1
|
Vass RA, Zhang M, Simon Sarkadi L, Üveges M, Tormási J, Benes EL, Ertl T, Vari SG. Effect of Holder Pasteurization, Mode of Delivery, and Infant's Gender on Fatty Acid Composition of Donor Breast Milk. Nutrients 2024; 16:1689. [PMID: 38892622 PMCID: PMC11174728 DOI: 10.3390/nu16111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Breast milk (BM) plays a crucial role in providing essential fatty acids (FA) and energy for the growing infant. When the mother's own BM is not available, nutritional recommendations suggest donor milk (DM) in clinical and home practices. BM was collected from a variety of donor mothers in different lactation stages. Holder pasteurization (HoP) eliminates potential contaminants to ensure safety. FA content of BM samples from the Breast Milk Collection Center of Pécs, Hungary, were analyzed before and after HoP. HoP decreases the level of C6:0, C8:0, C14:1n-5c, C18:1n-9c, C18:3n-6c, C18:3n-3c, and C20:4n-6c in BM, while C14:0, C16:0, C18:1n-9t, C22:0, C22:1n-9c, C24:0, C24:1n-9c, and C22:6n-3c were found in elevated concentration after HoP. We did not detect time-dependent concentration changes in FAs in the first year of lactation. BM produced for girl infants contains higher C20:2n-6c levels. In the BM of mothers who delivered via cesarean section, C12:0, C15:0, C16:0, C17:0, C18:0, C18:1n-9t, C22:1n-9c levels were higher, while C18:2n-6c, C22:0, C24:0, and C22:6n-3c concentrations were lower compared to mothers who gave birth spontaneously. FAs in BM are constant during the first year of lactation. Although HoP modifies the concentration of different FAs, pasteurized DM provides essential FAs to the developing infant. Current data providing information about the FA profile of BM gives origination to supplementation guidelines.
Collapse
Affiliation(s)
- Réka Anna Vass
- Department of Obstetrics and Gynecology, Medical School University of Pécs, 7624 Pécs, Hungary;
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Obstetrics and Gynecology, Magyar Imre Hospital, 8400 Ajka, Hungary
| | - Miaomiao Zhang
- Department of Nutrition, Faculty of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (L.S.S.)
| | - Livia Simon Sarkadi
- Department of Nutrition, Faculty of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (L.S.S.)
| | - Márta Üveges
- Division of Chemical, Noise, Vibration, and Lighting Technology Laboratories, Department of Methodology and Public Health Laboratories, National Center for Public Health and Pharmacy, 1096 Budapest, Hungary;
| | - Judit Tormási
- Department of Food Chemistry and Analysis, Faculty of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (J.T.); (E.L.B.)
| | - Eszter L. Benes
- Department of Food Chemistry and Analysis, Faculty of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (J.T.); (E.L.B.)
| | - Tibor Ertl
- Department of Obstetrics and Gynecology, Medical School University of Pécs, 7624 Pécs, Hungary;
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
2
|
Purkiewicz A, Pietrzak-Fiećko R. Determination of the Fatty Acid Profile and Lipid Quality Indices in Selected Infant Formulas. Molecules 2024; 29:2044. [PMID: 38731536 PMCID: PMC11085564 DOI: 10.3390/molecules29092044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
The quality of fat in infant milk is determined by the fatty acid profile and selected indices describing nutritional value. The aim of this study was to analyze the fatty acid profile and lipid quality indices of infant formulas and compare these data with breast milk. The study material included seven types of cow's milk-based follow-on infant formulas and samples of mature breast milk. The determination of fatty acids was performed using the gas chromatography (GC) technique. Lipid quality indices were calculated based on the relevant equations. Infant formulas contained more medium-chain fatty acids (MCFAs) and oleic acid. Moreover, they contained more than 30% more linoleic acid and more than twice as much α-linolenic acid and docosahexaenoic acid. In contrast, significant amounts of trans fatty acids (TFAs) were noted in breast milk, while infant formulas contained trace amounts. Infant formulas were characterized by a lower AI (Index of Atherogenicity) (0.49-0.98) and TI (Index of Thrombogenicity) (0.48-0.60) and a higher H/H (hypocholesterolemic/hypercholesterolemic) ratio (1.93-2.30) compared with breast milk (1.47, 1.60, and 1.21, respectively). The composition of infant formulas depended on the type of fat added at the production stage and differed significantly from breast milk, particularly in terms of polyunsaturated fatty acids and lipid quality indices.
Collapse
Affiliation(s)
- Aleksandra Purkiewicz
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10-719 Olsztyn, Poland;
| | | |
Collapse
|
3
|
Thangaraj SV, Ghnenis A, Pallas B, Vyas AK, Gregg B, Padmanabhan V. Comparative lipidome study of maternal plasma, milk, and lamb plasma in sheep. Sci Rep 2024; 14:7401. [PMID: 38548847 PMCID: PMC10978966 DOI: 10.1038/s41598-024-58116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
Lipids play a critical role in neonate development and breastmilk is the newborn's major source of lipids. Milk lipids directly influence the neonate plasma lipid profile. The milk lipidome is dynamic, influenced by maternal factors and related to the maternal plasma lipidome. The close inter-relationship between the maternal plasma, milk and neonate plasma lipidomes is critical to understanding maternal-child health and nutrition. In this exploratory study, lipidomes of blood and breast milk from Suffolk sheep and matched lamb blood (n = 13), were profiled on day 34 post birth by untargeted mass spectrometry. Comparative multivariate analysis of the three matrices identified distinct differences in lipids and class of lipids amongst them. Paired analysis identified 346 differential lipids (DL) and 31 correlated lipids (CL) in maternal plasma and milk, 340 DL and 32 CL in lamb plasma and milk and 295 DL and 16 CL in maternal plasma and lamb plasma. Conversion of phosphatidic acid to phosphatidyl inositol was the most active pathway in lamb plasma compared to maternal plasma. This exploratory study illustrates the partitioning of lipids across maternal plasma, milk and lamb plasma and the dynamic relationship between them, reiterating the need to study these three matrices as one biological system.
Collapse
Affiliation(s)
- Soundara Viveka Thangaraj
- Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Adel Ghnenis
- Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Arpita Kalla Vyas
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Brigid Gregg
- Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
O'Sullivan A, Brady E, Lafferty L, O'Shea F, O'Regan Z, Meurs N, Baldini M, Gengatharan J, Metallo CM, Wallace M. Long chain monomethyl branched-chain fatty acid levels in human milk vary with gestational weight gain. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102607. [PMID: 38277883 DOI: 10.1016/j.plefa.2024.102607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Breastfeeding is an important determinant of infant health and there is immense interest in understanding its metabolite composition so that key beneficial components can be identified. The aim of this research was to measure the fatty acid composition of human milk in an Irish cohort where we examined changes depending on lactation stage and gestational weight gain trajectory. Utilizing a chromatography approach optimal for isomer separation, we identified 44 individual fatty acid species via GCMS and showed that monomethyl branched-chain fatty acids(mmBCFA's), C15:0 and C16:1 are lower in women with excess gestational weight gain versus low gestational weight gain. To further explore the potential contribution of the activity of endogenous metabolic pathways to levels of these fatty acids in milk, we administered D2O to C57BL/6J dams fed a purified lard based high fat diet (HFD) or low-fat diet during gestation and quantified the total and de novo synthesized levels of fatty acids in their milk. We found that de novo synthesis over three days can account for between 10 and 50 % of mmBCFAs in milk from dams on the low-fat diet dependent on the branched-chain fatty acid species. However, HFD fed mice had significantly decreased de novo synthesized fatty acids in milk resulting in lower total mmBCFAs and medium chain fatty acid levels. Overall, our findings highlight the diverse fatty acid composition of human milk and that human milk mmBCFA levels differ between gestational weight gain phenotypes. In addition, our data indicates that de novo synthesis contributes to mmBCFA levels in mice milk and thus may also be a contributory factor to mmBCFA levels in human milk. Given emerging data indicating mmBCFAs may be beneficial components of milk, this study contributes to our knowledge around the phenotypic factors that may impact their levels.
