693 DOI: 10.1016/j.ecoenv.2024.116568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Due to increasing anthropogenic perturbation and water eutrophication, cyanobacterial blooms (CYBs) have become a global ecological and environmental problem. Toxic CYBs and elevated pH are considered to be the two key stressors associated with eutrophication in natural waters, particularly in the event of CO2 depletion induced by dense blooms. However, previous research has been focused on investigating the impacts of toxic CYBs or pH changes in isolation, whereas the interactive effects of such stressors on edible bivalves that inhabit CYB waters still lack information. In this study, the combined effects of toxic Microcystis aeruginosa and pH shifts on the antioxidant responses, immune responses, and apoptosis of the edible freshwater bivalve Corbicula fluminea were explored. The results showed that the activity of antioxidant enzymes was significantly impacted by the interactive effects between toxic M. aeruginosa exposure and time course, yet pH shifts showed no significant effects on the activities of these antioxidant enzymes, implying that the antioxidant response in C. fluminea was mainly triggered by toxic M. aeruginosa exposure. Toxic M. aeruginosa also induced an increased production of reactive oxygen species and malondialdehyde in treated clams, particularly under high pH settings. The elevated lysosomal enzyme activity helped C. fluminea defend against toxic M. aeruginosa exposure under high pH conditions. The principal component analysis (PCA) and the integrated biomarker response (IBR) results suggested that the treated clams were subjected to the elevated toxicity of toxic M. aeruginosa in conditions of high pH. The heat shock proteins-related genes might be triggered to resist the oxidative damage in treated clams. Moreover, the upregulation of TNF and casp8 genes indicated the potential activation of the caspase8-mediated apoptotic pathway through TNF receptor interaction, potentially resulting in apoptosis. The TUNEL assay results further confirmed that apoptosis appeared in treated clams. These findings improve our understanding of the combined toxicological effects of harmful algae and pH shifts on bivalves, which will provide insights into a comprehensive ecological risk assessment of toxic CYBs to edible bivalve species.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 473000, China.
| | - Ning Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zehao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yunni Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jing Dong
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xiaofei Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Huatao Yuan
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 473000, China.
| |
Collapse
|
4
|
Wu D, Chen L, Zong X, Jiang F, Wang X, Xu M, Ai F, Du W, Yin Y, Guo H. Elevated CO 2 exacerbates the risk of methylmercury exposure in consuming aquatic products: Evidence from a complex paddy wetland ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124095. [PMID: 38703984 DOI: 10.1016/j.envpol.2024.124095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Elevated CO2 levels and methylmercury (MeHg) pollution are important environmental issues faced across the globe. However, the impact of elevated CO2 on MeHg production and its biological utilization remains to be fully understood, particularly in realistic complex systems with biotic interactions. Here, a complete paddy wetland microcosm, namely, the rice-fish-snail co-culture system, was constructed to investigate the impacts of elevated CO2 (600 ppm) on MeHg formation, bioaccumulation, and possible health risks, in multiple environmental and biological media. The results revealed that elevated CO2 significantly increased MeHg concentrations in the overlying water, periphyton, snails and fish, by 135.5%, 66.9%, 45.5%, and 52.1%, respectively. A high MeHg concentration in periphyton, the main diet of snails and fish, was the key factor influencing the enhanced MeHg in aquatic products. Furthermore, elevated CO2 alleviated the carbon limitation in the overlying water and proliferated green algae, with subsequent changes in physico-chemical properties and nutrient concentrations in the overlying water. More algal-derived organic matter promoted an enriched abundance of Archaea-hgcA and Deltaproteobacteria-hgcA genes. This consequently increased the MeHg in the overlying water and food chain. However, MeHg concentrations in rice and soil did not increase under elevated CO2, nor did hgcA gene abundance in soil. The results reveal that elevated CO2 exacerbated the risk of MeHg intake from aquatic products in paddy wetland, indicating an intensified MeHg threat under future elevated CO2 levels.
Collapse
Affiliation(s)
- Danni Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Xueying Zong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaojie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou, 362046, China.
| |
Collapse
|
5
|
Zepernick BN, McKay RML, Martin RM, Bullerjahn GS, Paerl HW, Wilhelm SW. A tale of two blooms: do ecological paradigms for algal bloom success and succession require revisiting? JOURNAL OF GREAT LAKES RESEARCH 2024; 50:102336. [PMID: 39050868 PMCID: PMC11268832 DOI: 10.1016/j.jglr.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Lake Erie algal bloom discussions have historically focused on cyanobacteria, with foundational "blooms like it hot" and "high nutrient" paradigms considered as primary drivers behind cyanobacterial bloom success. Yet, recent surveys have rediscovered winter-spring diatom blooms, introducing another key player in the Lake Erie eutrophication and algal bloom story which has been historically overlooked. These blooms (summer vs. winter) have been treated as solitary events separated by spatial and temporal gradients. However, new evidence suggests they may not be so isolated, linked in a manner that manifests as an algal bloom cycle. Equally notable are the emerging reports of cyanobacterial blooms in cold and/or oligotrophic freshwaters, which have been interpreted by some as shifts in classical bloom paradigms. These emerging bloom reports have led many to ask "what is a bloom?". Furthermore, questioning classic paradigms has caused others to wonder if we are overlooking additional factors which constrain bloom success. In light of emerging data and ideas, we revisited foundational concepts within the context of Lake Erie algal blooms and derived five key take-aways: 1) Additional bloom-formers (diatoms) need to be included in Lake Erie algal discussions, 2) The term "bloom" must be reinforced with a clear definition and quantitative metrics for each event, 3) Algal blooms should not be studied solitarily, 4) Shifts in physiochemical conditions serve as an alternative interpretation to potential shifts in ecological paradigms, 5) Additional factors which constrain bloom success and succession (i.e., pH and light) require consideration.
Collapse
Affiliation(s)
| | - R. Michael L. McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Robbie M. Martin
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - George S. Bullerjahn
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, USA
| | - Hans W. Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
6
|
Kramer BJ, Turk-Kubo K, Zehr JP, Gobler CJ. Intensification of harmful cyanobacterial blooms in a eutrophic, temperate lake caused by nitrogen, temperature, and CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169885. [PMID: 38190910 DOI: 10.1016/j.scitotenv.2024.169885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
Warmer temperatures can significantly increase the intensity of cyanobacterial harmful algal blooms (CHABs) in eutrophic freshwater ecosystems. However, few studies have examined the effects of CO2 enrichment in tandem with elevated temperature and/or nutrients on cyanobacterial taxa in freshwater ecosystems. Here, we observed changes in the biomass of cyanobacteria, nutrients, pH, and carbonate chemistry over a two-year period in a shallow, eutrophic freshwater lake and performed experiments to examine the effects and co-effects of CO2, temperature, and nutrient enrichment on cyanobacterial and N2-fixing (diazotrophic) communities assessed via high throughput sequencing of the 16S rRNA and nifH genes, respectively. During both years, there were significant CHABs (50-500 μg cyanobacterial chlorophyll-a L-1) and lake CO2 levels were undersaturated (≤300 μatm pCO2). NH4+ significantly increased the net growth rates of cyanobacteria as well as the biomass of the diazotrophic cyanobacterial order Nostocales under elevated and ambient CO2 conditions. In a fall experiment, the N2 fixation rates of Nostocales were significantly higher when populations were enriched with CO2 and P, relative to CO2-enriched populations that were not amended with P. During a summer experiment, N2 fixation rates increased significantly under N and CO2 - enriched conditions relative to N-enriched and ambient CO2 conditions. Nostocales dominated the diazotrophic communities of both experiments, achieving the highest relative abundance under CO2-enriched conditions when N was added in the first experiment and when CO2 and temperature were elevated in the second experiment, when N2 fixation rates also increased significantly. Collectively, this study indicates that N promotes cyanobacterial blooms including those formed by Dolichospermum and that the biomass and N2 fixation rates of diazotrophic cyanobacterial taxa may benefit from enhanced CO2 levels in eutrophic lakes.
Collapse
Affiliation(s)
- Benjamin J Kramer
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | - Kendra Turk-Kubo
- Oceans Sciences Department, University of California at Santa Cruz, CA, United States
| | - Jonathan P Zehr
- Oceans Sciences Department, University of California at Santa Cruz, CA, United States
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States.
| |
Collapse
|
7
|
Jiang J, Zeng J, Wang J, Zuo J, Wei N, Song L, Shan K, Gan N. Changes in CO 2 concentration drive a succession of toxic and non-toxic strains of Microcystis blooms. WATER RESEARCH 2024; 250:121056. [PMID: 38171175 DOI: 10.1016/j.watres.2023.121056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The dynamic changes between toxic and non-toxic strains of Microcystis blooms have always been a hot topic. Previous studies have found that low CO2 favors toxic strains, but how changing dissolved CO2 (CO2 [aq]) in water body influences the succession of toxic and non-toxic strains in Microcystis blooms remains uncertain. Here, we combined laboratory competition experiments, field observations, and a machine learning model to reveal the links between CO2 changes and the succession. Laboratory experiments showed that under low CO2 conditions (100-150 ppm), the toxic strains could make better use of CO2 (aq) and be dominant. The non-toxic strains demonstrated a growth advantage as CO2 concentration increased (400-1000 ppm). Field observations from June to November in Lake Taihu showed that the percentage of toxic strains increased as CO2 (aq) decreased. Machine learning highlighted links between the inorganic carbon concentration and the proportion of advantageous strains. Our findings provide new insights for cyanoHABs prediction and prevention.
Collapse
Affiliation(s)
- Jingyu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaying Zeng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,; University of Chinese Academy of Sciences, Beijing, China
| | - Jingkai Wang
- University of Chinese Academy of Sciences, Beijing, China,; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Zuo
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Nian Wei
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Lirong Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,; University of Chinese Academy of Sciences, Beijing, China
| | - Kun Shan
- University of Chinese Academy of Sciences, Beijing, China,; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China,.
| | - Nanqin Gan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,; University of Chinese Academy of Sciences, Beijing, China,.
| |
Collapse
|
8
|
Peng K, Liu X, Cheng H, Xu M, Liu Y, Yang H, Liu P, Yang S. Characterization of driving factors for the long-term succession of bloom-forming cyanobacterial genera in Lake Erhai, southwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119729. [PMID: 38056335 DOI: 10.1016/j.jenvman.2023.119729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Cyanobacterial blooms pose a global environmental concern, with various genera contributing to their formation. The harmfulness of cyanobacterial blooms varies depending on the specific genus, yet the factors triggering their formation remain incompletely understood. This study conducted qPCR of sediment DNA in Lake Erhai to reconstruct the historical succession of three common bloom-forming cyanobacterial genera (i.e., Microcystis, Dolichospermum, and Aphanizomenon). The driving factors and their corresponding thresholds were identified, and human activities related to driving factors were evaluated. The results revealed two successions in the past century. The first succession transitioned from Aphanizomenon (1902-1978) to Microcystis and Dolichospermum (1978-1999), driven by TN:TP and TP. The second succession shifted from Microcystis and Dolichospermum (1978-1999) to Microcystis (1999-2010), driven by TP, TN:TP, and temperature. The thresholds of TP and TN:TP for the Microcystis bloom were 0.023 mg/L and 17, respectively. TN:TP was significantly influenced by domestic pollution and crop farming in both successions, while TP was significantly impacted by domestic pollution in the first succession and by pollution from crop and dairy farming in the second succession. These results shed light on the underlying mechanism responsible for the blooms of various cyanobacterial genera and could serve as a valuable reference for effectively preventing and controlling nutrient input in the watershed.
