1
|
Kaplina AV, Kayumova EE, Vasil'eva EY, Vasichkina ES, Pervunina TM, Shemyakina OO, Guryanova NA, Kiseleva NS, Skorobogatova YV, Pelevina EV, Efimova EV, Novik EV, Valeeva ON, Malorodova AN, Petrova NA. Biomarkers and predictors of postoperative necrotizing enterocolitis in neonates with duct-dependent congenital heart defects undergoing cardiac surgery: a cohort study. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2024:81-101. [DOI: 10.31146/1682-8658-ecg-219-11-81-101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2025]
Abstract
The development of necrotizing enterocolitis (NEC) in neonates with duct-dependent congenital heart defects (CHD) who underwent cardiac surgery is accompanied by high mortality. Analysis of predictors is necessary for understanding the pathophysiology of NEC and development of approaches for prevention to achieve favorable outcomes of cardiac surgery. The purpose of the study was to develop a prognostic model for predicting the development of NEC after cardiac surgery in neonates with duct-dependent CHD. Methods. A prognostic cohort study was performed that included full-term neonates with duct-dependent CHD who underwent cardiac surgery at the Almazov National Medical Research Center from January 2021 to September 2023. The outcome was the development/absence of stage IB-III NEC in the postoperative period. Biomarkers of NEC (intestinal fatty acid binding protein (i-FABP, ng/ml), claudin-3 (CLDN3, ng/ml), calprotectin (CALPR, ng/ml), ischemia modified albumin (IMA, ng/ml), vascular endothelial growth factor A (VEGF A, pg/ml)) were measured by ELISA in the blood serum before cardiac surgery and 12-14 hours after surgery. We also analyzed clinical characteristics of neonates, C-reactive protein levels, complete blood count, abdominal ultrasound, ejection fraction (EF, Teicholtz) in the preoperative and postoperative periods, surgical parameters, P(v-a)CO2/C(a-v)O2 upon arrival from the operating room, vasoactive inotropic score (VIS) and arterial blood lactate levels in the first 24 hours after surgery. The association between predictors and the development of NEC after cardiac surgery was assessed using univariate and multivariate logistic regression analysis. Internal validation of the model was performed using 10-fold cross-validation. Results. During the observation period, 187 neonates underwent surgical treatment of duct-dependent CHD, of which 32 children developed stage IB-III NEC in the postoperative period (17.1%), two neonates required surgical treatment of NEC (6.3%). After meeting the non-inclusion and exclusion criteria, two groups of patients were formed: a main group (30 neonates who developed stages IB-III NEC in the postoperative period, of which stage III NEC was in one neonate) and a comparison group (40 neonates without NEC). Groups were comparable by types of CHD. Predictors associated with NEC (univariate analysis): intrauterine growth retardation (IUGR), formula feeding before surgery, high levels of IMA before on the first postoperative day (POD), procedures performed before surgery (Rashkind procedure/valvuloplasty/stenting), lower EF in in the early postoperative period, a higher maximum level of VIS in the first 24 hours after surgery, as well as a higher level of IR in the superior mesenteric artery (SMA) and thickening of the intestinal wall on the first postoperative day (POD) Independent preoperative predictors of NEC (AUC of model 0.885, specificity 0.867): IUGR (OR 32.2 (1.4-730.3), p=0.029), formula feeding (OR 12.6 (2.6-60.2), p=0.002), IMA level before surgery (OR 1.03 (1.01-1.04), p=0.004), CLDN3 level before surgery (OR 0.5 (0.3-0.9), p=0.013). Independent early postoperative predictors of NEC: IMA level on 12-14 hour after surgery (OR 1.02 (1.01-1.03), p=0.030), P(v-a)CO2/C(a-v)O2 immediately after surgery (OR 2.3 (1.2-4.4), p=0.008), IR>0.93 in SMA (OR 7.2 (1.6-32.4), p=0.011) and thickness of intestinal wall by ultrasound on POD 1 (OR 4.9 (1.3-19.2), p=0.021). Adding of VEGF A level (12-14 hour after surgery, negatively associated with NEC) to the model increased the specificity, but the predictor was not significant. AUC of postoperative model 0.862, specificity 0.800. The final model included preoperative (IUGR, formula feeding) and postoperative predictors (IMA, P(v-a)CO2/C(a-v)O2, IR of SMA>0.93, intestinal wall thickness), AUC=0.921, specificity 0.83. Conclusion. The identified predictors indirectly indicate the role of hypoxia in the pathophysiology of NEC in term neonates with duct-dependent CHD. Breast milk feeding/mixed feeding in the preoperative period may help reduce the risk of NEC in the postoperative period. Low levels of CLDN3 before surgery were associated with the development of NEC, but the interpretation of the result is controversial.
Collapse
|
2
|
Gilley SP, Zarate MA, Zheng L, Jambal P, Yazza DN, Chintapalli SV, MacLean PS, Wright CJ, Rozance PJ, Shankar K. Metabolic and fecal microbial changes in adult fetal growth restricted mice. Pediatr Res 2024; 95:647-659. [PMID: 37935884 PMCID: PMC10899111 DOI: 10.1038/s41390-023-02869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Fetal growth restriction (FGR) increases risk for development of obesity and type 2 diabetes. Using a mouse model of FGR, we tested whether metabolic outcomes were exacerbated by high-fat diet challenge or associated with fecal microbial taxa. METHODS FGR was induced by maternal calorie restriction from gestation day 9 to 19. Control and FGR offspring were weaned to control (CON) or 45% fat diet (HFD). At age 16 weeks, offspring underwent intraperitoneal glucose tolerance testing, quantitative MRI body composition assessment, and energy balance studies. Total microbial DNA was used for amplification of the V4 variable region of the 16 S rRNA gene. Multivariable associations between groups and genera abundance were assessed using MaAsLin2. RESULTS Adult male FGR mice fed HFD gained weight faster and had impaired glucose tolerance compared to control HFD males, without differences among females. Irrespective of weaning diet, adult FGR males had depletion of Akkermansia, a mucin-residing genus known to be associated with weight gain and glucose handling. FGR females had diminished Bifidobacterium. Metabolic changes in FGR offspring were associated with persistent gut microbial changes. CONCLUSION FGR results in persistent gut microbial dysbiosis that may be a therapeutic target to improve metabolic outcomes. IMPACT Fetal growth restriction increases risk for metabolic syndrome later in life, especially if followed by rapid postnatal weight gain. We report that a high fat diet impacts weight and glucose handling in a mouse model of fetal growth restriction in a sexually dimorphic manner. Adult growth-restricted offspring had persistent changes in fecal microbial taxa known to be associated with weight, glucose homeostasis, and bile acid metabolism, particularly Akkermansia, Bilophilia and Bifidobacteria. The gut microbiome may represent a therapeutic target to improve long-term metabolic outcomes related to fetal growth restriction.