Collapse
Affiliation(s)
- Aifric O'Sullivan
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland
| | - Emer Brady
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland
| | - Lucy Lafferty
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland
| | - Fiona O'Shea
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland
| | - Zoe O'Regan
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland
| | - Noah Meurs
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, CA, USA
| | - Michelle Baldini
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, CA, USA
| | - Jivani Gengatharan
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, CA, USA
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, Salk Institute, 10010N. Torrey Pines Rd., La Jolla, 92037, CA, USA
| | - Martina Wallace
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| |
Collapse
|
5
|
Hashemi Javaheri FS, Karbin K, Senobari MA, Hakim HG, Hashemi M. The association between maternal body mass index and breast milk composition: a systematic review. Nutr Rev 2024:nuad174. [PMID: 38273741 DOI: 10.1093/nutrit/nuad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
CONTEXT Breast milk composition is influenced by many factors, ranging from maternal nutritional status to infant sex. Previous studies have explored the relationship between maternal body mass index (BMI) and breast milk composition; however, the findings have been inconsistent and controversial. OBJECTIVE To systematically review the evidence on the association of maternal weight and BMI with breast milk composition. DATA SOURCES The PubMed and Scopus databases were searched up to May 3, 2023, using the following search strategy: ("maternal weight" OR "maternal BMI" OR "mother's weight" OR "mother's BMI") AND ("maternal milk" OR "human milk" OR "breast milk"). DATA EXTRACTION A total of 83 publications, involving data from more than 11 310 lactating women, were identified. All extracted data were compiled, compared, and critically analyzed. DATA ANALYSIS Overall, maternal BMI was associated with higher levels of leptin and insulin, and the ratio of omega-6 to omega-3 polyunsaturated fatty acids in breast milk. However, no conclusive associations were found between maternal BMI and the levels of energy, macronutrients, micronutrients, and other components of breast milk. CONCLUSIONS This systematic review provides robust evidence supporting a positive correlation between maternal BMI and breast milk concentrations of leptin, insulin, and the omega-6 to omega-3 polyunsaturated fatty acid ratio. Nevertheless, disparities in findings are noticeable for other constituents of breast milk. To comprehensively grasp the influence of maternal weight and BMI on breast milk composition, further research endeavors are imperative. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023458667.
Collapse
Affiliation(s)
- Fatemeh Sadat Hashemi Javaheri
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Karbin
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mohammad Amin Senobari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hakime Ghadiri Hakim
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Lu H, Wang Z, Cao B, Cong F, Wang X, Wei W. Dietary sources of branched-chain fatty acids and their biosynthesis, distribution, and nutritional properties. Food Chem 2024; 431:137158. [PMID: 37604010 DOI: 10.1016/j.foodchem.2023.137158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/05/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
Branched-chain fatty acids (BCFAs) consist of a wide variety of fatty acids with alkyl branching of methyl group. The most common BCFAs are the types with one methyl group (mmBCFA) on the penultimate carbon (iBCFA) or the antepenultimate carbon (aiBCFA). Long-chain mmBCFAs are widely existing in animal fats, milks and are mostly derived from bacteria in the diet or animal digestive system. Recent studies show that BCFAs benefit human intestinal health and immune homeostasis, but the connection between their content, distribution in the human and their nutritional functions are not well established. In this paper, we reviewed BCFAs from various dietary sources focused on their molecular species. The BCFAs biosynthesis in bacteria, Caenorhabditis elegans, mammals and their distribution in human tissues are summarized. This paper also discusses the nutritional properties of BCFAs including influences on intestinal health, immunoregulatory effects, anti-carcinoma, and anti-obesity activities, by highlighting the most recent research progress.
Collapse
Affiliation(s)
- Huijia Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhen Wang
- Wilmar (Shanghai) Biotechnology Research & Development Center, Shanghai 200137, China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Bo Cao
- Wilmar (Shanghai) Biotechnology Research & Development Center, Shanghai 200137, China
| | - Fang Cong
- Wilmar (Shanghai) Biotechnology Research & Development Center, Shanghai 200137, China.
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Maheshwari A, Mantry H, Bagga N, Frydrysiak-Brzozowska A, Badarch J, Rahman MM. Milk Fat Globules: 2024 Updates. NEWBORN (CLARKSVILLE, MD.) 2024; 3:19-37. [PMID: 39474586 PMCID: PMC11521418 DOI: 10.5005/jp-journals-11002-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Milk fat globules (MFGs) are a remarkable example of nature's ingenuity. Human milk (HM) carries contains 3-5% fat, 0.8-0.9% protein, 6.9-7.2% carbohydrate calculated as lactose, and 0.2% mineral constituents. Most of these nutrients are carried in these MFGs, which are composed of an energy-rich triacylglycerol (TAG) core surrounded by a triple membrane structure. The membrane contains polar lipids, specialized proteins, glycoproteins, and cholesterol. Each of these bioactive components serves important nutritional, immunological, neurological, and digestive functions. These MFGs are designed to release energy rapidly in the upper gastrointestinal tract and then persist for some time in the gut lumen so that the protective bioactive molecules are conveyed to the colon. These properties may shape the microbial colonization and innate immune properties of the developing gastrointestinal tract. Milk fat globules in milk from humans and ruminants may resemble in structure but there are considerable differences in size, profile, composition, and specific constituents. There are possibilities to not only enhance the nutritional composition in a goal-oriented fashion to correct specific deficiencies in the infant but also to use these fat globules as a nutraceutical in infants who require specific treatments. To mention a few, there might be possibilities in enhancing neurodevelopment, in defense against gastrointestinal and respiratory tract infections, improving insulin sensitivity, treating chronic inflammation, and altering plasma lipids. This review provides an overview of the composition, structure, and biological activities of the various components of the MFGs. We have assimilated research findings from our own laboratory with an extensive review of the literature utilizing key terms in multiple databases including PubMed, EMBASE, and Science Direct. To avoid bias in the identification of studies, keywords were short-listed a priori from anecdotal experience and PubMed's Medical Subject Heading (MeSH) thesaurus.
Collapse
Affiliation(s)
- Akhil Maheshwari
- Department of Pediatrics, Louisiana State University, Shreveport, Louisiana, United States of America
- Global Newborn Society, Clarksville Maryland, United States of America
| | - Harshvardhan Mantry
- Department of Physics, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Nitasha Bagga
- Global Newborn Society, Clarksville Maryland, United States of America
- Neonatology, Rainbow Children’s Hospital and Birthright, Hyderabad, Telangana, India
| | - Adrianna Frydrysiak-Brzozowska
- Global Newborn Society, Clarksville Maryland, United States of America
- The Mazovian University in Płock, Collegium Medicum, Faculty of Health Sciences, Płock, Poland
| | - Jargalsaikhan Badarch
- Global Newborn Society, Clarksville Maryland, United States of America
- Department of Obstetrics, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Md Mozibur Rahman
- Global Newborn Society, Clarksville Maryland, United States of America
- Neonatology, Institute of Child and Mother Health, Dhaka, Bangladesh
| |
Collapse
|
8
|
Derisoud E, Auclair-Ronzaud J, Rousseau-Ralliard D, Philau S, Aujean E, Durand A, Dahirel M, Charlier M, Boutinaud M, Wimel L, Chavatte-Palmer P. Maternal Age, Parity and Nursing Status at Fertilization Affects Postpartum Lactation Up to Weaning in Horses. J Equine Vet Sci 2023; 128:104868. [PMID: 37329928 DOI: 10.1016/j.jevs.2023.104868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Nulliparity is associated with intra-uterine growth retardation and foal delayed catch-up growth. Older mares produce larger/taller foals than the precedents. Nursing at conception on foal growth had not been investigated yet. In any case, milk production conditions the foal's growth. This study aimed to determine effects of mare parity, age and nursing on subsequent lactation quantity and quality. Saddlebred mares and their foals (N = 43) run as a single herd over the same year were: young (6-7-year-old) primiparous, young multiparous, old (10-16-year-old) multiparous nursing at insemination time or old multiparous barren the previous year. No young nursing nor old multiparous mares were available. Colostrum was collected. Milk production and foal weight were monitored at 3-, 30-, 60-, 90- and 180-days postfoaling. The foal average daily weight gain (ADG) was calculated for each period between two measurements. Milk fatty acid (FA), sodium, potassium, total protein and lactose contents were determined. The primiparous versus multiparous colostrum was richer in immunoglobulin G, with lower production but greater FA contents in milk. The primiparous foals had a lower ADG for 3 to 30 days postpartum period. Old mares' colostrum contained more SFA and less polyunsaturated FA (PUFA) whereas their milk was richer in proteins and sodium and poorer in short-chain-SFA with a reduced PUFA/SFA ratio at 90 days. Nursing mares' colostrum was richer in MUFA and PUFA and late-lactation milk production was reduced. In conclusion, parity, age and nursing at conception affect mare's colostrum and milk production and foal growth and should be considered for broodmares' management.
