1
|
Purse C, Parker A, James SA, Baker DJ, Moss CJ, Evans R, Durham J, Funnell SGP, Carding SR. Intestinal microbiota profiles of captive-bred cynomolgus macaques reveal influence of biogeography and age. Anim Microbiome 2025; 7:47. [PMID: 40369669 PMCID: PMC12080069 DOI: 10.1186/s42523-025-00409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/12/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Age-associated changes to the intestinal microbiome may be linked to inflammageing and the development of age-related chronic diseases. Cynomolgus macaques, a common animal model in biomedical research, have strong genetic physiological similarities to humans and may serve as beneficial models for the effect of age on the human microbiome. However, age-associated changes to their intestinal microbiome have previously only been investigated in faecal samples. Here, we have characterised and investigated the effects of age in the cynomolgus macaque intestinal tract in luminal samples from both the small and large intestine. RESULTS Whole metagenomic shotgun sequencing was used to analyse the microbial communities in intestinal content obtained from six different intestinal regions, covering the duodenum to distal colon, of 24 healthy, captive-bred cynomolgus macaques, ranging in age from 4 to 20 years. Both reference-based and assembly-based computational profiling approaches were used to analyse changes to intestinal microbiota composition and metabolic potential associated with intestinal biogeography and age. Reference-based computational profiling revealed a significant and progressive increase in both species richness and evenness along the intestinal tract. The microbial community composition also significantly differed between the small intestine, caecum, and colon. Notably, no significant changes in the taxonomic abundance of individual taxa with age were found except when sex was included as a covariate. Additionally, using an assembly-based computational profiling approach, 156 putative novel bacterial and archaeal species were identified. CONCLUSIONS We observed limited effects of age on the composition of the luminal microbiota in the profiled regions of the intestinal tract except when sex was included as a covariate. The enteric microbial communities of the small and the large intestine were, however, distinct, highlighting the limitations of frequently used faecal microbial profiling as a proxy for the intestinal microbiota. The identification of a number of putative novel microbial taxa contributes to knowledge of the full diversity of the cynomolgus macaque intestinal microbiome.
Collapse
Affiliation(s)
- C Purse
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - A Parker
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - S A James
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - D J Baker
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - C J Moss
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - R Evans
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - J Durham
- UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - S G P Funnell
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - S R Carding
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
2
|
Cleminson JS, Young GR, Campbell DI, Campbell F, Gennery AR, Berrington JE, Stewart CJ. Gut microbiome in paediatric short bowel syndrome: a systematic review and sequencing re-analysis. Pediatr Res 2025:10.1038/s41390-025-04083-0. [PMID: 40335641 DOI: 10.1038/s41390-025-04083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 05/09/2025]
Abstract
IMPACT Children with short bowel syndrome depend on parenteral nutrition, which carries significant risks. Short bowel syndrome patients show reduced gut microbial diversity, increased inflammation-associated bacteria, and fewer beneficial bacteria. This is the first systematic review and meta-analysis examining the gut microbiome in children with short bowel syndrome. The review demonstrated significantly lower bacterial diversity and richness in children with short bowel syndrome, regardless of achievement of intestinal autonomy. Diversity and richness were greater in children who achieved intestinal autonomy than those on parenteral nutrition, though not statistically significant. Larger studies adjusting for confounding factors may identify future therapeutic strategies.
Collapse
Affiliation(s)
- Jemma S Cleminson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Department of Paediatric Gastroenterology, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Gregory R Young
- Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - David I Campbell
- Department of Paediatric Gastroenterology, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
- Population Health Sciences Institute, Faculty of Medical Sciences The Medical School Newcastle University Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Fiona Campbell
- Newcastle University Institute of Population Health Sciences The Catalyst Room 3.12, 3 Science Square Newcastle Helix, Newcastle Upon Tyne, NE4 5TG, UK
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Department of Paediatric Immunology and HSCT, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Janet E Berrington
- Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Department of Neonatology, Ward 35, Level 4, Leazes Wing, Royal Victoria Infirmary, Newcastle upon Tyne, Tyne and Wear, NE1 4LP, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
3
|
Gao M, Zhang S, Zhao J, Zhao W, Ommati MM, Miao C, Zhou B, Wang HW. The NRF2/HO- 1 Pathway: a Potential Regulatory Factor in Fluoride-Induced Colonic Injury under Estrogen Deficiency. Biol Trace Elem Res 2025:10.1007/s12011-025-04633-x. [PMID: 40317343 DOI: 10.1007/s12011-025-04633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Our previous studies have demonstrated that fluoride (F) overexposure is a risk factor for colonic microenvironment, yet its underlying mechanisms and the influencing factors remain poorly understood. Here, a rat model of F exposure (0, 25, 50, 100 mg/L in drinking water) combined with ovariectomy (OVX)-induced estrogen deficiency was established to investigate the roles of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in F-induced colonic damage under the state of estrogen deficiency. Result showed that F exposure significantly reduced occludin and claudin-1 expression, further resulting in the colon's morphology impairment. Concurrently, F suppressed epithelial proliferation, decreased goblet cell numbers, and diminished short-chain fatty acid (SCFA) production. OVX-induced estrogen deficiency exacerbated F-induced colonic barrier damage and SCFA decreased. Mechanistically, estrogen deficiency aggravated F intestinal toxicity by further inhibiting the protein expression of Nrf2 and HO-1 and upregulating Keap1 protein expression, following downregulated Bcl-2 mRNA levels and upregulated Bax and caspase-3 mRNA levels, and promoting colonic epithelial cell apoptosis. These findings identify that Nrf2/HO-1 key protein disorders are involved in F-induced colonic barrier injury, and estrogen deficiency further aggravated F intestinal toxicity.
Collapse
Affiliation(s)
- Meng Gao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Sai Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Wenpeng Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Chengyi Miao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Bianhua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
4
|
Demirhan HK, Omer Oglou E, Aksoy ZB, Kiran F. Evaluation of the anti-inflammatory, antioxidant and regenerative effects of microbiota-derived postbiotics in human periodontal ligament mesenchymal stromal cells. Clin Oral Investig 2025; 29:262. [PMID: 40263129 PMCID: PMC12014813 DOI: 10.1007/s00784-025-06341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVE This study investigates the regenerative and protective effects of postbiotics (cell-free supernatant) derived from the Lactiplantibacillus plantarum EIR/IF-1 strain on human periodontal ligament mesenchymal stromal cells (hPDL-MSCs). MATERIALS AND METHODS hPDL-MSCs were isolated from periodontal ligament tissues (PDL) of wisdom teeth using enzymatic digestion and subsequently characterized through immunophenotyping. The effect of postbiotics on the viability of hPDL-MSCs was assessed using the MTT assay and flow cytometry, while their impact on cell migration was evaluated via the scratch assay. Anti-inflammatory effects of postbiotics were investigated on lipopolysaccharide (LPS, derived from Porphyromonas gingivalis)-stimulated hPDL-MSCs through Enzyme-Linked Immunosorbent Assay (ELISA). Additionally, the antioxidant effects of postbiotics were analyzed in hydrogen peroxide (H₂O₂)-induced hPDL-MSCs by measuring reactive oxygen species (ROS) levels using flow cytometry. The expression of collagen type I (COL1A1) gene was further assessed by quantitative reverse transcription PCR and immunofluorescence staining. RESULTS Treatment with postbiotics (250 µg/mL) significantly increased the viability and migration capability of hPDL-MSCs, while enhancing collagen production for PDL repair. Treatment with postbiotics for 24 h resulted in a 54.53 ± 2.01% reduction in intracellular ROS levels compared to untreated H2O2-induced hPDL-MSCs. Furthermore, postbiotics significantly decreased the production of pro-inflammatory cytokines (IL-8, IL-6, and IL-1β), and increased the anti-inflammatory cytokine IL-10 (2.67-fold) compared to untreated LPS-stimulated hPDL-MSCs. CONCLUSION Our findings indicate that postbiotics exhibit biological activity throughout all stages of the healing process, beginning with the modulation of the inflammatory response to LPS stimulation, followed by the promotion of cell migration, proliferation, and collagen synthesis. Given the unmet need for safe and adjuvant therapeutic approaches that promote comprehensive periodontal regeneration in periodontal diseases, this study presents postbiotics as a promising candidate. CLINICAL RELEVANCE Postbiotics could be integrated into regenerative therapies as a novel bioactive material to improve the healing and regenerative outcomes in periodontal defects by both controlling inflammation and stimulating tissue repair processes.
Collapse
Affiliation(s)
- Hazal Kibar Demirhan
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, 06110, Turkey
| | - Emine Omer Oglou
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, 06110, Turkey
| | | | - Fadime Kiran
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey.
| |
Collapse
|
5
|
Zhang C, Liu B, Cui Z, Wu K, Huang H, Wang Y, Ma X, Tan B. Effects of Magnolia officinalis extract on the growth performance and immune function of weaned piglets. Porcine Health Manag 2025; 11:16. [PMID: 40181480 PMCID: PMC11969803 DOI: 10.1186/s40813-025-00430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Magnolia officinalis is a medicinal herb known for its pharmacological properties and as a potential natural feed additive. We aimed to assess the effects of dietary Magnolia officinalis extract (MOE) on the growth performance and immune function of piglets, and explored the potential of MOE as a natural alternative to antibiotics for piglet nutrition during weaning. RESULTS Compared with the basal diet group (CK), the MOE diet significantly increased average daily feed intake and reduced diarrhea incidence and serum interleukin-6 (IL-6) levels. Compared with 0.1% MOE group, the 0.05% MOE group had lower diarrhea rates, eosinophils (EOS) count, EOS' percentage, and serum interleukin-4 levels. Compared with CK, 0.05% MOE supplementation in the diet could reduce the diarrhea incidence and the thymus index by elevating the levels of transforming growth factor-β (TGF-β) and interleukin-10 (IL-10) in the serum, jejunum, and ileum. Compared with the basal diet group, 0.05% MOE supplementation upregulated the mRNA expressions of IL-10 and TGF-β1 in the jejunum and ileum (P < 0.05) and those of IL-10, interleukin-1β (IL-1β), and interferon-γ (IFN-γ) in the thymus (P < 0.05). Moreover, 0.05% MOE increased the levels of butyric, isobutyric, isovaleric, and valeric acids in the colon. CONCLUSIONS MOE supplementation could modulate the immune status of animals, lower production costs, and contribute to more sustainable and ethical pig farming practices by promoting healthier growth and reducing disease susceptibility. Our findings offer a sustainable solution to antibiotic use in animal farming, addressing concerns about antibiotic resistance and food safety.
Collapse
Affiliation(s)
- Chen Zhang
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
- Yuelushan Laboratory, Changsha, 410128, China.
- Institute of Yunnan Circular Agricultural Industry, Pu'er, 665000, China.
| | - Bifan Liu
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
- Institute of Yunnan Circular Agricultural Industry, Pu'er, 665000, China
| | - Zhijuan Cui
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Kunfu Wu
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Haibo Huang
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Yuelushan Laboratory, Changsha, 410128, China
- Institute of Yunnan Circular Agricultural Industry, Pu'er, 665000, China
| | - Yongliang Wang
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
- Institute of Yunnan Circular Agricultural Industry, Pu'er, 665000, China
| | - Xiaokang Ma
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Bi'e Tan
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
- Yuelushan Laboratory, Changsha, 410128, China.
