1
|
Assis SISD, Amendola LS, Okamoto MM, Ferreira GDS, Iborra RT, Santos DR, Santana MDFM, Santana KG, Correa-Giannella ML, Barbeiro DF, Soriano FG, Machado UF, Passarelli M. The Prolonged Activation of the p65 Subunit of the NF-Kappa-B Nuclear Factor Sustains the Persistent Effect of Advanced Glycation End Products on Inflammatory Sensitization in Macrophages. Int J Mol Sci 2024; 25:2713. [PMID: 38473959 DOI: 10.3390/ijms25052713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Advanced glycation end products (AGEs) prime macrophages for lipopolysaccharide (LPS)-induced inflammation. We investigated the persistence of cellular AGE-sensitization to LPS, considering the nuclear content of p50 and p65 nuclear factor kappa B (NFKB) subunits and the expression of inflammatory genes. Macrophages treated with control (C) or AGE-albumin were rested for varying intervals in medium alone before being incubated with LPS. Comparisons were made using one-way ANOVA or Student t-test (n = 6). AGE-albumin primed macrophages for increased responsiveness to LPS, resulting in elevated levels of TNF, IL-6, and IL-1beta (1.5%, 9.4%, and 5.6%, respectively), compared to C-albumin. TNF, IL-6, and IL-1 beta secretion persisted for up to 24 h even after the removal of AGE-albumin (area under the curve greater by 1.6, 16, and 5.2 times, respectively). The expressions of Il6 and RelA were higher 8 h after albumin removal, and Il6 and Abca1 were higher 24 h after albumin removal. The nuclear content of p50 remained similar, but p65 showed a sustained increase (2.9 times) for up to 24 h in AGE-albumin-treated cells. The prolonged activation of the p65 subunit of NFKB contributes to the persistent effect of AGEs on macrophage inflammatory priming, which could be targeted for therapies to prevent complications based on the AGE-RAGE-NFKB axis.
Collapse
Affiliation(s)
- Sayonara Ivana Santos de Assis
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Leonardo Szalo Amendola
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Maristela Mitiko Okamoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Guilherme da Silva Ferreira
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Rodrigo Tallada Iborra
- Ciências Biológicas e da Saúde, Campos Mooca, Universidade São Judas Tadeu, São Paulo 03408-050, Brazil
| | - Danielle Ribeiro Santos
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Monique de Fátima Mello Santana
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Kelly Gomes Santana
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM 18), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Denise Frediani Barbeiro
- Laboratório de Emergências Clínicas (LIM 51), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Francisco Garcia Soriano
- Laboratório de Emergências Clínicas (LIM 51), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marisa Passarelli
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo 01525-000, Brazil
| |
Collapse
|
2
|
Bhattacharya R, Saini S, Ghosh S, Roy P, Ali N, Parvez MK, Al-Dosari MS, Mishra AK, Singh LR. Organosulfurs, S-allyl cysteine and N-acetyl cysteine sequester di-carbonyls and reduces carbonyl stress in HT22 cells. Sci Rep 2023; 13:13071. [PMID: 37567958 PMCID: PMC10421908 DOI: 10.1038/s41598-023-40291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
Diabetes, characterized by high blood glucose level, is a progressive metabolic disease that leads to serious health complications. One of the major pathological consequences associated with diabetes is the accumulation of highly reactive carbonyl compounds called advanced glycation end products (AGEs). Most of the AGEs are dicarbonyls and have the potential to covalently modify proteins especially at the lysine residues in a non-enzymatic fashion (a process termed as glycation) resulting in the functional impairment and/or toxic gain in function. Therefore, non-toxic small molecules that can inhibit glycation are of interest for the therapeutic intervention of diabetes. In the present communication, we have investigated the effect of organosulfurs (S-allyl cysteine, SAC and N-acetyl cysteine, NAC) that are major principal components of Allium sativa against the glycation of different proteins. We discovered that both SAC and NAC are potent anti-glycating agents. We also found that both SAC and NAC reduce ROS level and inhibit apoptosis caused by protein glycation.
Collapse
Affiliation(s)
- Reshmee Bhattacharya
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Souvik Ghosh
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsanbuk-Do, Republic of Korea.
| | | |
Collapse
|
3
|
Hou Y, Hou X, Nie Q, Xia Q, Hu R, Yang X, Song G, Ren L. Association of Bone Turnover Markers with Type 2 Diabetes Mellitus and Microvascular Complications: A Matched Case-Control Study. Diabetes Metab Syndr Obes 2023; 16:1177-1192. [PMID: 37139349 PMCID: PMC10149773 DOI: 10.2147/dmso.s400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose The aim of this study was to evaluate the association of bone turnover markers (BTMs) with type 2 diabetes mellitus (T2DM) and microvascular complications. Methods A total of 166 T2DM patients and 166 non-diabetic controls matched by gender and age were enrolled. T2DM patients were sub-classified into groups based on whether they had diabetic peripheral neuropathy (DPN), diabetic retinopathy (DR), and diabetic kidney disease (DKD). Clinical data including demographic characteristics and blood test results [serum levels of osteocalcin (OC), N-terminal propeptide of type 1 procollagen (P1NP), and β-crosslaps (β-CTX)] were collected. Logistic regression and restrictive cubic spline curves were performed to examine the association of BTMs with the risk of T2DM and microvascular complications. Results After adjusting for family history of diabetes, sex and age, an inverse association was observed between elevated serum OC levels [O, p < 0.001] and increased serum P1NP levels , p < 0.001] with the risk of T2DM. Moreover, there was an inverse linear association of serum OC and P1NP levels with the risk of T2DM. However, β-CTX was not associated with T2DM. Further analysis showed a nonlinear association between OC and the risk of DR, while P1NP and β-CTX were not correlated with DR. Serum concentrations of BTMs were not associated with the risks of DPN and DKD. Conclusion Serum OC and P1NP levels were negatively correlated with T2DM risk. Particularly, serum OC levels were associated with DR risk. Given that BTMs are widely used as markers of bone remodeling, the present finding provides a new perspective for estimating the risk of diabetic microvascular complications.
Collapse
Affiliation(s)
- Yilin Hou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Xiaoyu Hou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Qian Nie
- Health Examination Center, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Qiuyang Xia
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Rui Hu
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Xiaoyue Yang
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Guangyao Song
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Correspondence: Guangyao Song; Luping Ren, Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China, Email ;
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| |
Collapse
|
4
|
Non-enzymatic glycation enhances anionic surfactant induced aggregation and amyloidogenesis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Sphingosine 1-Phosphate-Upregulated COX-2/PGE2 System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7664290. [PMID: 35242277 PMCID: PMC8888119 DOI: 10.1155/2022/7664290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
Abstract
Human cardiac fibroblasts (HCFs) play key roles in normal physiological functions and pathological processes in the heart. Our recent study has found that, in HCFs, sphingosine 1-phosphate (S1P) can upregulate the expression of cyclooxygenase-2 (COX-2) leading to prostaglandin E2 (PGE2) generation mediated by S1P receptors/PKCα/MAPKs cascade-dependent activation of NF-κB. Alternatively, G protein-coupled receptor- (GPCR-) mediated transactivation of receptor tyrosine kinases (RTKs) has been proved to induce inflammatory responses. However, whether GPCR-mediated transactivation of RTKs participated in the COX-2/PGE2 system induced by S1P is still unclear in HCFs. We hypothesize that GPCR-mediated transactivation of RTKs-dependent signaling cascade is involved in S1P-induced responses. This study is aimed at exploring the comprehensive mechanisms of S1P-promoted COX-2/PGE2 expression and apoptotic effects on HCFs. Here, we used pharmacological inhibitors and transfection with siRNA to evaluate whether matrix metalloprotease (MMP)2/9, heparin-binding- (HB-) epidermal growth factor (EGF), EGF receptor (EGFR), PI3K/Akt, MAPKs, and transcription factor AP-1 participated in the S1P-induced COX-2/PGE2 system determined by Western blotting, real-time polymerase chain reaction (RT-PCR), chromatin immunoprecipitation (ChIP), and promoter-reporter assays in HCFs. Our results showed that S1PR1/3 activated by S1P coupled to Gq- and Gi-mediated MMP9 activity to stimulate EGFR/PI3K/Akt/MAPKs/AP-1-dependent activity of transcription to upregulate COX-2 accompanied with PGE2 production, leading to stimulation of caspase-3 activity and apoptosis. Moreover, S1P-enhanced c-Jun bound to COX-2 promoters on its corresponding binding sites, which was attenuated by these inhibitors of protein kinases, determined by a ChIP assay. These results concluded that transactivation of MMP9/EGFR-mediated PI3K/Akt/MAPKs-dependent AP-1 activity was involved in the upregulation of the COX-2/PGE2 system induced by S1P, in turn leading to apoptosis in HCFs.