Collapse
Affiliation(s)
- Emilie Derisoud
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden.
| | | | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | | | - Etienne Aujean
- INRAE, AgroParisTech, GABI, University of Paris-Saclay, Jouy-en-Josas, France
| | - Alexia Durand
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Michèle Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Madia Charlier
- INRAE, AgroParisTech, GABI, University of Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
9
|
Ganeshalingam M, Enstad S, Sen S, Cheema S, Esposito F, Thomas R. Role of lipidomics in assessing the functional lipid composition in breast milk. Front Nutr 2022; 9:899401. [PMID: 36118752 PMCID: PMC9478754 DOI: 10.3389/fnut.2022.899401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Breast milk is the ideal source of nutrients for infants in early life. Lipids represent 2–5% of the total breast milk composition and are a major energy source providing 50% of an infant’s energy intake. Functional lipids are an emerging class of lipids in breast milk mediating several different biological functions, health, and developmental outcome. Lipidomics is an emerging field that studies the structure and function of lipidome. It provides the ability to identify new signaling molecules, mechanisms underlying physiological activities, and possible biomarkers for early diagnosis and prognosis of diseases, thus laying the foundation for individualized, targeted, and precise nutritional management strategies. This emerging technique can be useful to study the major role of functional lipids in breast milk in several dimensions. Functional lipids are consumed with daily food intake; however, they have physiological benefits reported to reduce the risk of disease. Functional lipids are a new area of interest in lipidomics, but very little is known of the functional lipidome in human breast milk. In this review, we focus on the role of lipidomics in assessing functional lipid composition in breast milk and how lipid bioinformatics, a newly emerging branch in this field, can help to determine the mechanisms by which breast milk affects newborn health.
Collapse
Affiliation(s)
- Moganatharsa Ganeshalingam
- School of Science and the Environment/Boreal Ecosystems Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
- *Correspondence: Moganatharsa Ganeshalingam,
| | - Samantha Enstad
- Neonatal Intensive Care Unit, Orlando Health Winne Palmer Hospital for Women and Babies, Orlando, FL, United States
| | - Sarbattama Sen
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Sukhinder Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, Bari, Italy
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystems Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Raymond Thomas,
| |
Collapse
|
10
|
Ni M, Wang Y, Yang Z, Xu X, Zhang H, Yang Y, Zhang L, Chen J. Profiles of total and sn-2 fatty acid of human mature milk and their correlated factors: A cross-sectional study in China. Front Nutr 2022; 9:926429. [PMID: 36071934 PMCID: PMC9441907 DOI: 10.3389/fnut.2022.926429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty acid (FA) in breast milk is beneficial to the growth and neurodevelopment of infants. However, the structure profiles of breast milk FAs and the influencing factors which are crucial for normal function have not been fully elucidated. This study aimed to characterize the profiles of total and sn-2 FAs in human mature milk based on two representative urban areas in China and explore potential sociodemographic determinants. Mothers (n = 70) at 40–100 d postpartum from Beijing and Danyang were recruited according to unified inclusion and exclusion criteria. Total and sn-2 FA compositions were examined by gas chromatography and quantified. Using the Spearman correlation and multiple regression model, we found that the location and maternal education level were the most conspicuous correlated factor. The milk of mothers from Beijing had higher levels of the n-6 series of long-chain polyunsaturated fatty acids (LCPUFA) (C20:2, C20:3n-6, C20:4n-6, n-6PUFA/n-3PUFA, LA/ALA, and ARA/DHA) than that of Danyang, while the opposite was observed in the n-3 series of LCPUFA (C18:3n-3 and Total n-3PUFA). Compared to the milk of mothers with a high school degree or below, those with a bachelor's degree or above had lower SFAs (C10:0, C12:0, C14:0, and Total SFA), n-3 series of LCPUFA (C18:3n-3 and Total n-3PUFA), C18:1n-9t, and higher n-6 series of LCPUFA (C18:2n-6c, C20:2, C20:4n-6, Total n-6PUFA, and n-6PUFA/n-3PUFA). Maternal age, infant gender, pre-conception body mass index (BMI), parity, delivery mode, and gestational weight gain were also associated with total FAs. However, fewer associations were found between the above factors and sn-2 FAs. This study will promote an understanding of human breast milk's lipid profile and help develop a formula more suitable for infants.
Collapse
Affiliation(s)
- Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yingyao Wang
- Chinese Nutrition Society, Beijing, China
- CNS Academy of Nutrition and Health (Beijing Zhongyinghui Nutrition and Health Research Institute) Beijing Zhongyinghui Nutrition and Health Research Institute, Beijing, China
| | - Zhirui Yang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xuebing Xu
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Yuexin Yang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- *Correspondence: Yuexin Yang
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Lishi Zhang
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Jinyao Chen
| |
Collapse
|
11
|
Simon Sarkadi L, Zhang M, Muránszky G, Vass RA, Matsyura O, Benes E, Vari SG. Fatty Acid Composition of Milk from Mothers with Normal Weight, Obesity, or Gestational Diabetes. Life (Basel) 2022; 12:life12071093. [PMID: 35888181 PMCID: PMC9323340 DOI: 10.3390/life12071093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 05/31/2023] Open
Abstract
Gestation and the neonatal period are crucial periods in infant development. Many components of breast milk, including fatty acids, play an important role in strengthening the immune system. The aim of our research was to evaluate the fatty acid profiles of milk from 69 mothers, including subjects having a normal weight, obesity, or gestational diabetes. For the analyses, we used gas chromatography (GC) with flame ionization detection (FID) and GC coupled with mass spectrometry (GC/MS). The main fatty acids found in breast milk were palmitic acid (C16:0; 26-28%), linoleic acid (C18:2; 23-28%), and α-linolenic acid linoleic acid (C18:3; 15-17%), followed by myristic acid (C14:0; 5-8%), lauric acid (C12:0; 4-6%) and stearic acid (C18:0; 4-5%). The average breakdown of fatty acids was 50% saturated, 44% polyunsaturated, and 6% monounsaturated. Breast milk samples were classified using principal component analysis and linear discriminant analysis. Results showed that milk from the two major groups of obese and normal body mass index (BMI) could be distinguished with an accuracy of 89.66%. Breast milk samples of Hungarian and Ukrainian mothers showed significant differences based on the fatty acid composition, which variations are attributable to the mothers' dietary habits.