- Institute of Yunnan Circular Agricultural Industry, Pu'er, 665000, China.
| |
Collapse
|
6
|
Hauser G, Benjak Horvat I, Rajilić-Stojanović M, Krznarić-Zrnić I, Kukla M, Aljinović-Vučić V, Mikolašević I. Intestinal Microbiota Modulation by Fecal Microbiota Transplantation in Nonalcoholic Fatty Liver Disease. Biomedicines 2025; 13:779. [PMID: 40299326 PMCID: PMC12024620 DOI: 10.3390/biomedicines13040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Numerous factors are involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), which are responsible for its development and progression as an independent entity, but also thanks to their simultaneous action. This is explained by the hypothesis of multiple parallel hits. These factors are insulin resistance, lipid metabolism alteration, oxidative stress, endoplasmic reticulum stress, inflammatory cytokine liberation, gut microbiota dysbiosis or gut-liver axis activation. This is a systematic review which has an aim to show the connection between intestinal microbiota and the role of its disbalance in the development of NAFLD. The gut microbiota is made from a wide spectrum of microorganisms that has a systemic impact on human health, with a well-documented role in digestion, energy metabolism, the stimulation of the immune system, synthesis of essential nutrients, etc. It has been shown that dysbiosis is associated with all three stages of chronic liver disease. Thus, the modulation of the gut microbiota has attracted research interest as a novel therapeutic approach for the management of NAFLD patients. The modification of microbiota can be achieved by substantial diet modification and the application of probiotics or prebiotics, while the most radical effects are observed by fecal microbiota transplantation (FMT). Given the results of FMT in the context of metabolic syndrome (MetS) and NAFLD in animal models and scarce pilot studies on humans, FMT seems to be a promising treatment option that could reverse intestinal dysbiosis and thereby influence the course of NAFLD.
Collapse
Affiliation(s)
- Goran Hauser
- Department of Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (G.H.); (I.K.-Z.); (I.M.)
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Indira Benjak Horvat
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- County Hospital Varaždin, 42000 Varaždin, Croatia
| | - Mirjana Rajilić-Stojanović
- Department of Biochemical Engineering & Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Irena Krznarić-Zrnić
- Department of Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (G.H.); (I.K.-Z.); (I.M.)
| | - Michail Kukla
- Department of Internal Medicine and Geriatrics, Jagiellonian University Medical College, 31-121 Cracow, Poland;
- Department of Endoscopy, University Hospital in Cracow, 30-688 Cracow, Poland
- 1st Infectious Diseases Ward, Gromkowski Regional Specialist Hospital, Wroclaw, 5 Koszarowa St., 50-149 Wroclaw, Poland
| | - Vedrana Aljinović-Vučić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Medical Affairs Department, Jadran Galenski Laboratorij d.d., 51000 Rijeka, Croatia
| | - Ivana Mikolašević
- Department of Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (G.H.); (I.K.-Z.); (I.M.)
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
7
|
Hollinger MK, Grayson EM, Ferreira CM, Sperling AI. Harnessing the Farm Effect: Microbial Products for the Treatment and Prevention of Asthma Throughout Life. Immunol Rev 2025; 330:e70012. [PMID: 40035333 PMCID: PMC11877632 DOI: 10.1111/imr.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
It has long been appreciated that farm exposure early in life protects individuals from allergic asthma. Understanding what component(s) of this exposure is responsible for this protection is crucial to understanding allergic asthma pathogenesis and developing strategies to prevent or treat allergic asthma. In this review, we introduce the concept of Farm-Friends, or specific microbes associated with both a farm environment and protection from allergic asthma. We review the mechanism(s) by which these Farm-Friends suppress allergic inflammation, with a focus on the molecule(s) produced by these Farm-Friends. Finally, we discuss the relevance of Farm-Friend administration (oral vs. inhaled) for preventing the development and severity of allergic asthma throughout childhood and adulthood. By developing a fuller understanding of which Farm-Friends modulate host immunity, a greater wealth of prophylactic and therapeutic options becomes available to counter the current allergy epidemic.
Collapse
Affiliation(s)
- Maile K. Hollinger
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Emily M. Grayson
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Caroline M. Ferreira
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Institute of Environmental, Chemistry and Pharmaceutics Sciences, Department of Pharmaceutics SciencesFederal University of São PauloSão PauloBrazil
| | - Anne I. Sperling
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
8
|
Korwin-Mihavics BR, Dews EA, Miller P, Cameron A, Martorelli di Genova B, Huston CD. Organoid-based in vitro system and reporter for the study of Cryptosporidium parvum sexual reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.29.560165. [PMID: 37808810 PMCID: PMC10557739 DOI: 10.1101/2023.09.29.560165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Many advances have been made recently in our understanding of Cryptosporidium's asexual cycle and sexual differentiation. However, the process of fertilization, which is required for transmission of infectious oocysts, is not well understood. Typical cancer cell-based culture only allows robust exploration of asexual cycle and sexual differentiation of Cryptosporidium. To facilitate exploration of sexual reproduction in C. parvum we developed an organoid-based culture system that supports Cryptosporidium's full life cycle and a novel fertilization reporter. Organoid derived monolayers (ODMs) supported fertilization and oocyst production and maintained the infection for up to 3 weeks. ODM derived oocysts were infectious in vivo. Fertilization was confirmed by successfully mating two strains of C. parvum and with a novel fertilization switch reporter. The fertilization switch reporter utilizes a DiCre system in which cre fragments are expressed under the control of sexual stage promoters resulting in a rapamycin-inducible switch in fluorescent protein expression from mCherry to mNeonGreen after fertilization that is spatially and temporally controlled. This results in mCherry positive parasites in the first generation and offspring that express mNeonGreen. In vivo validation of the fertilization switch reporter demonstrated the precision and efficiency of the fertilization switch reporter and confirmed excision of the mCherry gene sequence only after rapamycin treatment. The start of a second generation of parasites was also shown in the ODMs and rarely in HCT8s. Use of this reporter in ODMs can help investigate the Cryptosporidium lifecycle post sexual differentiation in a physiologically relevant in vitro system.
Collapse
Affiliation(s)
- Bethany R. Korwin-Mihavics
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
- Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences, University of Vermont, Burlington, Vermont, USA
| | - Emmett A. Dews
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
- Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Peter Miller
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
- Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Alexandra Cameron
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
- Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Bruno Martorelli di Genova
- Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences, University of Vermont, Burlington, Vermont, USA
| | - Christopher D. Huston
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
- Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
9
|
Nakamura A, Matsumoto M. Role of polyamines in intestinal mucosal barrier function. Semin Immunopathol 2025; 47:9. [PMID: 39836273 PMCID: PMC11750915 DOI: 10.1007/s00281-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy. Although the vital role of polyamines in normal intestinal epithelial cell growth and barrier function has been known since the 1980s, recent studies have provided new insights into this topic at the molecular level, such as eukaryotic initiation factor-5A hypusination and autophagy, with rapid advances in polyamine biology in normal cells using biological technologies. This review summarizes recent advances in our understanding of the role of polyamines in regulating normal, non-cancerous, intestinal epithelial barrier function, with a particular focus on intestinal epithelial renewal, cell junctions, and immune cell differentiation in the lamina propria.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.
| |
Collapse
|
10
|
Al-Matouq J, Al-Ghafli H, Alibrahim NN, Alsaffar N, Radwan Z, Ali MD. Unveiling the Interplay Between the Human Microbiome and Gastric Cancer: A Review of the Complex Relationships and Therapeutic Avenues. Cancers (Basel) 2025; 17:226. [PMID: 39858007 PMCID: PMC11763844 DOI: 10.3390/cancers17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The human microbiota plays a crucial role in maintaining overall health and well-being. The gut microbiota has been implicated in developing and progressing various diseases, including cancer. This review highlights the related mechanisms and the compositions that influence cancer pathogenesis with a highlight on gastric cancer. We provide a comprehensive overview of the mechanisms by which the microbiome influences cancer development, progression, and response to treatment, with a focus on identifying potential biomarkers for early detection, prevention strategies, and novel therapeutic interventions that leverage microbiome modulation. This comprehensive review can guide future research and clinical practices in understanding and harnessing the microbiome to optimize gastric cancer therapies.
Collapse
Affiliation(s)
- Jenan Al-Matouq
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Hawra Al-Ghafli
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Noura N. Alibrahim
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Nida Alsaffar
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Zaheda Radwan
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Mohammad Daud Ali
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia;
| |
Collapse
|
11
|
Cheng YC, Duarte ME, Kim SW. Efficacy of supplemental amino acids with Corynebacterium glutamicum cell mass on growth and health of nursery pigs. J Anim Sci 2025; 103:skaf036. [PMID: 39935378 PMCID: PMC11914880 DOI: 10.1093/jas/skaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/10/2025] [Indexed: 02/13/2025] Open
Abstract
Removing filtration and crystallization provides amino acids with reduced purity because Corynebacterium glutamicum cell mass (CGCM) is not removed. This study aimed to evaluate the nutritional and functional values of granulated Threonine (Thr) and Valine (Val) with CGCM in diets for growth performance, jejunal mucosa-associated microbiota, nutrient digestibility, and health of nursery pigs. Seventy-two newly weaned pigs (28 d-of-age; initial body weight (BW) of 8.2 ± 0.4 kg) were allotted to 9 treatments (n = 8) based on a randomized complete block design with sex and initial BW as blocks. Treatments consisted of a basal diet with different levels of standardized ileal digestible (SID) Thr and Val: NC (SID Thr and SID Val at 70% of NRC requirement), CT (95% SID Thr using crystalline Thr); CV (95% SID Val using crystalline Val); PT (95% SID Thr using ThrPro); PV (95% SID Val using ValPro); HCT (5 × crystalline Thr used in CT); HCV (5 × crystalline Val used in CV); HPT (5 × ThrPro used in PT); HPV (5 × ValPro used in PV). Diets were fed to nursery pigs for 25 d in 2 phases (10 and 15 d, respectively). Feed intake and BW were recorded at the end of each phase. Blood samples were collected to measure serum proteins, metabolites, and electrolytes on day 21. Pigs were euthanized at day 25 to collect liver and jejunal tissues for morphological evaluation and jejunal mucosa to measure intestinal health biomarkers. Data were analyzed by SAS using MIXED procedure. Pigs with 95% SID Thr or 95% SID Val tended to have greater average daily gain (P = 0.078) and gross energy digestibility (P = 0.058), had greater (P < 0.05) jejunal villus height, and had lower (P < 0.05) plasma urea nitrogen and liver fibrosis than pigs with 70% SID Thr or 70% SID Val, respectively. Pigs fed a diet with HAAPro had increased (P < 0.05) alpha diversity of jejunal mucosa-associated microbiota than pigs fed a diet with AAPro. Pigs fed a diet with HAAPro had increased (P < 0.05) relative abundance of Bifidobacterium and decreased (P < 0.05) relative abundance of Comamonas than pigs fed a diet with AAPro. In conclusion, increasing the supplementation of AAPro by 5-folds than typical level did not negatively affect growth performance whereas beneficially modulated the jejunal mucosa-associated microbiota. Results suggest that AAPro can effectively replace the use of crystalline amino acids in pig diets while potentially reducing feed costs due to the reduced cost of producing such amino acids.
Collapse
Affiliation(s)
- Yi-Chi Cheng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
12
|
Park SS, Lee YK, Kim YH, Park SH, Kang HY, Kim JC, Kim DJ, Lim SB, Yoon G, Kim JH, Choi YW, Park TJ. Distribution and impact of p16 INK4A+ senescent cells in elderly tissues: a focus on senescent immune cell and epithelial dysfunction. Exp Mol Med 2024; 56:2631-2641. [PMID: 39617789 DOI: 10.1038/s12276-024-01354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 12/28/2024] Open
Abstract
Cellular senescence, recognized as a key hallmark of aging, leads to the accumulation of senescent cells in various tissues over time. While the detrimental effects of these cells on age-related pathological conditions are well-documented, there is still limited information about how senescent cells are distributed in normal tissues of both young and aged organs. Our research indicates that fully senescent p16INK4A+ cells are rarely identified in the parenchyma of organic tissues and in the stromal cells crucial for structural maintenance, such as fibroblasts and smooth muscle cells. Instead, p16INK4A+ cells are more commonly found in immune cells, whether they reside in the organ or are infiltrating. Notably, p16INK4A+ senescent T cells have been observed to induce apoptosis and inflammation in colonic epithelial cells through Granzyme A-PARs signaling, compromising the integrity of the epithelial lining. This study showed that the senescence of immune cells could affect the phenotypical change of the parenchymal cells in the elderly and suggests that targeting immunosenescence might be a strategy to control functional decline in this population.