Collapse
Affiliation(s)
- Kaida Peng
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiaofeng Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Hu Cheng
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Min Xu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yi Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Hongyan Yang
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Pan Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Shao Yang
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
9
|
Kubickova B, Martinkova S, Bohaciakova D, Hilscherova K. Cyanobacterial anatoxin-a does not induce in vitro developmental neurotoxicity, but changes gene expression patterns in co-exposure with all-trans retinoic acid. Toxicol Lett 2024; 391:39-44. [PMID: 38070836 DOI: 10.1016/j.toxlet.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
Cyanobacterial blooms are increasing in frequency and intensity globally, and impacting recreational waters as well as waters used for drinking water provisioning. They are sources of bioactive metabolites including retinoids and the neurotoxin anatoxin-a. Here, we investigated the effects of anatoxin-a on a differentiating in vitro human neural stem cell model previously characterised with retinoic acids. Effects on protein and gene expression upon exposure for 9 or 18 days to anatoxin-a alone or in co-exposure with all-trans retinoic acid were evaluated using a panel of neural and glial differentiation biomarkers. Anatoxin-a did not cause distinct developmental neurotoxicity alone, or in co-exposure with retinoic acid. However, in line with its excitotoxicity, in co-exposure with 200 nM all-trans retinoic acid it reduced the differentiation of acetylcholinergic neuron subtypes in the culture at 1000 nM (highest tested concentration). While this could have substantial functional implications for the developing nervous system, there is no indication for developmental neurotoxicity beyond its (excito-)toxicity to acetylcholinergic neurons, which only occurred in co-exposure to all-trans retinoic acid.
Collapse
Affiliation(s)
- Barbara Kubickova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Sarka Martinkova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 62500 Brno, Czech Republic
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
10
|
Lu Y, Tuo Y, Zhang L, Hu X, Huang B, Chen M, Li Z. Vertical distribution rules and factors influencing phytoplankton in front of a drinking water reservoir outlet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166512. [PMID: 37619726 DOI: 10.1016/j.scitotenv.2023.166512] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The phenomenon of algal blooms caused by the excessive proliferation of phytoplankton in drinking water reservoirs is becoming increasingly frequent, seriously endangering water quality, ecosystems, water safety, and people's health. Thus, there is urgent need to conduct research on the distribution rules and factors influencing phytoplankton in drinking water reservoirs. Given that the outflows from reservoirs usually come from the middle and lower layers of the water column and the current studies on phytoplankton in drinking water reservoirs are usually carried out on the surface, an 8-month monitoring of vertical phytoplankton and the corresponding influencing factors in front of the outlet in a drinking water reservoir was conducted. Based on the monitoring results, the distribution rules of phytoplankton and the associated factors were analyzed. The results showed that phytoplankton biomass significantly decreased with increasing water depth, but the biomass near the outlet (40 m depth) still reached the WHO level 2 warning threshold for algal blooms multiple times. During the monitoring period, Cyanophyta, Chlorophyta and Bacillariophyta dominated. The selected multisource environmental factors explained 60.5 % of the spatiotemporal changes in phytoplankton, with thermal intensity (water temperature and thermal stratification intensity) being the driving factor. Meanwhile, excessive TN and TP provided necessary conditions for the growth of phytoplankton. Based on influencing factors, reducing upstream nutrient inflows and thermal stratification intensity are recommended as measures to prevent and control algal blooms. This study provides insights into the vertical distribution rules and factors influencing phytoplankton in a drinking water reservoir, which can provide a reference for the management of drinking water reservoirs and the prevention and control of algal blooms.
Collapse
Affiliation(s)
- Yongao Lu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Youcai Tuo
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Linglei Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiangying Hu
- Chongqing Liyutang Reservoir Development Corporation Limited, Chongqing 405400, China
| | - Bin Huang
- School of Environmental Science&Engineering, Tianjin University, Tianjin 300072, China; PowerChina Huadong Engineering Corporation Limited, Hangzhou, Zhejiang 310005, China
| | - Min Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhenghe Li
- Chongqing Liyutang Reservoir Development Corporation Limited, Chongqing 405400, China
| |
Collapse
|
11
|
Zhou J, Qu M, Dunkinson C, Lefebvre DD, Wang Y, Brown RS. The Effect of Microcystis on the Monitoring of Faecal Indicator Bacteria. Toxins (Basel) 2023; 15:628. [PMID: 37999491 PMCID: PMC10675124 DOI: 10.3390/toxins15110628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 11/25/2023] Open
Abstract
The survival of Escherichia coli (E. coli) bacteria, the most common faecal indicator bacteria (FIB), may be significantly affected by cyanobacteria present during a harmful algal bloom (HAB). Therefore, the effect of Microcystis on the survival of FIB E.coli and coliforms was investigated. Microcosms containing two species of Microcystis (M. aeruginosa and M. smithii) were established and then inoculated with four reference strains of E. coli (ATCC 25922, 8739, 51813, and 11775) to explore the cyanobacteria-bacteria dynamics at a laboratory setting. Monitoring over several days showed normal growth of Microcystis, with or without the presence of E. coli. However, Microcystis was shown to dramatically decrease the survival of E. coli over time. Analysis of microcystin production by Microcystis was found to correlate with loss of E. coli, suggesting a toxic effect of microcystins on E. coli bacteria. This phenomenon was also demonstrated for a natural consortium of E. coli and coliform bacteria by inoculating with contaminated lake water. The results indicate that the use of E. coli as FIB may be greatly compromised in the presence of Microcystis spp. such as during a HAB when associated toxins are produced.
Collapse
Affiliation(s)
- Jingjing Zhou
- School of Environmental Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (J.Z.); (C.D.)
| | - Mingzhi Qu
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.Q.); (Y.W.)
| | - Christy Dunkinson
- School of Environmental Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (J.Z.); (C.D.)
| | - Daniel D. Lefebvre
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.Q.); (Y.W.)
| | - Yuxiang Wang
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.Q.); (Y.W.)
| | - R. Stephen Brown
- School of Environmental Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (J.Z.); (C.D.)
- Department of Chemistry, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
12
|
Li J, Xian X, Xiao X, Li S, Yu X. Dynamic characteristics of total and microcystin-producing Microcystis in a large deep reservoir. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122256. [PMID: 37506805 DOI: 10.1016/j.envpol.2023.122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Microcystis, one of the common cyanobacteria, often causes blooms in reservoirs, which has seriously threatened the safety of drinking water worldwide. To identify the growth characteristic of total and microcystin-producing Microcystis in large deep reservoirs, we used Quantitative PCR (qPCR) to measure the cell density of total and microcystin-producing Microcystis and monitored water quality in the water samples collected in Dongzhang Reservoir once a month. Microcystis blooms occurred in Dongzhang Reservoir in April 2017, which was composed of microcystin-producing and non-microcystin-producing Microcystis. Water temperature, dissolved oxygen, pH, and chlorophyll-a showed significant vertical stratification during Microcystis blooms. Total and microcystin-producing Microcystis grew rapidly under the high concentration of total phosphorus and rising water temperatures. Nitrate-nitrogen had a significant linear correlation with the abundance of microcystin-producing Microcystis. Our results indicated that nutrients and water temperature could be key triggers of Microcystis blooms and nitrate-nitrogen potentially regulates the competition between microcystin-producing and non-microcystin-producing Microcystis. This study improves our understanding of the characteristics of Microcystis blooms and the competition between microcystin-producing and non-microcystin-producing Microcystis in large deep reservoirs.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Xuanxuan Xian
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xinyan Xiao
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Shuai Li
- Fujian Provincial Investigation, Design & Research Institute of Water Conservancy & Hydropower, No.158 Dongda Road, Gulou District, Fuzhou, 350001, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
13
|
Qin H, Sandrini G, Piel T, Slot PC, Huisman J, Visser PM. The harmful cyanobacterium Microcystis aeruginosa PCC7806 is more resistant to hydrogen peroxide at elevated CO 2. HARMFUL ALGAE 2023; 128:102482. [PMID: 37714576 DOI: 10.1016/j.hal.2023.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023]
Abstract
Rising atmospheric CO2 can intensify harmful cyanobacterial blooms in eutrophic lakes. Worldwide, these blooms are an increasing environmental concern. Low concentrations of hydrogen peroxide (H2O2) have been proposed as a short-term but eco-friendly approach to selectively mitigate cyanobacterial blooms. However, sensitivity of cyanobacteria to H2O2 can vary depending on the available resources. To find out how cyanobacteria respond to H2O2 under elevated CO2, Microcystis aeruginosa PCC 7806 was cultured in chemostats with nutrient-replete medium under C-limiting and C-replete conditions (150 ppm and 1500 ppm CO2, respectively). Microcystis chemostats exposed to high CO2 showed higher cell densities, biovolumes, and microcystin contents, but a lower photosynthetic efficiency and pH compared to the cultures grown under low CO2. Subsamples of the chemostats were treated with different concentrations of H2O2 (0-10 mg·L-1 H2O2) in batch cultures under two different light intensities (15 and 100 μmol photons m-2·s-1) and the response in photosynthetic vitality was monitored during 24 h. Results showed that Microcystis was more resistant to H2O2 at elevated CO2 than under carbon-limited conditions. Both low and high CO2-adapted cells were more sensitive to H2O2 at high light than at low light. Microcystins (MCs) leaked out of the cells of cultures exposed to 2-10 mg·L-1 H2O2, while the sum of intra- and extracellular MCs decreased. Although both H2O2 and CO2 concentrations in lakes vary in response to many factors, these results imply that it may become more difficult to suppress cyanobacterial blooms in eutrophic lakes when atmospheric CO2 concentrations continue to rise.
Collapse
Affiliation(s)
- Hongjie Qin
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Giovanni Sandrini
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands; Department of Technology & Sources, Evides Water Company, Rotterdam, The Netherlands
| | - Tim Piel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Pieter C Slot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Veihelmann HF, Fernández JE, Peeters F. Impact of ecosystem metabolism on CO 2 emissions: Insights from high-resolution time series of pH measured in situ. WATER RESEARCH 2023; 243:120423. [PMID: 37541130 DOI: 10.1016/j.watres.2023.120423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Lakes and reservoirs are important sources/sinks of atmospheric CO2. Primary production and respiration transforming inorganic to organic carbon and vice versa alter CO2 concentrations in the surface waters and thus affect CO2 emissions. Here we investigate the link between net-production (NEP) and CO2 concentrations and emissions at high temporal resolution over more than two months in a German pump storage reservoir. Continuous in-situ pH measurements in combination with few alkalinity measurements provided concentrations of CO2 and dissolved inorganic carbon (DIC) at high temporal resolution over more than 75 days. Time series of metabolic rates of carbon were determined with an open-water diel pH technique, which utilizes the diel changes in DIC obtained from the observed diel changes in pH and data on alkalinity. During the measuring period, average NEP was positive and CO2 concentrations were typically substantially under-saturated. On average, the reservoir acted as a sink for CO2, whereby CO2 uptake was 39% larger in the evening than in the morning. Only few consecutive days with negative NEP were sufficient to turn the reservoir temporally into a source of CO2. Therefore, the average CO2 uptake determined from continuous data can be 80% larger to 30% smaller than estimates of average uptake based on bi-weekly data. Daily mean NEP explained only 9% and 4% of the variance of daily mean DIC and CO2. Note that NEP is proportional to the time derivative of DIC and therefore not expected to correlate well with DIC in general. Because CO2 changes nonlinearly with DIC, NEP explains less variance of CO2 than of DIC. Numerical experiments confirmed the arguments above and revealed that at positive average NEP the total CO2 uptake over several weeks is not well predicted by average NEP but depends on the detailed temporal pattern of NEP. However, if average NEP is negative, average NEP may be a good predictor of total CO2 emissions. Similar conclusions apply for high and low alkalinity waters, but uptake rates and temporal variability of CO2 emissions are smaller in high than in low alkalinity waters. Assessment of the link between NEP and CO2 emissions requires differentiation between lakes with different alkalinity and, because of the non-linear relationship between NEP and CO2, strongly benefits from data with high temporal resolution especially during time-periods with positive net-production.