Collapse
Affiliation(s)
- Livia Simon Sarkadi
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Miaomiao Zhang
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Géza Muránszky
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Réka Anna Vass
- Department of Obstetrics and Gynecology, University of Pécs Medical School, 7624 Pecs, Hungary;
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pecs, Hungary
| | - Oksana Matsyura
- Department of Pediatrics No. 2, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Eszter Benes
- Department of Food and Analytical Chemistry, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
12
|
Abstract
In evaluating vitamin E (VE) nutritional status of preterm infants, it is essential that any data should be compared with those of healthy term infants, and never with those of adults. Moreover, it should be evaluated in terms of gestational age (GA), not birth weight (BW), because placental transfer of most nutrients from mother to fetus is dependent on GA, not BW. Judging from the limited data during the last 75 years, there was no significant correlation between GA and VE concentrations in circulation or in the red blood cells (RBCs), leukocytes, and buccal mucosal cells. In addition, the oxidizability of polyunsaturated fatty acids (PUFAs) in plasma or RBCs, as targets for protection by VE chain-breaking ability, was lower in preterm infants. However, because of the minimal information available about hepatic VE levels, which is considered a key determinant of whole body VE status, the decision on whether VE status of preterm infants is comparable with that of term infants should be postponed. Clinical trials of VE supplementation in preterm infants were repeatedly undertaken to investigate whether VE reduces severity or inhibits development of several diseases specific to preterm infants, namely retinopathy of prematurity (ROP), bronchopulmonary dysplasia (BPD), and germinal matrix hemorrhage - intraventricular hemorrhage (GMH-IVH). Most of these trials resulted in a misfire, with a few exceptions for IVH prevention. However, almost all these studies were performed from 1980s to early 1990s, in the pre-surfactant era, and the study populations were composed of mid-preterm infants with GAs of approximately 30 weeks (wks). There is considerable difference in 'preterm infants' between the pre- and post-surfactant eras; modern neonatal medicine mainly treats preterm infants of 28 wks GA or less. Therefore, these results are difficult to apply in modern neonatal care. Before considering new trials of VE supplementation, we should fully understand modern neonatal medicine, especially the recent method of oxygen supplementation. Additionally, a deeper understanding of recent progress in pathophysiology and therapies for possible target diseases is necessary to decide whether VE administration is still worth re-challenging in modern neonatal intensive care units (NICUs). In this review, we present recent concepts and therapeutic trends in ROP, BPD, and GMH-IVH for those unfamiliar with neonatal medicine. Numerous studies have reported the possible involvement of reactive oxygen species (ROS)-induced damage in relation to supplemental oxygen use, inflammation, and immature antioxidant defense in the development of both BPD and ROP. Various antioxidants effectively prevented the exacerbation of BPD and ROP in animal models. In the future, VE should be re-attempted as a complementary factor in combination with various therapies for BPD, ROP, and GMH-IVH. Because VE is a natural and safe supplement, we are certain that it will attract attention again in preterm medicine.
Collapse
Affiliation(s)
- Tohru Ogihara
- Division of Neonatology, Department of Pediatrics, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
| | - Makoto Mino
- Division of Neonatology, Department of Pediatrics, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
13
|
Manta-Vogli PD, Schulpis KH, Loukas YL, Dotsikas Y. Quantitation and evaluation of perinatal medium-chain and long-chain acylcarnitine blood concentrations in 12,000 full-term breastfed newborns. J Pediatr Endocrinol Metab 2021; 34:1023-1030. [PMID: 34167180 DOI: 10.1515/jpem-2020-0741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/31/2021] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Medium-chain (MCA) and long-chain acylcarnitine (LCA) blood concentrations play a significant role in the fatty acid (FA) oxidation process, especially during the first days of life. Identification of their abnormal concentrations, via expanded newborn screening, can lead to the diagnosis of FA oxidation disorders. This study aimed to demonstrate MCA and LCA concentrations in Dried Blood Spots (DBS) of full-term breastfed infants, in relation to their birth weight (BW) perinatally. METHODS Breastfed full-term infants (n = 12,000, 6,000 males, 6,000 females) with BW 2,000-3,999 g were divided into four equal groups: Group A, 2,000-2,499 g, B 2,500-2,999 g, C 3,000-3,499 g, and D 3,500-3,999 g. Samples were collected as DBS and acylcarnitines were determined via a liquid chromatography tandem mass spectrometry method. RESULTS MCA and LCA blood concentrations were determined significantly lower in group A (low birth weight infants) in both sexes. Infants with BW > 3,500 g (group D), were characterized by lower levels of C10, C10:1, C14, C14:1 acylcarnitines and higher levels of C16 and C18:1 acylcarnitines, as compared to the other groups of this study. CONCLUSIONS Concentration patterns in full-term breastfed newborns in relation to sex and mainly BW found in this study could be very helpful for neonatologists, especially for newborns of group A.
Collapse
Affiliation(s)
- Penelope D Manta-Vogli
- Department of Clinical Nutrition and Dietetics, Agia Sofia Children's Hospital, Athens, Greece
| | | | - Yannis L Loukas
- Department of Pharmacy, Laboratory of Pharm. Analysis, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Department of Pharmacy, Laboratory of Pharm. Analysis, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Bardanzellu F, Puddu M, Peroni DG, Fanos V. The clinical impact of maternal weight on offspring health: lights and shadows in breast milk metabolome. Expert Rev Proteomics 2021; 18:571-606. [PMID: 34107825 DOI: 10.1080/14789450.2021.1940143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Pre-pregnancy overweight and obesity, depending on maternal nutrition and metabolic state, can influence fetal, neonatal and long-term offspring health, regarding cardio-metabolic, respiratory, immunological and cognitive outcomes. Thus, maternal weight can act, through mechanisms that are not full understood, on the physiology and metabolism of some fetal organs and tissues, to adapt themselves to the intrauterine environment and nutritional reserves. These effects could occur by modulating gene expression, neonatal microbiome, and through breastfeeding. AREAS COVERED In this paper, we investigated the potential effects of metabolites found altered in breast milk (BM) of overweight/obese mothers, through an extensive review of metabolomics studies, and the potential short- and long-term clinical effects in the offspring, especially regarding overweight, glucose homeostasis, insulin resistance, oxidative stress, infections, immune processes, and neurodevelopment. EXPERT OPINION Metabolomics seems the ideal tool to investigate BM variation depending on maternal or fetal/neonatal factors. In particular, BM metabolome alterations according to maternal conditions were recently pointed out in cases of gestational diabetes, preeclampsia, intrauterine growth restriction and maternal overweight/obesity. In our opinion, even if BM is the food of choice in neonatal nutrition, the deepest comprehension of its composition in overweight/obese mothers could allow targeted supplementation, to improve offspring health and metabolic homeostasis.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| | - Melania Puddu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, section of Pediatrics, University of Pisa, Italy. Via Roma, 55, 56126 Pisa PI, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| |
Collapse
|
15
|
Binte Abu Bakar SY, Salim M, Clulow AJ, Nicholas KR, Boyd BJ. Human milk composition and the effects of pasteurisation on the activity of its components. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Mehra R, Singh R, Nayan V, Buttar HS, Kumar N, Kumar S, Bhardwaj A, Kaushik R, Kumar H. Nutritional attributes of bovine colostrum components in human health and disease: A comprehensive review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Comparisons of Breast Milk Fatty Acid Profiles in Overweight and Obese Women. NUTRITION AND FOOD SCIENCES RESEARCH 2021. [DOI: 10.52547/nfsr.8.2.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Maples JM, McCarley C, Blankenship MM, Yoho K, Johnson KP, Fortner KB, Tinius RA. Metabolic Flexibility and Weight Status May Contribute to Inter-Individual Changes in Breastmilk Lipid Content in Response to an Acute Bout of Exercise: Preliminary Findings from a Pilot Study. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2020; 13:1756-1769. [PMID: 33414866 PMCID: PMC7745905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
The purposes of this pilot study were to describe changes in breastmilk lipid content in response to an acute bout of moderate intensity exercise and to explore maternal metabolic health factors, including metabolic flexibility, which may impact this change. A cross-sectional, observational, pilot study design was performed in 14 women between 4 and 6 months postpartum. Whole body fasting lipid oxidation was assessed, a standardized high-fat breakfast was consumed, and lipid oxidation was again measured 120-minutes post-meal. Metabolic flexibility was determined by comparing the change in lipid oxidation before and after the meal. Women completed 30-minutes of moderate intensity treadmill walking 150-minutes post-meal. Breastmilk was expressed and analyzed for lipid content before and after exercise. Overall, there was no significant difference between pre- and post-exercise breastmilk lipid content (pre-exercise 59.4±36.1 g/L vs. post-exercise 52.5±20.7 g/L, p=0.26). However, five (36%) women had an increase in breastmilk lipid content in response to the exercise bout, compared to nine (64%) that had a decrease in breastmilk lipid content suggesting inter-individual variability. The change in breastmilk lipid content from pre- to post-exercise was positively correlated to metabolic flexibility (r=0.595, p=0.03). Additionally, post-exercise lipid content was positively correlated with body mass index (BMI), body composition, and postpartum weight retention. Preliminary findings from this pilot study suggest that metabolic flexibility and maternal weight status may help explain the inter-individual changes in breastmilk lipid content in response to an acute bout of moderate intensity exercise.