Collapse
Affiliation(s)
- Soon Sang Park
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Young-Kyoung Lee
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Young Hwa Kim
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
| | - So Hyun Park
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Hee Young Kang
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Jin Cheol Kim
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Dong Jun Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Su Bin Lim
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Gyesoon Yoon
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Jang-Hee Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Yong Won Choi
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea.
- Department of Hematology and Oncology, Ajou University School of Medicine, Suwon, Korea.
| | - Tae Jun Park
- Inflammaging Translational Research Center, Ajou University Medical Center, Suwon, Korea.
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.
| |
Collapse
|
13
|
McDaniel GH, Clark T, Sferra J. Malignant Small Bowel Obstruction from Hernia Mesh Invasion by Jejunal Adenocarcinoma: A Report of a Rare Case. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e945619. [PMID: 39580617 PMCID: PMC11604089 DOI: 10.12659/ajcr.945619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/14/2024] [Accepted: 09/12/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Small bowel obstructions (SBO) are common and can be caused by various pathologies including intra-abdominal adhesions and hernias. Less frequently, these obstructions are caused by malignancy. The following article will review the etiology and treatment of SBOs, discuss complications of hernia repair with mesh, and examine if there is an association between mesh and cancer. CASE REPORT We present the case of a man who was over 89 years old who presented with an SBO that failed non-operative management. He previously had bilateral inguinal hernia repairs with mesh and pelvic radiation for prostate cancer. Imaging obtained during the workup was concerning for malignancy. Exploratory laparotomy revealed an ascending colon adenocarcinoma and small bowel obstruction secondary to jejunal adenocarcinoma. The jejunal adenocarcinoma was adhered to and invaded into the mesh from a previous hernia repair. He underwent successful resection and anastomosis, had an uneventful postoperative course, and was discharged. Given his advanced age, he refused further workup or treatment. CONCLUSIONS The etiology and management of small bowel obstructions is multifactorial. Small bowel obstructions affect a large portion of the population worldwide and the subsequent management accounts for significant health care spending. This case shows an exceedingly rare and possibly novel case of jejunal adenocarcinoma that invaded into the hernia mesh, leading to a malignant small bowel obstruction. While there is not a clear explanation behind this patients' pathology, we hypothesize that his prior hernia surgery led to an intra-abdominal adhesion, and subsequent pelvic radiation may have facilitated the malignancy invading the mesh and causing a high-grade small bowel obstruction.
Collapse
Affiliation(s)
- Grant H. McDaniel
- College of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Trisha Clark
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Joseph Sferra
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- ProMedica Health System, Toledo, OH, USA
| |
Collapse
|
14
|
Dutta R, Stothers L, Ackerman AL. Manipulating the Gut Microbiome in Urinary Tract Infection-Prone Patients. Urol Clin North Am 2024; 51:525-536. [PMID: 39349020 DOI: 10.1016/j.ucl.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Although antibiotics remain the mainstay of urinary tract infection treatment, many affected women can be caught in a vicious cycle in which antibiotics given to eradicate one infection predispose them to develop another. This effect is primarily mediated by disturbances in the gut microbiome that both directly enrich for uropathogenic overgrowth and induce systemic alterations in inflammation, tissue permeability, and metabolism that also decrease host resistance to infection recurrences. Here, we discuss nonantibiotic approaches to manipulating the gut microbiome to reverse the systemic consequences of antibiotics, including cranberry supplementation and other dietary approaches, probiotic administration, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Rahul Dutta
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - Lynn Stothers
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - A Lenore Ackerman
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA.
| |
Collapse
|
15
|
Yuan M, Chang L, Gao P, Li J, Lu X, Hua M, Li X, Liu X, Lan Y. Synbiotics containing sea buckthorn polysaccharides ameliorate DSS-induced colitis in mice via regulating Th17/Treg homeostasis through intestinal microbiota and their production of BA metabolites and SCFAs. Int J Biol Macromol 2024; 276:133794. [PMID: 38992530 DOI: 10.1016/j.ijbiomac.2024.133794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic condition whose incidence has been rising globally. Synbiotic (SYN) is an effective means of preventing IBD. This study investigated the preventive effects and potential biological mechanisms of SYN (Bifidobacterium longum, Lactobacillus acidophilus, and sea buckthorn polysaccharides) on DSS-induced colitis in mice. The results indicated that dietary supplementation with SYN has a significant improvement effect on DSS mice. SYN ameliorated disease activity index (DAI), colon length, and intestinal barrier permeability in mice. In addition, RT-qPCR results indicated that after SYN intervention, the expression levels of pro-inflammatory factors (IL-6, IL-1β, TNF-α, and IL-17F) and transcription factor RORγt secreted by Th17 cells were significantly reduced, and the expression levels of anti-inflammatory factors (IL-10 and TGF-β) and transcription factor Foxp3 secreted by Treg cells were robustly increased. 16S rDNA sequencing analysis revealed that key intestinal microbiota related to Th17/Treg balance (Ligilactobacillus, Lactobacillus, Bacteroides, and Akkermansia) was significantly enriched. At the same time, a significant increase in microbial metabolites SCFAs and BAs was observed. We speculate that SYN may regulate the Th17/Treg balance by restructuring the structure and composition of the intestinal microbiota, thereby mitigating DSS-induced colitis.
Collapse
Affiliation(s)
- Mingyou Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lili Chang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Pan Gao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinyuan Lu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mingfang Hua
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ying Lan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
16
|
Van Bockstal L, Prims S, Van Cruchten S, Ayuso M, Che L, Van Ginneken C. Cell migration and proliferation capacity of IPEC-J2 cells after short-chain fatty acid exposure. PLoS One 2024; 19:e0309742. [PMID: 39213333 PMCID: PMC11364292 DOI: 10.1371/journal.pone.0309742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Novel antimicrobial strategies are necessary to tackle using antibiotics during the suckling and weaning period of piglets, often characterized by E. coli-induced diarrhea. In the last decades, acetate, propionate, and butyrate, all short-chain fatty acids (SCFAs), have been proposed as an alternative to antibiotics. SCFAs are instrumental in promoting the proliferation of enterocytes, preserving intestinal integrity, and modulating the microbial community by suppressing the growth of pathogenic bacteria in pigs. The effect of individual SCFAs (proprionate, acetate and butyrate) on the regenerative capacity of intestinal cells was investigated via an optimized wound-healing assay in IPEC-J2 cells, a porcine jejunal epithelial cell line. IPEC-J2 cells proved a good model as they express the free fatty acid receptor 2 (FFAR2), an important SCFA receptor with a high affinity for proprionate. Our study demonstrated that propionate (p = 0.005) and acetate (p = 0.037) were more effective in closing the wound than butyrate (p = 0.190). This holds promise in using SCFA's per os as an alternative to antibiotics.
Collapse
Affiliation(s)
- Lieselotte Van Bockstal
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sara Prims
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Steven Van Cruchten
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Miriam Ayuso
- Biogenesis Bagó, Development of Biotech Products, Madrid, Spain
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu City, Sichuan Province, China
| | - Chris Van Ginneken
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
17
|
Stringer AM, Hargreaves BM, Mendes RA, Blijlevens NMA, Bruno JS, Joyce P, Kamath S, Laheij AMGA, Ottaviani G, Secombe KR, Tonkaboni A, Zadik Y, Bossi P, Wardill HR. Updated perspectives on the contribution of the microbiome to the pathogenesis of mucositis using the MASCC/ISOO framework. Support Care Cancer 2024; 32:558. [PMID: 39080025 PMCID: PMC11289053 DOI: 10.1007/s00520-024-08752-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Advances in the treatment of cancer have significantly improved mortality rates; however, this has come at a cost, with many treatments still limited by their toxic side effects. Mucositis in both the mouth and gastrointestinal tract is common following many anti-cancer agents, manifesting as ulcerative lesions and associated symptoms throughout the alimentary tract. The pathogenesis of mucositis was first defined in 2004 by Sonis, and almost 20 years on, the model continues to be updated reflecting ongoing research initiatives and more sophisticated analytical techniques. The most recent update, published by the Multinational Association for Supportive Care in Cancer and the International Society for Oral Oncology (MASCC/ISOO), highlights the numerous co-occurring events that underpin mucositis development. Most notably, a role for the ecosystem of microorganisms that reside throughout the alimentary tract (the oral and gut microbiota) was explored, building on initial concepts proposed by Sonis. However, many questions remain regarding the true causal contribution of the microbiota and associated metabolome. This review aims to provide an overview of this rapidly evolving area, synthesizing current evidence on the microbiota's contribution to mucositis development and progression, highlighting (i) components of the 5-phase model where the microbiome may be involved, (ii) methodological challenges that have hindered advances in this area, and (iii) opportunities for intervention.
Collapse
Affiliation(s)
- Andrea M Stringer
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Benjamin M Hargreaves
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Rui Amaral Mendes
- Faculty of Medicine, University of Porto/CINTESIS@RISE, Porto, Portugal
- Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, Case Western Reserve University, Cleveland, OH, 44106-7401, USA
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julia S Bruno
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Srinivas Kamath
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Alexa M G A Laheij
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Giulia Ottaviani
- Department of Surgical, Medical and Health Sciences, University of Trieste, Trieste, Italy
| | - Kate R Secombe
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Arghavan Tonkaboni
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yehuda Zadik
- Department of Military Medicine and "Tzameret", Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paolo Bossi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Hannah R Wardill
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Level 5S, Adelaide, 5000, Australia.
| |
Collapse
|
18
|
Chiou S, Al-Ani AH, Pan Y, Patel KM, Kong IY, Whitehead LW, Light A, Young SN, Barrios M, Sargeant C, Rajasekhar P, Zhu L, Hempel A, Lin A, Rickard JA, Hall C, Gangatirkar P, Yip RK, Cawthorne W, Jacobsen AV, Horne CR, Martin KR, Ioannidis LJ, Hansen DS, Day J, Wicks IP, Law C, Ritchie ME, Bowden R, Hildebrand JM, O'Reilly LA, Silke J, Giulino-Roth L, Tsui E, Rogers KL, Hawkins ED, Christensen B, Murphy JM, Samson AL. An immunohistochemical atlas of necroptotic pathway expression. EMBO Mol Med 2024; 16:1717-1749. [PMID: 38750308 PMCID: PMC11250867 DOI: 10.1038/s44321-024-00074-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024] Open
Abstract
Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.
Collapse
Affiliation(s)
- Shene Chiou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Aysha H Al-Ani
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Royal Melbourne Hospital, Parkville, Australia
| | - Yi Pan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Komal M Patel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Isabella Y Kong
- Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, USA
| | - Lachlan W Whitehead
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Marilou Barrios
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Callum Sargeant
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Pradeep Rajasekhar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Leah Zhu
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Anne Hempel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Ann Lin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - James A Rickard
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Austin Hospital, Heidelberg, Australia
| | - Cathrine Hall
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | - Raymond Kh Yip
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Wayne Cawthorne
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Annette V Jacobsen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Katherine R Martin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Lisa J Ioannidis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Diana S Hansen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Australia
| | - Jessica Day
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Royal Melbourne Hospital, Parkville, Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Charity Law
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Rory Bowden
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Lorraine A O'Reilly
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Lisa Giulino-Roth
- Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, USA
| | - Ellen Tsui
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Britt Christensen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Royal Melbourne Hospital, Parkville, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- University of Melbourne, Parkville, Australia.