Collapse
Affiliation(s)
- Stephanie P Gilley
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Miguel A Zarate
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lijun Zheng
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Purevsuren Jambal
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, USA
| | - Deaunabah N Yazza
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul S MacLean
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Clyde J Wright
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paul J Rozance
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
3
|
Bautista GM, Cera AJ, Schoenauer RJ, Persiani M, Lakshminrusimha S, Chandrasekharan P, Gugino SF, Underwood MA, McElroy SJ. Paneth cell ontogeny in term and preterm ovine models. Front Vet Sci 2024; 11:1275293. [PMID: 38318150 PMCID: PMC10839032 DOI: 10.3389/fvets.2024.1275293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Paneth cells are critically important to intestinal health, including protecting intestinal stem cells, shaping the intestinal microbiome, and regulating host immunity. Understanding Paneth cell biology in the immature intestine is often modeled in rodents with little information in larger mammals such as sheep. Previous studies have only established the distribution pattern of Paneth cells in healthy adult sheep. Our study aimed to examine the ontogeny, quantification, and localization of Paneth cells in fetal and newborn lambs at different gestational ages and with perinatal transient asphyxia. We hypothesized that ovine Paneth cell distribution at birth resembles the pattern seen in humans (highest concentrations in the ileum) and that ovine Paneth cell density is gestation-dependent. Methods Intestinal samples were obtained from 126-127 (preterm, with and without perinatal transient asphyxia) and 140-141 (term) days gestation sheep. Samples were quantified per crypt in at least 100 crypts per animal and confirmed as Paneth cells through in immunohistochemistry. Results Paneth cells had significantly higher density in the ileum compared to the jejunum and were absent in the colon. Discussion Exposure to perinatal transient asphyxia acutely decreased Paneth cell numbers. These novel data support the possibility of utilizing ovine models for understanding Paneth cell biology in the fetus and neonate.
Collapse
Affiliation(s)
- Geoanna M. Bautista
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Anjali J. Cera
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Rebecca J. Schoenauer
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Michele Persiani
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Satyan Lakshminrusimha
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | | | - Sylvia F Gugino
- Department of Pediatrics, University of Buffalo, Buffalo, NY, United States
| | - Mark A. Underwood
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Steven J. McElroy
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
4
|
Fung CM. Effects of intrauterine growth restriction on embryonic hippocampal dentate gyrus neurogenesis and postnatal critical period of synaptic plasticity that govern learning and memory function. Front Neurosci 2023; 17:1092357. [PMID: 37008232 PMCID: PMC10064986 DOI: 10.3389/fnins.2023.1092357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Intrauterine growth restriction (IUGR) complicates up to 10% of human pregnancies and is the second leading cause of perinatal morbidity and mortality after prematurity. The most common etiology of IUGR in developed countries is uteroplacental insufficiency (UPI). For survivors of IUGR pregnancies, long-term studies consistently show a fivefold increased risk for impaired cognition including learning and memory deficits. Among these, only a few human studies have highlighted sex differences with males and females having differing susceptibilities to different impairments. Moreover, it is well established from brain magnetic resonance imaging that IUGR affects both white and gray matter. The hippocampus, composed of the dentate gyrus (DG) and cornu ammonis (CA) subregions, is an important gray matter structure critical to learning and memory, and is particularly vulnerable to the chronic hypoxic-ischemic effects of UPI. Decreased hippocampal volume is a strong predictor for learning and memory deficits. Decreased neuron number and attenuated dendritic and axonal morphologies in both the DG and CA are additionally seen in animal models. What is largely unexplored is the prenatal changes that predispose an IUGR offspring to postnatal learning and memory deficits. This lack of knowledge will continue to hinder the design of future therapy to improve learning and memory. In this review, we will first present the clinical susceptibilities and human epidemiology data regarding the neurological sequelae after IUGR. We will follow with data generated using our laboratory's mouse model of IUGR, that mimics the human IUGR phenotype, to dissect at the cellular and molecular alterations in embryonic hippocampal DG neurogenesis. We will lastly present a newer topic of postnatal neuron development, namely the critical period of synaptic plasticity that is crucial in achieving an excitatory/inhibitory balance in the developing brain. To our knowledge, these findings are the first to describe the prenatal changes that lead to an alteration in postnatal hippocampal excitatory/inhibitory imbalance, a mechanism that is now recognized to be a cause of neurocognitive/neuropsychiatric disorders in at-risk individuals. Studies are ongoing in our laboratory to elucidate additional mechanisms that underlie IUGR-induced learning and memory impairment and to design therapy aimed at ameliorating such impairment.
Collapse
Affiliation(s)
- Camille M. Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
5
|
Dietary Epidermal Growth Factor Supplementation Alleviates Intestinal Injury in Piglets with Intrauterine Growth Retardation via Reducing Oxidative Stress and Enhancing Intestinal Glucose Transport and Barrier Function. Animals (Basel) 2022; 12:ani12172245. [PMID: 36077965 PMCID: PMC9454730 DOI: 10.3390/ani12172245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
EGF plays an important role in the intestinal repair and nutrients transport of animals. However, the effect of EGF on the intestinal health of piglets with IUGR has not been reported. Thus, the present study was performed to investigate the effects of EGF on the intestinal morphology, glucose absorption, antioxidant capacity, and barrier function of piglets with IUGR. A total of 6 NBW piglets and 12 IUGR piglets were randomly divided into three treatments: NC group (NBW piglets fed with basal diet, n = 6), IC group (IUGR piglets fed with basal diet, n = 6), and IE group (IUGR piglets fed with basal diet supplemented with 2 mg/kg EGF, n = 6). Growth performance, serum biochemical profile, jejunum histomorphology, jejunum glucose absorption and antioxidant capacity, and jejunal barrier function were measured. The results showed that EGF supplementation significantly increased the final body weight (FBW), average daily gain (ADG), and average daily feed intake (ADFI) of piglets with IUGR; EGF supplementation significantly increased the total protein (TP), glucose (GLU), and immunoglobulin G (IgG) levels compared with the IUGR piglets in the IC group; EGF administration effectively exhibited an increased jejunum villus height (VH) and the villus-height-to-crypt-depth ratio (V/C) of IUGR piglets compared with the IC group; EGF supplementation significantly increased sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) activity, intestinal alkaline phosphatase (AKP) activity, glucose transporter sodium/glucose cotransporter 1 (SGLT1), glucose transporter 2 (GLUT2), and AMP-activated protein kinase α1 (AMPK-α1) mRNA expressions in the jejunum of IUGR piglets compared with the IC group; EGF supplementation exhibited increased superoxide dismutase (SOD) activity and total antioxidant capacity (T-AOC) levels, tended to increase glutathione peroxidase (GSH-Px) and catalase (CAT) activities, and tended to decrease the malondialdehyde (MDA) level in the jejunum of IUGR piglets compared with the IC group; EGF supplementation significantly increased ZO-1, Claudin-1, Occludin, and MUC2 mRNA expressions and improved secreted immunoglobulin A (sIgA) secretion in the jejunum of IUGR piglets compared with the IC group and tended to decrease the interleukin 1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α) levels in the jejunum of IUGR piglets compared with the IC group. Pearson’s correlation analysis further showed that EGF can promote intestinal development and nutrient absorption by promoting intestinal barrier function, thus improving the growth performance of IUGR piglets.
Collapse
|
6
|
Intrauterine growth restriction and its impact on intestinal morphophysiology throughout postnatal development in pigs. Sci Rep 2022; 12:11810. [PMID: 35821501 PMCID: PMC9276813 DOI: 10.1038/s41598-022-14683-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/10/2022] [Indexed: 11/08/2022] Open
Abstract
Intrauterine growth restriction (IUGR) compromises fetal development, leading to low birth weight, and predisposes to gastrointestinal disorders. Pigs that suffered IUGR present poor postnatal development, resulting in great economic losses to the industry. The small intestine may be involved with impaired development, but studies investigating this issue are still limited. Thus, the present study aimed to investigate small intestine morphofunctional alterations in IUGR pigs throughout the production phases (birth to 150 days). IUGR pigs presented lower body weight from birth to the finishing phase (P < 0.05). Although histomorphometrical parameters were not affected during the pre-weaning period, their commitment was observed specifically in the duodenum of the IUGR group at older ages (P < 0.05). The most detrimental effects on the small intestine, such as deeper duodenum crypts’ depth, lower villus height:crypt depth ratio and absorptive area, increased apoptosis and lower proliferation of the duodenum epithelium were noticed at 70 days of age (P < 0.05). Additionally, IUGR pigs presented the lowest chymotrypsin and amylase activities at 70 and 150 days of age, respectively (P < 0.05). These findings may contribute to the elucidation of morphofunctional disorders of the small intestine in IUGR pigs throughout the different production phases, suggesting that poor postnatal development may be due to intestinal damage.