Collapse
Affiliation(s)
- Jill M Maples
- Department of Obstetrics and Gynecology, The University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Charlotte McCarley
- Department of Obstetrics and Gynecology, The University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Maire M Blankenship
- School of Nursing and Allied Health, Western Kentucky University, Bowling Green, KY, USA
| | - Kristin Yoho
- School of Kinesiology, Recreation, and Sport, Western Kentucky University, Bowling Green, KY, USA
| | - K Paige Johnson
- Department of Obstetrics and Gynecology, The University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Kimberly B Fortner
- Department of Obstetrics and Gynecology, The University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Rachel A Tinius
- School of Kinesiology, Recreation, and Sport, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
19
|
Bardanzellu F, Puddu M, Peroni DG, Fanos V. The Human Breast Milk Metabolome in Overweight and Obese Mothers. Front Immunol 2020; 11:1533. [PMID: 32793208 PMCID: PMC7385070 DOI: 10.3389/fimmu.2020.01533] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Pre-pregnancy body mass index (BMI) is a major relevance factor, since maternal overweight and obesity can impair the pregnancy outcome and represent risk factors for several neonatal, childhood, and adult conditions, including excessive weight gain, cardiovascular disease, diabetes mellitus, and even behavioral disorders. Currently, breast milk (BM) composition in such category of mothers was not completely defined. In this field, metabolomics represents the ideal technology, able to detect the whole profile of low molecular weight molecules in BM. Limited information is available on human BM metabolites differences in overweight or obese compared to lean mothers. Analyzing all the metabolomics studies published on Medline in English language, this review evaluated the effects that 8 specific types of metabolites found altered by maternal overweight and obesity (nucleotide derivatives, 5-methylthioadenosine, sugar-alcohols, acylcarnitine and amino acids, polyamines, mono-and oligosaccharides, lipids) can exert on the risk of offspring obesity development and other potentially associated health outcomes and complications. However, metabolites variations in samples collected from overweight and obese mothers and the potentially correlated effects highlighted below still need further investigations and should be confirmed in future metabolomics studies on larger samples. Finally, the positive or negative influence of maternal overweight and obesity on the offspring, potentially exerted by breastfeeding, should be analyzed in close correlation with maternal age, genetic and environmental factors, including diet, and taking into account the interactions occurring between BM metabolites and lactobiome. The evaluation of all the factors affecting BM metabolites in overweight and obese mothers can lead to the comprehensive description of such biofluid and the related effects on breastfed subjects, potentially highlighting personalized needs of BM supplementation or short- and long-term prevention strategies to optimize offspring health.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| | - Melania Puddu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| |
Collapse
|
20
|
Fang X, Sun W, Jeon J, Azain M, Kinder H, Ahn J, Chung HC, Mote RS, Filipov NM, Zhao Q, Rayalam S, Park HJ. Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets. Nutrients 2020; 12:E2090. [PMID: 32679753 PMCID: PMC7400913 DOI: 10.3390/nu12072090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022] Open
Abstract
Epidemiologic studies associate maternal docosahexaenoic acid (DHA)/DHA-containing seafood intake with enhanced cognitive development; although, it should be noted that interventional trials show inconsistent findings. We examined perinatal DHA supplementation on cognitive performance, brain anatomical and functional organization, and the brain monoamine neurotransmitter status of offspring using a piglet model. Sows were fed a control (CON) or a diet containing DHA (DHA) from late gestation throughout lactation. Piglets underwent an open field test (OFT), an object recognition test (ORT), and magnetic resonance imaging (MRI) to acquire anatomical, diffusion tensor imaging (DTI), and resting-state functional MRI (rs-fMRI) at weaning. Piglets from DHA-fed sows spent 95% more time sniffing the walls than CON in OFT and exhibited an elevated interest in the novel object in ORT, while CON piglets demonstrated no preference. Maternal DHA supplementation increased fiber length and tended to increase fractional anisotropy in the hippocampus of offspring than CON. DHA piglets exhibited increased functional connectivity in the cerebellar, visual, and default mode network and decreased activity in executive control and sensorimotor network compared to CON. The brain monoamine neurotransmitter levels did not differ in healthy offspring. Perinatal DHA supplementation may increase exploratory behaviors, improve recognition memory, enhance fiber tract integrity, and alter brain functional organization in offspring at weaning.
Collapse
Affiliation(s)
- Xi Fang
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| | - Wenwu Sun
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (W.S.); (Q.Z.)
| | - Julie Jeon
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| | - Michael Azain
- Department of Animal and Dairy Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (M.A.); (H.K.)
| | - Holly Kinder
- Department of Animal and Dairy Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (M.A.); (H.K.)
| | - Jeongyoun Ahn
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (J.A.); (H.C.C.)
| | - Hee Cheol Chung
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (J.A.); (H.C.C.)
| | - Ryan S. Mote
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (R.S.M.); (N.M.F.)
| | - Nikolay M. Filipov
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (R.S.M.); (N.M.F.)
| | - Qun Zhao
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (W.S.); (Q.Z.)
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, USA
| | - Hea Jin Park
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| |
Collapse
|
21
|
Ellsworth L, Perng W, Harman E, Das A, Pennathur S, Gregg B. Impact of maternal overweight and obesity on milk composition and infant growth. MATERNAL & CHILD NUTRITION 2020; 16:e12979. [PMID: 32074402 PMCID: PMC7296794 DOI: 10.1111/mcn.12979] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 12/29/2022]
Abstract
Overweight and obesity (OW/OB) impact half of the pregnancies in the United States and can have negative consequences for offspring health. Studies are limited on human milk alterations in the context of maternal obesity. Alterations in milk are hypothesized to impact offspring development during the critical period of lactation. We aimed to evaluate the relationships between mothers with OW/OB (body mass index [BMI] ≥25 kg/m2 ), infant growth, and selected milk nutrients. We recruited mother-infant dyads with pre-pregnancy OW/OB and normal weight status. The primary study included 52 dyads with infant growth measures through 6 months. Thirty-two dyads provided milk at 2 weeks, which was analysed for macronutrients, long-chain fatty acids, and insulin. We used multivariable linear regression to examine the association of maternal weight status with infant growth, maternal weight status with milk components, and milk components with infant growth. Mothers with OW/OB had infants with higher weight-for-length (WFL) and BMI Z-scores at birth. Mothers with OW/OB had higher milk insulin and dihomo-gamma-linolenic, adrenic, and palmitic acids and reduced conjugated linoleic and oleic acids. N6 long-chain polyunsaturated fatty acid (LC-PUFA)-driven factor 1 was associated with higher WFL, lower length-for-age (LFA), and lower head circumference-for-age Z-scores change from 2 weeks to 2 months in human milk-fed infants, whereas N6 LC-PUFA-driven factor 5 was associated with lower LFA Z-score change. Human milk composition is associated with maternal pre-pregnancy weight status and composition may be a contributing factor to early infant growth trajectory.