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- University of Melbourne, Parkville, Australia.
| |
Collapse
|
19
|
Raba G, Luis AS, Schneider H, Morell I, Jin C, Adamberg S, Hansson GC, Adamberg K, Arike L. Metaproteomics reveals parallel utilization of colonic mucin glycans and dietary fibers by the human gut microbiota. iScience 2024; 27:110093. [PMID: 38947523 PMCID: PMC11214529 DOI: 10.1016/j.isci.2024.110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
A diet lacking dietary fibers promotes the expansion of gut microbiota members that can degrade host glycans, such as those on mucins. The microbial foraging on mucin has been associated with disruptions of the gut-protective mucus layer and colonic inflammation. Yet, it remains unclear how the co-utilization of mucin and dietary fibers affects the microbiota composition and metabolic activity. Here, we used 14 dietary fibers and porcine colonic and gastric mucins to study the dynamics of mucin and dietary fiber utilization by the human fecal microbiota in vitro. Combining metaproteome and metabolites analyses revealed the central role of the Bacteroides genus in the utilization of complex fibers together with mucin while Akkermansia muciniphila was the main utilizer of sole porcine colonic mucin but not gastric mucin. This study gives a broad overview of the colonic environment in response to dietary and host glycan availability.
Collapse
Affiliation(s)
- Grete Raba
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Ana S. Luis
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Hannah Schneider
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Indrek Morell
- Center of Food and Fermentation Technologies, 12618 Tallinn, Estonia
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Signe Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Kaarel Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
- Center of Food and Fermentation Technologies, 12618 Tallinn, Estonia
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| |
Collapse
|
20
|
Armah A, Jackson C, Kolba N, Gracey PR, Shukla V, Padilla-Zakour OI, Warkentin T, Tako E. Effects of Pea ( Pisum sativum) Prebiotics on Intestinal Iron-Related Proteins and Microbial Populations In Vivo ( Gallus gallus). Nutrients 2024; 16:1856. [PMID: 38931211 PMCID: PMC11206367 DOI: 10.3390/nu16121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Iron deficiency remains a public health challenge globally. Prebiotics have the potential to improve iron bioavailability by modulating intestinal bacterial population, increasing SCFA production, and stimulating expression of brush border membrane (BBM) iron transport proteins among iron-deficient populations. This study intended to investigate the potential effects of soluble extracts from the cotyledon and seed coat of three pea (Pisum sativum) varieties (CDC Striker, CDC Dakota, and CDC Meadow) on the expression of BBM iron-related proteins (DCYTB and DMT1) and populations of beneficial intestinal bacteria in vivo using the Gallus gallus model by oral gavage (one day old chicks) with 1 mL of 50 mg/mL pea soluble extract solutions. The seed coat treatment groups increased the relative abundance of Bifidobacterium compared to the cotyledon treatment groups, with CDC Dakota seed coat (dark brown pigmented) recording the highest relative abundance of Bifidobacterium. In contrast, CDC Striker Cotyledon (dark-green-pigmented) significantly increased the relative abundance of Lactobacillus (p < 0.05). Subsequently, the two dark-pigmented treatment groups (CDC Striker Cotyledon and CDC Dakota seed coats) recorded the highest expression of DCYTB. Our study suggests that soluble extracts from the pea seed coat and dark-pigmented pea cotyledon may improve iron bioavailability by affecting intestinal bacterial populations.
Collapse
Affiliation(s)
- Abigail Armah
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Cydney Jackson
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Peter R. Gracey
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Viral Shukla
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Olga I. Padilla-Zakour
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Tom Warkentin
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK S7N 5A8, Canada;
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| |
Collapse
|
21
|
Shi R, Wang B. Nutrient metabolism in regulating intestinal stem cell homeostasis. Cell Prolif 2024; 57:e13602. [PMID: 38386338 PMCID: PMC11150145 DOI: 10.1111/cpr.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
Intestinal stem cells (ISCs) are known for their remarkable proliferative capacity, making them one of the most active cell populations in the body. However, a high turnover rate of intestinal epithelium raises the likelihood of dysregulated homeostasis, which is known to cause various diseases, including cancer. Maintaining precise control over the homeostasis of ISCs is crucial to preserve the intestinal epithelium's integrity during homeostasis or stressed conditions. Recent research has indicated that nutrients and metabolic pathways can extensively modulate the fate of ISCs. This review will explore recent findings concerning the influence of various nutrients, including lipids, carbohydrates, and vitamin D, on the delicate balance between ISC proliferation and differentiation.
Collapse
Affiliation(s)
- Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
22
|
Gao H, Zhao X, Guo Y, Li Z, Zhou Z. Coated sodium butyrate and vitamin D 3 supplementation improve gut health through influencing intestinal immunity, barrier, and microflora in early-stage broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4058-4069. [PMID: 38270478 DOI: 10.1002/jsfa.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Intestinal development and function are critical to maintaining sustained broiler growth. The present study aimed to evaluate the effects of coated sodium butyrate (CSB) and vitamin D3 (VD3) on the intestinal immunity, barrier, oxidative stress and microflora in early-stage broilers. In total, 192 one-day-old broilers were assigned to a 2 × 2 factorial design including two dietary supplements at two different levels, in which the main effects were VD3 (3000 or 5000 IU kg-1) and CSB (0 or 1 g kg-1). RESULTS The results showed that CSB supplementation increased ileal goblet cells (GCs) numbers, villus height and decreased crypt depth in broilers. CSB increased ileal proliferating cell nuclear antigen expression and high-level VD3 decreased cluster of differentiation 3 expression. CSB reduced serum d-lactate, endotoxin (ET), adrenocorticotropic hormone, corticosterone and malondialdehyde (MDA) concentrations and increased total antioxidant capacity (T-AOC) level. Meanwhile, high-level VD3 decreased serum ET concentration. Furthermore, CSB increased ileal T-AOC, lysozyme (LYZ) and transforming growth factor (TGF)-β and decreased MDA, whereas high-level VD3 decreased ileal MDA and increased secretory immunoglobulin A. CSB up-regulated ileal claudin1, superoxide dismutase 1, TGF-β and LYZ mRNA expression and down-regulated interleukin-1β mRNA expression. CSB combined with high-level VD3 increased ileal Faecalibaculum abundance. Spearman correlation analysis showed that Faecalibaculum was related to the immune and barrier function. CONCLUSION Dietary supplementation with CSB and high-level VD3 improved early gut health in broilers by promoting intestinal development, enhancing antioxidant capacity, strengthening barrier function and enhancing the favorable composition of the gut bacterial flora. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hang Gao
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingkai Zhao
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yizhe Guo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhendong Li
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenlei Zhou
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Didriksen BJ, Eshleman EM, Alenghat T. Epithelial regulation of microbiota-immune cell dynamics. Mucosal Immunol 2024; 17:303-313. [PMID: 38428738 PMCID: PMC11412483 DOI: 10.1016/j.mucimm.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
The mammalian gastrointestinal tract hosts a diverse community of trillions of microorganisms, collectively termed the microbiota, which play a fundamental role in regulating tissue physiology and immunity. Recent studies have sought to dissect the cellular and molecular mechanisms mediating communication between the microbiota and host immune system. Epithelial cells line the intestine and form an initial barrier separating the microbiota from underlying immune cells, and disruption of epithelial function has been associated with various conditions ranging from infection to inflammatory bowel diseases and cancer. From several studies, it is now clear that epithelial cells integrate signals from commensal microbes. Importantly, these non-hematopoietic cells also direct regulatory mechanisms that instruct the recruitment and function of microbiota-sensitive immune cells. In this review, we discuss the central role that has emerged for epithelial cells in orchestrating intestinal immunity and highlight epithelial pathways through which the microbiota can calibrate tissue-intrinsic immune responses.
Collapse
Affiliation(s)
- Bailey J Didriksen
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily M Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
24
|
Sun J, Chen S, Zang D, Sun H, Sun Y, Chen J. Butyrate as a promising therapeutic target in cancer: From pathogenesis to clinic (Review). Int J Oncol 2024; 64:44. [PMID: 38426581 PMCID: PMC10919761 DOI: 10.3892/ijo.2024.5632] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer is one of the leading causes of mortality worldwide. The etiology of cancer has not been fully elucidated yet, and further enhancements are necessary to optimize therapeutic efficacy. Butyrate, a short‑chain fatty acid, is generated through gut microbial fermentation of dietary fiber. Studies have unveiled the relevance of butyrate in malignant neoplasms, and a comprehensive understanding of its role in cancer is imperative for realizing its full potential in oncological treatment. Its full antineoplastic effects via the activation of G protein‑coupled receptors and the inhibition of histone deacetylases have been also confirmed. However, the underlying mechanistic details remain unclear. The present study aimed to review the involvement of butyrate in carcinogenesis and its molecular mechanisms, with a particular emphasis on its association with the efficacy of tumor immunotherapy, as well as discussing relevant clinical studies on butyrate as a therapeutic target for neoplastic diseases to provide new insights into cancer treatment.
Collapse
Affiliation(s)
- Jinzhe Sun
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Shiqian Chen
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Dan Zang
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Hetian Sun
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Yan Sun
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Jun Chen
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
25
|
Castro C, Niknafs S, Gonzalez-Ortiz G, Tan X, Bedford MR, Roura E. Dietary xylo-oligosaccharides and arabinoxylans improved growth efficiency by reducing gut epithelial cell turnover in broiler chickens. J Anim Sci Biotechnol 2024; 15:35. [PMID: 38433214 PMCID: PMC10910751 DOI: 10.1186/s40104-024-00991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND One of the main roles of the intestinal mucosa is to protect against environmental hazards. Supplementation of xylo-oligosaccharides (XOS) is known to selectively stimulate the growth of beneficial intestinal bacteria and improve gut health and function in chickens. XOS may have an impact on the integrity of the intestinal epithelia where cell turnover is critical to maintain the compatibility between the digestive and barrier functions. The aim of the study was to evaluate the effect of XOS and an arabinoxylan-rich fraction (AXRF) supplementation on gut function and epithelial integrity in broiler chickens. METHODS A total of 128 broiler chickens (Ross 308) were assigned into one of two different dietary treatments for a period of 42 d: 1) control diet consisting of a corn/soybean meal-based diet; or 2) a control diet supplemented with 0.5% XOS and 1% AXRF. Each treatment was randomly distributed across 8 pens (n = 8) with 8 chickens each. Feed intake and body weight were recorded weekly. On d 42, one male chicken per pen was selected based on average weight and euthanized, jejunum samples were collected for proteomics analysis. RESULTS Dietary XOS/AXRF supplementation improved feed efficiency (P < 0.05) from d 1 to 42 compared to the control group. Proteomic analysis was used to understand the mechanism of improved efficiency uncovering 346 differentially abundant proteins (DAP) (Padj < 0.00001) in supplemented chickens compared to the non-supplemented group. In the jejunum, the DAP translated into decreased ATP production indicating lower energy expenditure by the tissue (e.g., inhibition of glycolysis and tricarboxylic acid cycle pathways). In addition, DAP were associated with decreased epithelial cell differentiation, and migration by reducing the actin polymerization pathway. Putting the two main pathways together, XOS/AXRF supplementation may decrease around 19% the energy required for the maintenance of the gastrointestinal tract. CONCLUSIONS Dietary XOS/AXRF supplementation improved growth efficiency by reducing epithelial cell migration and differentiation (hence, turnover), actin polymerization, and consequently energy requirement for maintenance of the jejunum of broiler chickens.