Collapse
|
7
|
Lyu L, Zhou X, Zhang M, Liu L, Liu T, Niu H, Wu Y, Liang C, Han X, Zhang L. Lactobacillus
derived from breast milk facilitate intestinal development in
IUGR
rats. J Appl Microbiol 2022; 133:503-514. [PMID: 35429125 DOI: 10.1111/jam.15576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Linzheng Lyu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang China
| | | | - Meng Zhang
- The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine Harbin Heilongjiang China
| | - Li Liu
- The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine Harbin Heilongjiang China
| | - Tongjie Liu
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Haiyue Niu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang China
| | - Yifan Wu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang China
| | - Cong Liang
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang China
| | - Xue Han
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang China
| | - Lanwei Zhang
- College of Food Science and Engineering Ocean University of China Qingdao China
| |
Collapse
|
8
|
Healy DB, Ryan CA, Ross RP, Stanton C, Dempsey EM. Clinical implications of preterm infant gut microbiome development. Nat Microbiol 2022; 7:22-33. [PMID: 34949830 DOI: 10.1038/s41564-021-01025-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Perturbations to the infant gut microbiome during the first weeks to months of life affect growth, development and health. In particular, assembly of an altered intestinal microbiota during infant development results in an increased risk of immune and metabolic diseases that can persist into childhood and potentially into adulthood. Most research into gut microbiome development has focused on full-term babies, but health-related outcomes are also important for preterm babies. The systemic physiological immaturity of very preterm gestation babies (born earlier than 32 weeks gestation) results in numerous other microbiome-organ interactions, the mechanisms of which have yet to be fully elucidated or in some cases even considered. In this Perspective, we compare assembly of the intestinal microbiome in preterm and term infants. We focus in particular on the clinical implications of preterm infant gut microbiome composition and discuss the prospects for microbiome diagnostics and interventions to improve the health of preterm babies.
Collapse
Affiliation(s)
- David B Healy
- APC Microbiome Ireland, University College Cork, Cork, Ireland. .,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| | - C Anthony Ryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, Cork University Hospital, Cork, Ireland
| |
Collapse
|
9
|
Intrauterine Growth Restriction Causes Abnormal Embryonic Dentate Gyrus Neurogenesis in Mouse Offspring That Leads to Adult Learning and Memory Deficits. eNeuro 2021; 8:ENEURO.0062-21.2021. [PMID: 34544755 PMCID: PMC8503959 DOI: 10.1523/eneuro.0062-21.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
Human infants who suffer from intrauterine growth restriction (IUGR), which is a failure to attain their genetically predetermined weight, are at increased risk for postnatal learning and memory deficits. Hippocampal dentate gyrus (DG) granule neurons play an important role in memory formation; however, it is unknown whether IUGR affects embryonic DG neurogenesis, which could provide a potential mechanism underlying abnormal postnatal learning and memory function. Using a mouse model of the most common cause of IUGR, induced by hypertensive disease of pregnancy, we first assessed adult learning and memory function. We quantified the percentages of embryonic hippocampal DG neural stem cells (NSCs) and progenitor cells and developing glutamatergic granule neurons, as well as hippocampal volumes and neuron cell count and morphology 18 and 40 d after delivery. We characterized the differential embryonic hippocampal transcriptomic pathways between appropriately grown and IUGR mouse offspring. We found that IUGR offspring of both sexes had short-term adult learning and memory deficits. Prenatally, we found that IUGR caused accelerated embryonic DG neurogenesis and Sox2+ neural stem cell depletion. IUGR mice were marked by decreased hippocampal volumes and decreased doublecortin+ neuronal progenitors with increased mean dendritic lengths at postnatal day 18. Consistent with its known molecular role in embryonic DG neurogenesis, we also found evidence for decreased Wnt pathway activity during IUGR. In conclusion, we have discovered that postnatal memory deficits are associated with accelerated NSC differentiation and maturation into glutamatergic granule neurons following IUGR, a phenotype that could be explained by decreased embryonic Wnt signaling.
Collapse
|
10
|
Niu Y, Zhao Y, He J, Yun Y, Shen M, Gan Z, Zhang L, Wang T. Dietary dihydroartemisinin supplementation alleviates intestinal inflammatory injury through TLR4/NOD/NF-κB signaling pathway in weaned piglets with intrauterine growth retardation. ACTA ACUST UNITED AC 2021; 7:667-678. [PMID: 34430721 PMCID: PMC8361298 DOI: 10.1016/j.aninu.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 01/10/2023]
Abstract
The aim of present study was to evaluate whether diets supplemented with dihydroartemisinin (DHA) could alleviate intestinal inflammatory injury in weaned piglets with intrauterine growth retardation (IUGR). Twelve normal birth weight (NBW) piglets and 12 piglets with IUGR were fed a basal diet (NBW-CON and IUCR-CON groups), and another 12 piglets with IUGR were fed the basal diet supplemented with DHA at 80 mg/kg (IUGR-DHA group) from 21 to 49 d of age. At 49 d of age, 8 piglets with similar body weight in each group were sacrificed. The jejunal and ileal samples were collected for further analysis. The results showed that IUGR impaired intestinal morphology, increased intestinal inflammatory response, raised enterocyte apoptosis and reduced enterocyte proliferation and activated transmembrane toll-like receptor 4 (TLR4)/nucleotide-binding and oligomerization domain (NOD)/nuclear factor-κB (NF-κB) signaling pathway. Dihydroartemisinin inclusion ameliorated intestinal morphology, indicated by increased villus height, villus height-to-crypt depth ratio, villus surface area and decreased villus width of piglets with IUGR (P < 0.05). Compared with NBW piglets, IUGR piglets supplemented with DHA exhibited higher apoptosis index and caspase-3 expression, and lower proliferation index and proliferating cell nuclear antigen expression in the intestine (P < 0.05). Dihydroartemisinin supplementation attenuated the intestinal inflammation of piglets with IUGR, indicated by increased concentrations of intestinal inflammatory cytokines and lipopolysaccharides (P < 0.05). In addition, DHA supplementation down-regulated the related mRNA expressions of TLR4/NOD/NF-κB signaling pathway and upregulated mRNA expressions of negative regulators of TLR4 and NOD signaling pathway in the intestine of piglets with IUGR (P < 0.05). Piglets in the IUGR-DHA group showed lower protein expressions of TLR4, phosphorylated NF-κB (pNF-κB) inhibitor α, nuclear pNF-κB, and higher protein expression of cytoplasmic pNF-κB in the intestine than those in the IUGR-CON group (P < 0.05). In conclusion, DHA supplementation could improve intestinal morphology, regulate enterocyte proliferation and apoptosis, and alleviate intestinal inflammation through TLR4/NOD/NF-κB signaling pathway in weaned piglets with IUGR.