Collapse
|
6
|
He HQ, Qu YQ, Kwan Law BY, Qiu CL, Han Y, Ricardo de Seabra Rodrigues Dias I, Liu Y, Zhang J, Wu AG, Wu CW, Fai Mok SW, Cheng X, He YZ, Wai Wong VK. AGEs-Induced Calcification and Apoptosis in Human Vascular Smooth Muscle Cells Is Reversed by Inhibition of Autophagy. Front Pharmacol 2021; 12:692431. [PMID: 34744705 PMCID: PMC8564286 DOI: 10.3389/fphar.2021.692431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Vascular calcification (VC) in macrovascular and peripheral blood vessels is one of the main factors leading to diabetes mellitus (DM) and death. Apart from the induction of vascular calcification, advanced glycation end products (AGEs) have also been reported to modulate autophagy and apoptosis in DM. Autophagy plays a role in maintaining the stabilization of the external and internal microenvironment. This process is vital for regulating arteriosclerosis. However, the internal mechanisms of this pathogenic process are still unclear. Besides, the relationship among autophagy, apoptosis, and calcification in HASMCs upon AGEs exposure has not been reported in detail. In this study, we established a calcification model of SMC through the intervention of AGEs. It was found that the calcification was upregulated in AGEs treated HASMCs when autophagy and apoptosis were activated. In the country, AGEs-activated calcification and apoptosis were suppressed in Atg7 knockout cells or pretreated with wortmannin (WM), an autophagy inhibitor. These results provide new insights to conduct further investigations on the potential clinical applications for autophagy inhibitors in the treatment of diabetes-related vascular calcification.
Collapse
Affiliation(s)
- Hu-Qiang He
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuan-Qing Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, China
| | - Cong-Ling Qiu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yu Han
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ivo Ricardo de Seabra Rodrigues Dias
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yong Liu
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - An-Guo Wu
- Laboratory of Chinese Materia Medical, School of Pharmacy, Southwest Medical University, Luzhou, China.,Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Cheng-Wen Wu
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Simon Wing Fai Mok
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xin Cheng
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Affiliated Hospital of Ya'an Polytechnic College, Ya'an, China
| | - Yan-Zheng He
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, China
| |
Collapse
|
7
|
Role of Advanced Glycation End-Products and Other Ligands for AGE Receptors in Thyroid Cancer Progression. J Clin Med 2021; 10:jcm10184084. [PMID: 34575195 PMCID: PMC8470575 DOI: 10.3390/jcm10184084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
To date, thyroid cancers (TCs) remain a clinical challenge owing to their heterogeneous nature. The etiopathology of TCs is associated not only with genetic mutations or chromosomal rearrangements, but also non-genetic factors, such as oxidative-, nitrosative-, and carbonyl stress-related alterations in tumor environment. These factors, through leading to the activation of intracellular signaling pathways, induce tumor tissue proliferation. Interestingly, the incidence of TCs is often coexistent with various simultaneous mutations. Advanced glycation end-products (AGEs), their precursors and receptors (RAGEs), and other ligands for RAGEs are reported to have significant influence on carcinogenesis and TCs progression, inducing gene mutations, disturbances in histone methylation, and disorders in important carcinogenesis-related pathways, such as PI3K/AKT/NF-kB, p21/MEK/MPAK, or JAK/STAT, RAS/ERK/p53, which induce synthesis of interleukins, growth factors, and cytokines, thus influencing metastasis, angiogenesis, and cancer proliferation. Precursors of AGE (such as methylglyoxal (MG)) and selected ligands for RAGEs: AS1004, AS1008, and HMGB1 may, in the future, become potential targets for TCs treatment, as low MG concentration is associated with less aggressive anaplastic thyroid cancer, whereas the administration of anti-RAGE antibodies inhibits the progression of papillary thyroid cancer and anaplastic thyroid cancer. This review is aimed at collecting the information on the role of compounds, engaged in glycation process, in the pathogenesis of TCs. Moreover, the utility of these compounds in the diagnosis and treatment of TCs is thoroughly discussed. Understanding the mechanism of action of these compounds on TCs pathogenesis and progression may potentially be the grounds for the development of new treatment strategies, aiming at quality-of-life improvements.
Collapse
|
8
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
9
|
Zhang L, Tai Y, Zhao C, Ma X, Tang S, Tong H, Tang C, Gao J. Inhibition of cyclooxygenase-2 enhanced intestinal epithelial homeostasis via suppressing β-catenin signalling pathway in experimental liver fibrosis. J Cell Mol Med 2021; 25:7993-8005. [PMID: 34145945 PMCID: PMC8358882 DOI: 10.1111/jcmm.16730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
The intestinal barrier dysfunction is crucial for the development of liver fibrosis but can be disturbed by intestinal chronic inflammation characterized with cyclooxygenase‐2 (COX‐2) expression. This study focused on the unknown mechanism by which COX‐2 regulates intestinal epithelial homeostasis in liver fibrosis. The animal models of liver fibrosis induced with TAA were established in rats and in intestinal epithelial–specific COX‐2 knockout mice. The impacts of COX‐2 on intestinal epithelial homeostasis via suppressing β‐catenin signalling pathway were verified pharmacologically and genetically in vivo. A similar assumption was tested in Ls174T cells with goblet cell phenotype in vitro. Firstly, disruption of intestinal epithelial homeostasis in cirrhotic rats was ameliorated by celecoxib, a selective COX‐2 inhibitor. Then, β‐catenin signalling pathway in cirrhotic rats was associated with the activation of COX‐2. Furthermore, intestinal epithelial–specific COX‐2 knockout could suppress β‐catenin signalling pathway and restore the disruption of ileal epithelial homeostasis in cirrhotic mice. Moreover, the effect of COX‐2/PGE2 was dependent on the β‐catenin signalling pathway in Ls174T cells. Therefore, inhibition of COX‐2 may enhance intestinal epithelial homeostasis via suppression of the β‐catenin signalling pathway in liver fibrosis.
Collapse
Affiliation(s)
- Linhao Zhang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Tai
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhao
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Ma
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shihang Tang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Tong
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Deo P, Dhillon VS, Lim WM, Jaunay EL, Donnellan L, Peake B, McCullough C, Fenech M. Advanced glycation end-products accelerate telomere attrition and increase pro-inflammatory mediators in human WIL2-NS cells. Mutagenesis 2021; 35:291-297. [PMID: 32319517 DOI: 10.1093/mutage/geaa012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effect of dietary sugars and advanced glycation end-products (AGE) on telomere dynamics in WIL2-NS cells. Dietary sugars [glucose (Glu) and fructose (Fru); 0.1 M each] were incubated with bovine serum albumin (BSA) (10 mg/ml) at 60 ± 1°C for 6 weeks to generate AGE-BSA. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis showed total AGE levels as 87.74 ± 4.46 nmol/mg and 84.94 ± 4.28 nmol/mg respectively in Glu-BSA and Fru-BSA model. Cell treatment studies using WIL2-NS cells were based on either glucose, fructose (each 2.5-40 mM) or AGE-BSA (200-600 µg/ml) in a dose-dependent manner for 9 days. Telomere length (TL) was measured using qPCR. Nitric oxide (NO) production and tumour necrosis factor-α (TNF-α) levels were measured in WIL2-NS culture medium. An increasing trend for TNF-α and NO production was observed with higher concentration of glucose (R2 = 0.358; P = 0.019; R2 = 0.307; P = 0.027) and fructose (R2 = 0.669; P = 0.001; R2 = 0.339; P = 0.006). A decreasing trend for TL (R2 = 0.828; P = 0.000), and an increasing trend for NO production (R2 = 0.352; P = 0.031) were observed with increasing Glu-BSA concentrations. Fru-BSA treatment did not show significant trend on TL (R2 = 0.135; P = 0.352) with increasing concentration, however, a significant reduction was observed at 600 µg/ml (P < 0.01) when compared to BSA treatment. No trends for TNF-α levels and a decreasing trend on NO production (R2 = 0.5201; P = 0.019) was observed with increasing Fru-BSA treatment. In conclusion, this study demonstrates a potential relationship between dietary sugars, AGEs and telomere attrition. AGEs may also exert telomere shortening through the production of pro-inflammatory metabolites, which ultimately increase the risk of diabetes complications and age-related disease throughout lifespan.
Collapse
Affiliation(s)
- Permal Deo
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Varinderpal S Dhillon
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Wai Mun Lim
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Emma L Jaunay
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Leigh Donnellan
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Brock Peake
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Caitlin McCullough
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Michael Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Genome Health Foundation, North Brighton, Australia
| |
Collapse
|
11
|
Cai GL, Yang ZX, Guo DY, Hu CB, Yan ML, Yan J. Macrophages enhance lipopolysaccharide induced apoptosis via Ang1 and NF-κB pathways in human umbilical vein endothelial cells. Sci Rep 2021; 11:2918. [PMID: 33536546 PMCID: PMC7858588 DOI: 10.1038/s41598-021-82531-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Lipopolysaccharide (LPS) could induce apoptosis and dysfunction of endothelial cells. We aimed to reveal the effects of macrophages on cell proliferation and apoptosis in LPS induced human umbilical vein endothelial cells (HUVECs). THP-1 derived macrophages and HUVECs were co-cultured in the presence of LPS. Cell viability was measured by Cell Counting Kit-8 and apoptosis was analyzed by flow cytometry. Expression of Ang1, the NF-κB component p65 was evaluated by western blot and quantitative PCR. Small interfering RNAs (siRNAs) were used to knockdown the expression of proinflammatory cytokines and p65 in HUVECs. Plasmid transfection-mediated overexpression of Ang1 was employed to see its effects on cell proliferation and apoptosis in HUVECs. Macrophages enhanced LPS-induced proliferation impairments and apoptosis in HUVECs, which could be attenuated by siRNA-mediated knockdown of cytokines TNF-α, IL-1β, IL-6 and IL-12p70 in macrophages. The dysfunction of HUVECs was tightly associated with reduced Ang1 expression and increased phosphorylated p65 (p-65). Overexpression of Ang1 in HUVECs significantly decreased p-p65, suggesting negatively regulation of p-p65 by Ang1. Overexpression of Ang1, adding recombinant Ang1 or silencing of p65 substantially attenuated the dysfunction of HUVECs in terms of cell proliferation and apoptosis. In conclusions, THP-1-derived macrophages enhance LPS induced dysfunction of HUVECs via Ang1 and NF-κB pathways, suggesting new therapeutic targets for sepsis.