Collapse
Affiliation(s)
- Carla Castro
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Xinle Tan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
26
|
Bahitham W, Alghamdi S, Omer I, Alsudais A, Hakeem I, Alghamdi A, Abualnaja R, Sanai FM, Rosado AS, Sergi CM. Double Trouble: How Microbiome Dysbiosis and Mitochondrial Dysfunction Drive Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Biomedicines 2024; 12:550. [PMID: 38540163 PMCID: PMC10967987 DOI: 10.3390/biomedicines12030550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are closely related liver conditions that have become more prevalent globally. This review examines the intricate interplay between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH. The combination of these two factors creates a synergistic situation referred to as "double trouble", which promotes the accumulation of lipids in the liver and the subsequent progression from simple steatosis (NAFLD) to inflammation (NASH). Microbiome dysbiosis, characterized by changes in the composition of gut microbes and increased intestinal permeability, contributes to the movement of bacterial products into the liver. It triggers metabolic disturbances and has anti-inflammatory effects. Understanding the complex relationship between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH is crucial for advancing innovative therapeutic approaches that target these underlying mechanisms.
Collapse
Affiliation(s)
- Wesam Bahitham
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Siraj Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Ibrahim Omer
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Ali Alsudais
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Ilana Hakeem
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Arwa Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Reema Abualnaja
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Faisal M. Sanai
- Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah 21423, Saudi Arabia;
| | - Alexandre S. Rosado
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Consolato M. Sergi
- Anatomic Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
27
|
Qiu XX, Cheng SL, Liu YH, Li Y, Zhang R, Li NN, Li Z. Fecal microbiota transplantation for treatment of non-alcoholic fatty liver disease: Mechanism, clinical evidence, and prospect. World J Gastroenterol 2024; 30:833-842. [PMID: 38516241 PMCID: PMC10950639 DOI: 10.3748/wjg.v30.i8.833] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
The population of non-alcoholic fatty liver disease (NAFLD) patients along with relevant advanced liver disease is projected to continue growing, because currently no medications are approved for treatment. Fecal microbiota transplantation (FMT) is believed a novel and promising therapeutic approach based on the concept of the gut-liver axis in liver disease. There has been an increase in the number of pre-clinical and clinical studies evaluating FMT in NAFLD treatment, however, existing findings diverge on its effects. Herein, we briefly summarized the mechanism of FMT for NAFLD treatment, reviewed randomized controlled trials for evaluating its efficacy in NAFLD, and proposed the prospect of future trials on FMT.
Collapse
Affiliation(s)
- Xiao-Xia Qiu
- Research and Education Department, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310022, Zhejiang Province, China
| | - Sheng-Li Cheng
- Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230000, Anhui Province, China
| | - Yan-Hui Liu
- Department of Clinical Pharmacy, Anhui Provincial Children’s Hospital, Hefei 230000, Anhui Province, China
| | - Yu Li
- Department of Pharmacy, Taihe County People’s Hospital of Anhui Province, Fuyang 236600, Anhui Province, China
| | - Rui Zhang
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Nan-Nan Li
- University of Science and Technology of China, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
28
|
Belei O, Basaca DG, Olariu L, Pantea M, Bozgan D, Nanu A, Sîrbu I, Mărginean O, Enătescu I. The Interaction between Stress and Inflammatory Bowel Disease in Pediatric and Adult Patients. J Clin Med 2024; 13:1361. [PMID: 38592680 PMCID: PMC10932475 DOI: 10.3390/jcm13051361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Inflammatory bowel diseases (IBDs) have seen an exponential increase in incidence, particularly among pediatric patients. Psychological stress is a significant risk factor influencing the disease course. This review assesses the interaction between stress and disease progression, focusing on articles that quantified inflammatory markers in IBD patients exposed to varying degrees of psychological stress. Methods: A systematic narrative literature review was conducted, focusing on the interaction between IBD and stress among adult and pediatric patients, as well as animal subjects. The research involved searching PubMed, Scopus, Medline, and Cochrane Library databases from 2000 to December 2023. Results: The interplay between the intestinal immunity response, the nervous system, and psychological disorders, known as the gut-brain axis, plays a major role in IBD pathophysiology. Various types of stressors alter gut mucosal integrity through different pathways, increasing gut mucosa permeability and promoting bacterial translocation. A denser microbial load in the gut wall emphasizes cytokine production, worsening the disease course. The risk of developing depression and anxiety is higher in IBD patients compared with the general population, and stress is a significant trigger for inducing acute flares of the disease. Conclusions: Further large studies should be conducted to assess the relationship between stressors, psychological disorders, and their impact on the course of IBD. Clinicians involved in the medical care of IBD patients should aim to implement stress reduction practices in addition to pharmacological therapies.
Collapse
Affiliation(s)
- Oana Belei
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Diana-Georgiana Basaca
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Laura Olariu
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Manuela Pantea
- Twelfth Department, Neonatology Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.P.); (I.E.)
| | - Daiana Bozgan
- Clinic of Neonatology, “Pius Brânzeu” County Emergency Clinical Hospital, 300723 Timișoara, Romania;
| | - Anda Nanu
- Third Pediatric Clinic, “Louis Țurcanu” Emergency Children Hospital, 300011 Timișoara, Romania; (A.N.); (I.S.)
| | - Iuliana Sîrbu
- Third Pediatric Clinic, “Louis Țurcanu” Emergency Children Hospital, 300011 Timișoara, Romania; (A.N.); (I.S.)
| | - Otilia Mărginean
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Ileana Enătescu
- Twelfth Department, Neonatology Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.P.); (I.E.)
| |
Collapse
|
29
|
Aghighi F, Salami M. What we need to know about the germ-free animal models. AIMS Microbiol 2024; 10:107-147. [PMID: 38525038 PMCID: PMC10955174 DOI: 10.3934/microbiol.2024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.
Collapse
Affiliation(s)
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
30
|
Ignatyeva O, Tolyneva D, Kovalyov A, Matkava L, Terekhov M, Kashtanova D, Zagainova A, Ivanov M, Yudin V, Makarov V, Keskinov A, Kraevoy S, Yudin S. Christensenella minuta, a new candidate next-generation probiotic: current evidence and future trajectories. Front Microbiol 2024; 14:1241259. [PMID: 38274765 PMCID: PMC10808311 DOI: 10.3389/fmicb.2023.1241259] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Background As the field of probiotic research continues to expand, new beneficial strains are being discovered. The Christensenellaceae family and its newly described member, Christensenella minuta, have been shown to offer great health benefits. We aimed to extensively review the existing literature on these microorganisms to highlight the advantages of their use as probiotics and address some of the most challenging aspects of their commercial production and potential solutions. Methods We applied a simple search algorithm using the key words "Christensenellaceae" and "Christensenella minuta" to find all articles reporting the biotherapeutic effects of these microorganisms. Only articles reporting evidence-based results were reviewed. Results The review showed that Christensenella minuta has demonstrated numerous beneficial properties and a wider range of uses than previously thought. Moreover, it has been shown to be oxygen-tolerant, which is an immense advantage in the manufacturing and production of Christensenella minuta-based biotherapeutics. The results suggest that Christensenellaceae and Christensenella munita specifically can play a crucial role in maintaining a healthy gut microbiome. Furthermore, Christensenellaceae have been associated with weight management. Preliminary studies suggest that this probiotic strain could have a positive impact on metabolic disorders like diabetes and obesity, as well as inflammatory bowel disease. Conclusion Christensenellaceae and Christensenella munita specifically offer immense health benefits and could be used in the management and therapy of a wide range of health conditions. In addition to the impressive biotherapeutic effect, Christensenella munita is oxygen-tolerant, which facilitates commercial production and storage.
Collapse
Affiliation(s)
- Olga Ignatyeva
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Biomedical Agency, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wilson SM, Kang Y, Marshall K, Swanson KS. Effects of dietary fiber and biotic supplementation on apparent total tract macronutrient digestibility and the fecal characteristics, metabolites, and microbiota of healthy adult dogs. J Anim Sci 2024; 102:skae138. [PMID: 38783711 PMCID: PMC11161905 DOI: 10.1093/jas/skae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Dietary fibers and biotics have been shown to support gastrointestinal health in dogs, but are usually tested individually. There is value in testing fiber-biotic combinations that are commonly used commercially. Therefore, this study was conducted to determine the apparent total tract macronutrient digestibility (ATTD) of diets supplemented with fibers or biotics and to evaluate their effects on the fecal characteristics, metabolites, microbiota, and immunoglobulin A (IgA) concentrations of dogs. Twelve healthy adult female beagle dogs (age = 6.2 ± 1.6 yr; body weight = 9.5 ± 1.1 kg) were used in a replicated 3 × 3 Latin square design to test three treatments: 1) control diet based on rice, chicken meal, tapioca starch, and cellulose + a placebo treat (CT); 2) diet based on rice, chicken meal, garbanzo beans, and cellulose + a placebo treat (GB); 3) diet based on rice, chicken meal, garbanzo beans, and a functional fiber/prebiotic blend + a probiotic-containing treat (GBPP). In each 28-d period, a 22-d diet adaptation was followed by a 5-d fecal collection phase. Fasted blood samples were collected on day 28. Data were analyzed using the Mixed Models procedure of SAS 9.4, with P < 0.05 being significant and P < 0.10 being trends. ATTD of dry matter (DM), organic matter, and energy were lower (P < 0.001) and DM fecal output was higher (P < 0.01) in dogs fed GBPP than CT or GB, whereas ATTD of crude protein was higher (P < 0.001) in dogs fed CT and GBPP than GB. ATTD of fat was higher (P < 0.001) and wet fecal output was lower (P < 0.01) in dogs fed CT than GB or GBPP. Fecal DM% was higher (P < 0.001) in dogs fed CT than GBPP or GB, and higher in dogs fed GBPP than GB. Fecal short-chain fatty acid concentrations were higher (P < 0.001) in dogs fed GB than CT or GBPP, and higher in dogs fed GB than GBPP. Fecal IgA concentrations were higher (P < 0.01) in dogs fed GB than CT. Fecal microbiota populations were affected by diet, with alpha diversity being higher (P < 0.01) in dogs fed GB than CT, and beta diversity shifting following dietary fiber and biotic supplementation. The relative abundance of 24 bacterial genera was altered in dogs fed GB or GBPP than CT. Serum triglyceride concentrations were lower in dogs fed GB than GBPP or CT. Our results demonstrate that legume-based dietary fibers, with or without prebiotics and probiotics, reduce ATTD, increase stool output, beneficially shift fecal metabolites and microbiota, and reduce blood lipids in adult dogs.
Collapse
Affiliation(s)
- Sofia M Wilson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yifei Kang
- The Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Minaya DM, Kim JS, Kirkland R, Allen J, Cullinan S, Maclang N, de Lartigue G, de La Serre C. Transfer of microbiota from lean donors in combination with prebiotics prevents excessive weight gain and improves gut-brain vagal signaling in obese rats. Gut Microbes 2024; 16:2421581. [PMID: 39485288 PMCID: PMC11540078 DOI: 10.1080/19490976.2024.2421581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
Gastrointestinal (GI) microbiota plays an active role in regulating the host's immune system and metabolism, as well as certain pathophysiological processes. Diet is the main factor modulating GI microbiota composition and studies have shown that high fat (HF) diets induce detrimental changes (dysbiosis) in the GI bacterial makeup. HF diet induced dysbiosis has been associated with structural and functional changes in gut-brain vagally mediated signaling system, associated with overeating and obesity. Although HF-driven changes in microbiota composition are sufficient to alter vagal signaling, it is unknown if improving microbiota composition after diet-induced obesity has been established can ameliorate gut-brain signaling and metabolic outcomes. In this study, we evaluated the effect of lean gut microbiota transfer in obese, vagally compromised, rats on gut-brain communication, food intake, and body weight. Male rats were maintained on regular chow or 45% HF diet for nine weeks followed by three weeks of microbiota depletion using antibiotics. The animals were then divided into four groups (n = 10 each): LF - control fed regular chow, LF-LF - chow fed animals that received microbiota from chow fed donors, HF-LF - HF fed animals that received microbiota from chow fed donors, and HF-HF - HF fed animals that received microbiota from HF fed donors. HF-LF animals received inulin as a prebiotic to aid the establishment of the lean microbiome. We found that transferring a LF microbiota to HF fed animals (HF-LF) reduced caloric intake during the light phase when compared with HF-HF rats and prevented additional excessive weight gain. HF-LF animals displayed an increase in postprandial activation of both primary sensory neurons innervating the GI tract and brainstem secondary neurons. We concluded from these data that improving microbiota composition in obese rats is sufficient to ameliorate gut-brain communication and restore normal feeding patterns which was associated with a reduction in weight gain.