Collapse
Affiliation(s)
- Yu Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongwei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhending Gan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Watson SN, McElroy SJ. Potential Prenatal Origins of Necrotizing Enterocolitis. Gastroenterol Clin North Am 2021; 50:431-444. [PMID: 34024450 DOI: 10.1016/j.gtc.2021.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Necrotizing enterocolitis is a serious and yet incompletely understood gastrointestinal disease of infancy that predominately impacts premature neonates. Prevention is a key strategy for the management of necrotizing enterocolitis. Although postnatal risk factors have been the focus of prevention efforts, obstetric complications, including intrauterine inflammation and infection, growth restriction, preeclampsia, and prenatal medications, have been associated with an increased risk of necrotizing enterocolitis. This article reviews the evidence behind the prenatal risk factors for necrotizing enterocolitis, and discusses how these risk factors may elucidate the pathogenesis of necrotizing enterocolitis and provide insight into prevention and treatment.
Collapse
Affiliation(s)
- Sarah N Watson
- Obstetrics and Gynecology, Department of Obstetrics and Gynecology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1080, USA
| | - Steven J McElroy
- Stead Family Department of Pediatrics, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1080, USA; Department of Microbiology and Immunology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1080, USA.
| |
Collapse
|
12
|
Qi M, Tan B, Wang J, Liao S, Li J, Cui Z, Shao Y, Ji P, Yin Y. Postnatal growth retardation is associated with deteriorated intestinal mucosal barrier function using a porcine model. J Cell Physiol 2021; 236:2631-2648. [PMID: 32853405 DOI: 10.1002/jcp.30028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/18/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
Individuals with postnatal growth retardation (PGR) are prone to developing chronic diseases. Abnormal development in small intestine is casually implicated in impaired growth. However, the exact mechanism is still implausible. In this present study, PGR piglets (aged 42 days) were employed as a good model to analyze developmental changes in intestinal mucosal barrier function. Our data demonstrated that PGR piglets exhibited impaired jejunal and ileal epithelial villous morphology and permeability, accompanied by decreased cell proliferation ability and increased apoptosis rate. In addition, the expression of tight junction proteins (ZO-1, claudin 1, and occludin) and E-cadherin was markedly inhibited by PGR. The expression of P-glycoprotein was significantly reduced in PGR piglets, as well as decreased activity of lysozyme. Moreover, the mRNA abundance and content of inflammatory cytokines were significantly increased in the intestinal mucosa and plasma of PGR piglets, respectively. PGR also contributed to lower level of sIgA, and higher level of CD68-positive rate, β-defensins, and protein expression involved p38 MAPK/NF-κB pathway. Furthermore, PGR altered the intestinal microbial community such as decreased genus Alloprevotella and Oscillospira abundances, and led to lower microbial-derived butyrate production, which may be potential targets for treatment. Collectively, our findings indicated that the intestinal mucosal barrier function of PGR piglets could develop the nutritional intervention strategies in prevention and treatment of the intestinal mucosal barrier dysfunction in piglets and humans.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technolaogy, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhijuan Cui
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technolaogy, Hunan Agricultural University, Changsha, Hunan, China
| | - Yirui Shao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Ji
- Department of Nutrition, University of California, Davis, California
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technolaogy, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
13
|
Lueschow SR, McElroy SJ. The Paneth Cell: The Curator and Defender of the Immature Small Intestine. Front Immunol 2020; 11:587. [PMID: 32308658 PMCID: PMC7145889 DOI: 10.3389/fimmu.2020.00587] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
Paneth cells were first described in the late 19th century by Gustav Schwalbe and Josef Paneth as columnar epithelial cells possessing prominent eosinophilic granules in their cytoplasm. Decades later there is continued interest in Paneth cells as they play an integral role in maintaining intestinal homeostasis and modulating the physiology of the small intestine and its associated microbial flora. Paneth cells are highly specialized secretory epithelial cells located in the small intestinal crypts of Lieberkühn. The dense granules produced by Paneth cells contain an abundance of antimicrobial peptides and immunomodulating proteins that function to regulate the composition of the intestinal flora. This in turn plays a significant role in secondary regulation of the host microvasculature, the normal injury and repair mechanisms of the intestinal epithelial layer, and the levels of intestinal inflammation. These critical functions may have even more importance in the immature intestine of premature infants. While Paneth cells begin to develop in the middle of human gestation, they do not become immune competent or reach their adult density until closer to term gestation. This leaves preterm infants deficient in normal Paneth cell biology during the greatest window of susceptibility to develop intestinal pathology such as necrotizing enterocolitis (NEC). As 10% of infants worldwide are currently born prematurely, there is a significant population of infants contending with an inadequate cohort of Paneth cells. Infants who have developed NEC have decreased Paneth cell numbers compared to age-matched controls, and ablation of murine Paneth cells results in a NEC-like phenotype suggesting again that Paneth cell function is critical to homeostasis to the immature intestine. This review will provide an up to date and comprehensive look at Paneth cell ontogeny, the impact Paneth cells have on the host-microbial axis in the immature intestine, and the repercussions of Paneth cell dysfunction or loss on injury and repair mechanisms in the immature gut.
Collapse
Affiliation(s)
- Shiloh R Lueschow
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Steven J McElroy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.,Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
14
|
Feeding Formula Eliminates the Necessity of Bacterial Dysbiosis and Induces Inflammation and Injury in the Paneth Cell Disruption Murine NEC Model in an Osmolality-Dependent Manner. Nutrients 2020; 12:nu12040900. [PMID: 32224880 PMCID: PMC7230818 DOI: 10.3390/nu12040900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
Necrotizing enterocolitis (NEC) remains a significant cause of morbidity and mortality in preterm infants. Formula feeding is a risk factor for NEC and osmolality, which is increased by the fortification that is required for adequate growth of the infant, has been suggested as a potential cause. Our laboratory has shown that Paneth cell disruption followed by induction of dysbiosis can induce NEC-like pathology in the absence of feeds. We hypothesized adding formula feeds to the model would exacerbate intestinal injury and inflammation in an osmolality-dependent manner. NEC-like injury was induced in 14-16 day-old C57Bl/6J mice by Paneth cell disruption with dithizone or diphtheria toxin, followed by feeding rodent milk substitute with varying osmolality (250-1491 mOsm/kg H2O). Animal weight, serum cytokines and osmolality, small intestinal injury, and cecal microbial composition were quantified. Paneth cell-disrupted mice fed formula had significant NEC scores compared to controls and no longer required induction of bacterial dysbiosis. Significant increases in serum inflammatory markers, small intestinal damage, and overall mortality were osmolality-dependent and not related to microbial changes. Overall, formula feeding in combination with Paneth cell disruption induced NEC-like injury in an osmolality-dependent manner, emphasizing the importance of vigilance in designing preterm infant feeds.