Collapse
Affiliation(s)
- Hannes F Veihelmann
- Environmental Physics, Limnological Institute, University of Konstanz, Mainaustr. 252, D-78464 Konstanz, Germany
| | - Jorge Encinas Fernández
- Environmental Physics, Limnological Institute, University of Konstanz, Mainaustr. 252, D-78464 Konstanz, Germany
| | - Frank Peeters
- Environmental Physics, Limnological Institute, University of Konstanz, Mainaustr. 252, D-78464 Konstanz, Germany.
| |
Collapse
|
15
|
Urakawa H, Steele JH, Hancock TL, Dahedl EK, Schroeder ER, Sereda JV, Kratz MA, García PE, Armstrong RA. Interaction among spring phytoplankton succession, water discharge patterns, and hydrogen peroxide dynamics in the Caloosahatchee River in southwest Florida. HARMFUL ALGAE 2023; 126:102434. [PMID: 37290882 DOI: 10.1016/j.hal.2023.102434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/10/2023]
Abstract
Phytoplankton communities are major primary producers in the aquatic realm and are responsible for shaping aquatic ecosystems. The dynamics of algal blooms could be determined by a succession of variable taxonomic groups, which are altered based on complex environmental factors such as nutrient availability and hydraulic factors. In-river structures potentially increase the occurrence of harmful algal blooms (HABs) by increasing water residence time and deteriorating water quality. How flowing water stimulates cell growth and affects the population dynamics of phytoplankton communities is a prioritized question that needs to be addressed for water management tactics. The goal of this study was to determine if an interaction between water flow and water chemistry is present, furthermore, to determine the relationship among phytoplankton community successions in the Caloosahatchee River, a subtropical river strongly influenced by human-controlled water discharge patterns from Lake Okeechobee. Particularly we focused on how phytoplankton community shifts influence the natural abundance of hydrogen peroxide, the most stable reactive oxygen species and a byproduct of oxidative photosynthesis. High-throughput amplicon sequencing using universal primers amplify 23S rRNA gene in cyanobacteria and eukaryotic algal plastids revealed that Synechococcus and Cyanobium were the dominant cyanobacterial genera and their relative abundance ranged between 19.5 and 95.3% of the whole community throughout the monitoring period. Their relative abundance declined when the water discharge increased. On the contrary, the relative abundance of eukaryotic algae sharply increased after water discharge increased. As water temperature increased in May, initially dominant Dolichospermum decreased as Microcystis increased. When Microcystis declined other filamentous cyanobacteria such as Geitlerinema, Pseudanabaena, and Prochlorothreix increased in their relative abundances. Interestingly, a peak of extracellular hydrogen peroxide was observed when Dolichospermum dominance was ended, and M. aeruginosa numbers increased. Overall, phytoplankton communities were strongly impacted by human-induced water discharge patterns.
Collapse
Affiliation(s)
- Hidetoshi Urakawa
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL 33965, USA; School of Geosciences, University of South Florida, Tampa, FL 33620, USA.
| | - Jacob H Steele
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Taylor L Hancock
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL 33965, USA; School of Geosciences, University of South Florida, Tampa, FL 33620, USA
| | - Elizabeth K Dahedl
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Elizabeth R Schroeder
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Julia V Sereda
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Michael A Kratz
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Patricia E García
- Grupo de Ecología de Sistemas Acuáticos a escala de Paisaje (GESAP), INIBIOMA, Universidad Nacional del Comahue, CONICET, Quintral 1250, CP8400 San Carlos de Bariloche, Argentina
| | - Rick A Armstrong
- Lee County Environmental Laboratory, Fort Myers, FL 33907, United States of America
| |
Collapse
|
16
|
Gil MF, Azzara N, Fassolari M, Berón CM, Battaglia ME. Hormone released by the microalgae Neochlorisaquatica and alkalinization influence growth of terrestrial and floating aquatic plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107635. [PMID: 36933508 DOI: 10.1016/j.plaphy.2023.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The microalgae Neochloris aquatica were previously evaluated as a potential biological control agent and source of bioactive compounds against immature stages of Culex quinquefasciatus. Larvae reared on microalgae suspension showed mortality or drastic effects with morphological alterations and damage in the midgut. N. aquatica have nutritional and toxic effects, resulting in delayed life cycle and incomplete adult development. Given the possibility of its use as a biological control agent, in this work we evaluate the effect of microalgae on other organisms of the environment, such as plants. Arabidopsis thaliana, a terrestrial plant, and Lemna sp., a floating aquatic plant, were selected as examples. Interaction assays and compound evaluations showed that the microalgae release auxins causing root inhibition, smaller epidermal cells and hairy root development. In Lemna sp., a slight decrease in growth rate was observed, with no deleterious effects on the fronds. On the other hand, we detected a detrimental effect on plants when interactions were performed in a closed environment, in a medium containing soluble carbonate, in which microalgae culture rapidly modifies the pH. The experiments showed that alkalinization of the medium inhibits plant growth, causing bleaching of leaves or fronds. This negative effect in plants was not observed when plants and microalgae were cultured in carbonate-free media. In conclusion, the results showed that N. aquatica can modify plant growth without being harmful, but the rapid alkalinization produced by carbon metabolism of microalgae under CO2-limiting conditions, could regulate the number of plants.
Collapse
Affiliation(s)
- M Florencia Gil
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, 3103, (7600) Mar del Plata, Argentina
| | - Nayla Azzara
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, 3103, (7600) Mar del Plata, Argentina
| | - Marisol Fassolari
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, 3103, (7600) Mar del Plata, Argentina
| | - Corina M Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, 3103, (7600) Mar del Plata, Argentina.
| | - Marina E Battaglia
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, 3103, (7600) Mar del Plata, Argentina.
| |
Collapse
|
17
|
Peng K, Jiao Y, Gao J, Xiong W, Zhao Y, Yang S, Liao M. Viruses may facilitate the cyanobacterial blooming during summer bloom succession in Xiangxi Bay of Three Gorges Reservoir, China. Front Microbiol 2023; 14:1112590. [PMID: 36970686 PMCID: PMC10030618 DOI: 10.3389/fmicb.2023.1112590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
The occurrence of cyanobacterial blooms in summer are frequently accompanied by the succession of phytoplankton communities in freshwater. However, little is known regarding the roles of viruses in the succession, such as in huge reservoirs. Here, we investigated the viral infection characteristics of phytoplankton and bacterioplankton during the summer bloom succession in Xiangxi Bay of Three Gorges Reservoir, China. The results indicated that three distinct bloom stages and two successions were observed. From cyanobacteria and diatom codominance to cyanobacteria dominance, the first succession involved different phyla and led to a Microcystis bloom. From Microcystis dominance to Microcystis and Anabaena codominance, the second succession was different Cyanophyta genera and resulted in the persistence of cyanobacterial bloom. The structural equation model (SEM) showed that the virus had positive influence on the phytoplankton community. Through the Spearman’s correlation and redundancy analysis (RDA), we speculated that both the increase of viral lysis in the eukaryotic community and the increase of lysogeny in cyanobacteria may contributed to the first succession and Microcystis blooms. In addition, the nutrients supplied by the lysis of bacterioplankton might benefit the second succession of different cyanobacterial genera and sustain the dominance of cyanobacteria. Based on hierarchical partitioning method, the viral variables still have a marked effect on the dynamics of phytoplankton community, although the environmental attributes were the major factors. Our findings suggested that viruses played multiple potential roles in summer bloom succession and may help the blooms success of cyanobacteria in Xiangxi Bay. Under the background of increasingly serious cyanobacterial blooms worldwide, our study may have great ecological and environmental significance for understanding the population succession in phytoplankton and controlling the cyanobacterial blooms.
Collapse
Affiliation(s)
- Kaida Peng
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Yiying Jiao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Jian Gao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Wen Xiong
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Yijun Zhao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Shao Yang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Mingjun Liao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
- *Correspondence: Mingjun Liao,
| |
Collapse
|
18
|
Linz DM, Sienkiewicz N, Struewing I, Stelzer EA, Graham JL, Lu J. Metagenomic mapping of cyanobacteria and potential cyanotoxin producing taxa in large rivers of the United States. Sci Rep 2023; 13:2806. [PMID: 36797305 PMCID: PMC9935515 DOI: 10.1038/s41598-023-29037-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Cyanobacteria and cyanotoxin producing cyanobacterial blooms are a trending focus of current research. Many studies focus on bloom events in lentic environments such as lakes or ponds. Comparatively few studies have explored lotic environments and fewer still have examined the cyanobacterial communities and potential cyanotoxin producers during ambient, non-bloom conditions. Here we used a metagenomics-based approach to profile non-bloom microbial communities and cyanobacteria in 12 major U.S. rivers at multiple time points during the summer months of 2019. Our data show that U.S. rivers possess microbial communities that are taxonomically rich, yet largely consistent across geographic location and time. Within these communities, cyanobacteria often comprise significant portions and frequently include multiple species with known cyanotoxin producing strains. We further characterized these potential cyanotoxin producing taxa by deep sequencing amplicons of the microcystin E (mcyE) gene. We found that rivers containing the highest levels of potential cyanotoxin producing cyanobacteria consistently possess taxa with the genetic potential for cyanotoxin production and that, among these taxa, the predominant genus of origin for the mcyE gene is Microcystis. Combined, these data provide a unique perspective on cyanobacteria and potential cyanotoxin producing taxa that exist in large rivers across the U.S. and can be used to better understand the ambient conditions that may precede bloom events in lotic freshwater ecosystems.
Collapse
Affiliation(s)
- David M Linz
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Nathan Sienkiewicz
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Ian Struewing
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | | | | | - Jingrang Lu
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA.
| |
Collapse
|
19
|
Zepernick BN, Wilhelm SW, Bullerjahn GS, Paerl HW. Climate change and the aquatic continuum: A cyanobacterial comeback story. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:3-12. [PMID: 36096485 PMCID: PMC10103762 DOI: 10.1111/1758-2229.13122] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 05/20/2023]
Abstract
Billions of years ago, the Earth's waters were dominated by cyanobacteria. These microbes amassed to such formidable numbers, they ushered in a new era-starting with the Great Oxidation Event-fuelled by oxygenic photosynthesis. Throughout the following eon, cyanobacteria ceded portions of their global aerobic power to new photoautotrophs with the rise of eukaryotes (i.e. algae and higher plants), which co-existed with cyanobacteria in aquatic ecosystems. Yet while cyanobacteria's ecological success story is one of the most notorious within our planet's biogeochemical history, scientists to this day still seek to unlock the secrets of their triumph. Now, the Anthropocene has ushered in a new era fuelled by excessive nutrient inputs and greenhouse gas emissions, which are again reshaping the Earth's biomes. In response, we are experiencing an increase in global cyanobacterial bloom distribution, duration, and frequency, leading to unbalanced, and in many instances degraded, ecosystems. A critical component of the cyanobacterial resurgence is the freshwater-marine continuum: which serves to transport blooms, and the toxins they produce, on the premise that "water flows downhill". Here, we identify drivers contributing to the cyanobacterial comeback and discuss future implications in the context of environmental and human health along the aquatic continuum. This Minireview addresses the overlooked problem of the freshwater to marine continuum and the effects of nutrients and toxic cyanobacterial blooms moving along these waters. Marine and freshwater research have historically been conducted in isolation and independently of one another. Yet, this approach fails to account for the interchangeable transit of nutrients and biology through and between these freshwater and marine systems, a phenomenon that is becoming a major problem around the globe. This Minireview highlights what we know and the challenges that lie ahead.