Collapse
Affiliation(s)
- Guo-Long Cai
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, China
| | - Zhou-Xin Yang
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, China.
| | - Dong-Yang Guo
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, China
| | - Cai-Bao Hu
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, China
| | - Mo-Lei Yan
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, China
| | - Jing Yan
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
12
|
Li S, Xie Y, Yang B, Huang S, Zhang Y, Jia Z, Ding G, Zhang A. MicroRNA-214 targets COX-2 to antagonize indoxyl sulfate (IS)-induced endothelial cell apoptosis. Apoptosis 2020; 25:92-104. [PMID: 31820187 DOI: 10.1007/s10495-019-01582-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiovascular disease (CVD) serves as the major cause of mortality in chronic kidney disease (CKD) patients. The injury of endothelium associated with the long-term challenge of uremic toxins including the toxic indoxyl sulfate (IS) is one of key pathological factors leading to CVD. However, the mechanisms of uremic toxins, especially the IS, resulting in endothelial injury, remain unclear. miR-214 was reported to contribute to the pathogenesis of cardiovascular diseases, while its role in IS-induced endothelial cell apoptosis is unknown. In this study, we investigated the role of microRNA-214 (miR-214) in IS-induced endothelial cell apoptosis and the underlying mechanisms using mouse aortic endothelial cells (MAECs). Following IS treatment, miR-214 was significantly downregulated in MAECs in line with enhanced cell apoptosis. Meanwhile, COX-2 was upregulated at both mRNA and protein levels along with increased secretion of PGE2 in medium. To define the role of miR-214 in IS-induced endothelial cell apoptosis, we modulated miR-214 level in MAECs and found that overexpression of miR-214 markedly attenuated endothelial cell apoptosis, while antagonism of miR-214 deteriorated cell death after IS challenge. Further analyses confirmed that COX-2 is a target gene of miR-214, and the inhibition of COX-2 by a specific COX-2 inhibitor NS-398 strikingly attenuated IS-induced endothelial cell apoptosis along with a significant blockade of PGE2 secretion. In conclusion, this study demonstrated an important role of miR-214 in protecting against endothelial cell damage induced by IS possibly by direct downregulation of COX-2/PGE2 axis.
Collapse
Affiliation(s)
- Shuzhen Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yifan Xie
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Bingyu Yang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
13
|
Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front Immunol 2020; 11:1582. [PMID: 32793223 PMCID: PMC7387426 DOI: 10.3389/fimmu.2020.01582] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic abnormalities such as dyslipidemia, hyperinsulinemia, or insulin resistance and obesity play key roles in the induction and progression of type 2 diabetes mellitus (T2DM). The field of immunometabolism implies a bidirectional link between the immune system and metabolism, in which inflammation plays an essential role in the promotion of metabolic abnormalities (e.g., obesity and T2DM), and metabolic factors, in turn, regulate immune cell functions. Obesity as the main inducer of a systemic low-level inflammation is a main susceptibility factor for T2DM. Obesity-related immune cell infiltration, inflammation, and increased oxidative stress promote metabolic impairments in the insulin-sensitive tissues and finally, insulin resistance, organ failure, and premature aging occur. Hyperglycemia and the subsequent inflammation are the main causes of micro- and macroangiopathies in the circulatory system. They also promote the gut microbiota dysbiosis, increased intestinal permeability, and fatty liver disease. The impaired immune system together with metabolic imbalance also increases the susceptibility of patients to several pathogenic agents such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Thus, the need for a proper immunization protocol among such patients is granted. The focus of the current review is to explore metabolic and immunological abnormalities affecting several organs of T2DM patients and explain the mechanisms, whereby diabetic patients become more susceptible to infectious diseases.
Collapse
Affiliation(s)
- Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Le Y, Wei R, Yang K, Lang S, Gu L, Liu J, Hong T, Yang J. Liraglutide ameliorates palmitate-induced oxidative injury in islet microvascular endothelial cells through GLP-1 receptor/PKA and GTPCH1/eNOS signaling pathways. Peptides 2020; 124:170212. [PMID: 31770577 DOI: 10.1016/j.peptides.2019.170212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022]
Abstract
In type 2 diabetes, lipotoxicity damages islet microvascular endothelial cells (IMECs), leading to pancreatic islet β cell dysfunction directly or indirectly. Glucagon-like peptide-1 (GLP-1) and its analogs have beneficial roles in endothelial cells. However, the protective effects of GLP-1 agents on IMECs and their potential mechanism remained obscure. In this study, exposure of MS-1 (a cell line derived from mouse IMECs) to different concentrations of palmitic acid (PA) was used to establish an injury model. The cells exposed to PA (0.25 mmol/L) were treated with a GLP-1 analog liraglutide (3, 10, 30, and 100 nmol/L). Reactive oxygen species (ROS) generation, apoptosis-related protein level, and endothelin-1 production were detected. The protein levels of signaling molecules were analyzed and specific inhibitors or blockers were used to identify involvement of signaling pathways in the effects of liraglutide. Results showed that PA significantly increased ROS generation and the levels of pro-apoptotic protein Bax, and decreased the levels of anti-apoptotic protein Bcl-2 and the mRNA expression and secretion of endothelin-1. Meanwhile, PA downregulated the protein levels of GLP-1 receptor (GLP-1R), phosphorylated protein kinase A (PKA), guanosine 5'-triphosphate cyclohydrolase 1 (GTPCH1), and endothelial nitric oxide synthase (eNOS). Furthermore, liraglutide ameliorated all these effects of PA in a dose-dependent manner. Importantly, GLP-1R antagonist exendin (9-39), PKA inhibitor H89, GTPCH1 inhibitor 2,4-diamino-6-hydroxypyrimidine, or NOS inhibitor N-nitro-l-arginine-methyl ester abolished the liraglutide-mediated amelioration in PA-impaired MS-1 cells. In conclusion, liraglutide ameliorates the PA-induced oxidative stress, apoptosis, and endothelin-1 secretion dysfunction in mouse IMECs through GLP-1R/PKA and GTPCH1/eNOS signaling pathways.
Collapse
Affiliation(s)
- Yunyi Le
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Liangbiao Gu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
15
|
Matsumoto T, Takayanagi K, Kojima M, Taguchi K, Kobayashi T. Mechanisms underlying suppression of noradrenaline-induced contraction by prolonged treatment with advanced glycation end-products in organ-cultured rat carotid artery. Pflugers Arch 2020; 472:355-366. [DOI: 10.1007/s00424-020-02349-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023]
|
16
|
Dietary and Plasma Carboxymethyl Lysine and Tumor Necrosis Factor-α as Mediators of Body Mass Index and Waist Circumference among Women in Indonesia. Nutrients 2019; 11:nu11123057. [PMID: 31847322 PMCID: PMC6950749 DOI: 10.3390/nu11123057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 02/02/2023] Open
Abstract
Dietary and plasma carboxymethyl lysine (dCML, pCML) and plasma tumor necrosis factor-α (pTNF-α) may be associated with obesity in affluent society. However, evidence in women from low-middle income countries with predominantly traditional diets is lacking. We investigated the mediator effects of dCML, pCML and pTNF-α on body mass index (BMI) and waist circumference (WC) among Indonesian women. A cross-sectional study was conducted among 235 non-diabetic, non-anemic and non-smoking women aged 19–50 years from selected mountainous and coastal areas of West Sumatra and West Java. Dietary CML, pCML, pTNF-α were obtained from 2 × 24-h recalls, ultra-performance liquid chromatography-tandem mass spectrometry and enzyme-linked immunosorbent assay, respectively. Between-group differences were analyzed by the Chi-square or Mann-Whitney test and mediator effects by Structural Equation Modeling. The medians and interquartile-ranges of dCML, pCML and pTNF-α were 2.2 (1.7–3.0) mg/day, 22.2 (17.2–28.2) ng/mL and 0.68 (0.52–1.00) IU/mL, respectively, and significantly higher in the WC ≥ 80 cm than in the WC < 80 cm group, but not in BMI ≥ 25 kg/m2 compared to BMI < 25 kg/m2 group. Plasma CML and pTNF-α were positively and directly related to WC (β = 0.21 [95% CI: 0.09, 0.33] and β = 0.23 [95% CI: 0.11, 0.35], respectively). Dietary CML that correlated with dry-heat processing and cereals as the highest contributions was positively related to WC (β = 0.33 [95% CI: 0.12, 0.83]). Ethnicity, level of education, intake of fat, and intake of energy contributed to dCML, pCML and pTNF-α, and subsequently affected WC, while only ethnicity contributed to BMI through dCML, pCML and pTNF-α (β = 0.07 [95% CI: 0.01, 0.14]). A positive direct effect of dCML on pCML and of pCML and pTNF-α on WC was seen among Indonesian women. Dietary CML seems to have several paths that indirectly influence the increases in WC if compared to BMI. Thus, intake of CML-rich foods should be reduced, or the foods consumed in moderate amounts to avoid the risk of central obesity in this population.