Collapse
|
15
|
Church JA, Chasekwa B, Rukobo S, Govha M, Lee B, Carmolli MP, Ntozini R, Mutasa K, McNeal MM, Majo FD, Tavengwa NV, Kirkpatrick BD, Moulton LH, Humphrey JH, Prendergast AJ. Predictors of oral rotavirus vaccine immunogenicity in rural Zimbabwean infants. Vaccine 2020; 38:2870-2878. [PMID: 32088018 PMCID: PMC7065039 DOI: 10.1016/j.vaccine.2020.01.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Oral rotavirus vaccines (RVV) have poor immunogenicity in low-income countries, for reasons that remain unclear. This study identified the determinants of RVV immunogenicity among infants in rural Zimbabwe. METHODS Anti-rotavirus IgA titres were measured among a sub-group of infants enrolled in the Sanitation Hygiene Infant Nutrition Efficacy (SHINE) trial (NCT01824940). SHINE was a cluster-randomized trial of improved infant and young child feeding, and improved water, sanitation and hygiene (WASH) in two rural Zimbabwean districts. Infants received RVV as part of the national immunisation programme. Among HIV-unexposed infants in the non-WASH trial arms, we evaluated associations between potential risk factors (vaccine schedule and dose, maternal and infant nutritional status, infant diarrhoea, and household environment) and RVV immunogenicity (seroconversion, seropositivity and geometric mean titres) using multivariable regression. RESULTS Among 219 infants with seroconversion data, 43 (20%) successfully seroconverted and 176 (80%) failed to seroconvert to RVV. Seroconversion was positively associated with a higher length-for-age Z-score (LAZ) around the time of vaccination (adjusted RR 1.27 (95% CI 1.04, 1.55), P = 0.021), and negatively associated with concurrent OPV and RVV administration (adjusted RR 0.36 (0.19, 0.71), P = 0.003). Among 472 infants with post-vaccination titres, a higher LAZ score was associated with increased seropositivity (aRR 1.21 (95% CI 1.06, 1.38), P = 0.004), and higher birthweight was associated with increased IgA titres (0.45 (95%CI 0.18, 1.09) U/mL greater per 100 g gain in birthweight; P = 0.001). CONCLUSIONS Infant ponderal and linear growth were positively associated with RVV immunogenicity, while concurrent administration of OPV was negatively associated with RVV immunogenicity. Together, these findings suggest that improving foetal growth and separating RVV and OPV administration are plausible approaches to increasing RVV immunogenicity.
Collapse
Affiliation(s)
- James A Church
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, UK.
| | - Bernard Chasekwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Sandra Rukobo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Margaret Govha
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Benjamin Lee
- Vaccine Testing Center, Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Marya P Carmolli
- Vaccine Testing Center, Department of Microbiology & Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Monica M McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Florence D Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Naume V Tavengwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Beth D Kirkpatrick
- Vaccine Testing Center, Department of Microbiology & Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Lawrence H Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jean H Humphrey
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew J Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, UK; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
16
|
Carroll L, Owen LA. Current evidence and outcomes for retinopathy of prematurity prevention: insight into novel maternal and placental contributions. EXPLORATION OF MEDICINE 2020; 1:4-26. [PMID: 32342063 PMCID: PMC7185238 DOI: 10.37349/emed.2020.00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a blinding morbidity of preterm infants, which represents a significant clinical problem, accounting for up to 40% of all childhood blindness. ROP displays a range of severity, though even mild disease may result in life-long visual impairment. This is complicated by the fact that our current treatments have significant ocular and potentially systemic effects. Therefore, disease prevention is desperately needed to mitigate the life-long deleterious effects of ROP for preterm infants. Although ROP demonstrates a delayed onset of retinal disease following preterm birth, representing a potential window for prevention, we have been unable to sufficiently alter the natural disease course and meaningfully prevent ROP. Prevention therapeutics requires knowledge of early ROP molecular changes and risk, occurring prior to clinical retinal disease. While we still have an incomplete understanding of these disease mechanisms, emerging data integrating contributions of maternal/placental pathobiology with ROP are poised to inform novel approaches to prevention. Herein, we review the molecular basis for current prevention strategies and the clinical outcomes of these interventions. We also discuss how insights into early ROP pathophysiology may be gained by a better understanding of maternal and placental factors playing a role in preterm birth.
Collapse
Affiliation(s)
- Lara Carroll
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 4132, USA
| | - Leah A. Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 4132, USA
| |
Collapse
|
17
|
Tao S, Bai Y, Li T, Li N, Wang J. Original low birth weight deteriorates the hindgut epithelial barrier function in pigs at the growing stage. FASEB J 2019; 33:9897-9912. [PMID: 31170357 DOI: 10.1096/fj.201900204rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The deteriorative effect of low birth weight (LBW) on the mucosal permeability of the small intestine in piglets has been widely confirmed. However, whether the hindgut epithelial barrier function in LBW pigs is deteriorated during the growing stage is still unclear. Our study investigated differences in the hindgut epithelial barrier function between LBW and normal birth weight pigs during the growing stage (d 90). Our data demonstrated that the hindgut epithelium of LBW pigs has a high histopathological score, accompanied by decreased antioxidant capacity and increased apoptosis rate, as well as elevated expression and activity of caspase-3. In addition, the number of intestinal goblet cells and gene expression of mucin 2 were significantly down-regulated in LBW pigs. The expression of tight junction proteins (ZO-1 and occludin) was markedly inhibited by the LBW. The mRNA abundance of inflammatory cytokines such as TNF-α, IL-1β, and IL-8 was significantly increased in the hindgut mucosa of LBW pigs. Furthermore, our data revealed that LBW altered the intestinal microbial community in the hindgut mucosa of pigs. Collectively, these finding add to our understanding of the mechanisms responsible for hindgut epithelial barrier dysfunction in LBW pigs during the growing stage and facilitate the development of nutritional intervention strategies.-Tao, S., Bai, Y., Li, T., Li, N., Wang, J. Original low birth weight deteriorates the hindgut epithelial barrier function in pigs at the growing stage.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Zhang H, Li Y, Chen Y, Ying Z, Su W, Zhang T, Dong Y, Htoo JK, Zhang L, Wang T. Effects of dietary methionine supplementation on growth performance, intestinal morphology, antioxidant capacity and immune function in intra-uterine growth-retarded suckling piglets. J Anim Physiol Anim Nutr (Berl) 2019; 103:868-881. [PMID: 30941824 DOI: 10.1111/jpn.13084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/02/2023]
Abstract
This study investigated the effects of dietary supplementation with L -methionine (L -Met), DL -methionine (DL -Met) and calcium salt of the methionine hydroxyl analog (MHA-Ca) on growth performance, intestinal morphology, antioxidant capacity and immune function in intra-uterine growth-retarded (IUGR) suckling piglets. Six normal birthweight (NBW) female piglets and 24 same-sex IUGR piglets were selected at birth. Piglets were fed nutrient adequate basal diet supplemented with 0.08% L -alanine (NBW-CON), 0.08% L -alanine (IUGR-CON), 0.12% L -Met (IUGR-LM), 0.12% DL -Met (IUGR-DLM) and 0.16% MHA-Ca (IUGR-MHA-Ca) from 7 to 21 days of age respectively (n = 6). The results indicated that IUGR decreased average daily milk (dry matter) intake and average daily gain and increased feed conversion ratio of suckling piglets (p < 0.05). Compared with the NBW-CON piglets, IUGR also impaired villus morphology and reduced antioxidant capacity and immune homeostasis in the intestine of IUGR-CON piglets (p < 0.05). Supplementation with L -Met enhanced jejunal villus height (VH) and villus area and ileal VH of IUGR piglets compared with IUGR-CON piglets (p < 0.05). Similarly, DL -Met supplementation increased VH and the ratio of VH to crypt depth in the jejunum compared with IUGR-CON pigs (p < 0.05). Supplementation with L -Met and DL -Met (0.12%) tended to increase reduced glutathione content and reduced glutathione: oxidized glutathione ratio and decrease protein carbonyl concentration in the jejunum of piglets when compared with the IUGR-CON group (p < 0.10). However, supplementation with MHA-Ca had no effect on the intestinal redox status of IUGR piglets (p > 0.10). In conclusion, supplementation with either L -Met or DL -Met has a beneficial effect on the intestinal morphology and antioxidant capacity of IUGR suckling piglets.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Postdoctoral Research Station of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yue Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Postdoctoral Research Station of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhixiong Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weipeng Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tao Zhang