Collapse
Affiliation(s)
- Lindsay Ellsworth
- Division of Neonatal‐Perinatal Medicine, Department of Pediatrics and Communicable DiseasesUniversity of MichiganAnn ArborMichiganUSA
| | - Wei Perng
- Nutrition Sciences at the School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Department of Epidemiology and Lifecourse Epidemiology and Adiposity and Diabetes (LEAD) Center, Colorado School of Public HealthUniversity of Colorado DenverAuroraColoradoUSA
| | - Emma Harman
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics and Communicable DiseasesUniversity of MichiganAnn ArborMichiganUSA
| | - Arun Das
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Subramaniam Pennathur
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Division of Nephrology, Department of MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Brigid Gregg
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics and Communicable DiseasesUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
22
|
Ferrari DVDJ, Polettini J, de Moraes LL, de Campos LA, da Silva MG, Saeki EK, Morceli G. Profile of pro-inflammatory cytokines in colostrum of nursing mothers at the extremes of reproductive age. PLoS One 2020; 15:e0231882. [PMID: 32544178 PMCID: PMC7297348 DOI: 10.1371/journal.pone.0231882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/02/2020] [Indexed: 01/02/2023] Open
Abstract
Gestations at the extremes of reproductive age are characterized as high-risk pregnancies, conditions that might influence colostrum composition. This first milk secretion contains nutrients necessary for the development and immunity of the newborn; therefore, this study aims to compare adolescent and advanced maternal age mothers regarding sociodemographic, gestational, and perinatal characteristics and the colostrum levels of pro-inflammatory cytokines in these groups of study. This cross-sectional study has compared sociodemographic, gestational and perinatal data from adolescent mothers (between 10 and 24 years old) (n = 117), advanced maternal age mothers (over 35 years of age) (n = 39) and mothers considered a control group (25 to 34 years old) (n = 58). Additionally, colostrum samples were obtained from the studied and control group subjects by manual milking, between 48 and 72 hours postpartum, and the samples were analyzed for cytokine concentrations by enzyme-linked immunosorbent assay (ELISA). The majority of the studied mothers reported living a stable union, and 81.2% of the adolescent mothers did not carry out any paid activity. Mothers with advanced maternal age mainly delivered by cesarean section and presented a higher body mass index (BMI). Neonatal weight and Apgar score were not different between the groups. The concentrations of interleukin (IL)-1β and IL-6 were higher in the colostrum of mothers with advanced age compared to adolescent mothers, but did not differ from the control group. The concentrations of IL-8 and tumor necrosis factor alpha did not differ between the three groups. Therefore, our data demonstrated that maternal age influenced the sociodemographic and gestational characteristics as well as the composition of colostrum cytokines.
Collapse
Affiliation(s)
| | - Jossimara Polettini
- Mestrado em Ciências da Saúde-Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, SP, Brasil
- Universidade Federal da Fronteira Sul/UFFS/Campus Passo Fundo, RS, Brasil
| | - Lucas Lima de Moraes
- Faculdade de Ciências da Saúde-Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, SP, Brasil
| | - Letícia Aguiar de Campos
- Faculdade de Ciências da Saúde-Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, SP, Brasil
| | | | | | - Glilciane Morceli
- Mestrado em Ciências da Saúde-Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, SP, Brasil
- Universidade do Estado de Minas Gerais/UEMG/Campus Passos, MG, Brasil
- * E-mail:
| |
Collapse
|
23
|
Leghi GE, Middleton PF, Netting MJ, Wlodek ME, Geddes DT, Muhlhausler BS. A Systematic Review of Collection and Analysis of Human Milk for Macronutrient Composition. J Nutr 2020; 150:1652-1670. [PMID: 32240307 DOI: 10.1093/jn/nxaa059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/02/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND As human milk (HM) composition varies by time and across even a single feed, methods of sample collection can significantly affect the results of compositional analyses and complicate comparisons between studies. OBJECTIVE The aim was to compare the results obtained for HM macronutrient composition between studies utilizing different sampling methodologies. The results will be used as a basis to identify the most reliable HM sampling approach. METHODS EMBASE, MEDLINE/PubMed, Cochrane Library, Scopus, Web of Science, and ProQuest databases were searched for relevant articles. Observational and interventional studies were included, and at least 2 authors screened studies and undertook data extraction. Quality assessment was conducted using the Newcastle-Ottawa scale and previously published pragmatic score. RESULTS A total of 5301 publications were identified from our search, of which 101 studies were included (n = 5049 breastfeeding women). Methods used for HM collection were divided into 3 categories: collection of milk from all feeds over 24 h (32 studies, n = 1309 participants), collection at one time point (62 studies, n = 3432 participants), and "other methods" (7 studies, n = 308 participants). Fat and protein concentrations varied between collection methods within lactation stage, but there were no obvious differences in lactose concentrations. There was substantial variability between studies in other factors potentially impacting HM composition, including stage of lactation, gestational age, and analytical method, which complicated direct comparison of methods. CONCLUSIONS This review describes the first systematic evaluation of sampling methodologies used in studies reporting HM composition and highlights the wide range of collection methods applied in the field. This information provides an important basis for developing recommendations for best practices for HM collection for compositional analysis, which will ultimately allow combination of information from different studies and thus strengthen the body of evidence relating to contemporary HM composition. This trial was registered at PROSPERO as CRD42017072563, https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42017072563.
Collapse
Affiliation(s)
- Gabriela E Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia.,Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Philippa F Middleton
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Merryn J Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Discipline of Pediatrics, The University of Adelaide, Adelaide, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Melbourne, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Beverly S Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia.,Commonwealth Scientific and Industrial Research Organization (CSIRO), Adelaide, Australia
| |
Collapse
|
24
|
Wang L, Li X, Liu L, da Zhang H, Zhang Y, Hao Chang Y, Zhu QP. Comparative lipidomics analysis of human, bovine and caprine milk by UHPLC-Q-TOF-MS. Food Chem 2020; 310:125865. [DOI: 10.1016/j.foodchem.2019.125865] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
|
25
|
Leghi GE, Netting MJ, Middleton PF, Wlodek ME, Geddes DT, Muhlhausler BS. The impact of maternal obesity on human milk macronutrient composition: A systematic review and meta-analysis. Nutrients 2020; 12:nu12040934. [PMID: 32230952 PMCID: PMC7231188 DOI: 10.3390/nu12040934] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Maternal obesity has been associated with changes in the macronutrient concentration of human milk (HM), which have the potential to promote weight gain and increase the long-term risk of obesity in the infant. This article aimed to provide a synthesis of studies evaluating the effects of maternal overweight and obesity on the concentrations of macronutrients in HM. EMBASE, MEDLINE/PubMed, Cochrane Library, Scopus, Web of Science, and ProQuest databases were searched for relevant articles. Two authors conducted screening, data extraction, and quality assessment independently. A total of 31 studies (5078 lactating women) were included in the qualitative synthesis and nine studies (872 lactating women) in the quantitative synthesis. Overall, maternal body mass index (BMI) and adiposity measurements were associated with higher HM fat and lactose concentrations at different stages of lactation, whereas protein concentration in HM did not appear to differ between overweight and/or obese and normal weight women. However, given the considerable variability in the results between studies and low quality of many of the included studies, further research is needed to establish the impact of maternal overweight and obesity on HM composition. This is particularly relevant considering potential implications of higher HM fat concentration on both growth and fat deposition during the first few months of infancy and long-term risk of obesity.
Collapse
Affiliation(s)
- Gabriela E. Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5064, Australia;
| | - Merryn J. Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (M.J.N.); (P.F.M.)