Collapse
Affiliation(s)
- Brittany N. Zepernick
- Department of MicrobiologyThe University of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - Steven W. Wilhelm
- Department of MicrobiologyThe University of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - George S. Bullerjahn
- NIEHS/NSF Great Lakes Center for Fresh Waters and Human HealthBowling Green State UniversityBowling GreenOhioUSA
| | - Hans W. Paerl
- Institute of Marine SciencesUniversity of North Carolina at Chapel HillMorehead CityNorth CarolinaUSA
| |
Collapse
|
20
|
Puts IC, Ask J, Deininger A, Jonsson A, Karlsson J, Bergström A. Browning affects pelagic productivity in northern lakes by surface water warming and carbon fertilization. GLOBAL CHANGE BIOLOGY 2023; 29:375-390. [PMID: 36197126 PMCID: PMC10092479 DOI: 10.1111/gcb.16469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Global change impacts important environmental drivers for pelagic gross primary production (GPP) in northern lakes, such as temperature, light, nutrient, and inorganic carbon availability. Separate and/or synergistic impacts of these environmental drivers on pelagic GPP remain largely unresolved. Here, we assess key drivers of pelagic GPP by combining detailed depth profiles of summer pelagic GPP with environmental and climatic data across 45 small and shallow lakes across northern Sweden (20 boreal, 6 subarctic, and 19 arctic lakes). We found that across lakes summer pelagic GPP was strongest associated with lake water temperatures, lake carbon dioxide (CO2 ) concentrations impacted by lake water pH, and further moderated by dissolved organic carbon (DOC) concentrations influencing light and nutrient conditions. We further used this dataset to assess the extent of additional DOC-induced warming of epilimnia (here named internal warming), which was especially pronounced in shallow lakes (decreasing 0.96°C for every decreasing m in average lake depth) and increased with higher concentrations of DOC. Additionally, the total pools and relative proportion of dissolved inorganic carbon and DOC, further influenced pelagic GPP with drivers differing slightly among the boreal, subarctic and Arctic biomes. Our study provides novel insights in that global change affects pelagic GPP in northern lakes not only by modifying the organic carbon cycle and light and nutrient conditions, but also through modifications of inorganic carbon supply and temperature. Considering the large-scale impacts and similarities of global warming, browning and recovery from acidification of lakes at higher latitudes throughout the northern hemisphere, these changes are likely to operate on a global scale.
Collapse
Affiliation(s)
- Isolde C. Puts
- Climate Impacts Research Centre, Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | - Jenny Ask
- Umeå Marine Sciences CentreUmeå UniversityUmeåSweden
| | | | - Anders Jonsson
- Climate Impacts Research Centre, Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | - Jan Karlsson
- Climate Impacts Research Centre, Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | - Ann‐Kristin Bergström
- Climate Impacts Research Centre, Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| |
Collapse
|
21
|
Kramer BJ, Hem R, Gobler CJ. Elevated CO 2 significantly increases N 2 fixation, growth rates, and alters microcystin, anatoxin, and saxitoxin cell quotas in strains of the bloom-forming cyanobacteria, Dolichospermum. HARMFUL ALGAE 2022; 120:102354. [PMID: 36470609 DOI: 10.1016/j.hal.2022.102354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The effect of rising CO2 levels on cyanobacterial harmful algal blooms (CHABs) is an emerging concern, particularly within eutrophic ecosystems. While elevated pCO2 has been associated with enhanced growth rates of some cyanobacteria, few studies have explored the effect of CO2 and nitrogen availability on diazotrophic (N2-fixing) cyanobacteria that produce cyanotoxins. Here, the effects of elevated CO2 and fixed nitrogen (NO3-) availability on the growth rates, toxin production, and N2 fixation of microcystin, saxitoxin, and anatoxin-a - producing strains of the genus Dolichospermum were quantified. Growth rates of all Dolichospermum spp. were significantly increased by CO2 or both CO2 and NO3- with rates being highest in treatments with the highest levels of CO2 and NO3-for all strains. While NO3- suppressed N2 fixation, diazotrophy significantly increased when NO3--enriched Dolichospermum spp. were supplied with higher CO2 compared to cultures grown under lower CO2 levels. This suggests that diazotrophy will play an increasingly important role in N cycling in CO2-enriched, eutrophic lentic systems. NO3- significantly increased quotas of the N-rich cyanotoxins, microcystin and saxitoxin, at ambient and enriched CO2 levels, respectively. In contrast, elevated CO2 significantly decreased cell quotas of microcystin and saxitoxin, but significantly increased cell quotas of the N-poor cyanotoxin, anatoxin. N2 fixation was significantly negatively and positively correlated with quotas of N-rich and N-poor cyanotoxins, respectively. Findings suggest cellular quotas of N-rich toxins (microcystin and saxitoxin) may be significantly reduced, or cellular quotas of N-poor toxins (anatoxin) may be significantly enhanced, under elevated CO2 conditions during diazotrophic cyanobacterial blooms. Finally, in the future, ecosystems that experience combinations of excessive N loading and CO2 enrichment may become more prone to toxic blooms of Dolichospermum.
Collapse
Affiliation(s)
- Benjamin J Kramer
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Highway, Southampton, NY, United States, 11968
| | - Ronojoy Hem
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Highway, Southampton, NY, United States, 11968
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Highway, Southampton, NY, United States, 11968.
| |
Collapse
|
22
|
Zepernick BN, Niknejad DJ, Stark GF, Truchon AR, Martin RM, Rossignol KL, Paerl HW, Wilhelm SW. Morphological, physiological, and transcriptional responses of the freshwater diatom Fragilaria crotonensis to elevated pH conditions. Front Microbiol 2022; 13:1044464. [PMID: 36504786 PMCID: PMC9732472 DOI: 10.3389/fmicb.2022.1044464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Harmful algal blooms (HABs) caused by the toxin-producing cyanobacteria Microcystis spp., can increase water column pH. While the effect(s) of these basified conditions on the bloom formers are a high research priority, how these pH shifts affect other biota remains understudied. Recently, it was shown these high pH levels decrease growth and Si deposition rates in the freshwater diatom Fragilaria crotonensis and natural Lake Erie (Canada-US) diatom populations. However, the physiological mechanisms and transcriptional responses of diatoms associated with these observations remain to be documented. Here, we examined F. crotonensis with a set of morphological, physiological, and transcriptomic tools to identify cellular responses to high pH. We suggest 2 potential mechanisms that may contribute to morphological and physiological pH effects observed in F. crotonensis. Moreover, we identified a significant upregulation of mobile genetic elements in the F. crotonensis genome which appear to be an extreme transcriptional response to this abiotic stress to enhance cellular evolution rates-a process we have termed "genomic roulette." We discuss the ecological and biogeochemical effects high pH conditions impose on fresh waters and suggest a means by which freshwater diatoms such as F. crotonensis may evade high pH stress to survive in a "basified" future.
Collapse
Affiliation(s)
| | - David J. Niknejad
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Gwendolyn F. Stark
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Alexander R. Truchon
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Robbie M. Martin
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Karen L. Rossignol
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, United States
| | - Hans W. Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, United States
| | - Steven W. Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
23
|
Giannuzzi L, Bacciadone J, Salerno GL. A Promising Use of Trimethyl Chitosan for Removing Microcystis aeruginosa in Water Treatment Processes. Microorganisms 2022; 10:microorganisms10102052. [PMID: 36296328 PMCID: PMC9610100 DOI: 10.3390/microorganisms10102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The increase in cyanobacterial blooms linked to climate change and the eutrophication of water bodies is a global concern. The harmful cyanobacterium Microcystis aeruginosa is one of the most common bloom-forming species whose removal from fresh water and, in particular, from that used for water treatment processes, remains a crucial goal. Different biodegradable and environmentally friendly coagulants/flocculants have been assayed, with chitosan showing a very good performance. However, chitosan in its original form is of limited applicability since it is only soluble in acid solution. The objective of this work was therefore to test the coagulant/flocculant capacity of trimethylchitosan (TMC), a chitosan derivative produced from residues of the fishing industry. TMC has a constitutively net positive charge enabling it to remain in solution regardless of the pH. Results show that even at alkaline pHs, common during cyanobacterial blooms, TMC is effective in removing buoyant cyanobacteria from the water column, both in test tube and Jar-Test experiments. Cell integrity was confirmed by fluorescent stain and electron microscopy. Our findings lead us to conclude that the use of TMC to remove bloom cells early in the treatment of drinking water is both feasible and promising.
Collapse
Affiliation(s)
- Leda Giannuzzi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CONICET), La Plata 1900, Argentina
- Correspondence:
| | - Julián Bacciadone
- Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, Mar del Plata 7600, Argentina
| | - Graciela L. Salerno
- Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, Mar del Plata 7600, Argentina
| |
Collapse
|
24
|
Tábora-Sarmiento S, Patiño R, Portillo-Quintero C, Coldren C. Air, land, and water variables associated with the first appearance and current spatial distribution of toxic Prymnesium parvum blooms in reservoirs of the Southern Great Plains, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155567. [PMID: 35504372 DOI: 10.1016/j.scitotenv.2022.155567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
This study examined the association of air, land, and water variables with the first historical occurrence and current distribution of toxic Prymnesium parvum blooms in reservoirs of the Brazos River and Colorado River, Texas (USA). One impacted and one reference reservoir were selected per basin. Land cover and use variables were estimated for the whole watershed (WW) and a 0.5-km zone on either side of streams (near field, NF). Variables were expressed in annual values. Principal component and trend analyses were used to determine (1) differences in environmental conditions before and after the 2001 onset of toxic blooms in impacted reservoirs (study period, 1992-2017), and (2) traits that uniquely discriminate impacted from reference reservoirs (2001-2017). Of thirty-three variables examined, two positively aligned with the reoccurring appearance of blooms in impacted reservoirs (air CO2 and herbicide Glyphosate) and another two negatively aligned (insecticides Terbufos and Malathion). Glyphosate use was observed throughout the study period but a turning point for an upward trend occurred near the year of first bloom occurrence. While the relevance of the decreased use of insecticides is uncertain, prior experimental studies reported that increasing concentrations of air CO2 and water Glyphosate can enhance P. parvum growth. Consistent with prior findings, impacted reservoirs were of higher salinity than reference reservoirs. In addition, their watersheds had far lower wetland cover at NF and WW scales. The value of wetlands in reducing harmful algal bloom incidence by reducing nutrient inputs has been previously recognized, but wetlands can also capture pesticides. Therefore, a diminished wetland cover could magnify Glyphosate loads flowing into impacted reservoirs. These observations are consistent with a scenario where rising levels of air CO2 and Glyphosate use contributed to the establishment of P. parvum blooms in reservoirs of relatively high salinity and minimal wetland cover over their watersheds.
Collapse
Affiliation(s)
- Shisbeth Tábora-Sarmiento
- Department of Natural Resources Management and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX 79409-2120, USA
| | - Reynaldo Patiño
- U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit and Departments of Natural Resources Management and Biological Sciences, Texas Tech University, Lubbock, TX 79409-2120, USA.
| | | | - Cade Coldren
- Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX 79409-2120, USA
| |
Collapse
|
25
|
Ma J, Wang P, Hu B, Wang X, Qian J. Synergistic promoting effect of increasing aquatic ammonium and CO 2 on Microcystis aeruginosa. CHEMOSPHERE 2022; 301:134553. [PMID: 35405194 DOI: 10.1016/j.chemosphere.2022.134553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Owing to climate change and intensive agricultural development, freshwater bodies have been affected by increases in both CO2 levels and chemically-reduced forms of N. However, little is known about how these changes affect cyanobacterial growth and blooms. This study explored a range of light conditions (30, 80, 130, or 200 μmol photons/m2/s) wherein Microcystis aeruginosa, a widespread bloom-forming species, was exposed to different concentrations of CO2 (400 parts per million (ppm) and 1000 ppm) in a medium containing NH4+ or NO3-. The interactive effects of N sources and CO2 levels on the C/N metabolic balance and energy balance were examined to assess changes in the growth of M. aeruginosa. When the light intensity was 80 μmol photons/m2/s, elevated CO2 could reduce intracellular reactive oxygen species (ROS) in NH4+-grown M. aeruginosa. Meanwhile, cell density and chlorophyll a (Chl a) increased with increasing CO2 levels, and the increase in Chl a was significantly greater in NH4+-grown M. aeruginosa than in NO3--grown M. aeruginosa. Under light conditions of 200 μmol photons/m2/s, elevated CO2 concentration caused NO3--grown M. aeruginosa to be affected by a large amount of ROS, and the growth of NO3--grown M. aeruginosa was finally suppressed. However, NH4+-grown M. aeruginosa had a smaller amount of ROS and showed improved growth as CO2 was elevated. This difference can be attributed to the faster metabolic pathways in the NH4+ environment, which manifested in a lower accumulation of 2-oxoglutarate and fatty acids as CO2 was elevated. These findings suggest that the simultaneous increase in ammonium and CO2 in aquatic ecosystems confers cyanobacteria with greater advantages than the combination of nitrate and CO2, which may aggravate cyanobacterial blooms.