- Evonik Degussa (China) Co., Ltd, Beijing, China
| | - Yan Dong
- Evonik Degussa (China) Co., Ltd, Beijing, China
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau, Germany
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Peña-Villalobos I, Casanova-Maldonado I, Lois P, Sabat P, Palma V. Adaptive Physiological and Morphological Adjustments Mediated by Intestinal Stem Cells in Response to Food Availability in Mice. Front Physiol 2019; 9:1821. [PMID: 30670976 PMCID: PMC6331426 DOI: 10.3389/fphys.2018.01821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022] Open
Abstract
Several studies have evaluated plastic changes in the morphology of the digestive tract in rodents subjected to caloric restriction or restricted availability. Nevertheless, studies that link these morphological responses to physiological consequences are scarce. In order to investigate short-term plastic responses in the intestine, we acclimated adult Mus musculus (BALB/c) males for 20 days to four distinctive treatments: two caloric regimens (ad libitum and 60% of calorie ingestion) and two levels of periodicity of the regimens (continuous and stochastic treatment). At the end of the treatment we analyzed the cell proliferation and cell death dynamics of small intestinal crypts in these animals. In addition, we measured organ masses and lengths, hydrolytic digestive enzyme activities, and energy output from feces. Finally, in order to explore the metabolic changes generated by these dietary conditions we assessed the catabolic activity (i.e., enzymes) of the liver. Our results show that individuals acclimated to a continuous and 60% regimen presented longer intestines in comparison to the other treatments. Indeed, their intestines grew with a rate of 0.22 cm/day, generating a significant caloric reduction in the content of their feces. Besides, both mass and intestinal lengths were predicted strongly by the stabilization coefficient of BrdU+ proliferating cells per crypt, the latter correlating positively with the activity of n-aminopeptidases. Interestingly, by using pharmacological inhibition of the kinase mammalian target of rapamycin complex 1 (mTORC1) by Rapamycin, we were able to recapitulate similar changes in the proliferation dynamics of intestinal stem cells. Based on our results, we propose that the impact of caloric restriction on macroscopic variation in morphology and functional changes in digestive n-aminopeptidases occurs through synchronization in the proliferation rate of stem and/or progenitor cells located in the small intestinal crypts and requires mTORC1 as a key mediator. Hence, we suggest that an excessive stem and progenitor activity could result in increased crypts branching and might therefore underlie the reported intestinal tissue expansion in response to short-term caloric restriction. Summarizing, we demonstrate for the first time that short-term caloric restriction induces changes in the level of cell proliferation dynamics explaining in part digestive tract plasticity in adaptive performance.
Collapse
Affiliation(s)
- Isaac Peña-Villalobos
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ignacio Casanova-Maldonado
- Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Lois
- Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Verónica Palma
- Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Zhang H, Li Y, Chen Y, Zhang L, Wang T. N-Acetylcysteine protects against intrauterine growth retardation-induced intestinal injury via restoring redox status and mitochondrial function in neonatal piglets. Eur J Nutr 2018; 58:3335-3347. [PMID: 30535793 DOI: 10.1007/s00394-018-1878-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Intrauterine growth retardation (IUGR) is detrimental to the intestinal development of neonates, yet satisfactory treatment strategies remain limited. This study was, therefore, conducted using neonatal piglets as a model to investigate the potential of N-acetylcysteine (NAC) to alleviate intestinal damage caused by IUGR. METHODS Seven normal birth weight (NBW) and fourteen IUGR neonatal male piglets were selected and then fed a basal milk diet (NBW-CON and IUGR-CON groups) or a basal milk diet supplemented with 1.2 g NAC per kg of diet (IUGR-NAC group) from 7 to 21 days of age (n = 7). Parameters associated with the severity of intestinal injury, villus morphology and ultrastructural structure, redox status, and mitochondrial function were analyzed. RESULTS Compared with the NBW-CON piglets, the IUGR-CON piglets exhibited decreased villus height and greater numbers of apoptotic cells in jejunum, along with the increases in malondialdehyde and protein carbonyl concentrations and a decreased adenosine triphosphate (ATP) content. Treatment with NAC significantly increased jejunal superoxide dismutase activity, reduced glutathione: oxidized glutathione ratio, and the mRNA abundance of nuclear respiratory factor 2, heme oxygenase 1, and superoxide dismutase 2 in the IUGR-NAC piglets compared with the IUGR-CON piglets. In addition, NAC improved the efficiency of mitochondrial oxidative metabolism and ATP generation, ameliorated mitochondrial swelling, and inhibited the overproduction of mitochondrial superoxide anion in the jejunal mucosa. CONCLUSIONS Dietary supplementation of NAC shows promise for attenuating the early intestinal injury of young piglets with IUGR, probably through its antioxidant action to restore redox status and mitochondrial function.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- Postdoctoral Research Station of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, 200240, People's Republic of China
| | - Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- Postdoctoral Research Station of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, People's Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Spradley FT, Smith JA, Alexander BT, Anderson CD. Developmental origins of nonalcoholic fatty liver disease as a risk factor for exaggerated metabolic and cardiovascular-renal disease. Am J Physiol Endocrinol Metab 2018; 315:E795-E814. [PMID: 29509436 PMCID: PMC6293166 DOI: 10.1152/ajpendo.00394.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intrauterine growth restriction (IUGR) is linked to increased risk for chronic disease. Placental ischemia and insufficiency in the mother are implicated in predisposing IUGR offspring to metabolic dysfunction, including hypertension, insulin resistance, abnormalities in glucose homeostasis, and nonalcoholic fatty liver disease (NAFLD). It is unclear whether these metabolic disturbances contribute to the developmental origins of exaggerated cardiovascular-renal disease (CVRD) risk accompanying IUGR. IUGR impacts the pancreas, adipose tissue, and liver, which are hypothesized to program for hepatic insulin resistance and subsequent NAFLD. NAFLD is projected to become the major cause of chronic liver disease and contributor to uncontrolled type 2 diabetes mellitus, which is a leading cause of chronic kidney disease. While NAFLD is increased in experimental models of IUGR, lacking is a full comprehension of the mechanisms responsible for programming of NAFLD and whether this potentiates susceptibility to liver injury. The use of well-established and clinically relevant rodent models, which mimic the clinical characteristics of IUGR, metabolic disturbances, and increased blood pressure in the offspring, will permit investigation into mechanisms linking adverse influences during early life and later chronic health. The purpose of this review is to propose mechanisms, including those proinflammatory in nature, whereby IUGR exacerbates the pathogenesis of NAFLD and how these adverse programmed outcomes contribute to exaggerated CVRD risk. Understanding the etiology of the developmental origins of chronic disease will allow investigators to uncover treatment strategies to intervene in the mother and her offspring to halt the increasing prevalence of metabolic dysfunction and CVRD.