- Discipline of Paediatrics, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Philippa F. Middleton
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (M.J.N.); (P.F.M.)
| | - Mary E. Wlodek
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Beverly S. Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5064, Australia;
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA 5000, Australia
- Correspondence: ; Tel.: +61-8-8305-0697
| |
Collapse
|
26
|
de la Garza Puentes A, Martí Alemany A, Chisaguano AM, Montes Goyanes R, Castellote AI, Torres-Espínola FJ, García-Valdés L, Escudero-Marín M, Segura MT, Campoy C, López-Sabater MC. The Effect of Maternal Obesity on Breast Milk Fatty Acids and Its Association with Infant Growth and Cognition-The PREOBE Follow-Up. Nutrients 2019; 11:nu11092154. [PMID: 31505767 PMCID: PMC6770754 DOI: 10.3390/nu11092154] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 02/02/2023] Open
Abstract
This study analyzed how maternal obesity affected fatty acids (FAs) in breast milk and their association with infant growth and cognition to raise awareness about the programming effect of maternal health and to promote a healthy prenatal weight. Mother–child pairs (n = 78) were grouped per maternal pre-pregnancy body mass index (BMI): normal-weight (BMI = 18.5–24.99), overweight (BMI = 25–29.99) and obese (BMI > 30). Colostrum and mature milk FAs were determined. Infant anthropometry at 6, 18 and 36 months of age and cognition at 18 were analyzed. Mature milk exhibited lower arachidonic acid (AA) and docosahexaenoic acid (DHA), among others, than colostrum. Breast milk of non-normal weight mothers presented increased saturated FAs and n6:n3 ratio and decreased α-linolenic acid (ALA), DHA and monounsaturated FAs. Infant BMI-for-age at 6 months of age was inversely associated with colostrum n6 (e.g., AA) and n3 (e.g., DHA) FAs and positively associated with n6:n3 ratio. Depending on the maternal weight, infant cognition was positively influenced by breast milk linoleic acid, n6 PUFAs, ALA, DHA and n3 LC-PUFAs, and negatively affected by n6:n3 ratio. In conclusion, this study shows that maternal pre-pregnancy BMI can influence breast milk FAs and infant growth and cognition, endorsing the importance of a healthy weight in future generations.
Collapse
Affiliation(s)
- Andrea de la Garza Puentes
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària UB (INSA-UB), 08921 Barcelona, Spain.
- Teaching, Research & Innovation Unit, Parc Sanitari Sant Joan de Déu, 08830 Sant Boi, Spain.
| | - Adrià Martí Alemany
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Aida Maribel Chisaguano
- Nutrition, Faculty of Health Sciences, University of San Francisco de Quito, 170157 Quito, Ecuador
| | - Rosa Montes Goyanes
- Food Research and Analysis Institute, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Ana I Castellote
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària UB (INSA-UB), 08921 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition CIBERobn, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Franscisco J Torres-Espínola
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
| | - Luz García-Valdés
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
| | - Mireia Escudero-Marín
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
| | - Maria Teresa Segura
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
| | - Cristina Campoy
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
- CIBER Epidemiology and Public Health CIBEResp, Institute of Health Carlos III, 28029 Madrid, Spain
| | - M Carmen López-Sabater
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària UB (INSA-UB), 08921 Barcelona, Spain.
- CIBER Physiopathology of Obesity and Nutrition CIBERobn, Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
27
|
Amaral Y, Marano D, Oliveira E, Moreira ME. Impact of pre-pregnancy excessive body weight on the composition of polyunsaturated fatty acids in breast milk: a systematic review. Int J Food Sci Nutr 2019; 71:186-192. [PMID: 31423865 DOI: 10.1080/09637486.2019.1646713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study aims to identify through a systematic review the possible effects of pre-gestational excessive body weight on the composition of polyunsaturated fatty acids in human milk. The papers were selected in the following databases: PubMed, Virtual Health Library, EMBASE, Web of Science and SCOPUS. The search strategy employed descriptors: 'Human Milk' AND 'Obesity' OR 'Overweight' OR 'Body Mass Index' AND 'Fatty acid' OR 'Omega3' OR 'Omega6'. According to the established strategy, six manuscripts were selected. Most of the selected studies concluded that mothers with excessive body weight presented a milk with a higher concentration of omega 6. In addition, all selected studies identified an increased Omega-6/Omega-3 ratio in the milk of pre-gestational excessive body weight mothers compared to the eutrophic ones. The milk of pre-gestational excessive body weight women had a higher Omega-6/Omega-3 ratio, which confirms the importance of starting pregnancy with adequate weight, thus minimising the possible influences that excessive body weight can cause infant health.
Collapse
Affiliation(s)
- Yasmin Amaral
- Clinical Research Department, National Institute for Women's, Children's and Adolescent's Health Fernandes Figueira/FIOCRUZ, Rio de Janeiro, Brazil
| | - Daniele Marano
- Clinical Research Department, National Institute for Women's, Children's and Adolescent's Health Fernandes Figueira/FIOCRUZ, Rio de Janeiro, Brazil
| | - Elissa Oliveira
- Clinical Research Department, National Institute for Women's, Children's and Adolescent's Health Fernandes Figueira/FIOCRUZ, Rio de Janeiro, Brazil
| | - Maria Elisabeth Moreira
- Clinical Research Department, National Institute for Women's, Children's and Adolescent's Health Fernandes Figueira/FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Wen L, Wu Y, Yang Y, Han TL, Wang W, Fu H, Zheng Y, Shan T, Chen J, Xu P, Jin H, Lin L, Liu X, Qi H, Tong C, Baker P. Gestational Diabetes Mellitus Changes the Metabolomes of Human Colostrum, Transition Milk and Mature Milk. Med Sci Monit 2019; 25:6128-6152. [PMID: 31418429 PMCID: PMC6708282 DOI: 10.12659/msm.915827] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a pregnancy complication that is diagnosed by the novel onset of abnormal glucose intolerance. Our study aimed to investigate the changes in human breast milk metabolome over the first month of lactation and how GDM affects milk metabolome. MATERIAL AND METHODS Colostrum, transition milk, and mature milk samples from women with normal uncomplicated pregnancies (n=94) and women with GDM-complicated pregnancies (n=90) were subjected to metabolomic profiling by the use of gas chromatography-mass spectrometry (GC-MS). RESULTS For the uncomplicated pregnancies, there were 59 metabolites that significantly differed among colostrum, transition milk, and mature milk samples, while 58 metabolites differed in colostrum, transition milk, and mature milk samples from the GDM pregnancies. There were 28 metabolites that were found to be significantly different between women with normal pregnancies and women with GDM pregnancies among colostrum, transition milk, and mature milk samples. CONCLUSIONS The metabolic profile of human milk is dynamic throughout the first months of lactation. High levels of amino acids in colostrum and high levels of saturated fatty acids and unsaturated fatty acids in mature milk, which may be critical for neonatal development in the first month of life, were features of both normal and GDM pregnancies.
Collapse
Affiliation(s)
- Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Yue Wu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Yang Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Ting-li Han
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Wenling Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
- Department of Obstetrics, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, P.R. China
| | - Huijia Fu
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- Department of Reproduction Health and Infertility, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yangxi Zheng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Tengfei Shan
- Department of Obstetrics and Gynecology, The First People’s Hospital of Yuhang District, Hangzhou, Zhejiang, P.R. China
| | - Jianjun Chen
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, P.R. China
| | - Ping Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Huili Jin
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Li Lin
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Xiyao Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Philip Baker
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- Liggins Institute, University of Auckland, Auckland, New Zealand
- College of Life Sciences, University of Leicester, Leicester, U.K
| |
Collapse
|
29
|
Hampel D, Shahab-Ferdows S, Hossain M, Islam MM, Ahmed T, Allen LH. Validation and Application of Biocrates Absolute IDQ® p180 Targeted Metabolomics Kit Using Human Milk. Nutrients 2019; 11:E1733. [PMID: 31357543 PMCID: PMC6723914 DOI: 10.3390/nu11081733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Human-milk-targeted metabolomics analysis offers novel insights into milk composition and relationships with maternal and infant phenotypes and nutritional status. The Biocrates AbsoluteIDQ® p180 kit, targeting 40 acylcarnitines, 42 amino acids/biogenic amines, 91 phospholipids, 15 sphingolipids, and sum of hexoses, was evaluated for human milk using the AB Sciex 5500 QTRAP mass-spectrometer in liquid chromatography-tandem mass-spectrometry (LC-MS/MS) and flow-injection analysis (FIA) mode. Milk (<6 months lactation) from (A) Bangladeshi apparently healthy mothers (body mass index (BMI) > 18.5; n = 12) and (B) Bangladeshi mothers of stunted infants (height-for-age Z (HAZ)-score <-2; n = 13) was analyzed. Overall, 123 of the possible 188 metabolites were detected in milk. New internal standards and adjusted calibrator levels were used for improved precision and concentration ranges for milk metabolites. Recoveries ranged between 43% and 120% (coefficient of variation (CV): 2.4%-24.1%, 6 replicates). Milk consumed by stunted infants vs. that from mothers with BMI > 18.5 was lower in 6 amino acids/biogenic amines but higher in isovalerylcarnitine, two phospholipids, and one sphingomyelin (p < 0.05 for all). Associations between milk metabolites differed between groups. The AbsoluteIDQ® p180 kit is a rapid analysis tool suitable for human milk analysis and reduces analytical bias by allowing the same technique for different specimens. More research is needed to examine milk metabolite relationships with maternal and infant phenotypes.