Collapse
Affiliation(s)
- Jingjie Ma
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
26
|
Zhou QS, Gao Y, Hou JM, Wang T, Tang L. Preference of carbon absorption determines the competitive ability of algae along atmospheric CO 2 concentration. Ecol Evol 2022; 12:e9079. [PMID: 35845373 PMCID: PMC9274100 DOI: 10.1002/ece3.9079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/25/2022] [Accepted: 06/14/2022] [Indexed: 11/07/2022] Open
Abstract
Although many studies have focused on the effects of elevated atmospheric CO2 on algal growth, few of them have demonstrated how CO2 interacts with carbon absorption capacity to determine the algal competition at the population level. We conducted a pairwise competition experiment of Phormidium sp., Scenedesmus quadricauda, Chlorella vulgaris and Synedra ulna. The results showed that when the CO2 concentration increased from 400 to 760 ppm, the competitiveness of S. quadricauda increased, the competitiveness of Phormidium sp. and C. vulgaris decreased, and the competitiveness of S. ulna was always the lowest. We constructed a model to explore whether interspecific differences in affinity and flux rate for CO2 and HCO3 - could explain changes in competitiveness between algae species along the gradient of atmospheric CO2 concentration. Affinity and flux rates are the capture capacity and transport capacity of substrate respectively, and are inversely proportional to each other. The simulation results showed that, when the atmospheric CO2 concentration was low, species with high affinity for both CO2 and HCO3 - (HCHH) had the highest competitiveness, followed by the species with high affinity for CO2 and low affinity for HCO3 - (HCLH), the species with low affinity for CO2 and high affinity for HCO3 - (LCHH) and the species with low affinity for both CO2 and HCO3 - (LCLH); when the CO2 concentration was high, the species were ranked according to the competitive ability: LCHH > LCLH > HCHH > HCLH. Thus, low resource concentration is beneficial to the growth and reproduction of algae with high affinity. With the increase in atmospheric CO2 concentration, the competitive advantage changed from HCHH species to LCHH species. These results indicate the important species types contributing to water bloom under the background of increasing global atmospheric CO2, highlighting the importance of carbon absorption characteristics in understanding, predicting and regulating population dynamics and community composition of algae.
Collapse
Affiliation(s)
- Qing Shi Zhou
- State Key Laboratory of Eco‐hydraulics in Northwest Arid RegionXi'an University of TechnologyXi'anChina
| | - Yang Gao
- State Key Laboratory of Eco‐hydraulics in Northwest Arid Region, Institute of Water Resources and Hydro‐electric EngineeringXi'an University of TechnologyXi'anChina
| | - Jing Ming Hou
- State Key Laboratory of Eco‐hydraulics in Northwest Arid RegionXi'an University of TechnologyXi'anChina
| | - Tian Wang
- State Key Laboratory of Eco‐hydraulics in Northwest Arid RegionXi'an University of TechnologyXi'anChina
| | - Long Tang
- School of Human Settlements and Civil EngineeringXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
27
|
Sun Y, Yu X, Yao W, Wu Z. Research progress in relationships between freshwater bivalves and algae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113665. [PMID: 35617904 DOI: 10.1016/j.ecoenv.2022.113665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Eutrophication in freshwater has become increasingly severe around the world, resulting in phytoplankton overgrowth and benthic algae reduction. Bivalves can change the density, dominant species and community structure of phytoplankton, increase available light levels, and provide physical habitats and growth conditions for benthic algae. The nutritional composition, density, community structure, and toxin of algae affect the growth, feeding, digestion, metabolism, immunity of bivalves in return. Interactions of bivalves and algae and effects of environmental factors on these interactions need a synthesis of studies, when using bivalves as a biomanipulation tool to control eutrophication. Whether bivalves can effectively suppress phytoplankton and promote benthic algae is related to the collective filtration and excretion capacity determined by size, species, population densities of bivalves, the quantity and quality of algae, and environmental factors such as temperature, dissolved oxygen, pH, and hydrodynamic. Small scale bivalve biomanipulation experiments are mostly conducted in lakes, urban ponds, and reservoirs with some success, applying in the whole ecosystem should consider more questions such as natural conditions, selection and death or reproduction of bivalves, and ecological disturbances. This review provides new considerations for technical issues such as the sustainable cultivation of bivalves and the implementation of biomanipulation in eutrophic waters.
Collapse
Affiliation(s)
- Yu Sun
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaobo Yu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Weizhi Yao
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
28
|
Gu P, Wu H, Li Q, Zheng Z. Effects of suspended solids on cyanobacterial bloom formation under different wind fields. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47025-47035. [PMID: 35175518 DOI: 10.1007/s11356-022-19231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Wind waves and suspended solids (SS) generated by the resuspension of sediments are ubiquitous characteristics of lake ecosystems. However, their effects on phytoplankton remain poorly elucidated in shallow eutrophic lakes. Laboratory experiments were carried out to investigate the responses of Microcystis aeruginosa to SS under static (wind speed of 0 m/s) and breeze (wind speed of 3 m/s) conditions. Results showed that 50 mg/L SS can promote the growth of M. aeruginosa, accelerate the formation of colonies, and increase the floating rate under no-wind conditions. Comparing with static environment, breeze can significantly increase the growth rate of M. aeruginosa and benefit the formation of larger colonies of algae cells. Driven by wind and SS, the buoyancy of the cyanobacteria community in different experimental groups was obviously different. The specific performance was that low SS concentration and breeze were in favor of the floating of cyanobacteria, while high SS concentration went against the floating of algal cells. As a conclusion, wind speed of 3 m/s and 20-50 mg/L SS have a synergistic effect on the formation of cyanobacterial blooms. This study can provide an improved current understanding of bloom formation and turbidity management strategies in shallow eutrophic lakes.
Collapse
Affiliation(s)
- Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
- Taihu Water Environment Research Center, Changzhou, 213169, People's Republic of China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China
- Taihu Water Environment Research Center, Changzhou, 213169, People's Republic of China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China.
- Taihu Water Environment Research Center, Changzhou, 213169, People's Republic of China.
| |
Collapse
|
29
|
Skwierawski A. Carbon Sequestration Potential in the Restoration of Highly Eutrophic Shallow Lakes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106308. [PMID: 35627846 PMCID: PMC9140842 DOI: 10.3390/ijerph19106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 01/25/2023]
Abstract
The primary goal of the study was to determine the quantity of carbon accumulated in shallow fertile water bodies that were restored after a long period of drainage. Massive drainage of mid-field water bodies took place in north-eastern Poland in the 19th century. Of 143 identified drained lakes (each of more than 1 ha before drying) in the Olsztyn Lakeland, 27 have been restored to their original state through natural rewilding processes or recovery projects. From among the variety of drained water bodies, 8 which have been naturally or artificially restored to their original condition 13 to 47 years ago, were the subject of a detailed study on carbon sequestration. The studied water bodies had high productivity, and they were classified as moderately eutrophic to extremely hypertrophic. An analysis of bottom sediments revealed that, after restoration, the examined water bodies have accumulated 275.5 g C m-2 a-1 on average, which is equivalent to 10.1 Mg ha-1 a-1 of carbon dioxide (CO2) removed from the atmosphere. Results showed that the evaluated water bodies are effective carbon sinks. Most of the lakes drained in the 19th century are wastelands today, and they can be relatively easily restored to their original condition to create additional carbon sequestration sites. Lake restoration seems to be a cost-effective method both for carbon capture (as additional potential capacity as part of carbon dioxide removal (CDR) methods) and to support the sustainable use of agricultural areas. However, this second goal may be limited by the poor ecological status of such facilities.
Collapse
Affiliation(s)
- Andrzej Skwierawski
- Department of Water Resources and Climatology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 2, 10-719 Olsztyn, Poland
| |
Collapse
|
30
|
Effect of Culture pH on Properties of Exopolymeric Substances from Synechococcus PCC7942: Implications for Carbonate Precipitation. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The role of culture conditions on the production of exopolymeric substances (EPS) by Synechococcus strain PCC7942 was investigated. Carbonate mineral precipitation in these EPS was assessed in forced precipitation experiments. Cultures were grown in HEPES-buffered medium and non-buffered medium. The pH of buffered medium remained constant at 7.5, but in non-buffered medium it increased to 9.5 within a day and leveled off at 10.5. The cell yield at harvest was twice as high in non-buffered medium than in buffered medium. High molecular weight (>10 kDa) and low molecular weight (3–10 kDa) fractions of EPS were obtained from both cultures. The cell-specific EPS production in buffered medium was twice as high as in non-buffered medium. EPS from non-buffered cultures contained more negatively charged macromolecules and more proteins than EPS from buffered cultures. The higher protein content at elevated pH may be due to the induction of carbon-concentrating mechanisms, necessary to perform photosynthetic carbon fixation in these conditions. Forced precipitation showed smaller calcite carbonate crystals in EPS from non-buffered medium and larger minerals in polymers from buffered medium. Vaterite formed only at low EPS concentrations. Experimental results are used to conceptually model the impact of pH on the potential of cyanobacterial blooms to produce minerals. We hypothesize that in freshwater systems, small crystal production may benefit the picoplankton by minimizing the mineral ballast, and thus prolonging the residence time in the photic zone, which might result in slow sinking rates.
Collapse
|
31
|
Direct effects of elevated dissolved CO 2 can alter the life history of freshwater zooplankton. Sci Rep 2022; 12:6134. [PMID: 35414683 PMCID: PMC9005601 DOI: 10.1038/s41598-022-10094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Dissolved CO2 levels (pCO2) are increasing in lentic freshwaters across the globe. Recent studies have shown that this will impact the nutritional quality of phytoplankton as primary producers. However, the extent to which freshwater zooplankton may also be directly affected remains unclear. We test this in three model species representative of the main functional groups of primary consumers in freshwaters; the water flea Daphnia magna, the seed shrimp Heterocypris incongruens and the rotifer Brachionus calyciflorus. We experimentally exposed individuals to three pCO2 levels (1,500; 25,500 and 83,000 ppm) to monitor changes in life history in response to current, elevated and extreme future pCO2 conditions in ponds and shallow lakes. All species had reduced survival under the extreme pCO2 treatment, but the water flea was most sensitive. Body size and reproduction were reduced at 25,500 ppm in the water flea and the seed shrimp and population growth was delayed in the rotifer. Overall, our results show that direct effects of pCO2 could impact the population dynamics of freshwater zooplankton. By differentially modulating the life history of functional groups of primary consumers, elevated pCO2 has the potential to change the evolutionary trajectories of populations as well as the ecological functioning of freshwater communities.