Collapse
Affiliation(s)
- Frank T Spradley
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, School of Medicine, The University of Mississippi Medical Center , Jackson, Mississippi
- Cardiovascular-Renal Research Center, The University of Mississippi Medical Center , Jackson, Mississippi
- Department of Physiology and Biophysics, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Jillian A Smith
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, School of Medicine, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Barbara T Alexander
- Cardiovascular-Renal Research Center, The University of Mississippi Medical Center , Jackson, Mississippi
- Department of Physiology and Biophysics, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Christopher D Anderson
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, School of Medicine, The University of Mississippi Medical Center , Jackson, Mississippi
- Cardiovascular-Renal Research Center, The University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
22
|
Lueschow SR, Stumphy J, Gong H, Kern SL, Elgin TG, Underwood MA, Kalanetra KM, Mills DA, Wong MH, Meyerholz DK, Good M, McElroy SJ. Loss of murine Paneth cell function alters the immature intestinal microbiome and mimics changes seen in neonatal necrotizing enterocolitis. PLoS One 2018; 13:e0204967. [PMID: 30273395 PMCID: PMC6166990 DOI: 10.1371/journal.pone.0204967] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/16/2018] [Indexed: 01/06/2023] Open
Abstract
Necrotizing enterocolitis (NEC) remains the leading cause of gastrointestinal morbidity and mortality in premature infants. Human and animal studies suggest a role for Paneth cells in NEC pathogenesis. Paneth cells play critical roles in host-microbial interactions and epithelial homeostasis. The ramifications of eliminating Paneth cell function on the immature host-microbial axis remains incomplete. Paneth cell function was depleted in the immature murine intestine using chemical and genetic models, which resulted in intestinal injury consistent with NEC. Paneth cell depletion was confirmed using histology, electron microscopy, flow cytometry, and real time RT-PCR. Cecal samples were analyzed at various time points to determine the effects of Paneth cell depletion with and without Klebsiella gavage on the microbiome. Deficient Paneth cell function induced significant compositional changes in the cecal microbiome with a significant increase in Enterobacteriacae species. Further, the bloom of Enterobacteriaceae species that occurs is phenotypically similar to what is seen in human NEC. This further strengthens our understanding of the importance of Paneth cells to intestinal homeostasis in the immature intestine.
Collapse
Affiliation(s)
- Shiloh R. Lueschow
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jessica Stumphy
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Huiyu Gong
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Stacy L. Kern
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Timothy G. Elgin
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Mark A. Underwood
- Departments of Pediatrics and Food Science and Technology, University of California Davis, Sacramento, California, United States of America
| | - Karen M. Kalanetra
- Departments of Pediatrics and Food Science and Technology, University of California Davis, Sacramento, California, United States of America
| | - David A. Mills
- Departments of Pediatrics and Food Science and Technology, University of California Davis, Sacramento, California, United States of America
| | - Melissa H. Wong
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - David K. Meyerholz
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Misty Good
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Steven J. McElroy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
23
|
Perinatal supplementation of 4-phenylbutyrate and glutamine attenuates endoplasmic reticulum stress and improves colonic epithelial barrier function in rats born with intrauterine growth restriction. J Nutr Biochem 2018; 55:104-112. [DOI: 10.1016/j.jnutbio.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
24
|
Gibbins KJ, Gibson-Corley KN, Brown AS, Wieben M, Law RC, Fung CM. Effects of excess thromboxane A2 on placental development and nutrient transporters in a Mus musculus model of fetal growth restriction. Biol Reprod 2018; 98:695-704. [PMID: 29351577 PMCID: PMC6248656 DOI: 10.1093/biolre/ioy006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 01/04/2023] Open
Abstract
Hypertensive disease of pregnancy (HDP) with placental insufficiency is the most common cause of fetal growth restriction (FGR) in the developed world. Despite the known negative consequences of HDP both to the mother and fetus, little is known about the longitudinal placental changes that occur as HDP progresses in pregnancy. This is because longitudinal sampling of human placentae during each gestation is impossible. Therefore, using a mouse model of thromboxane A2-analog infusion to mimic human HDP in the last trimester, we calculated placental efficiencies based on fetal and placental weights; quantified spongiotrophoblast and labyrinth thicknesses and vascular density within these layers; examined whether hypoxia signaling pathway involving vascular endothelial growth factor A (VEGFA) and its receptors (VEGFR1, VEGFR2) and matrix metalloproteinases (MMPs) contributed to vascular change; and examined nutrient transporter abundance including glucose transporters 1 and 3 (GLUT1, GLUT3), neutral amino acid transporters 1, 2, and 4 (SNAT1, SNAT2, and SNAT4), fatty acid transporters 2 and 4 (FATP2, FATP4), and fatty acid translocase (CD36) from embryonic day 15.5 to 19 in a 20-day C57Bl/6J mouse gestation. We conclude that early-to-mid gestation hypertensive placentae show compensatory mechanisms to preserve fetal growth by increasing placental efficiencies and maintaining abundance of important nutrient transporters. As placental vascular network diminishes over late hypertension, placental efficiency diminishes and fetal growth fails. Neither hypoxia signaling pathway nor MMPs mediated the vascular diminution in this model. Hypertensive placentae surprisingly exhibit a sex-differential expression of nutrient transporters in late gestation despite showing fetal growth failure in both sexes.
Collapse
Affiliation(s)
- Karen J Gibbins
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology,
University of Utah, Salt Lake City, Utah, USA
| | | | - Ashley S Brown
- Division of Neonatology, Pediatrics, University of Utah, Salt Lake City, Utah,
USA
| | - Matthew Wieben
- Division of Neonatology, Pediatrics, University of Utah, Salt Lake City, Utah,
USA
| | - Richard C Law
- Division of Neonatology, Pediatrics, University of Utah, Salt Lake City, Utah,
USA
| | - Camille M Fung
- Division of Neonatology, Pediatrics, University of Utah, Salt Lake City, Utah,
USA
| |
Collapse
|
25
|
Li Y, Zhang H, Su W, Ying Z, Chen Y, Zhang L, Lu Z, Wang T. Effects of dietary Bacillus amyloliquefaciens supplementation on growth performance, intestinal morphology, inflammatory response, and microbiota of intra-uterine growth retarded weanling piglets. J Anim Sci Biotechnol 2018; 9:22. [PMID: 29564121 PMCID: PMC5848560 DOI: 10.1186/s40104-018-0236-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/16/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The focus of recent research has been directed toward the probiotic potential of Bacillus amyloliquefaciens (BA) on the gut health of animals. However, little is known about BA's effects on piglets with intra-uterine growth retardation (IUGR). Therefore, this study investigated the effects of BA supplementation on the growth performance, intestinal morphology, inflammatory response, and microbiota of IUGR piglets. METHODS Eighteen litters of newborn piglets were selected at birth, with one normal birth weight (NBW) and two IUGR piglets in each litter (i.e., 18 NBW and 36 IUGR piglets in total). At weaning, the NBW piglet and one of the IUGR piglets were assigned to groups fed a control diet (i.e., the NBW-CON and IUGR-CON groups). The other IUGR piglet was assigned to a group fed the control diet supplemented with 2.0 g BA per kg of diet (i.e., IUGR-BA group). The piglets were thus distributed across three groups for a four-week period. RESULTS IUGR reduced the growth performance of the IUGR-CON piglets compared with the NBW-CON piglets. It was also associated with decreased villus sizes, increased apoptosis rates, reduced goblet cell numbers, and an imbalance between pro- and anti-inflammatory cytokines in the small intestine. Supplementation with BA improved the average daily weight gain and the feed efficiency of the IUGR-BA group compared with the IUGR-CON group (P < 0.05). The IUGR-BA group exhibited increases in the ratio of jejunal villus height to crypt depth, in ileal villus height, and in ileal goblet cell density. They also exhibited decreases in the numbers of jejunal and ileal apoptotic cells and ileal proliferative cells (P < 0.05). Supplementation with BA increased interleukin 10 content, but it decreased tumor necrosis factor alpha level in the small intestines of the IUGR-BA piglets (P < 0.05). Furthermore, compared with the IUGR-CON piglets, the IUGR-BA piglets had less Escherichia coli in their jejunal digesta, but more Lactobacillus and Bifidobacterium in their ileal digesta (P < 0.05). CONCLUSIONS Dietary supplementation with BA improves morphology, decreases inflammatory response, and regulates microbiota in the small intestines of IUGR piglets, which may contribute to improved growth performance during early life.