Collapse
|
17
|
Amplification of the COX/TXS/TP receptor pathway enhances uridine diphosphate-induced contraction by advanced glycation end products in rat carotid arteries. Pflugers Arch 2019; 471:1505-1517. [PMID: 31736003 DOI: 10.1007/s00424-019-02330-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
Advanced glycation end products (AGEs) play a pivotal role in vascular functions under various pathophysiological conditions. Although uridine diphosphate (UDP) is an important extracellular nucleotide, the relationship between AGEs and UDP regarding their effect on vascular functions remains unclear. Therefore, we investigated the effects of AGE-bovine serum albumin (AGE-BSA) on UDP-mediated responses in rat thoracic aorta and carotid arteries. In rat thoracic aorta, UDP-induced relaxation was observed and this relaxation was similar between control (1.0 v/v% PBS) and AGE-BSA-treated (0.1 mg/mL for 60 min) groups. In contrast, contraction but not relaxation was obtained following UDP application to carotid arteries with and without endothelia; contraction was greater in the AGE-BSA-treated group than in the control group. The difference in UDP-induced contraction between the two groups was not abolished by the use of a nitric oxide synthase (NOS) inhibitor, whereas it was abolished by the use of cyclooxygenase (COX), thromboxane synthase (TXS), and thromboxane-prostanoid (TP) receptor antagonist. Further, the difference in UDP-induced contraction was not abolished by the use of a cPLA2 inhibitor, whereas it was abolished by the use of an iPLA2 inhibitor. UDP increased TXA2 release in both groups, and its level was similar in both groups. Moreover, the release of PGE2, PGF2α, and PGI2 was similar among the groups. Under NOS inhibition, TP receptor agonist-induced contraction increased in the AGE-BSA-treated group (vs. control group). In conclusion, the increase in UDP-induced carotid arterial contraction by AGE-BSA can be attributed to an increase in the COX/TXS/TP receptor pathway, particularly, TP receptor signaling.
Collapse
|
18
|
Staels W, Heremans Y, Heimberg H, De Leu N. VEGF-A and blood vessels: a beta cell perspective. Diabetologia 2019; 62:1961-1968. [PMID: 31414144 DOI: 10.1007/s00125-019-4969-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Reciprocal signalling between the endothelium and the pancreatic epithelium is crucial for coordinated differentiation of the embryonic endocrine and exocrine pancreas. In the adult pancreas, islets depend on their dense capillary network to adequately respond to changes in plasma glucose levels. Vascular changes contribute to the onset and progression of both type 1 and type 2 diabetes. Impaired revascularisation of islets transplanted in individuals with type 1 diabetes is linked to islet graft failure and graft loss. This review summarises our understanding of the role of vascular endothelial growth factor-A (VEGF-A) and endothelial cells in beta cell development, physiology and disease. In addition, the therapeutic potential of modulating VEGF-A levels in beta and beta-like cells for transplantation is discussed.
Collapse
Affiliation(s)
- Willem Staels
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Institut Cochin, CNRS, INSERM, Université de Paris, F-75014, Paris, France
| | - Yves Heremans
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Nico De Leu
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Department of Endocrinology, UZ Brussel, Brussels, Belgium.
- Department of Endocrinology, ASZ Aalst, Aalst, Belgium.
| |
Collapse
|
19
|
Lin PH, Chang CC, Wu KH, Shih CK, Chiang W, Chen HY, Shih YH, Wang KL, Hong YH, Shieh TM, Hsia SM. Dietary Glycotoxins, Advanced Glycation End Products, Inhibit Cell Proliferation and Progesterone Secretion in Ovarian Granulosa Cells and Mimic PCOS-like Symptoms. Biomolecules 2019; 9:biom9080327. [PMID: 31370285 PMCID: PMC6723748 DOI: 10.3390/biom9080327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
Women with polycystic ovary syndrome (PCOS) have been reported to have an elevated serum advanced glycation end product (AGE) level. However, the effect of AGEs on the pathophysiological ovarian granulosa cells of PCOS is still unclear. In this study, five indented BSA-derived AGE products were used to evaluate their effect on the function of human granulosa cells. We found that the proliferation of both primary human ovarian granulosa (hGC) cells and human granulosa-like tumor (KGN) cells were inhibited by treatment with these five AGE products. The progesterone secretion level was also reduced in both hGC and KGN cells by treatment with these AGE products through downregulation of LH receptor/cAMP regulatory activity. The granulosa cell layer and serum progesterone level were reduced in rats by treatment with MG-BSA; moreover, an increased number of follicle cysts and an irregular estrous cycle were observed. MG-BSA treatment had a similar effect on the phenotypes of the DHEA-induced PCOS model. Additionally, the insulin resistance and hepatic lesions seen in the DHEA-induced PCOS model were observed in the MG-BSA treatment group. Taken together, we found that AGEs exert a toxic effect on ovarian granulosa cells, ovarian morphology, and the estrous cycle that mimics the DHEA-induced PCOS phenotypes.
Collapse
Affiliation(s)
- Po-Han Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Chao Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Kun-Hsuan Wu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Wenchang Chiang
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Kei-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 20301, Taiwan
| | - Yong-Han Hong
- Department of Nutrition, I-Shou University, Kaohsiung 84001, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| |
Collapse
|
20
|
Shaikh-Kader A, Houreld NN, Rajendran NK, Abrahamse H. The link between advanced glycation end products and apoptosis in delayed wound healing. Cell Biochem Funct 2019; 37:432-442. [PMID: 31318458 DOI: 10.1002/cbf.3424] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/05/2018] [Accepted: 06/05/2019] [Indexed: 01/26/2023]
Abstract
Advanced glycation end products (AGEs) are naturally occurring molecules that start to accumulate from embryonic developmental stages and form as part of normal ageing. When reducing sugars interact with and modify proteins or lipids, AGE production occurs. AGE formation accelerates in chronic hyperglycemic conditions, and high AGE levels have been associated with the pathogenesis of various diseases. In addition, enhanced levels of AGEs have been linked to delayed wound healing as seen in patients with diabetes mellitus. Research has provided numerous ways in which a high AGE concentration results in impaired wound healing, including oxidative stress, structural and functional changes to proteins important in wound repair, an enhanced inflammatory response by activation of transcription factors, and possible exaggerated apoptosis of cells necessary to the wound repair process. Apoptosis is a naturally occurring cell death process that is significant for normal tissue functioning and plays an important role in wound repair by preventing a prolonged inflammatory response and excessive scar formation. Abnormal apoptosis affects wound healing, resulting in slow healing wounds. This review will summarize the role of AGEs in wound healing, focusing on the mechanisms by which AGEs lead to apoptosis in various cell types. The review provides the way forward for medical research and molecular studies as it focuses on the mechanisms by which AGEs induce apoptosis in various cell types, including fibroblasts, osteoblasts, neuronal cells, and endothelial cells. Reviewing the mechanisms of AGE-linked apoptosis is important in understanding the impact of high AGE levels in delayed wound healing in diabetic patients due to abnormal apoptosis of cells necessary to the wound healing process.
Collapse
Affiliation(s)
- Asma Shaikh-Kader
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Naresh Kumar Rajendran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
21
|
Role of Calbindin-D28k in Diabetes-Associated Advanced Glycation End-Products-Induced Renal Proximal Tubule Cell Injury. Cells 2019; 8:cells8070660. [PMID: 31262060 PMCID: PMC6678974 DOI: 10.3390/cells8070660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes-associated advanced glycation end-products (AGEs) can increase extracellular matrix (ECM) expression and induce renal fibrosis. Calbindin-D28k, which plays a role in calcium reabsorption in renal distal convoluted tubules, is increased in a diabetic kidney. The role of calbindin-D28k in diabetic nephropathy still remains unclear. Here, calbindin-D28k protein expression was unexpectedly induced in the renal tubules of db/db diabetic mice. AGEs induced the calbindin-D28k expression in human renal proximal tubule cells (HK2), but not in mesangial cells. AGEs induced the expression of fibrotic molecules, ECM proteins, epithelial-mesenchymal transition (EMT) markers, and endoplasmic reticulum (ER) stress-related molecules in HK2 cells, which could be inhibited by a receptor for AGE (RAGE) neutralizing antibody. Calbindin-D28k knockdown by siRNA transfection reduced the cell viability and obviously enhanced the protein expressions of fibrotic factors, EMT markers, and ER stress-related molecules in AGEs-treated HK2 cells. Chemical chaperone 4-Phenylbutyric acid counteracted the AGEs-induced ER stress and ECM and EMT markers expressions. Calbindin-D28k siRNA in vivo delivery could enhance renal fibrosis in db/db diabetic mice. These findings suggest that inducible calbindin-D28k protects against AGEs/RAGE axis-induced ER stress-activated ECM induction and cell injury in renal proximal tubule cells.