Collapse
|
32
|
Zhao M, Sun H, Liu Z, Bao Q, Chen B, Yang M, Yan H, Li D, He H, Wei Y, Cai G. Organic carbon source tracing and the BCP effect in the Yangtze River and the Yellow River: Insights from hydrochemistry, carbon isotope, and lipid biomarker analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152429. [PMID: 34952062 DOI: 10.1016/j.scitotenv.2021.152429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Autochthonous organic carbon (AOC) formed by biological carbon pump (BCP) in surface waters may serve as a significant carbon sink. The locations, magnitudes, variations and mechanisms responsible for the terrestrial missing carbon sink by BCP are uncertain, especially in large river systems. In this study, hydrochemical characteristics, carbon isotope compositions of dissolved inorganic carbon (DIC) and organic carbon (OC), n-alkane homologues and C/N ratios of organic matter along the Yangtze River and the Yellow River were investigated to constrain the OC source and the significance of BCP effect. It was found that (1) DIC concentrations in the Yellow River were much higher than those in the Yangtze River, which was controlled primarily by the temperature effect; (2) AOC in the both rivers was characterized by lower C/N ratios and δ13CPOC values. Based on calculation of n-alkanes compounds, the AOC proportions ranged from 29 to 88% (49% on average, with a higher proportion (55%) in the rainy season than in the dry season (46%)) and 19-68% (41% on average; with a lower proportion in the rainy season (31%) than in the dry season (51%)) in the Yangtze River and the Yellow River, respectively, indicating intense aquatic production. Low dissolved CO2 concentration (6.17 μmol/L on average) of the Yangtze River limited the aquatic production and decreased the BCP effect in the dry season, indicated by lower AOC proportion. However, the BCP effect increased in the Yellow River in the dry season mainly due to the increased light penetration; (3) even in high turbidity riverine systems such as the Yellow River, the aquatic photosynthetic uptake of DIC could produce considerable AOC. These findings clearly show the formation of AOC by BCP in both the clear and high turbidity riverine systems, suggesting a potential direction for finding the terrestrial missing carbon sink.
Collapse
Affiliation(s)
- Min Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Hailong Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China.
| | - Qian Bao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Chen
- Guizhou University of Finance and Economics, Guiyang 550025, China
| | - Mingxing Yang
- College of Resource and Environment, Guizhou University of Technology, Guiyang 550003, China
| | - Hao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; International Center for Isotope Effects Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Dong Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Yu Wei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Guanxia Cai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Piatka DR, Frank AH, Köhler I, Castiglione K, van Geldern R, Barth JAC. Balance of carbon species combined with stable isotope ratios show critical switch towards bicarbonate uptake during cyanobacteria blooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151067. [PMID: 34673071 DOI: 10.1016/j.scitotenv.2021.151067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Next to water quality deterioration, cyanobacteria blooms can affect turnover of aqueous carbon, including dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and particulate organic carbon (POC). We investigated interactions of these three phases and their stable isotopes in a freshwater pond with periodic cyanobacterial blooms over a period of 23 months. This helped to map turnover and sources of aqueous carbon before, during, and after bloom events. During bloom events POC isotope values (δ13CPOC) increased up to -17.4‰, after aqueous CO2 (CO2(aq)) fell below an atmospheric equilibration value of 412 μatm. Additionally, carbon isotope enrichment between CO2(aq) and POC (εCO2-phyto) ranged from 2.0 to 21.5‰ with lowest fractionations observed at pH values above 8.9. The increase of δ13CPOC and decrease of εCO2-phyto values at low pCO2 and high pH was most likely caused by the activation of the carbon concentrating mechanism (CCM). This mechanism correlated with prevalent assimilation of 13C-enriched HCO3-. Surprisingly, CO2(aq) still contributed more than 50% to the POC pool down to pCO2 values of around 150 μatm. Only after this threshold the reduced εCO2-phyto suggested incorporation of 13C-enriched HCO3-.
Collapse
Affiliation(s)
- David R Piatka
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Chair of Applied Geology, Schlossgarten 5, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany.
| | - Alexander H Frank
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Chair of Applied Geology, Schlossgarten 5, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Inga Köhler
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Chair of Applied Geology, Schlossgarten 5, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Kathrin Castiglione
- Department of Chemical and Biological Engineering, Institute of Bioprocess Engineering, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| | - Robert van Geldern
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Chair of Applied Geology, Schlossgarten 5, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Johannes A C Barth
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Chair of Applied Geology, Schlossgarten 5, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| |
Collapse
|
34
|
Closed microbial communities self-organize to persistently cycle carbon. Proc Natl Acad Sci U S A 2021; 118:2013564118. [PMID: 34740965 PMCID: PMC8609437 DOI: 10.1073/pnas.2013564118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Life on Earth depends on ecologically driven nutrient cycles to regenerate resources. Understanding how nutrient cycles emerge from a complex web of ecological processes is a central challenge in ecology. However, we lack model ecosystems that can be replicated, manipulated, and quantified in the laboratory, making it challenging to determine how changes in composition and the environment impact cycling. Enabled by a new high-precision method to quantify carbon cycling, we show that materially closed microbial ecosystems (CES) provided with only light self-organize to robustly cycle carbon. Studying replicate CES that support a carbon cycle reveals variable community composition but a conserved set of metabolic capabilities. Our study helps establish CES as model biospheres for studying how ecosystems persistently cycle nutrients. Cycles of nutrients (N, P, etc.) and resources (C) are a defining emergent feature of ecosystems. Cycling plays a critical role in determining ecosystem structure at all scales, from microbial communities to the entire biosphere. Stable cycles are essential for ecosystem persistence because they allow resources and nutrients to be regenerated. Therefore, a central problem in ecology is understanding how ecosystems are organized to sustain robust cycles. Addressing this problem quantitatively has proved challenging because of the difficulties associated with manipulating ecosystem structure while measuring cycling. We address this problem using closed microbial ecosystems (CES), hermetically sealed microbial consortia provided with only light. We develop a technique for quantifying carbon cycling in hermetically sealed microbial communities and show that CES composed of an alga and diverse bacterial consortia self-organize to robustly cycle carbon for months. Comparing replicates of diverse CES, we find that carbon cycling does not depend strongly on the taxonomy of the bacteria present. Moreover, despite strong taxonomic differences, self-organized CES exhibit a conserved set of metabolic capabilities. Therefore, an emergent carbon cycle enforces metabolic but not taxonomic constraints on ecosystem organization. Our study helps establish closed microbial communities as model ecosystems to study emergent function and persistence in replicate systems while controlling community composition and the environment.
Collapse
|
35
|
Wang K, Mou X, Cao H, Struewing I, Allen J, Lu J. Co-occurring microorganisms regulate the succession of cyanobacterial harmful algal blooms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117682. [PMID: 34271516 PMCID: PMC8478823 DOI: 10.1016/j.envpol.2021.117682] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 05/04/2023]
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) have been found to transmit from N2 fixer-dominated to non-N2 fixer-dominated in many freshwater environments when the supply of N decreases. To elucidate the mechanisms underlying such "counter-intuitive" CyanoHAB species succession, metatranscriptomes (biotic data) and water quality-related variables (abiotic data) were analyzed weekly during a bloom season in Harsha Lake, a multipurpose lake that serves as a drinking water source and recreational ground. Our results showed that CyanoHABs in Harsha Lake started with N2-fixing Anabaena in June (ANA stage) when N was high, and transitioned to non-N2-fixing Microcystis- and Planktothrix-dominated in July (MIC-PLA stage) when N became limited (low TN/TP). Meanwhile, the concentrations of cyanotoxins, i.e., microcystins were significantly higher in the MIC-PLA stage. Water quality results revealed that N species (i.e., TN, TN/TP) and water temperature were significantly correlated with cyanobacterial biomass. Expression levels of several C- and N-processing-related cyanobacterial genes were highly predictive of the biomass of their species. More importantly, the biomasses of Microcystis and Planktothrix were also significantly associated with expressions of microbial genes (mostly from heterotrophic bacteria) related to processing organic substrates (alkaline phosphatase, peptidase, carbohydrate-active enzymes) and cyanophage genes. Collectively, our results suggest that besides environmental conditions and inherent traits of specific cyanobacterial species, the development and succession of CyanoHABs are regulated by co-occurring microorganisms. Specifically, the co-occurring microorganisms can alleviate the nutrient limitation of cyanobacteria by remineralizing organic compounds.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| | - Ian Struewing
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Joel Allen
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Jingrang Lu
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States.
| |
Collapse
|
36
|
Luo X, Zhang H, Zhang J. The influence of a static magnetic field on a Chlorella vulgaris - Bacillus licheniformis consortium and its sewage treatment effect. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:112969. [PMID: 34146779 DOI: 10.1016/j.jenvman.2021.112969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/09/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
In this study, the influence of a static magnetic field (SMF) on a Chlorella vulgaris-Bacillus licheniformis consortium and the subsequent effect of this algal-bacterial consortium on sewage treatment were explored. Accordingly, the algal density, Fv/Fm, algal aggregation percentage, extracellular polymeric substances (EPS) content, dissolved organic matter distribution, enzymatic activity, metabolites, microbial community diversity and nutrient removal were investigated. For the treatment group exposed to an SMF of 150 mT, the total phosphorus removal rate reached 82.21%, which was 19.10% higher than the control group. On the last day, the algal density of the 150 mT group was the highest, being 56.01% greater than the control group. The high intensity SMF promoted the anti-oxidative stress response in C. vulgaris. It also affected EPS secretion, subsequently influencing the algal aggregation percentage and bacterial growth. Bacillus accounted for the largest proportion of the overall microbial community in the 150 mT group, which was conducive to rapid formation of the C. vulgaris-B. licheniformis consortium. In short, the SMF was conducive to the rapid formation of a C. vulgaris-B. licheniformis consortium. The use of an SMF can promote the efficiency of the algal-bacterial consortium, thereby shortening the processing time.
Collapse
Affiliation(s)
- Xin Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Hao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
37
|
Chaïb S, Pistevos JC, Bertrand C, Bonnard I. Allelopathy and allelochemicals from microalgae: An innovative source for bio-herbicidal compounds and biocontrol research. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Zepernick BN, Gann ER, Martin RM, Pound HL, Krausfeldt LE, Chaffin JD, Wilhelm SW. Elevated pH Conditions Associated With Microcystis spp. Blooms Decrease Viability of the Cultured Diatom Fragilaria crotonensis and Natural Diatoms in Lake Erie. Front Microbiol 2021; 12:598736. [PMID: 33717001 PMCID: PMC7943883 DOI: 10.3389/fmicb.2021.598736] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacterial Harmful Algal Blooms (CyanoHABs) commonly increase water column pH to alkaline levels ≥9.2, and to as high as 11. This elevated pH has been suggested to confer a competitive advantage to cyanobacteria such as Microcystis aeruginosa. Yet, there is limited information regarding the restrictive effects bloom-induced pH levels may impose on this cyanobacterium’s competitors. Due to the pH-dependency of biosilicification processes, diatoms (which seasonally both precede and proceed Microcystis blooms in many fresh waters) may be unable to synthesize frustules at these pH levels. We assessed the effects of pH on the ecologically relevant diatom Fragilaria crotonensis in vitro, and on a Lake Erie diatom community in situ. In vitro assays revealed F. crotonensis monocultures exhibited lower growth rates and abundances when cultivated at a starting pH of 9.2 in comparison to pH 7.7. The suppressed growth trends in F. crotonensis were exacerbated when co-cultured with M. aeruginosa at pH conditions and cell densities that simulated a cyanobacteria bloom. Estimates demonstrated a significant decrease in silica (Si) deposition at alkaline pH in both in vitro F. crotonensis cultures and in situ Lake Erie diatom assemblages, after as little as 48 h of alkaline pH-exposure. These observations indicate elevated pH negatively affected growth rate and diatom silica deposition; in total providing a competitive disadvantage for diatoms. Our observations demonstrate pH likely plays a significant role in bloom succession, creating a potential to prolong summer Microcystis blooms and constrain diatom fall resurgence.