Collapse
Affiliation(s)
- Yue Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Weipeng Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Zhixiong Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| |
Collapse
|
26
|
Zhu Y, Wang W, Yuan T, Fu L, Zhou L, Lin G, Zhao S, Zhou H, Wu G, Wang J. MicroRNA-29a mediates the impairment of intestinal epithelial integrity induced by intrauterine growth restriction in pig. Am J Physiol Gastrointest Liver Physiol 2017; 312:G434-G442. [PMID: 28280141 DOI: 10.1152/ajpgi.00020.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/22/2017] [Accepted: 03/06/2017] [Indexed: 01/31/2023]
Abstract
An important characteristic of intrauterine growth restricted (IUGR) neonate is the impaired intestinal barrier function. With the use of a pig model, this study was conducted to identify the responsible microRNA (miRNA) for the intestinal damage in IUGR neonates through comparing the miRNA profile of IUGR and normal porcine neonates and to investigate the regulation mechanism. Compared with the normal ones, we identified 83 upregulated and 76 downregulated miRNAs in the jejunum of IUGR pigs. Notably, IUGR is associated with profoundly increasesd miR-29 family and decreased expression of extracellular matrix (ECM) and tight junction (TJ) proteins in the jejunum. Furthermore, in vitro study using theporcine intestinal epithelial cell line (IPEC-1) showed that inhibition of miR-29a expression could improve the monolayer integrity by increasing cell proliferation and transepithelial resistance. Also, overexpression/inhibition of miR-29a in IPEC-1 cells can suppress/increase the expression of integrin-β1, collagen I, collagen IV, fibronectin, and claudin 1, both at transcriptional and translational levels. Subsequent luciferase reporter assay confirmed a direct interaction between miR-29a and the 3'-untranslated regions of these genes. In conclusion, this study reveals that IUGR-impaired intestinal barrier function is associated with downregulated ECM and TJ protein expression mediated by the upregulation of miR-29a.NEW & NOTEWORTHY Intrauterine growth restricted (IUGR) remains a major problem for both human health and animal production due to its association with high rates of preweaning morbidity and mortality. We have identified the abnormal expression of microRNA-29a (miR-29a) in the small intestine of IUGR neonates, as well as its targets and mechanisms. These results provide new information about biological characteristics of IUGR-affected intestinal dysfunction and can lead to the development of potentially solution for preventing and treating IUGR in the future.
Collapse
Affiliation(s)
- Yuhua Zhu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Taolin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Liangliang Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lian Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gang Lin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California; and
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China.,Department of Animal Science, Texas A&M University, College Station, Texas
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China;
| |
Collapse
|
27
|
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease in premature infants with high case fatality and significant morbidity among survivors. Immaturity of intestinal host defenses predisposes the premature infant gut to injury. An abnormal bacterial colonization pattern with a deficiency of commensal bacteria may lead to a further breakdown of these host defense mechanisms, predisposing the infant to NEC. Here, we review the role of the innate and adaptive immune system in the pathophysiology of NEC.
Collapse
MESH Headings
- Adaptive Immunity
- Enterocolitis, Necrotizing/immunology
- Enterocolitis, Necrotizing/microbiology
- Enterocolitis, Necrotizing/physiopathology
- Evidence-Based Medicine
- Humans
- Immunity, Innate
- Infant, Premature
- Infant, Premature, Diseases/immunology
- Infant, Premature, Diseases/microbiology
- Infant, Premature, Diseases/physiopathology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/physiopathology
- Intestines/blood supply
- Intestines/immunology
- Intestines/physiopathology
- Milk, Human/immunology
Collapse
Affiliation(s)
- Timothy L Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
| | - Amina M Bhatia
- Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Andrea F Kane
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Ravi M Patel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Patricia W Denning
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
28
|
Ganguly A, Touma M, Thamotharan S, De Vivo DC, Devaskar SU. Maternal Calorie Restriction Causing Uteroplacental Insufficiency Differentially Affects Mammalian Placental Glucose and Leucine Transport Molecular Mechanisms. Endocrinology 2016; 157:4041-4054. [PMID: 27494059 PMCID: PMC5045505 DOI: 10.1210/en.2016-1259] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We examined the effect of mild (Mi; ∼25%) and moderate (Mo; ∼50%) maternal calorie restriction (MCR) vs ad libitum-fed controls on placental glucose and leucine transport impacting fetal growth potential. We observed in MiMCR a compensatory increase in transplacental (TP) glucose transport due to increased placental glucose transporter isoform (GLUT)-3 but no change in GLUT1 protein concentrations. This change was paralleled by increased glut3 mRNA and 5-hydroxymethylated cytosines with enhanced recruitment of histone 3 lysine demethylase to the glut3 gene locus. To assess the biologic relevance of placental GLUT1, we also examined glut1 heterozygous null vs wild-type mice and observed no difference in placental GLUT3 and TP or intraplacental glucose and leucine transport. Both MCR states led to a graded decrease in TP and intraplacental leucine transport, with a decline in placental L amino acid transporter isoform 2 (LAT2) concentrations and increased microRNA-149 (targets LAT2) and microRNA-122 (targets GLUT3) expression in MoMCR alone. These changes were accompanied by a step-wise reduction in uterine and umbilical artery Doppler blood flow with decreased fetal left ventricular ejection fraction and fractional shortening. We conclude that MiMCR transactivates placental GLUT3 toward preserving TP glucose transport in the face of reduced leucine transport. This contrasts MoMCR in which a reduction in placental GLUT3 mediated glucose transport with a reciprocal increase in miR-122 expression was encountered. A posttranscriptional reduction in LAT2-mediated leucine transport also occurred with enhanced miR-149 expression. Both MCR states, although not affecting placental GLUT1, resulted in uteroplacental insufficiency and fetal growth restriction with compromised cardiovascular health.
Collapse
Affiliation(s)
- Amit Ganguly
- Department of Pediatrics (A.G., M.T., S.T., S.U.D.), Division of Neonatology and Developmental Biology, and Neonatal Research Center at the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095; and Department of Neurology (D.C.D.V.), Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Marlin Touma
- Department of Pediatrics (A.G., M.T., S.T., S.U.D.), Division of Neonatology and Developmental Biology, and Neonatal Research Center at the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095; and Department of Neurology (D.C.D.V.), Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Shanthie Thamotharan
- Department of Pediatrics (A.G., M.T., S.T., S.U.D.), Division of Neonatology and Developmental Biology, and Neonatal Research Center at the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095; and Department of Neurology (D.C.D.V.), Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Darryl C De Vivo
- Department of Pediatrics (A.G., M.T., S.T., S.U.D.), Division of Neonatology and Developmental Biology, and Neonatal Research Center at the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095; and Department of Neurology (D.C.D.V.), Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Sherin U Devaskar
- Department of Pediatrics (A.G., M.T., S.T., S.U.D.), Division of Neonatology and Developmental Biology, and Neonatal Research Center at the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095; and Department of Neurology (D.C.D.V.), Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|