Collapse
|
22
|
AnandBabu K, Sen P, Angayarkanni N. Oxidized LDL, homocysteine, homocysteine thiolactone and advanced glycation end products act as pro-oxidant metabolites inducing cytokine release, macrophage infiltration and pro-angiogenic effect in ARPE-19 cells. PLoS One 2019; 14:e0216899. [PMID: 31086404 PMCID: PMC6516731 DOI: 10.1371/journal.pone.0216899] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/30/2019] [Indexed: 02/03/2023] Open
Abstract
Age-related Macular Degeneration (AMD) is one of the major vision-threatening diseases of the eye. Oxidative stress is one of the key factors in the onset and progression of AMD. In this study, metabolites associated with AMD pathology more so at the systemic level namely, oxidized LDL (oxLDL), homocysteine (Hcy), homocysteine thiolactone (HCTL), advanced glycation end product (AGE) were evaluated for their pro-oxidant nature in a localized ocular environment based on in vitro studies in human retinal pigment epithelial cells (ARPE-19 cells). Human ARPE-19 cells were treated with pro-oxidants 50 μg/mL oxLDL, 500 μM Hcy, 500 nM HCTL, 100 μg/mL AGE, 200 μM H2O2 and 200 μM H2O2 with and without pre-treatment of 5 mM N-acetyl cysteine (NAC). The cytokines IL-6, IL-8 and vascular endothelial growth factor (VEGF) secreted from ARPE-19 cells exposed to pro-oxidants were estimated by ELISA. In vitro angiogenesis assay was performed with conditioned media of the pro-oxidant treated ARPE-19 cells in Geltrex-Matrigel coated 96-well plate. The human acute monocytic leukemia cell line (THP-1) was differentiated into macrophages and its migration in response to conditioned media of ARPE-19 cells insulted with the pro-oxidants was studied by transwell migration assay. Western blot was performed to detect the protein expression of Bax, Bcl-2 and NF-κB to assess apoptotic changes. The compounds involved in the study showed a significant increase in reactive oxygen species (ROS) generation in ARPE-19 cells (oxLDL; Hcy; AGE: p < 0.001 and HCTL: p < 0.05). NAC pre-treatment significantly lowered the oxidative stress brought about by pro-oxidants as seen by lowered ROS and MDA levels in the cells. Treatment with pro-oxidants significantly increased the secretion of IL-6 (oxLDL: p < 0.05; Hcy, HCTL and AGE: p < 0.01) and IL-8 cytokines (oxLDL: p < 0.05; HCTL: p <. 001 and AGE: p < 0.01) in ARPE-19 cells. Serum samples of AMD patients (n = 23) revealed significantly higher IL-6 and IL-8 levels compared to control subjects (n = 23) (IL6: p < 0.01 and IL8: p < 0.05). The pro-oxidants also promoted VEGF secretion by ARPE-19 cells compared to untreated control (oxLDL: p < 0.001; Hcy: p < 0.01; HCTL and AGE: p < 0.05). In vitro angiogenesis assay showed that the conditioned media significantly increased the tube formation in RF/6A endothelial cells. Transwell migration assay revealed significant infiltration of macrophages in response to pro-oxidants. We further demonstrated that the pro-oxidants increased the Bax/Bcl-2 ratio and increased the NF-κB activation resulting in pro-apoptotic changes in ARPE-19 cells. Thus, oxLDL, Hcy, HCTL and AGE act as pro-oxidant metabolites in RPE that promote AMD through oxidative stress, inflammation, chemotaxis and neovascularization.
Collapse
Affiliation(s)
- Kannadasan AnandBabu
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Parveen Sen
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Narayanasamy Angayarkanni
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- * E-mail: ,
| |
Collapse
|
23
|
Hwang JH, Chu H, Ahn Y, Kim J, Kim DY. HMGB1 promotes hair growth via the modulation of prostaglandin metabolism. Sci Rep 2019; 9:6660. [PMID: 31040377 PMCID: PMC6491442 DOI: 10.1038/s41598-019-43242-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/18/2019] [Indexed: 01/09/2023] Open
Abstract
Unexpected hair growth can occur after tissue injury. The pathogenic mechanism for this phenomenon is unknown but is likely related to inflammatory mediators. One such mediator is high-mobility group box 1 (HMGB1), a ubiquitous nuclear protein that is released from cell nuclei after tissue damage. To elucidate the effect of HMGB1 on hair growth and understand its mechanism of action, we evaluated the effect of HMGB1 treatment on hair shaft elongation and on mRNA and protein expression in cultured human dermal papilla cells (hDPCs). HMGB1 enhanced hair shaft elongation in an ex vivo hair organ culture. In hDPCs, HMGB1 treatment significantly increased mRNA and protein expression levels of prostagladin E synthases. HMGB1 also stimulated prostaglandin E2 (PGE2) secretion from hDPCs. Finally, blocking the receptor for advanced glycation end-products, a canonical HMGB1 receptor, inhibited HMGB1-induced PGE2 production and hair shaft elongation. Our results suggest that HMGB1 promotes hair growth via PGE2 secretion from hDPCs. This mechanism can explain the paradoxical phenomenon of trauma-induced hair growth. Thus, HGMB1 can be a viable therapeutic target for the treatment of alopecia.
Collapse
Affiliation(s)
- Ji-Hye Hwang
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Howard Chu
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yuri Ahn
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jino Kim
- New Hair Institute, Seoul, Korea
| | - Do-Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Dunn SM, Hilgers R, Das KC. Decreased EDHF-mediated relaxation is a major mechanism in endothelial dysfunction in resistance arteries in aged mice on prolonged high-fat sucrose diet. Physiol Rep 2018; 5:5/23/e13502. [PMID: 29212858 PMCID: PMC5727270 DOI: 10.14814/phy2.13502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 02/01/2023] Open
Abstract
High‐fat sucrose (HFS) diet in aged individuals causes severe weight gain (obesity) with much higher risk of cardiovascular diseases such as hypertension or atherosclerosis. Endothelial dysfunction is a major contributor for these vascular disorders. We hypothesize that prolonged ingestion of HFS diet by aged mice would accentuate endothelial dysfunction in the small resistance arteries. Male C57BL/6J mice at 12 weeks of age were divided into four groups and fed either normal chow (NC) or high‐fat sucrose diet (HFS). Young group received NC for 4 months, and high‐fat diet (HFD) for 3 months and 1 month HFS + 10% Sucrose (HFS diet). Aged mice received NC for 12 months. Aged HFS group received HFD for 4 months + 1 month HFD + 10% sucrose + 8 months HFD. Total body weight, plasma blood glucose levels, and glucose tolerance were determined in all groups. Isolated mesenteric arteries were assessed for arterial remodeling, myogenic tone, and vasomotor responses using pressure and wire myography. Both young and aged HFS mice showed impaired glucose tolerance (Y‐NC, 137 ± 8.5 vs. Y‐NC HFS, 228 ± 11.71; A‐NC, 148 ± 6.42 vs. A‐HFS, 225 ± 10.99), as well as hypercholesterolemia (Y‐NC 99.50 ± 6.35 vs. Y‐HFS 220.40 ± 16.34 mg/dL; A‐NC 108.6 ± vs. A‐HFS 279 ± 21.64) and significant weight gain (Y‐NC 32.13 ± 0.8 g vs. Y‐HFS 47.87 ± 2.18 g; A‐NC 33.72 vs. A‐HFS 56.28 ± 3.47 g) compared to both groups of mice on NC. The mesenteric artery from mice with prolonged HFS diet resulted in outward hypertrophic remodeling, increased stiffness, reduced myogenic tone, impaired vasodilation, increased contractility and blunted nitric oxide (NO) and EDH‐mediated relaxations. Ebselen, a peroxinitrite scavenger rescued the endothelium derived relaxing factor (EDHF)‐mediated relaxations. Our findings suggest that prolonged diet‐induced obesity of aged mice can worsen small resistance artery endothelial dysfunction due to decrease in NO and EDHF‐mediated relaxation, but, EDHF‐mediated relaxation is a major contributor to overall endothelial dysfunction.
Collapse
Affiliation(s)
- Shannon M Dunn
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | | | - Kumuda C Das
- The Department of Translational & Vascular Biology, University of Texas Health Sciences Center at Tyler, Tyler, Texas
| |
Collapse
|
25
|
Novel Interplay Between Smad1 and Smad3 Phosphorylation via AGE Regulates the Progression of Diabetic Nephropathy. Sci Rep 2018; 8:10548. [PMID: 30002389 PMCID: PMC6043613 DOI: 10.1038/s41598-018-28439-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/18/2018] [Indexed: 11/08/2022] Open
Abstract
Diabetic nephropathy (DN) is the major cause of end-stage renal failure and is associated with increased morbidity and mortality compared with other causes of renal diseases. We previously found that Smad1 plays a critical role in the development of DN both in vitro and in vivo. However, functional interaction between Smad1 and Smad3 signaling in DN is unclear. Here, we addressed the molecular interplay between Smad1 and Smad3 signaling under a diabetic condition by using Smad3-knockout diabetic mice. Extracellular matrix (ECM) protein overexpression and Smad1 activation were observed in the glomeruli of db/db mice but were suppressed in the glomeruli of Smad3+/-; db/db mice. Smad3 activation enhanced the phosphorylation of Smad1 C-terminal domain but decreased the phosphorylation of linker domain, thus regulating Smad1 activation in advanced glycation end product-treated mesangial cells (MCs). However, forced phosphorylation of the Smad1 linker domain did not affect Smad3 activation in MCs. Phosphorylation of the Smad1 linker domain increased in Smad3+/-; db/db mice and probucol-treated db/db mice, which was consistent with the attenuation of ECM overproduction. These results indicate that Smad3 expression and activation or probucol treatment alters Smad1 phosphorylation, thus suggesting new molecular mechanisms underlying DN development and progression.