Collapse
Affiliation(s)
- Dulce M. Minaya
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | - Jiyoung S Kim
- Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca Kirkland
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | - Jillian Allen
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | - Sitara Cullinan
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | - Neil Maclang
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | | | - Claire de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
33
|
Hirose M, Sekar P, Eladham MWA, Albataineh MT, Rahmani M, Ibrahim SM. Interaction between mitochondria and microbiota modulating cellular metabolism in inflammatory bowel disease. J Mol Med (Berl) 2023; 101:1513-1526. [PMID: 37819377 PMCID: PMC10698103 DOI: 10.1007/s00109-023-02381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Inflammatory bowel disease (IBD) is a prototypic complex disease in the gastrointestinal tract that has been increasing in incidence and prevalence in recent decades. Although the precise pathophysiology of IBD remains to be elucidated, a large body of evidence suggests the critical roles of mitochondria and intestinal microbiota in the pathogenesis of IBD. In addition to their contributions to the disease, both mitochondria and gut microbes may interact with each other and modulate disease-causing cell activities. Therefore, we hypothesize that dissecting this unique interaction may help to identify novel pathways involved in IBD, which will further contribute to discovering new therapeutic approaches to the disease. As poorly treated IBD significantly affects the quality of life of patients and is associated with risks and complications, successful treatment is crucial. In this review, we stratify previously reported experimental and clinical observations of the role of mitochondria and intestinal microbiota in IBD. Additionally, we review the intercommunication between mitochondria, and the intestinal microbiome in patients with IBD is reviewed along with the potential mediators for these interactions. We specifically focus on their roles in cellular metabolism in intestinal epithelial cells and immune cells. To this end, we propose a potential therapeutic intervention strategy for IBD.
Collapse
Affiliation(s)
- Misa Hirose
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Priyadharshini Sekar
- Sharjah Institute of Medical Research, RIMHS, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Mohammad T Albataineh
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mohamed Rahmani
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Saleh Mohamed Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
34
|
Moleón J, González-Correa C, Robles-Vera I, Miñano S, de la Visitación N, Barranco AM, Martín-Morales N, O’Valle F, Mayo-Martínez L, García A, Toral M, Jiménez R, Romero M, Duarte J. Targeting the gut microbiota with dietary fibers: a novel approach to prevent the development cardiovascular complications linked to systemic lupus erythematosus in a preclinical study. Gut Microbes 2023; 15:2247053. [PMID: 37615336 PMCID: PMC10453983 DOI: 10.1080/19490976.2023.2247053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
This study is to investigate whether dietary fiber intake prevents vascular and renal damage in a genetic mouse model of systemic lupus erythematosus (SLE), and the contribution of gut microbiota in the protective effects. Female NZBWF1 (SLE) mice were treated with resistant-starch (RS) or inulin-type fructans (ITF). In addition, inoculation of fecal microbiota from these experimental groups to recipient normotensive female C57Bl/6J germ-free (GF) mice was performed. Both fiber treatments, especially RS, prevented the development of hypertension, renal injury, improved the aortic relaxation induced by acetylcholine, and the vascular oxidative stress. RS and ITF treatments increased the proportion of acetate- and butyrate-producing bacteria, respectively, improved colonic inflammation and integrity, endotoxemia, and decreased helper T (Th)17 proportion in mesenteric lymph nodes (MLNs), blood, and aorta in SLE mice. However, disease activity (splenomegaly and anti-ds-DNA) was unaffected by both fibers. T cell priming and Th17 differentiation in MLNs and increased Th17 infiltration was linked to aortic endothelial dysfunction and hypertension after inoculation of fecal microbiota from SLE mice to GF mice, without changes in proteinuria and autoimmunity. All these effects were lower in GF mice after fecal inoculation from fiber-treated SLE mice. In conclusion, these findings support that fiber consumption prevented the development of hypertension by rebalancing of dysfunctional gut-immune system-vascular wall axis in SLE.
Collapse
Affiliation(s)
- Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Néstor de la Visitación
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Antonio Manuel Barranco
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Natividad Martín-Morales
- Department of Pathology, School of Medicine, Instituto de Biopatología y Medicina Regenerativa (IBIMER) University of Granada, Granada, Spain
| | - Francisco O’Valle
- Department of Pathology, School of Medicine, Instituto de Biopatología y Medicina Regenerativa (IBIMER) University of Granada, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laura Mayo-Martínez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla del Monte, San Pablo, Spain
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla del Monte, San Pablo, Spain
| | - Marta Toral
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
35
|
Wang M, Feng X, Zhao Y, Lan Y, Xu H. Indole-3-acetamide from gut microbiota activated hepatic AhR and mediated the remission effect of Lactiplantibacillus plantarum P101 on alcoholic liver injury in mice. Food Funct 2023; 14:10535-10548. [PMID: 37947440 DOI: 10.1039/d3fo03585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Alcoholic liver disease is a prevalent condition resulting from excessive alcohol consumption, characterized by hepatic lipid accumulation and inflammation. This study delved into the protective effects and mechanisms of L. plantarum P101 on alcoholic liver injury in mice. As a result, L. plantarum P101 intervention reduced ALT and AST release, indicative of hepatocyte injury alleviation, while enhancing the activity of the antioxidant enzymes SOD and CAT. A reduction in pro-inflammatory cytokine TNF-α and an increase in anti-inflammatory cytokine IL-10 levels were observed in the L. plantarum P101-intervened mouse liver, signifying reduced inflammation within the mice. Furthermore, L. plantarum P101 intervention altered the gut microbial composition, primarily marked by an increase in Bacteroidota abundance, along with significant enrichment of beneficial bacteria, including Coprostanoligenes, Blautia and Lactiplantibacillus. Correlation analysis unveiled connections between serum tryptophan metabolites and the altered gut microbiota genera, suggesting that gut microbiota-driven effects may extend to extraintestinal organs through their metabolites. Intriguingly, serum indole-3-acetamide (IAM) was elevated by L. plantarum P101-regulated gut microbiota. Subsequently, the role of IAM in ameliorating alcoholic injury was explored using HepG2 cells, where it bolstered cell viability and attenuated EtOH-induced oxidative damage. Concomitantly, IAM activated the gene and protein expression of AhR in cells. Likewise, hepatic AhR expression in mice subjected to L. plantarum P101 significantly up-regulated, possibly instigated by gut microbiota-mediated IAM. Collectively, L. plantarum P101 orchestrates a modulation of gut microbiota and its metabolites, particularly IAM, to activate AhR, thereby alleviating alcoholic liver injury.
Collapse
Affiliation(s)
- Mengqi Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
| | - Yu Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
| | - Yuzhi Lan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China.
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, P.R. China
| |
Collapse
|
36
|
Kim YH, Lee YK, Park SS, Park SH, Eom SY, Lee YS, Lee WJ, Jang J, Seo D, Kang HY, Kim JC, Lim SB, Yoon G, Kim HS, Kim JH, Park TJ. Mid-old cells are a potential target for anti-aging interventions in the elderly. Nat Commun 2023; 14:7619. [PMID: 37993434 PMCID: PMC10665435 DOI: 10.1038/s41467-023-43491-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
The biological process of aging is thought to result in part from accumulation of senescent cells in organs. However, the present study identified a subset of fibroblasts and smooth muscle cells which are the major constituents of organ stroma neither proliferative nor senescent in tissues of the elderly, which we termed "mid-old status" cells. Upregulation of pro-inflammatory genes (IL1B and SAA1) and downregulation of anti-inflammatory genes (SLIT2 and CXCL12) were detected in mid-old cells. In the stroma, SAA1 promotes development of the inflammatory microenvironment via upregulation of MMP9, which decreases the stability of epithelial cells present on the basement membrane, decreasing epithelial cell function. Remarkably, the microenvironmental change and the functional decline of mid-old cells could be reversed by a young cell-originated protein, SLIT2. Our data identify functional reversion of mid-old cells as a potential method to prevent or ameliorate aspects of aging-related tissue dysfunction.
Collapse
Affiliation(s)
- Young Hwa Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
| | - Young-Kyoung Lee
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Soon Sang Park
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - So Hyun Park
- Department of Pathology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - So Yeong Eom
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
- Department of Pathology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Wonhee John Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Juhee Jang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Hee Young Kang
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Dermatology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Jin Cheol Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Dermatology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Su Bin Lim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - Gyesoon Yoon
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Jang-Hee Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea.
- Department of Pathology, Ajou University School of Medicine, Suwon, 16499, Korea.
| | - Tae Jun Park
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea.
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
37
|
Alula KM, Dowdell AS, LeBere B, Lee JS, Levens CL, Kuhn KA, Kaipparettu BA, Thompson WE, Blumberg RS, Colgan SP, Theiss AL. Interplay of gut microbiota and host epithelial mitochondrial dysfunction is necessary for the development of spontaneous intestinal inflammation in mice. MICROBIOME 2023; 11:256. [PMID: 37978573 PMCID: PMC10655390 DOI: 10.1186/s40168-023-01686-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/30/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Intestinal epithelial cell (IEC) mitochondrial dysfunction involvement in inflammatory bowel diseases (IBD), including Crohn's disease affecting the small intestine, is emerging in recent studies. As the interface between the self and the gut microbiota, IECs serve as hubs of bidirectional cross-talk between host and luminal microbiota. However, the role of mitochondrial-microbiota interaction in the ileum is largely unexplored. Prohibitin 1 (PHB1), a chaperone protein of the inner mitochondrial membrane required for optimal electron transport chain function, is decreased during IBD. We previously demonstrated that mice deficient in PHB1 specifically in IECs (Phb1i∆IEC) exhibited mitochondrial impairment, Paneth cell defects, gut microbiota dysbiosis, and spontaneous inflammation in the ileum (ileitis). Mice deficient in PHB1 in Paneth cells (epithelial secretory cells of the small intestine; Phb1∆PC) also exhibited mitochondrial impairment, Paneth cell defects, and spontaneous ileitis. Here, we determined whether this phenotype is driven by Phb1 deficiency-associated ileal microbiota alterations or direct effects of loss of PHB1 in host IECs. RESULTS Depletion of gut microbiota by broad-spectrum antibiotic treatment in Phb1∆PC or Phb1i∆IEC mice revealed a necessary role of microbiota to cause ileitis. Using germ-free mice colonized with ileal microbiota from Phb1-deficient mice, we show that this microbiota could not independently induce ileitis without host mitochondrial dysfunction. The luminal microbiota phenotype of Phb1i∆IEC mice included a loss of the short-chain fatty acid butyrate. Supplementation of butyrate in Phb1-deficient mice ameliorated Paneth cell abnormalities and ileitis. Phb1-deficient ileal enteroid models suggest deleterious epithelial-intrinsic responses to ileal microbiota that were protected by butyrate. CONCLUSIONS These results suggest a mutual and essential reinforcing interplay of gut microbiota and host IEC, including Paneth cell, mitochondrial health in influencing ileitis. Restoration of butyrate is a potential therapeutic option in Crohn's disease patients harboring epithelial cell mitochondrial dysfunction. Video Abstract.