Collapse
Affiliation(s)
- Brittany N Zepernick
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Robbie M Martin
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Helena L Pound
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Lauren E Krausfeldt
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Justin D Chaffin
- F.T. Stone Laboratory and Ohio Sea Grant, The Ohio State University, Put-in-Bay, OH, United States
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
39
|
Amorim CA, Moura ADN. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143605. [PMID: 33248793 DOI: 10.1016/j.scitotenv.2020.143605] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms are among the emerging threats to freshwater biodiversity that need to be studied further in the Anthropocene. Here, we studied freshwater plankton communities in ten tropical reservoirs to record the impact of algal blooms, comprising different phytoplankton taxa, on water quality, plankton biodiversity, and ecosystem functioning. We compared water quality parameters (water transparency, mixing depth, pH, electrical conductivity, dissolved inorganic nitrogen, total dissolved phosphorus, total phosphorus, chlorophyll-a, and trophic state), plankton structure (composition and biomass), biodiversity (species richness, diversity, and evenness), and ecosystem functioning (phytoplankton:phosphorus and zooplankton:phytoplankton ratios as a metric of resource use efficiency) through univariate and multivariate analysis of variance, and generalized additive mixed models in five different bloom categories. Most of the bloom events were composed of Cyanobacteria, followed by Dinophyta and Chlorophyta. Mixed blooms were composed of Cyanobacteria plus Bacillariophyta, Chlorophyta, and/or Dinophyta, while non-bloom communities presented phytoplankton biomass below the threshold for bloom development (10 mg L-1, WHO alert level 2). Higher phytoplankton biomasses were recorded during Cyanobacteria blooms (15.87-273.82 mg L-1) followed by Dinophyta blooms (18.86-196.41 mg L-1). An intense deterioration of water quality, including higher pH, eutrophication, stratification, and lower water transparency, was verified during Cyanobacteria and mixed blooms, while Chlorophyta and Dinophyta blooms presented lower pH, eutrophication, stratification, and higher water transparency. All bloom categories significantly impacted phytoplankton and zooplankton structure, changing the composition and dominance patterns. Bloom intensity positively influenced phytoplankton resource use efficiency (R2 = 0.25; p < 0.001), while decreased zooplankton resource acquisition (R2 = 0.51; p < 0.001). Moreover, Cyanobacteria and Chlorophyta blooms negatively impacted zooplankton species richness, while Dinophyta blooms decreased phytoplankton richness. In general, Cyanobacteria blooms presented low water quality and major threats to plankton biodiversity, and ecosystem functioning. Moreover, we demonstrated that biodiversity losses decrease ecosystem functioning, with cascading effects on plankton dynamics.
Collapse
Affiliation(s)
- Cihelio Alves Amorim
- Graduate Program in Botany, Department of Biology, Federal Rural University of Pernambuco - UFRPE, Manoel de Medeiros Avenue, Dois Irmãos, CEP 52171-900 Recife, PE, Brazil.
| | - Ariadne do Nascimento Moura
- Graduate Program in Botany, Department of Biology, Federal Rural University of Pernambuco - UFRPE, Manoel de Medeiros Avenue, Dois Irmãos, CEP 52171-900 Recife, PE, Brazil.
| |
Collapse
|
40
|
Ma J, Wang P. Effects of rising atmospheric CO 2 levels on physiological response of cyanobacteria and cyanobacterial bloom development: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141889. [PMID: 32920383 DOI: 10.1016/j.scitotenv.2020.141889] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 05/19/2023]
Abstract
Increasing atmospheric CO2 concentration negatively impacts aquatic ecosystems and may exacerbate the problem of undesirable cyanobacterial bloom development in freshwater ecosystems. Elevated levels of atmospheric CO2 may increase the levels of dissolved CO2 in freshwater systems, via air-water exchanges, enhancing primary production in the water and catchments. Although high CO2 levels improve cyanobacterial growth and increase cyanobacterial biomass, the impacts on their internal physiological processes can be more complex. Here, we have reviewed previous studies to evaluate the physiological responses of cyanobacteria to high concentrations of CO2. In response to high CO2 concentrations, the pressures of inorganic carbon absorption are reduced, and carbon concentration mechanisms are downregulated, affecting the intracellular metabolic processes and competitiveness of the cyanobacteria. Nitrogen and phosphorus metabolism and light utilization are closely related to CO2 assimilation, and these processes are likely to be affected by resource and energy reallocation when CO2 levels are high. Additionally, the responses of diazotrophic and toxic cyanobacteria to elevated CO2 levels were specifically reviewed. The responses of diazotrophic cyanobacteria to elevated CO2 concentrations were found to be inconsistent, probably because of differences in other factors in experimental designs. Toxic cyanobacteria tended to be superior to non-toxic strains at low levels of CO2; however, the specific effects of microcystin on the regulation require further investigation. Furthermore, the effects of increasing CO2 levels on cyanobacterial competitiveness in phytoplankton communities and nutrient cycling in aquatic ecosystems were reviewed. High CO2 concentrations may make cyanobacteria less competitive relative to other algal taxa; however, due to the complexity of natural systems and the specificity of algal species, the dominant positions of the cyanobacteria do not seems to be changed. To better understand cyanobacterial responses to elevated CO2 levels and help control cyanobacterial bloom developments, this review has identified key areas for future research.
Collapse
Affiliation(s)
- Jingjie Ma
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| |
Collapse
|
41
|
Kang S, Kim JH, Hwang JH, Bong YS, Ryu JS, Shin KH. Seasonal contrast of particulate organic carbon (POC) characteristics in the Geum and Seomjin estuary systems (South Korea) revealed by carbon isotope (δ 13C and Δ 14C) analyses. WATER RESEARCH 2020; 187:116442. [PMID: 33011565 DOI: 10.1016/j.watres.2020.116442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
In this study, we newly investigated surface water samples collected in two contrasting Korean estuary systems (i.e., closed Geum and open Seomjin estuaries) along a salinity gradient in winter (December) in 2016. The main objectives were to determine the source of particulate organic carbon (POC) in winter and to assess the environmental factors inducing seasonal differences in POC characteristics. Concentrations and dual carbon isotopes (δ13C and Δ14C) of POC were analyzed together with concentrations and stable carbon isotopes (δ13C) of dissolved inorganic carbon (DIC) and compared with those obtained in summer (August) in 2016. Our study provided a new insight that for both estuarine systems, the seasonal contrast in POC characteristics was associated with stronger wind-induced estuarine sediment resuspensions in winter than in summer providing a greater contribution of aged POC to the total POC pool in winter.
Collapse
Affiliation(s)
- Sujin Kang
- Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, South Korea
| | - Jung-Hyun Kim
- KOPRI Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea.
| | - Ji Hwan Hwang
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Yeon Sik Bong
- Division of Earth and Environmental Sciences, Korea Basic Science Institute, Chungbuk 28119, South Korea
| | - Jong-Sik Ryu
- Department of Earth and Environmental Sciences, Pukyong National University, Busan 48513, South Korea
| | - Kyung-Hoon Shin
- Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, South Korea.
| |
Collapse
|
42
|
Massey IY, Al osman M, Yang F. An overview on cyanobacterial blooms and toxins production: their occurrence and influencing factors. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1843060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Muwaffak Al osman
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
- Department of Occupational and Environmental Health, School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
43
|
Sandrini G, Piel T, Xu T, White E, Qin H, Slot PC, Huisman J, Visser PM. Sensitivity to hydrogen peroxide of the bloom-forming cyanobacterium Microcystis PCC 7806 depends on nutrient availability. HARMFUL ALGAE 2020; 99:101916. [PMID: 33218441 DOI: 10.1016/j.hal.2020.101916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Application of low concentrations of hydrogen peroxide (H2O2) is a relatively new and promising method to selectively suppress harmful cyanobacterial blooms, while minimizing effects on eukaryotic organisms. However, it is still unknown how nutrient limitation affects the sensitivity of cyanobacteria to H2O2. In this study, we compare effects of H2O2 on the microcystin-producing cyanobacterium Microcystis PCC 7806 under light-limited but nutrient-replete conditions, nitrogen (N) limitation and phosphorus (P) limitation. Microcystis was first grown in chemostats to acclimate to these different experimental conditions, and subsequently transferred to batch cultures where they were treated with a range of H2O2 concentrations (0-10 mg L-1) while exposed to high light (100 µmol photons m-2 s-1) or low light (15 µmol photons m-2 s-1). Our results show that, at low light, N- and P-limited Microcystis were less sensitive to H2O2 than light-limited but nutrient-replete Microcystis. A significantly higher expression of the genes encoding for anti-oxidative stress enzymes (2-cys-peroxiredoxin, thioredoxin A and type II peroxiredoxin) was observed prior to and after the H2O2 treatment for both N- and P-limited Microcystis, which may explain their increased resistance against H2O2. At high light, Microcystis was more sensitive to H2O2 than at low light, and differences in the decline of the photosynthetic yield between nutrient-replete and nutrient-limited Microcystis exposed to H2O2 were less pronounced. Leakage of microcystin was stronger and faster from nutrient-replete than from N- and P-limited Microcystis. Overall, this study provides insight in the sensitivity of harmful cyanobacteria to H2O2 under various environmental conditions.
Collapse
Affiliation(s)
- Giovanni Sandrini
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Tim Piel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Tianshuo Xu
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Emily White
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Hongjie Qin
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pieter C Slot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
44
|
Wang P, Ma J, Wang X, Tan Q. Rising atmospheric CO 2 levels result in an earlier cyanobacterial bloom-maintenance phase with higher algal biomass. WATER RESEARCH 2020; 185:116267. [PMID: 32798892 DOI: 10.1016/j.watres.2020.116267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/28/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The effect of rising atmospheric CO2 on freshwater lakes is a subject of considerable debate. However, it is not clear how rising CO2 concentration affects cyanobacterial bloom development under potential nutrient limitation conditions and if CO2 should be taken into account in making nutrient reduction strategy. To fill the knowledge gaps, this study investigated the spatiotemporal variability in aquatic CO2 concentration (pCO2) from 2006 to 2016 in Lake Taihu, where cyanobacterial blooms often occurred from late spring to the early fall. Lake Taihu is an atmospheric CO2 source in May and November, with only 18% and 11% pCO2-undersaturated areas, respectively. During cyanobacterial bloom in August, 81% of the lake areas are pCO2-undersaturated, absorbing ~ 0.53 t C/h of atmospheric CO2. The results demonstrated that CO2 transfer across air-water interface was important in supporting cyanobacterial bloom development. Besides, Field investigation showed that the chlorophyll a level is significantly positively correlated with supersaturated pCO2 (>13.56 µmol/L) in May, but pCO2 decreases with high chlorophyll a levels in August, suggesting that cyanobacterial growth would be promoted by high pCO2 over a threshold. These observations suggested that the effect of rising atmospheric CO2 on freshwater lakes and cyanobacterial blooms should be paid attention to. Further, when the N- and P-levels are >0.3 mg/L and >0.02 mg/L, respectively, high-pCO2 conditions allow a more rapid growth rate of cyanobacteria via improved nutrient-use efficiency. Moreover, cyanobacteria afford maximum N- or P-use efficiency at lower N- or P-concentrations with high CO2 concentration. This improvement would result in an earlier bloom-maintenance phase and higher cyanobacterial biomass. In this case, nutrient reduction is more imperative under future high CO2 conditions.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China, 210098,; College of Environment, Hohai University, Nanjing, China, 210098.
| | - Jingjie Ma
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China, 210098,; College of Environment, Hohai University, Nanjing, China, 210098
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China, 210098,; College of Environment, Hohai University, Nanjing, China, 210098
| | - Qingqian Tan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China, 210098,; College of Environment, Hohai University, Nanjing, China, 210098
| |
Collapse
|
45
|
Zerrifi SEA, Mugani R, Redouane EM, El Khalloufi F, Campos A, Vasconcelos V, Oudra B. Harmful Cyanobacterial Blooms (HCBs): innovative green bioremediation process based on anti-cyanobacteria bioactive natural products. Arch Microbiol 2020; 203:31-44. [PMID: 32803344 DOI: 10.1007/s00203-020-02015-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 01/22/2023]
Abstract
Over the last decades, Harmful Cyanobacterial Blooms (HCBs) represent one of the most conspicuous hazards to human health in freshwater ecosystems, due to the uses of the water for drinking, recreation and aquaculture. Cyanobacteria are one of the main biological components in freshwater ecosystems and they may proliferate in nutrients rich ecosystems causing severe impacts at different levels. Therefore, several methods have been applied to control cyanobacterial proliferation, including physical, chemical and biological strategies. However, the application of those methods is generally not very efficient. Research on an eco-friendly alternative leading to the isolation of new bioactive compounds with strong impacts against harmful cyanobacteria is a need in the field of water environment protection. Thus, this paper aims to give an overview of harmful cyanobacterial blooms and reviews the state of the art of studying the activities of biological compounds obtained from plants, seaweeds and microorganisms in the cyanobacterial bloom control.