Collapse
|
26
|
Kheirouri S, Alizadeh M, Maleki V. Zinc against advanced glycation end products. Clin Exp Pharmacol Physiol 2018; 45:491-498. [DOI: 10.1111/1440-1681.12904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/08/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Sorayya Kheirouri
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Alizadeh
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | - Vahid Maleki
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
27
|
DeChristopher LR, Uribarri J, Tucker KL. Intake of high fructose corn syrup sweetened soft drinks, fruit drinks and apple juice is associated with prevalent coronary heart disease, in U.S. adults, ages 45-59 y. BMC Nutr 2017; 3:51. [PMID: 32153831 PMCID: PMC7050890 DOI: 10.1186/s40795-017-0168-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 06/09/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intake of high excess free fructose (EFF) beverages, including high fructose corn syrup (HFCS), sweetened soft drinks, fruit drinks, and apple juice, may be associated with childhood asthma, adult idiopathic chronic bronchitis/ COPD, and autoimmune arthritis, possibly due to underlying fructose malabsorption. Fructose malabsorption may contribute to the intestinal in situ formation of advanced glycation end-products (enFruAGEs) that travel to other tissues and promote inflammation. Chronic respiratory conditions and arthritis are comorbidities of coronary heart disease (CHD). The objective of this study was to investigate the association between intake of high EFF beverages and CHD. METHODS In this cross sectional study (NHANES 2003-2006) of adults, aged 45-59 y, n = 1230, the exposure variables were non-diet soft drinks, and any combination of high EFF beverages including non-diet soft drinks, fruit drinks, and apple juice. Analyses of diet soft drinks, diet fruit drinks, and orange juice (non/low EFF beverages) were included for comparison. The outcome was self-reported history of coronary heart disease and/or angina (CHD). Rao Scott Ҳ2 was used for prevalence differences and logistic regression for associations, adjusted for age, sex, race-ethnicity, BMI, socio-economic status, health insurance coverage, smoking, physical activity level, hypertension, energy intake, fruit and vegetable intake, glycated hemoglobin, pre-diabetes, and diabetes. RESULTS Intake of any combination of HFCS sweetened soft drinks, fruit drinks, and apple juice (tEFF) was significantly associated with CHD in adults aged 45-59 y. Adults consuming tEFF ≥5 times/wk. were 2.8 times more likely to report CHD than ≤3 times/mo consumers (OR 2.82; 95% CI 1.16-6.84; P = 0.023), independent of all covariates. CONCLUSION HFCS sweetened soft drinks, fruit drinks, and apple juice may contribute to CHD, a common comorbidity of chronic respiratory conditions and autoimmune arthritis, possibly due to the high ratio of fructose to glucose in these beverages. Underlying fructose malabsorption may contribute to the intestinal in situ formation of pro-inflammatory enFruAGEs, that are eventually absorbed and induce inflammation of the coronary arteries. Additional research is needed.
Collapse
Affiliation(s)
| | - Jaime Uribarri
- Department of Medicine, the Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Katherine L. Tucker
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA USA
| |
Collapse
|
28
|
Hogan MF, Hull RL. The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia 2017; 60:952-959. [PMID: 28396983 PMCID: PMC5505567 DOI: 10.1007/s00125-017-4272-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/02/2017] [Indexed: 11/25/2022]
Abstract
The pancreatic islet is highly vascularised, with an extensive capillary network. In addition to providing nutrients and oxygen to islet endocrine cells and transporting hormones to the peripheral circulation, islet capillaries (comprised primarily of islet endothelial cells) are an important source of signals that enhance survival and function of the islet beta cell. In type 2 diabetes, and animal models thereof, evidence exists of morphological and functional abnormalities in these islet endothelial cells. In diabetes, islet capillaries are thickened, dilated and fragmented, and islet endothelial cells express markers of inflammation and activation. In vitro data suggest that this dysfunctional islet endothelial phenotype may contribute to impaired insulin release from the beta cell. This review examines potential candidate molecules that may mediate the positive effects of islet endothelial cells on beta cell survival and function under normal conditions. Further, it explores possible mechanisms underlying the development of islet endothelial dysfunction in diabetes and reviews therapeutic options for ameliorating this aspect of the islet lesion in type 2 diabetes. Finally, considerations regarding differences between human and rodent islet vasculature and the potentially unforeseen negative consequences of strategies to expand the islet vasculature, particularly under diabetic conditions, are discussed.
Collapse
Affiliation(s)
- Meghan F Hogan
- Division of Metabolism, Endocrinology and Nutrition, VA Puget Sound Health Care System (151), 1660 South Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rebecca L Hull
- Division of Metabolism, Endocrinology and Nutrition, VA Puget Sound Health Care System (151), 1660 South Columbian Way, Seattle, WA, 98108, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
Hou W, Jiang Z, Ying J, Ding L, Li X, Qi F, Yang S, Cheng S, Wang Y, Liu Y, Xiao J, Guo H, Li Z, Wang Z. Clock gene affect the noncanonical NF-κB pathway via circadian variation of Otud7b. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1323422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wang Hou
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhou Jiang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Junjie Ying
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Lu Ding
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Xiaoxue Li
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Fang Qi
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Shuhong Yang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Shuting Cheng
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yuhui Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yanyou Liu
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Jing Xiao
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Huiling Guo
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhilin Li
- Sichuan Cancer Hospital, Chengdu, P.R. China
| | - Zhengrong Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
30
|
Mazier W, Cota D. Islet Endothelial Cell: Friend and Foe. Endocrinology 2017; 158:226-228. [PMID: 28430925 DOI: 10.1210/en.2016-1925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Wilfrid Mazier
- INSERM, Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| |
Collapse
|
31
|
Adiporedoxin suppresses endothelial activation via inhibiting MAPK and NF-κB signaling. Sci Rep 2016; 6:38975. [PMID: 27941911 PMCID: PMC5150245 DOI: 10.1038/srep38975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022] Open
Abstract
Adiporedoxin (Adrx) is a recently discovered redox regulatory protein that is preferentially expressed in adipose tissue and plays a critical role in the regulation of metabolism via its modulation of adipocyte protein secretion. We here report that Adrx suppresses endothelial cell activation via inhibiting MAPK and NF-kB signaling pathways. Adrx is constitutively expressed in human vascular endothelial cells, and significantly induced by a variety of stimuli such as TNFα, IL-1β, H2O2 and OxLDL. Overexpression of Adrx significantly attenuated TNFα-induced expression of VCAM-1 and ICAM-1, and thus reduced monocyte adherence to human umbilical vein endothelial cells (HUVECs). Conversely, siRNA-mediated knockdown of Adrx increased TNFα-induced expression of adhesion molecules and monocyte adherence to HUVECs. Furthermore, forced expression of Adrx decreased TNFα-induced activation of ERK1/2, JNK, p38 and IKKs in HUVECs. Adrx mutant in the CXXC motif that lost its anti-redox activity is less efficient than the wild-type Adrx, suggesting that Adrx-mediated inhibition of endothelial activation is partially dependent on its antioxidant activity. Finally, Adrx expression was markedly increased in human atheroma compared with normal tissue from the same carotid arteries. These results suggest that Adrx is an endogenous inhibitor of endothelial activation, and might be a therapeutic target for vascular inflammatory diseases.
Collapse
|
32
|
Atrial natriuretic peptide down-regulates LPS/ATP-mediated IL-1β release by inhibiting NF-kB, NLRP3 inflammasome and caspase-1 activation in THP-1 cells. Immunol Res 2016; 64:303-12. [PMID: 26616294 DOI: 10.1007/s12026-015-8751-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atrial natriuretic peptide (ANP) is an hormone/paracrine/autocrine factor regulating cardiovascular homeostasis by guanylyl cyclase natriuretic peptide receptor (NPR-1). ANP plays an important role also in regulating inflammatory and immune systems by altering macrophages functions and cytokines secretion. Interleukin-1β (IL-1β) is a potent pro-inflammatory cytokine involved in a wide range of biological responses, including the immunological one. Unlike other cytokines, IL-1β production is rigorously controlled. Primarily, NF-kB activation is required to produce pro-IL-1β; subsequently, NALP3 inflammasome/caspase-1 activation is required to cleave pro-IL-1β into the active secreted protein. NALP3 is a molecular platform capable of sensing a large variety of signals and a major player in innate immune defense. Due to their pleiotropism, IL-1β and NALP3 dysregulation is a common feature of a wide range of diseases. Therefore, identifying molecules regulating IL-1β/NALP3/caspase-1 expression is an important step in the development of new potential therapeutic agents. The aim of our study was to evaluate the effect of ANP on IL-1β/NALP3/caspase-1 expression in LPS/ATP-stimulated human THP1 monocytes. We provided new evidence of the direct involvement of ANP/NPR-1/cGMP axis on NF-kB/NALP3/caspase-1-mediated IL-1β release and NF-kB-mediated pro-IL-1β production. In particular, ANP inhibited both NF-kB and NALP3/caspase-1 activation leading to pro- and mature IL-1β down-regulation. Our data, pointing out a modulatory role of this endogenous peptide on IL-1β release and on NF-kB/NALP3/caspase-1 activation, indicate an important anti-inflammatory and immunomodulatory effect of ANP via these mechanisms. We suggest a possible employment of ANP for the treatment of inflammatory/immune-related diseases and IL-1β/NALP3-associated disorders, affecting millions of people worldwide.