Collapse
Affiliation(s)
- Kibrom M Alula
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz Medical Campus, 12700 East 19Th Avenue, RC2 Campus Box BB158 HSC, Aurora, CO, 80045, USA
| | - Alexander S Dowdell
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz Medical Campus, 12700 East 19Th Avenue, RC2 Campus Box BB158 HSC, Aurora, CO, 80045, USA
| | - Brittany LeBere
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz Medical Campus, 12700 East 19Th Avenue, RC2 Campus Box BB158 HSC, Aurora, CO, 80045, USA
| | - J Scott Lee
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz Medical Campus, 12700 East 19Th Avenue, RC2 Campus Box BB158 HSC, Aurora, CO, 80045, USA
| | - Cassandra L Levens
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kristine A Kuhn
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Benny A Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Winston E Thompson
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sean P Colgan
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz Medical Campus, 12700 East 19Th Avenue, RC2 Campus Box BB158 HSC, Aurora, CO, 80045, USA
| | - Arianne L Theiss
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz Medical Campus, 12700 East 19Th Avenue, RC2 Campus Box BB158 HSC, Aurora, CO, 80045, USA.
| |
Collapse
|
38
|
Abstract
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tingting Wan
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yalong Wang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Kaixin He
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu Zhu
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
39
|
Neurath MF, Vieth M. Different levels of healing in inflammatory bowel diseases: mucosal, histological, transmural, barrier and complete healing. Gut 2023; 72:2164-2183. [PMID: 37640443 DOI: 10.1136/gutjnl-2023-329964] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Mucosal healing on endoscopy has emerged as a key prognostic parameter in the management of patients with IBD (Crohn's disease, ulcerative colitis/UC) and can predict sustained clinical remission and resection-free survival. The structural basis for this type of mucosal healing is a progressive resolution of intestinal inflammation with associated healing of ulcers and improved epithelial barrier function. However, in some cases with mucosal healing on endoscopy, evidence of histological activity in mucosal biopsies has been observed. Subsequently, in UC, a second, deeper type of mucosal healing, denoted histological healing, was defined which requires the absence of active inflammation in mucosal biopsies. Both levels of mucosal healing should be considered as initial events in the resolution of gut inflammation in IBD rather than as indicators of complete transmural healing. In this review, the effects of anti-inflammatory, biological or immunosuppressive agents as well as small molecules on mucosal healing in clinical studies are highlighted. In addition, we focus on the implications of mucosal healing for clinical management of patients with IBD. Moreover, emerging techniques for the analysis of mucosal healing as well as potentially deeper levels of mucosal healing such as transmural healing and functional barrier healing of the mucosa are discussed. Although none of these new levels of healing indicate a definitive cure of the diseases, they make an important contribution to the assessment of patients' prognosis. The ultimate level of healing in IBD would be a resolution of all aspects of intestinal and extraintestinal inflammation (complete healing).
Collapse
Affiliation(s)
- Markus F Neurath
- Medical Clinic 1 & Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Vieth
- Pathology Clinic, Klinikum Bayreuth GmbH, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth, Germany
| |
Collapse
|
40
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
41
|
Ten Hove AS, Mallesh S, Zafeiropoulou K, de Kleer JWM, van Hamersveld PHP, Welting O, Hakvoort TBM, Wehner S, Seppen J, de Jonge WJ. Sympathetic activity regulates epithelial proliferation and wound healing via adrenergic receptor α 2A. Sci Rep 2023; 13:17990. [PMID: 37863979 PMCID: PMC10589335 DOI: 10.1038/s41598-023-45160-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023] Open
Abstract
Innervation of the intestinal mucosa by the sympathetic nervous system is well described but the effects of adrenergic receptor stimulation on the intestinal epithelium remain equivocal. We therefore investigated the effect of sympathetic neuronal activation on intestinal cells in mouse models and organoid cultures, to identify the molecular routes involved. Using publicly available single-cell RNA sequencing datasets we show that the α2A isoform is the most abundant adrenergic receptor in small intestinal epithelial cells. Stimulation of this receptor with norepinephrine or a synthetic specific α2A receptor agonist promotes epithelial proliferation and stem cell function, while reducing differentiation in vivo and in intestinal organoids. In an anastomotic healing mouse model, adrenergic receptor α2A stimulation resulted in improved anastomotic healing, while surgical sympathectomy augmented anastomotic leak. Furthermore, stimulation of this receptor led to profound changes in the microbial composition, likely because of altered epithelial antimicrobial peptide secretion. Thus, we established that adrenergic receptor α2A is the molecular delegate of intestinal epithelial sympathetic activity controlling epithelial proliferation, differentiation, and host defense. Therefore, this receptor could serve as a newly identified molecular target to improve mucosal healing in intestinal inflammation and wounding.
Collapse
Affiliation(s)
- Anne S Ten Hove
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands.
| | - Shilpashree Mallesh
- Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Konstantina Zafeiropoulou
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Janna W M de Kleer
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Patricia H P van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Olaf Welting
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Sven Wehner
- Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands.
- Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
42
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Prebiotic Supplements on the Gastrointestinal Microbiota and Associated Health Parameters in Pigs. Animals (Basel) 2023; 13:3012. [PMID: 37835619 PMCID: PMC10572080 DOI: 10.3390/ani13193012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Establishing a balanced and diverse microbiota in the GIT of pigs is crucial for optimizing health and performance throughout the production cycle. The post-weaning period is a critical phase, as it is often associated with dysbiosis, intestinal dysfunction and poor performance. Traditionally, intestinal dysfunctions associated with weaning have been alleviated using antibiotics and/or antimicrobials. However, increasing concerns regarding the prevalence of antimicrobial-resistant bacteria has prompted an industry-wide drive towards identifying natural sustainable dietary alternatives. Modulating the microbiota through dietary intervention can improve animal health by increasing the production of health-promoting metabolites associated with the improved microbiota, while limiting the establishment and proliferation of pathogenic bacteria. Prebiotics are a class of bioactive compounds that resist digestion by gastrointestinal enzymes, but which can still be utilized by beneficial microbes within the GIT. Prebiotics are a substrate for these beneficial microbes and therefore enhance their proliferation and abundance, leading to the increased production of health-promoting metabolites and suppression of pathogenic proliferation in the GIT. There are a vast range of prebiotics, including carbohydrates such as non-digestible oligosaccharides, beta-glucans, resistant starch, and inulin. Furthermore, the definition of a prebiotic has recently expanded to include novel prebiotics such as peptides and amino acids. A novel class of -biotics, referred to as "stimbiotics", was recently suggested. This bioactive group has microbiota-modulating capabilities and promotes increases in short-chain fatty acid (SCFA) production in a disproportionally greater manner than if they were merely substrates for bacterial fermentation. The aim of this review is to characterize the different prebiotics, detail the current understating of stimbiotics, and outline how supplementation to pigs at different stages of development and production can potentially modulate the GIT microbiota and subsequently improve the health and performance of animals.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| |
Collapse
|
43
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Maternal Probiotic or Synbiotic Supplementation on Sow and Offspring Gastrointestinal Microbiota, Health, and Performance. Animals (Basel) 2023; 13:2996. [PMID: 37835602 PMCID: PMC10571980 DOI: 10.3390/ani13192996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The increasing prevalence of antimicrobial-resistant pathogens has prompted the reduction in antibiotic and antimicrobial use in commercial pig production. This has led to increased research efforts to identify alternative dietary interventions to support the health and development of the pig. The crucial role of the GIT microbiota in animal health and performance is becoming increasingly evident. Hence, promoting an improved GIT microbiota, particularly the pioneer microbiota in the young pig, is a fundamental focus. Recent research has indicated that the sow's GIT microbiota is a significant contributor to the development of the offspring's microbiota. Thus, dietary manipulation of the sow's microbiota with probiotics or synbiotics, before farrowing and during lactation, is a compelling area of exploration. This review aims to identify the potential health benefits of maternal probiotic or synbiotic supplementation to both the sow and her offspring and to explore their possible modes of action. Finally, the results of maternal sow probiotic and synbiotic supplementation studies are collated and summarized. Maternal probiotic or synbiotic supplementation offers an effective strategy to modulate the sow's microbiota and thereby enhance the formation of a health-promoting pioneer microbiota in the offspring. In addition, this strategy can potentially reduce oxidative stress and inflammation in the sow and her offspring, enhance the immune potential of the milk, the immune system development in the offspring, and the sow's feed intake during lactation. Although many studies have used probiotics in the maternal sow diet, the most effective probiotic or probiotic blends remain unclear. To this extent, further direct comparative investigations using different probiotics are warranted to advance the current understanding in this area. Moreover, the number of investigations supplementing synbiotics in the maternal sow diet is limited and is an area where further exploration is warranted.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
44
|
Carneiro L, Marousez L, Van Hul M, Tran LC, De Lamballerie M, Ley D, Cani PD, Knauf C, Lesage J. The Sterilization of Human Milk by Holder Pasteurization or by High Hydrostatic Pressure Processing Leads to Differential Intestinal Effects in Mice. Nutrients 2023; 15:4043. [PMID: 37764826 PMCID: PMC10536938 DOI: 10.3390/nu15184043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Human milk banks (HMBs) provide sterilized donor milk (DM) for the feeding of preterm infants. Most HMBs use the standard method of Holder pasteurization (HoP) performed by heating DM at 62.5 °C for 30 min. High hydrostatic pressure (HHP) processing has been proposed as an alternative to HoP. This study aims to evaluate intestinal barrier integrity and microbiota composition in adult mice subjected to a chronic oral administration of HoP- or HHP-DM. METHODS Mice were treated by daily gavages with HoP- or HHP-DM over seven days. Intestinal barrier integrity was assessed through in vivo 4 kDa FITC-dextran permeability assay and mRNA expression of several tight junctions and mucins in ileum and colon. Cecal short chain fatty acids (SCFAs) and microbiota were analyzed. RESULTS HHP-DM mice displayed decreased intestinal permeability to FITC-dextran and increased ileal mRNA expression levels of two tight junctions (Ocln and Cdh1) and Muc2. In the colon, mRNA expression levels of two tight junctions (Cdh1 and Tjp1) and of two mucins (Muc2 and Muc4) were decreased in HHP-DM mice. Cecal SCFAs and microbiota were not different between groups. CONCLUSIONS HHP processing of DM reinforces intestinal barrier integrity in vivo without affecting gut microbiota and SCFAs production. This study reinforces previous findings showing that DM sterilization through HHP might be beneficial for the intestinal maturation of preterm infants compared with the use of HoP for the treatment of DM.
Collapse
Affiliation(s)
- Lionel Carneiro
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Place du Docteur Baylac, CS 60039, CEDEX 3, 31024 Toulouse, France; (L.C.); (C.K.)
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, 31024 Toulouse, France; (M.V.H.); (P.D.C.)
| | - Lucie Marousez
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, 59000 Lille, France; (L.M.); (D.L.)
| | - Matthias Van Hul
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, 31024 Toulouse, France; (M.V.H.); (P.D.C.)
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), 1200 Brussels, Belgium
- WELBIO Department, WEL Research Institute (WELRI), Avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Léa Chantal Tran
- Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children’s Hospital, CHU Lille, 59000 Lille, France;
| | | | - Delphine Ley
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, 59000 Lille, France; (L.M.); (D.L.)
- Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children’s Hospital, CHU Lille, 59000 Lille, France;
| | - Patrice D. Cani
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, 31024 Toulouse, France; (M.V.H.); (P.D.C.)
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), 1200 Brussels, Belgium
- WELBIO Department, WEL Research Institute (WELRI), Avenue Pasteur, 6, 1300 Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain (Université catholique de Louvain), 1200 Brussels, Belgium
| | - Claude Knauf
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Place du Docteur Baylac, CS 60039, CEDEX 3, 31024 Toulouse, France; (L.C.); (C.K.)