Collapse
Affiliation(s)
- Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, 40000, Marrakech, Morocco
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, 40000, Marrakech, Morocco
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, 40000, Marrakech, Morocco
| | - Fatima El Khalloufi
- Laboratory of Chemistry, Modeling and Environmental Polydisciplinary Faculty of Khouribga (FPK), Sultan Moulay Slimane University, P.B. 145, 25000, Khouribga, Morocco
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal. .,Departament of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, 40000, Marrakech, Morocco
| |
Collapse
|
46
|
Niu X, Zhang D, Zhang R, Song Q, Li Y, Wang M. Physiological and biochemical responses of Microcystis aeruginosa to phosphine (PH 3) under elevated CO 2. J Environ Sci (China) 2020; 94:171-178. [PMID: 32563481 DOI: 10.1016/j.jes.2020.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Phosphine (PH3) is an important factor driving the outbreak of cyanobacterial blooms that produce toxic microcystin threating human health. To clarify the physiological and biochemical responses of cyanobacteria to PH3 under elevated CO2 concentration, Microcystis aeruginosa was used in the coupling treatment of 1000 ppmv CO2 and PH3 at different concentrations respectively. The chlorophyll a (Chl-a), carotenoid, net photosynthetic rate and total protein of M. aeruginosa exhibited evidently increasing tendency under the coupling treatment of 1000 ppmv CO2 and PH3 at different concentrations (7.51 × 10-3, 2.48 × 10-2, 7.51 × 10-2 mg/L). The coupling treatments resulted in the higher concentrations of Chl-a and carotenoid of M. aeruginosa, compared to those in the control and the treatment with CO2 alone, and their enhancement increased with the increase in PH3 concentrations. The total antioxidant capacity (T-AOC) in the coupling treatment with CO2 and PH3 of 2.48 × 10-2 mg/L and 7.51 × 10-3 mg/L showed increasing tendency, compared to the treatment with PH3 alone. Additionally, the coupling treatment with 1000 ppmv CO2 and PH3 also altered the pH and DO level in the culture medium. In this regard, the coupling treatment with CO2 and PH3 at an appropriate concentration can enhance the resistance of M. aeruginosa to PH3 toxicity and is beneficial to the reproduction of M. aeruginosa, presumably resulting in potential for the outbreak of cyanobacteria bloom. Given the concern about global warming and the increase in atmospheric CO2 level, our research laid a foundation for the scientific understanding of the correlation between PH3 and cyanobacteria blooms.
Collapse
Affiliation(s)
- Xiaojun Niu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210093, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510640, China
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Runyuan Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qi Song
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yankun Li
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Mo Wang
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
47
|
Vilar MCP, Molica RJR. Changes in pH and dissolved inorganic carbon in water affect the growth, saxitoxins production and toxicity of the cyanobacterium Raphidiopsis raciborskii ITEP-A1. HARMFUL ALGAE 2020; 97:101870. [PMID: 32732056 DOI: 10.1016/j.hal.2020.101870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 05/06/2023]
Abstract
Raphidiopsis raciborskii is a widely distributed, potentially toxic cyanobacterium described as a tropical-subtropical species. However, its occurrence in temperate regions has been expanding. Understanding the environmental factors underlying the expansion and colonization success of Raphidiopsis has been the object of numerous studies. However, less is known regarding its responses to pH and inorganic carbon in water. Thus, the aim of the present study was to investigate the effects of changes in pH and dissolved inorganic carbon on growth and saxitoxins production in the strain R. raciborskii ITEP-A1. We incubated batch cultures with different unbuffered and buffered pH (neutral-acid and alkaline) and inorganic carbon availability (CO2-rich air bubbling and the addition of NaHCO3) to assess the effect of these factors on the growth, toxin production as well as saxitoxins composition of the cyanobacterium. The carbon concentrating mechanism (CCM) system of ITEP-A1 was also characterized by an in silico analysis of its previously sequenced genome. The growth and saxitoxins production of R. raciborskii were affected. The addition of sodium bicarbonate and air bubbling enhanced the growth of the cyanobacterium in alkaline pH. In contrast, saxitoxins production and relative toxicity were decreased. Moreover, significant changes in the cellular composition of saxitoxins were strongly related to pH changes. ITEP-A1 potentially expresses the low-flux bicarbonate transporter BicA, an efficient CCM which uptakes most of its carbon from HCO3-. Hence, increasing the diffusion of CO2 in alkaline eutrophic lakes is likely to increase R. raciborskii dominance, but produce less toxic blooms.
Collapse
Affiliation(s)
- Mauro Cesar Palmeira Vilar
- Graduate Program in Ecology, Biology Department, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Renato José Reis Molica
- Academic Unit of Garanhuns, Rural Federal University of Pernambuco, Bom Pastor Avenue, Garanhuns, PE, 55292-270, Brazil.
| |
Collapse
|
48
|
Cao H, Shimura Y, Steffen MM, Yang Z, Lu J, Joel A, Jenkins L, Kawachi M, Yin Y, Garcia-Pichel F. The Trait Repertoire Enabling Cyanobacteria to Bloom Assessed through Comparative Genomic Complexity and Metatranscriptomics. mBio 2020; 11:e01155-20. [PMID: 32605986 PMCID: PMC7327172 DOI: 10.1128/mbio.01155-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 01/26/2023] Open
Abstract
Water bloom development due to eutrophication constitutes a case of niche specialization among planktonic cyanobacteria, but the genomic repertoire allowing bloom formation in only some species has not been fully characterized. We posited that the habitat relevance of a trait begets its underlying genomic complexity, so that traits within the repertoire would be differentially more complex in species successfully thriving in that habitat than in close species that cannot. To test this for the case of bloom-forming cyanobacteria, we curated 17 potentially relevant query metabolic pathways and five core pathways selected according to existing ecophysiological literature. The available 113 genomes were split into those of blooming (45) or nonblooming (68) strains, and an index of genomic complexity for each strain's version of each pathway was derived. We show that strain versions of all query pathways were significantly more complex in bloomers, with complexity in fact correlating positively with strain blooming incidence in 14 of those pathways. Five core pathways, relevant everywhere, showed no differential complexity or correlations. Gas vesicle, toxin and fatty acid synthesis, amino acid uptake, and C, N, and S acquisition systems were most strikingly relevant in the blooming repertoire. Further, we validated our findings using metagenomic gene expression analyses of blooming and nonblooming cyanobacteria in natural settings, where pathways in the repertoire were differentially overexpressed according to their relative complexity in bloomers, but not in nonbloomers. We expect that this approach may find applications to other habitats and organismal groups.IMPORTANCE We pragmatically delineate the trait repertoire that enables organismal niche specialization. We based our approach on the tenet, derived from evolutionary and complex-system considerations, that genomic units that can significantly contribute to fitness in a certain habitat will be comparatively more complex in organisms specialized to that habitat than their genomic homologs found in organisms from other habitats. We tested this in cyanobacteria forming harmful water blooms, for which decades-long efforts in ecological physiology and genomics exist. Our results essentially confirm that genomics and ecology can be linked through comparative complexity analyses, providing a tool that should be of general applicability for any group of organisms and any habitat, and enabling the posing of grounded hypotheses regarding the ecogenomic basis for diversification.
Collapse
Affiliation(s)
- Huansheng Cao
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Yohei Shimura
- National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Morgan M Steffen
- Biology Department, James Madison University, Harrisonburg, Harrisonburg, Virginia, USA
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Jingrang Lu
- U.S. Environmental Protection Agency Office of Research and Development, Cincinnati, Ohio, USA
| | - Allen Joel
- U.S. Environmental Protection Agency Office of Research and Development, Cincinnati, Ohio, USA
| | - Landon Jenkins
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Masanobu Kawachi
- National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ferran Garcia-Pichel
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
49
|
Paerl HW, Barnard MA. Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human- and climatically-altered world. HARMFUL ALGAE 2020; 96:101845. [PMID: 32560828 PMCID: PMC7334832 DOI: 10.1016/j.hal.2020.101845] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 05/03/2023]
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) are a major threat to human and environmental health. As global proliferation of CyanoHABs continues to increase in prevalence, intensity, and toxicity, it is important to identify and integrate the underlying causes and controls of blooms in order to develop effective short- and long-term mitigation strategies. Clearly, nutrient input reductions should receive high priority. Legacy effects of multi-decadal anthropogenic eutrophication have altered limnetic systems such that there has been a shift from exclusive phosphorus (P) limitation to nitrogen (N) limitation and N and P co-limitation. Additionally, climate change is driving CyanoHAB proliferation through increasing global temperatures and altered precipitation patterns, including more extreme rainfall events and protracted droughts. These scenarios have led to the "perfect storm scenario"; increases in pulsed nutrient loading events, followed by persistent low-flow, long water residence times, favoring bloom formation and proliferation. To meet the CyanoHAB mitigation challenge, we must: (1) Formulate watershed and airshed-specific N and P input reductions on a sliding scale to meet anthropogenic and climatic forcings. (2) Develop CyanoHAB management strategies that incorporate current and anticipated climatic changes and extremes. (3) Make nutrient management strategies compatible with other physical-chemical-biological mitigation approaches, such as altering freshwater flow and flushing, dredging, chemical applications, introduction of selective grazers, etc. (4) Target CyanoHAB toxin production and developing management approaches to reduce toxin production. (5) Develop broadly applicable long-term strategies that incorporate the above recommendations.
Collapse
Affiliation(s)
- Hans W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell St, Morehead City, NC, USA.
| | - Malcolm A Barnard
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell St, Morehead City, NC, USA.
| |
Collapse
|
50
|
Liu Y, Li L, Zheng L, Fu P, Wang Y, Nguyen H, Shen X, Sui Y. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and high pH. CHEMOSPHERE 2020; 243:125241. [PMID: 31995860 DOI: 10.1016/j.chemosphere.2019.125241] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
In lakes and reservoirs, harmful algal blooms and high pH have been deemed to be two important stressors related to eutrophication, especially in the case of CO2 depletion caused by dense blooms. However, the effects of these stressors on the economically important shellfish that inhabit these waters are still not well-understood. This study evaluated the combined effects of the harmful algae Microcystis aeruginosa (0%, 50%, and 100% of total dietary dry weight) and high pH (8.0, 8.5 and 9.0) on the antioxidant responses of the triangle sail mussel H. cumingii. The mussels were exposed to algae and high pH for 14 d, followed by a 7-day depuration period. Reactive oxygen species (ROS) in the mussel hemolymph, antioxidant and detoxifying enzymes, such as glutathione-S-transferase (GST), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) in the digestive glands were analyzed during the experimental period. GST, SOD and GPx activity levels and the content of GSH increased following exposure to toxic M. aeruginosa, whereas CAT activity was inhibited. pH showed no significant effects on the immune defense mechanisms and detoxification processes. However, a high pH could cause increased ROS and MDA levels, resulting in oxidative injury. After a 7-day depuration period, exposure to toxic M. aeruginosa or high pH resulted in latent effects for most of the examined parameters. The treatment group exposed to the highest pH (9.0) displayed an increased oxidation state compared with the other pH treatments (8.0 and 8.5) for the same concentrations of toxic M. aeruginosa. The trends observed for ROS, MDA, GPx, GST, SOD and GSH levels indicated that a high density of toxic algae could result in severe and continuous effects on mussel health.
Collapse
Affiliation(s)
- Yimeng Liu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Lei Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, Shanghai, 200090, China
| | - Liang Zheng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Ping Fu
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Yu Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Haidang Nguyen
- Research Institute for Aquaculture No.1, Bac Ninh, 16315, Viet Nam
| | - Xiaosheng Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, Shanghai, 200090, China.
| | - Yanming Sui
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, Shanghai, 200090, China.
| |
Collapse
|