Collapse
|
33
|
Li Y, Zhang T, Huang Q, Sun Y, Chang X, Zhang H, Zhu Y, Han X. Inhibition of tumor suppressor p53 preserves glycation-serum induced pancreatic beta-cell demise. Endocrine 2016; 54:383-395. [PMID: 27160820 DOI: 10.1007/s12020-016-0979-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/30/2016] [Indexed: 12/15/2022]
Abstract
Tumor suppressor p53 is a transcriptional factor that determines cell fate in response to multiple stressors, such as oxidative stress and endoplasmic reticulum stress, in the majority of cells. However, its role in pancreatic beta cells is not well documented. Our previous research has revealed that glycation-serum (GS) induced pancreatic beta-cell demise through the AGEs-RAGE pathway. In the present study, we investigated the role of p53 in GS-related beta-cell demise. Using pancreatic islets beta-cell line INS-1 cells, we found that with GS treatment, the transcriptional activity of p53 was significantly evoked due to the increased amount of nuclear p53 protein. Resveratrol (RSV) was capable of further enhancing this transcriptional ability and consequently increased the population of dead beta cells under GS exposure. In contrast, inhibiting this transcriptional activity via p53 interference greatly protected beta cells from the damage provoked by GS, as well as damage strengthened by RSV. However, the pharmacological activation of PPARγ with troglitazone (TRO) only suppressed GS-induced, not RSV-induced, p53 activity. Moreover, the activation of PPARγ greatly preserved beta cells from GS-induced death. This protective effect recurred due to improved mitochondrial function with Bcl2 overexpression. Further, p53 activation could induce cellular apoptosis in primary rat islets. Our findings explore the broader role of p53 in regulating pancreatic beta-cell demise in the presence of GS and may provide a therapeutic target for the treatment and prevention of diabetes.
Collapse
Affiliation(s)
- Y Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - T Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Q Huang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Y Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - X Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - H Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Y Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - X Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
34
|
Aikawa E, Fujita R, Asai M, Kaneda Y, Tamai K. Receptor for Advanced Glycation End Products-Mediated Signaling Impairs the Maintenance of Bone Marrow Mesenchymal Stromal Cells in Diabetic Model Mice. Stem Cells Dev 2016; 25:1721-1732. [PMID: 27539289 DOI: 10.1089/scd.2016.0067] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) have been demonstrated to contribute to tissue regeneration. However, chronic pathological conditions, such as diabetes and aging, can result in a decreased number and/or quality of BM-MSCs. We therefore investigated the maintenance mechanism of BM-MSCs by studying signaling through the receptor for advanced glycation end products (RAGE), which is thought to be activated under various pathological conditions. The abundance of endogenous BM-MSCs decreased in a type 2 diabetes mellitus (DM2) model, as determined by performing colony-forming unit (CFU) assays. Flow cytometric analysis revealed that the prevalence of the Lin-/ckit-/CD106+/CD44- BM population, which was previously identified as a slow-cycling BM-MSC population, also decreased. Furthermore, in a streptozotocin-induced type 1 DM model (DM1), the CFUs of fibroblasts and the prevalence of the Lin-/ckit-/CD106+/CD44- BM population also significantly decreased. BM-MSCs in RAGE knockout (KO) mice were resistant to such reduction induced by streptozotocin treatment, suggesting that chronic RAGE signaling worsened the maintenance mechanism of BM-MSCs. Using an in vitro culture condition, BM-MSCs from RAGE-KO mice showed less proliferation and expressed significantly more Nanog and Oct-4, which are key factors in multipotency, than did wild-type BM-MSCs. Furthermore, RAGE-KO BM-MSCs showed a greater capacity for differentiation into mesenchymal lineages, such as adipocytes and osteocytes. These data suggested that RAGE signaling inhibition is useful for maintaining BM-MSCs in vitro. Together, our findings indicated that perturbation of BM-MSCs in DM could be partially explained by chronic RAGE signaling and that targeting the RAGE signaling pathway is a viable approach for maintaining BM-MSCs under chronic pathological conditions.
Collapse
Affiliation(s)
- Eriko Aikawa
- 1 Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| | - Ryo Fujita
- 1 Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan .,2 Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan .,3 Division of Gene Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| | - Maiko Asai
- 4 Faculty of Medicine, Hiroshima University , Higashihiroshima, Japan
| | - Yasufumi Kaneda
- 3 Division of Gene Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| | - Katsuto Tamai
- 1 Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| |
Collapse
|
35
|
Chiang CK, Wang CC, Lu TF, Huang KH, Sheu ML, Liu SH, Hung KY. Involvement of Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Advanced Glycation End Products-Induced Glomerular Mesangial Cell Injury. Sci Rep 2016; 6:34167. [PMID: 27665710 PMCID: PMC5035926 DOI: 10.1038/srep34167] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022] Open
Abstract
Advanced glycation end-products (AGEs)-induced mesangial cell death is one of major causes of glomerulus dysfunction in diabetic nephropathy. Both endoplasmic reticulum (ER) stress and autophagy are adaptive responses in cells under environmental stress and participate in the renal diseases. The role of ER stress and autophagy in AGEs-induced mesangial cell death is still unclear. Here, we investigated the effect and mechanism of AGEs on glomerular mesangial cells. AGEs dose-dependently decreased mesangial cell viability and induced cell apoptosis. AGEs also induced ER stress signals in a time- and dose-dependent manner. Inhibition of ER stress with 4-phenylbutyric acid effectively inhibited the activation of eIF2α and CHOP signals and reversed AGEs-induced cell apoptosis. AGEs also activated LC-3 cleavage, increased Atg5 expression, and decreased p62 expression, which indicated the autophagy induction in mesangial cells. Inhibition of autophagy by Atg5 siRNAs transfection aggravated AGEs-induced mesangial cell apoptosis. Moreover, ER stress inhibition by 4-phenylbutyric acid significantly reversed AGEs-induced autophagy, but autophagy inhibition did not influence the AGEs-induced ER stress-related signals activation. These results suggest that AGEs induce mesangial cell apoptosis via an ER stress-triggered signaling pathway. Atg5-dependent autophagy plays a protective role. These findings may offer a new strategy against AGEs toxicity in the kidney.
Collapse
Affiliation(s)
- Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics &Therapeutics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Ching-Chia Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Fong Lu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Kuan-Yu Hung
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Singh KK, Mantella LE, Pan Y, Quan A, Sabongui S, Sandhu P, Teoh H, Al-Omran M, Verma S. A global profile of glucose-sensitive endothelial-expressed long non-coding RNAs. Can J Physiol Pharmacol 2016; 94:1007-14. [DOI: 10.1139/cjpp-2015-0585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyperglycemia-related endothelial dysfunction is believed to be the crux of diabetes-associated micro- and macro-vascular complications. We conducted a systematic transcriptional survey to screen for human endothelial long non-coding RNAs (lncRNAs) regulated by elevated glucose levels. lncRNAs and protein-coding transcripts from human umbilical vein endothelial cells (HUVECs) cultured under high (25 mmol/L) or normal (5 mmol/L) glucose conditions for 24 h were profiled with the Arraystar Human LncRNA Expression Microarray V3.0. Of the 30 586 lncRNAs screened, 100 were significantly upregulated and 186 appreciably downregulated (P < 0.05) in response to high-glucose exposure. In the same HUVEC samples, 133 of the 26 109 mRNAs screened were upregulated and 166 downregulated. Of these 299 differentially expressed mRNAs, 26 were significantly associated with 28 differentially expressed long intergenic non-coding RNAs (P < 0.05). Bioinformatics analyses indicated that the mRNAs most upregulated are primarily enriched in axon guidance signaling pathways; those most downregulated are notably involved in pathways targeting vascular smooth muscle cell contraction, dopaminergic signaling, ubiquitin-mediated proteolysis, and adrenergic signaling. This is the first lncRNA and mRNA transcriptome profile of high-glucose-mediated changes in human endothelial cells. These observations may prove novel insights into novel regulatory molecules and pathways of hyperglycemia-related endothelial dysfunction and, accordingly, diabetes-associated vascular disease.