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, 31024 Toulouse, France; (M.V.H.); (P.D.C.)
| | - Jean Lesage
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, 59000 Lille, France; (L.M.); (D.L.)
| |
Collapse
|
45
|
Huang SC, He YF, Chen P, Liu KL, Shaukat A. Gut microbiota as a target in the bone health of livestock and poultry: roles of short-chain fatty acids. ANIMAL DISEASES 2023; 3:23. [DOI: 10.1186/s44149-023-00089-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 01/03/2025] Open
Abstract
AbstractThe regulation and maintenance of bone metabolic homeostasis are crucial for animal skeletal health. It has been established that structural alterations in the gut microbiota and ecological dysbiosis are closely associated with bone metabolic homeostasis. The gut microbiota and its metabolites, especially short-chain fatty acids (SCFAs), affect almost all organs, including the bone. In this process, SCFAs positively affect bone healing by acting directly on cells involved in bone repair after or by shaping appropriate anti-inflammatory and immunomodulatory responses. Additionally, SCFAs have the potential to maintain bone health in livestock and poultry because of their various biological functions in regulating bone metabolism, including immune function, calcium absorption, osteogenesis and osteolysis. This review primarily focuses on the role of SCFAs in the regulation of bone metabolism by gut microbiota and provides insight into studies related to bone health in livestock and poultry.
Collapse
|
46
|
Iyer K, Erkert L, Becker C. Know your neighbors: microbial recognition at the intestinal barrier and its implications for gut homeostasis and inflammatory bowel disease. Front Cell Dev Biol 2023; 11:1228283. [PMID: 37519301 PMCID: PMC10375050 DOI: 10.3389/fcell.2023.1228283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Intestinal epithelial cells (IECs) perform several physiological and metabolic functions at the epithelial barrier. IECs also play an important role in defining the overall immune functions at the mucosal region. Pattern recognition receptors (PRRs) on the cell surface and in other cellular compartments enable them to sense the presence of microbes and microbial products in the intestinal lumen. IECs are thus at the crossroads of mediating a bidirectional interaction between the microbial population and the immune cells present at the intestinal mucosa. This communication between the microbial population, the IECs and the underlying immune cells has a profound impact on the overall health of the host. In this review, we focus on the various PRRs present in different cellular compartments of IECs and discuss the recent developments in the understanding of their role in microbial recognition. Microbial recognition and signaling at the epithelial barrier have implications in the maintenance of intestinal homeostasis, epithelial barrier function, maintenance of commensals, and the overall tolerogenic function of PRRs in the gut mucosa. We also highlight the role of an aberrant microbial sensing at the epithelial barrier in the pathogenesis of inflammatory bowel disease (IBD) and the development of colorectal cancer.
Collapse
Affiliation(s)
- Krishna Iyer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States
| | - Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
47
|
Xiao X, Xiao X, Liu Y, Sun H, Liu X, Guo Z, Li Q, Sun W. Metaproteomics Characterizes the Human Gingival Crevicular Fluid Microbiome Function in Periodontitis. J Proteome Res 2023. [PMID: 37327455 DOI: 10.1021/acs.jproteome.3c00143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Periodontitis is the leading cause of tooth loss in adults worldwide. The human proteome and metaproteome characterization of periodontitis is not clearly understood. Gingival crevicular fluid samples were collected from eight periodontitis and eight healthy subjects. Both the human and microbial proteins were characterized by liquid chromatography coupled with high-resolution mass spectrometry. A total of 570 human proteins were found differentially expressed, which were primarily associated with inflammatory response, cell death, cellular junction, and fatty acid metabolism. For the metaproteome, 51 genera were identified, and 10 genera were found highly expressed in periodontitis, while 11 genera were downregulated. The analysis showed that microbial proteins related to butyrate metabolism were upregulated in periodontitis cases. In particular, correlation analysis showed that the expression of host proteins related to inflammatory response, cell death, cellular junction, and lipid metabolism correlates with the alteration of metaproteins, which reflect the changes of molecular function during the occurrence of periodontitis. This study showed that the gingival crevicular fluid human proteome and metaproteome could reflect the characteristics of periodontitis. This might benefit the understanding of the periodontitis mechanism.
Collapse
Affiliation(s)
- Xiaolian Xiao
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaoping Xiao
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yaoran Liu
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Haidan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiaoyan Liu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Zhengguang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Qian Li
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| |
Collapse
|
48
|
Katsumata S, Hayashi Y, Oishi K, Tsukahara T, Inoue R, Obata A, Hirooka H, Kumagai H. Effects of liquefied sake lees on growth performance and faecal and blood characteristics in Japanese Black calves. Animal 2023; 17:100873. [PMID: 37399705 DOI: 10.1016/j.animal.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Liquefied sake lees, a by-product of Japanese sake, is rich in Saccharomyces cerevisiae, proteins, and prebiotics derived from rice and yeast. Previous studies have reported that Saccharomyces cerevisiae fermentation products improved the health, growth, and faecal characteristics of preweaning calves. This study investigated the effects of adding liquefied sake lees to milk replacer on the growth performance, faecal characteristics, and blood metabolites of preweaning Japanese Black calves from 6 to 90 days of age. Twenty-four Japanese Black calves at 6 days of age were randomly assigned to one of three treatments: No liquefied sake lees (C, n = 8), 100 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (LS, n = 8), and 200 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (HS, n = 8). The intake of milk replacer and calf starter, as well as, the average daily gain did not differ between the treatments. The number of days counted with faecal score 1 in LS was higher than in HS (P < 0.05), while the number of days with diarrhoea medication in LS and C was lower than HS (P < 0.05). The faecal n-butyric acid concentration tended to be higher in LS compared to C (P = 0.060). The alpha diversity index (Chao1) was higher in HS than in C and LS at 90 days of age (P < 0.05). The principal coordinate analysis (PCoA) using weighted UniFrac distance showed that the bacterial community structures in faeces among the treatments at 90 days of age were significantly different (P < 0.05). The plasma β-hydroxybutyric acid concentration, an indicator of rumen development, was higher for LS than in C throughout the experiment (P < 0.05). These results suggested that adding liquefied sake lees up to 100 g/d (on a fresh matter basis) might promote rumen development in preweaning Japanese Black calves.
Collapse
Affiliation(s)
- S Katsumata
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan.
| | - Y Hayashi
- Shiga Prefectural Livestock Production Technology Promotion Center, Hino, Shiga 529-1651, Japan
| | - K Oishi
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - T Tsukahara
- Kyoto Institute of Nutrition and Pathology, Ujitawara, Kyoto 610-0231, Japan
| | - R Inoue
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - A Obata
- Shiga Prefectural Livestock Production Technology Promotion Center, Hino, Shiga 529-1651, Japan
| | - H Hirooka
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - H Kumagai
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
49
|
Cui C, Hong H, Shi Y, Zhou Y, Qiao CM, Zhao WJ, Zhao LP, Wu J, Quan W, Niu GY, Wu YB, Li CS, Cheng L, Hong Y, Shen YQ. Vancomycin Pretreatment on MPTP-Induced Parkinson's Disease Mice Exerts Neuroprotection by Suppressing Inflammation Both in Brain and Gut. J Neuroimmune Pharmacol 2023; 18:72-89. [PMID: 35091889 DOI: 10.1007/s11481-021-10047-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/21/2021] [Indexed: 01/02/2023]
Abstract
A growing body of evidence implies that gut microbiota was involved in pathogenesis of Parkinson's disease (PD), but the mechanism is still unclear. The aim of this study is to investigate the effects of antibiotics pretreatment on the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. In this study, vancomycin pretreatment was given by gavage once daily with either vancomycin or distilled water for 14 days to mice, then mice were administered with MPTP (20 mg/kg, i.p) for four times in one day to establish an acute PD model. Results show that vancomycin pretreatment significantly improved motor dysfunction of mice in pole and traction tests. Although vancomycin pretreatment had no effect on dopamine (DA) or the process of DA synthesis, it inhibited the metabolism of DA by suppressing the expression of striatal monoamine oxidase B (MAO-B). Furthermore, vancomycin pretreatment reduced the number of astrocytes and microglial cells in the substantia nigra pars compacta (SNpc) to alleviate neuroinflammation, decreased the expression of TLR4/MyD88/NF-κB/TNF-α signaling pathway in both brain and gut. Meanwhile, vancomycin pretreatment changed gut microbiome composition and the levels of fecal short chain fatty acids (SCFAs). The abundance of Akkermansia and Blautia increased significantly after vancomycin pretreatment, which might be related to inflammation and inhibition of TLR4 signaling pathway. In summary, these results demonstrate that the variation of gut microbiota and its metabolites induced by vancomycin pretreatment might decrease dopamine metabolic rate and relieve inflammation in both gut and brain via the microbiota-gut-brain axis in MPTP-induced PD mice. The neuroprotection of vancomycin pretreatment on MPTP-induced Parkinson's disease mice The alterations of gut microbiota and SCFAs induced by vancomycin pretreatment might not only improve motor dysfunction, but also decrease dopamine metabolism and relieve inflammation in both brain and gut via TLR4/MyD88/NF-κB/TNF-α pathway in MPTP-induced PD mice.
Collapse
Affiliation(s)
- Chun Cui
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hui Hong
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yun Shi
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yu Zhou
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chen-Meng Qiao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei-Jiang Zhao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li-Ping Zhao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Wu
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei Quan
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Gu-Yu Niu
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yi-Bo Wu
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chao-Sheng Li
- Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yan-Qin Shen
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
50
|
Smith CJ, Rendina DN, Kingsbury MA, Malacon KE, Nguyen DM, Tran JJ, Devlin BA, Raju RM, Clark MJ, Burgett L, Zhang JH, Cetinbas M, Sadreyev RI, Chen K, Iyer MS, Bilbo SD. Microbial modulation via cross-fostering prevents the effects of pervasive environmental stressors on microglia and social behavior, but not the dopamine system. Mol Psychiatry 2023; 28:2549-2562. [PMID: 37198262 PMCID: PMC10719943 DOI: 10.1038/s41380-023-02108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Environmental toxicant exposure, including air pollution, is increasing worldwide. However, toxicant exposures are not equitably distributed. Rather, low-income and minority communities bear the greatest burden, along with higher levels of psychosocial stress. Both air pollution and maternal stress during pregnancy have been linked to neurodevelopmental disorders such as autism, but biological mechanisms and targets for therapeutic intervention remain poorly understood. We demonstrate that combined prenatal exposure to air pollution (diesel exhaust particles, DEP) and maternal stress (MS) in mice induces social behavior deficits only in male offspring, in line with the male bias in autism. These behavioral deficits are accompanied by changes in microglial morphology and gene expression as well as decreased dopamine receptor expression and dopaminergic fiber input in the nucleus accumbens (NAc). Importantly, the gut-brain axis has been implicated in ASD, and both microglia and the dopamine system are sensitive to the composition of the gut microbiome. In line with this, we find that the composition of the gut microbiome and the structure of the intestinal epithelium are significantly shifted in DEP/MS-exposed males. Excitingly, both the DEP/MS-induced social deficits and microglial alterations in males are prevented by shifting the gut microbiome at birth via a cross-fostering procedure. However, while social deficits in DEP/MS males can be reversed by chemogenetic activation of dopamine neurons in the ventral tegmental area, modulation of the gut microbiome does not impact dopamine endpoints. These findings demonstrate male-specific changes in the gut-brain axis following DEP/MS and suggest that the gut microbiome is an important modulator of both social behavior and microglia.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Danielle N Rendina
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Marcy A Kingsbury
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Lurie Center for Autism, Charlestown, MA, USA
| | - Karen E Malacon
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Dang M Nguyen
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Jessica J Tran
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Lurie Center for Autism, Charlestown, MA, USA
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Ravikiran M Raju
- Department of Pediatrics, Division of Newborn Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
- Massachusetts Institute of Technology, Picower Institute for Learning and Memory, Cambridge, MA, USA
| | - Madeline J Clark
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| | - Lauren Burgett
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Jason H Zhang
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Massachusetts General Hospital, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Chen
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Lurie Center for Autism, Charlestown, MA, USA
| | - Malvika S Iyer
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Lurie Center for Autism, Charlestown, MA, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA.
| |
Collapse
|