Collapse
Affiliation(s)
- Krishna K. Singh
- Divisions of Cardiac Surgery and Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Laura-Eve Mantella
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yi Pan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Sandra Sabongui
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Paul Sandhu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Hwee Teoh
- Divisions of Cardiac Surgery and Endocrinology & Metabolism, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Mohammed Al-Omran
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Surgery, King Saud University and the King Saud University – Li Ka Shing Collaborative Research Program, Riyadh, Kingdom of Saudi Arabia
| | - Subodh Verma
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
37
|
Zhang B, Chen Y, Shen Q, Liu G, Ye J, Sun G, Sun X. Myricitrin Attenuates High Glucose-Induced Apoptosis through Activating Akt-Nrf2 Signaling in H9c2 Cardiomyocytes. Molecules 2016; 21:molecules21070880. [PMID: 27399653 PMCID: PMC6274128 DOI: 10.3390/molecules21070880] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemia, as well as diabetes mellitus, has been shown to trigger cardiac cell apoptosis. We have previously demonstrated that myricitrin prevents endothelial cell apoptosis. However, whether myricitrin can attenuate H9c2 cell apoptosis remains unknown. In this study, we established an experiment model in H9c2 cells exposed to high glucose. We tested the hypothesis that myricitrin may inhibit high glucose (HG)-induced cardiac cell apoptosis as determined by TUNEL staining. Furthermore, myricitrin promoted antioxidative enzyme production, suppressed high glucose-induced reactive oxygen species (ROS) production and decreased mitochondrial membrane potential (MMP) in H9c2 cells. This agent significantly inhibited apoptotic protein expression, activated Akt and facilitated the transcription of NF-E2-related factor 2 (Nrf2)-mediated protein (heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO-1) expression as determined by Western blotting. Significantly, an Akt inhibitor (LY294002) or HO-1 inhibitor (ZnPP) not only inhibited myricitrin-induced HO-1/NQO-1 upregulation but also alleviated its anti-apoptotic effects. In summary, these observations demonstrate that myricitrin activates Nrf2-mediated anti-oxidant signaling and attenuates H9c2 cell apoptosis induced by high glucose via activation of Akt signaling.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Yaping Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Qiang Shen
- Center of Research and Development on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China.
| | - Guiyan Liu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|
38
|
Yin W, Li B, Li X, Yu F, Cai Q, Zhang Z, Cheng M, Gao H. Anti-inflammatory effects of grape seed procyanidin B2 on a diabetic pancreas. Food Funct 2016. [PMID: 26207855 DOI: 10.1039/c5fo00496a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) has increased considerably in recent years, highlighting the importance of developing new therapeutic strategies. Insulin-resistance and gradual dysfunction of pancreatic islets are the mainstay in the progression of T2DM. Therefore, preserving the function of the pancreas may lead to new prospective approaches. Our previous studies suggested that grape seed procyanidin B2 (GSPB2), a natural polyphenol product, exhibited protective effects on diabetic vasculopathy. However, effects of GSPB2 on a diabetic pancreas remain unknown. In this study, we provided strong evidence that GSPB2 exerted protective effects on a diabetic pancreas. GSPB2 attenuated the elevated body weights, food intake and advanced glycation end-product (AGE) levels in db/db mice (p < 0.05), though it had no significant effect on glucose levels. The increased islet sizes, insulin levels, as well as HOMA-IR were also improved by GSPB2 treatment in db/db mice (p < 0.05). Milk fat globule epidermal growth factor-8 (MFG-E8), an estimated target of GSPB2 in our previous studies, was up-regulated in pancreatic tissues whereas GSPB2 treatment down-regulated the protein level (p < 0.05). Since MFG-E8 is highly involved in inflammation, we further investigate pro-inflammatory cytokines interleukin-1β (IL-1β) and NLRP3 levels. We found that levels of IL-1β and NLRP3 increased in a diabetic pancreas while GSPB2 treatment notably attenuated these alterations (p < 0.05). In conclusion, our results suggest that inflammation is involved in the damage of a diabetic pancreas and GSPB2 provides protective effects at least in part through anti-inflammation.
Collapse
Affiliation(s)
- Wenbin Yin
- Department of Geriatrics, Qilu Hospital of Shandong University, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, Shandong, China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Maltais JS, Simard E, Froehlich U, Denault JB, Gendron L, Grandbois M. iRAGE as a novel carboxymethylated peptide that prevents advanced glycation end product-induced apoptosis and endoplasmic reticulum stress in vascular smooth muscle cells. Pharmacol Res 2015; 104:176-85. [PMID: 26707030 DOI: 10.1016/j.phrs.2015.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/06/2015] [Accepted: 12/15/2015] [Indexed: 01/11/2023]
Abstract
Advanced glycation end-products (AGE) and the receptor for AGE (RAGE) have been linked to numerous diabetic vascular complications. RAGE activation promotes a self-sustaining state of chronic inflammation and has been shown to induce apoptosis in various cell types. Although previous studies in vascular smooth muscle cells (VSMC) showed that RAGE activation increases vascular calcification and interferes with their contractile phenotype, little is known on the potential of RAGE to induce apoptosis in VSMC. Using a combination of apoptotic assays, we showed that RAGE stimulation with its ligand CML-HSA promotes apoptosis of VSMC. The formation of stress granules and the increase in the level of the associated protein HuR point toward RAGE-dependent endoplasmic reticulum (ER) stress, which is proposed as a key contributor of RAGE-induced apoptosis in VSMC as it has been shown to promote cell death via numerous mechanisms, including up-regulation of caspase-9. Chronic NF-κB activation and modulation of Bcl-2 homologs are also suspected to contribute to RAGE-dependent apoptosis in VSMC. With the goal of reducing RAGE signaling and its detrimental impact on VSMC, we designed a RAGE antagonist (iRAGE) derived from the primary amino acid sequence of HSA. The resulting CML peptide was selected for the high glycation frequency of the primary sequence in the native protein in vivo. Pretreatment with iRAGE blocked 69.6% of the increase in NF-κB signaling caused by RAGE activation with CML-HSA after 48h. Preincubation with iRAGE was successful in reducing RAGE-induced apoptosis, as seen through enhanced cell survival by SPR and reduced PARP cleavage. Activation of executioner caspases was 63.5% lower in cells treated with iRAGE before stimulation with CML-HSA. To our knowledge, iRAGE is the first antagonist shown to block AGE-RAGE interaction and we propose the molecule as an initial candidate for drug discovery.
Collapse
Affiliation(s)
- Jean-Sébastien Maltais
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Elie Simard
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Ulrike Froehlich
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Jean-Bernard Denault
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Louis Gendron
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Michel Grandbois
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
40
|
Saad MI, Abdelkhalek TM, Saleh MM, Kamel MA, Youssef M, Tawfik SH, Dominguez H. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells. Endocrine 2015; 50:537-67. [PMID: 26271514 DOI: 10.1007/s12020-015-0709-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/25/2015] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a heterogeneous, multifactorial, chronic disease characterized by hyperglycemia owing to insulin insufficiency and insulin resistance (IR). Recent epidemiological studies showed that the diabetes epidemic affects 382 million people worldwide in 2013, and this figure is expected to be 600 million people by 2035. Diabetes is associated with microvascular and macrovascular complications resulting in accelerated endothelial dysfunction (ED), atherosclerosis, and cardiovascular disease (CVD). Unfortunately, the complex pathophysiology of diabetic cardiovascular damage is not fully understood. Therefore, there is a clear need to better understand the molecular pathophysiology of ED in diabetes, and consequently, better treatment options and novel efficacious therapies could be identified. In the light of recent extensive research, we re-investigate the association between diabetes-associated metabolic disturbances (IR, subclinical inflammation, dyslipidemia, hyperglycemia, dysregulated production of adipokines, defective incretin and gut hormones production/action, and oxidative stress) and ED, focusing on oxidative stress and endothelial progenitor cells (EPCs). In addition, we re-emphasize that oxidative stress is the final common pathway that transduces signals from other conditions-either directly or indirectly-leading to ED and CVD.
Collapse
Affiliation(s)
- Mohamed I Saad
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Hudson Institute of Medical Research, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Taha M Abdelkhalek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Moustafa M Saleh
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shady H Tawfik
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Helena Dominguez
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
41
|
Advanced Glycation End Products Impair Voltage-Gated K+ Channels-Mediated Coronary Vasodilation in Diabetic Rats. PLoS One 2015; 10:e0142865. [PMID: 26562843 PMCID: PMC4642979 DOI: 10.1371/journal.pone.0142865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022] Open
Abstract
Background We have previously reported that high glucose impairs coronary vasodilation by reducing voltage-gated K+ (Kv) channel activity. However, the underlying mechanisms remain unknown. Advanced glycation end products (AGEs) are potent factors that contribute to the development of diabetic vasculopathy. The aim of this study was to investigate the role of AGEs in high glucose-induced impairment of Kv channels-mediated coronary vasodilation. Methods Patch-clamp recording and molecular biological techniques were used to assess the function and expression of Kv channels. Vasodilation of isolated rat small coronary arteries was measured using a pressurized myograph. Treatment of isolated coronary vascular smooth muscle cells (VSMCs) and streptozotocin-induced diabetic rats with aminoguanidine, the chemical inhibitor of AGEs formation, was performed to determine the contribution of AGEs. Results Incubation of VSMCs with high glucose reduced Kv current density by 60.4 ± 4.8%, and decreased expression of Kv1.2 and Kv1.5 both at the gene and protein level, whereas inhibiting AGEs formation or blocking AGEs interacting with their receptors prevented high glucose-induced impairment of Kv channels. In addition, diabetic rats manifested reduced Kv channels-mediated coronary dilation (9.3 ± 1.4% vs. 36.9 ± 1.4%, P < 0.05), which was partly corrected by the treatment with aminoguanidine (24.4 ± 2.2% vs. 9.3 ± 1.4%, P < 0.05). Conclusions Excessive formation of AGEs impairs Kv channels in VSMCs, then leading to attenuation of Kv channels-mediated coronary vasodilation.
Collapse
|