Collapse
Affiliation(s)
- Daniela Hampel
- USDA/ARS Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA.
- Department of Nutrition, University of California, One Shields Ave, Davis, CA 95616, USA.
| | - Setareh Shahab-Ferdows
- USDA/ARS Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA
| | - Muttaquina Hossain
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - M Munirul Islam
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - Lindsay H Allen
- USDA/ARS Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA
- Department of Nutrition, University of California, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
30
|
Petrick LM, Schiffman C, Edmands WMB, Yano Y, Perttula K, Whitehead T, Metayer C, Wheelock CE, Arora M, Grigoryan H, Carlsson H, Dudoit S, Rappaport SM. Metabolomics of neonatal blood spots reveal distinct phenotypes of pediatric acute lymphoblastic leukemia and potential effects of early-life nutrition. Cancer Lett 2019; 452:71-78. [PMID: 30904619 PMCID: PMC6499387 DOI: 10.1016/j.canlet.2019.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 02/02/2023]
Abstract
Early-life exposures are believed to influence the incidence of pediatric acute lymphoblastic leukemia (ALL). Archived neonatal blood spots (NBS), collected within the first days of life, offer a means to investigate small molecules that reflect early-life exposures. Using untargeted metabolomics, we compared abundances of small-molecule features in extracts of NBS punches from 332 children that later developed ALL and 324 healthy controls. Subjects were stratified by early (1-5 y) and late (6-14 y) diagnosis. Mutually-exclusive sets of metabolic features - representing putative lipids and fatty acids - were associated with ALL, including 9 and 19 metabolites in the early- and late-diagnosis groups, respectively. In the late-diagnosis group, a prominent cluster of features with apparent 18:2 fatty-acid chains suggested that newborn exposure to the essential nutrient, linoleic acid, increased ALL risk. Interestingly, abundances of these putative 18:2 lipids were greater in infants who were fed formula rather than breast milk (colostrum) and increased with the mother's pre-pregnancy body mass index. These results suggest possible etiologic roles of newborn nutrition in late-diagnosis ALL.
Collapse
Affiliation(s)
- Lauren M Petrick
- The Senator Frank R. Lautenberg Environmental Health Science Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, USA
| | - Courtney Schiffman
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA; Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, USA
| | - William M B Edmands
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Yukiko Yano
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, USA
| | - Kelsi Perttula
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Todd Whitehead
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA; Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, USA
| | - Catherine Metayer
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA; Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, USA
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Manish Arora
- The Senator Frank R. Lautenberg Environmental Health Science Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hasmik Grigoryan
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Henrik Carlsson
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Sandrine Dudoit
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA; Department of Statistics, University of California, Berkeley, CA, USA
| | - Stephen M Rappaport
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, USA.
| |
Collapse
|
31
|
Luise D, Cardenia V, Zappaterra M, Motta V, Bosi P, Rodriguez-Estrada MT, Trevisi P. Evaluation of Breed and Parity Order Effects on the Lipid Composition of Porcine Colostrum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12911-12920. [PMID: 30350981 DOI: 10.1021/acs.jafc.8b03097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Porcine colostrum lipid classes and fatty acids (FA) were characterized in 6 pools (from 69 samples) from 3 sow breeds (Italian Large White, Italian Landrace, and Italian Duroc) and different parity orders (only Large White). Triacylglycerols (TAG; 94.44 expressed as g/100 g of fat) were the most abundant lipid class, followed by diacylglycerols (DAG; 3.36 g/100 g of fat), free fatty acids (FFA; 0.98 g/100 g of fat), and cholesterol (0.84 g/100 g of fat). The main FAs found in swine colostrum were palmitic (27.29%, expressed as g/100 g of total FA), oleic (28.81%), and linoleic (23.39%) acids. Both the breed of sow and parity order affected the FA and lipid composition. The results suggest that the FA composition of swine colostrum is similar to that of human colostrum and could represent a new source of nutrients for human infants, after further assessment of hygienic and quality aspects. The swine model could be an opportunity for a better understanding of colostrum effects on newborns.
Collapse
Affiliation(s)
- D Luise
- Department of Agricultural and Food Sciences (DISTAL) , Alma Mater Studiorum-University of Bologna , Bologna 40127 , Italy
| | - V Cardenia
- Interdepartmental Centre for Industrial Agrofood Research , Alma Mater Studiorum-University of Bologna , Cesena 47521 , Italy
| | - M Zappaterra
- Department of Agricultural and Food Sciences (DISTAL) , Alma Mater Studiorum-University of Bologna , Bologna 40127 , Italy
| | - V Motta
- Department of Agricultural and Food Sciences (DISTAL) , Alma Mater Studiorum-University of Bologna , Bologna 40127 , Italy
| | - P Bosi
- Department of Agricultural and Food Sciences (DISTAL) , Alma Mater Studiorum-University of Bologna , Bologna 40127 , Italy
| | - M T Rodriguez-Estrada
- Department of Agricultural and Food Sciences (DISTAL) , Alma Mater Studiorum-University of Bologna , Bologna 40127 , Italy
- Interdepartmental Centre for Industrial Agrofood Research , Alma Mater Studiorum-University of Bologna , Cesena 47521 , Italy
| | - P Trevisi
- Department of Agricultural and Food Sciences (DISTAL) , Alma Mater Studiorum-University of Bologna , Bologna 40127 , Italy
| |
Collapse
|
32
|
García-Ravelo S, Díaz-Gómez NM, Martín MV, Dorta-Guerra R, Murray M, Escuder D, Rodríguez C. Fatty Acid Composition and Eicosanoid Levels (LTE 4 and PGE 2) of Human Milk from Normal Weight and Overweight Mothers. Breastfeed Med 2018; 13:702-710. [PMID: 30325649 DOI: 10.1089/bfm.2017.0214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Maternal obesity is known to affect human milk composition. Long-chain polyunsaturated fatty acids (LCPUFA) are vital nutrients to the nervous system development and precursors of eicosanoids related to obesity (prostaglandin E2-PGE2-and leukotriene E4-LTE4). The aim of the present research was to study the lipid profiles, with particular emphasis to LCPUFAs, and the concentrations of eicosanoids PGE2 and LTE4, involved in adipose tissue development, in human milk from overweight mothers compared with normal weight mothers. Materials and Methods: Study including 46 overweight and 86 normal weight breastfeeding volunteers was carried out. Fatty acids and eicosanoids (PGE2 and LTE4) were analyzed in mature human milk. Fatty acids quantification was determined by gas chromatography and mass spectrometry. PGE2 and LTE4 were measured by immununoassay. Results: Human milk of overweight mothers had lower contents of n-3 LCPUFA, including eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) and higher levels of total n-6 LCPUFA, compared with normal weight mothers (0.45 ± 0.23 versus 0.58 ± 0.38, p = 0.016; 0.05 ± 0.04 versus 0.08 ± 0.08, p = 0.005; 0.26 ± 0.15 versus 0.34 ± 0.22, p = 0.015; 0.84 ± 0.25 versus 0.74 ± 0.20, p = 0.029; respectively). Multiple regression analyses showed that maternal overweight was associated with human milk fatty acid profile. The levels of PGE2 and LTE4 in human milk did not show significant differences between groups. Conclusions: Our findings support the hypothesis that mother weight status influences human milk n-3 LCPUFA lipid composition, but not its relationship with PGE2 and LTE4 levels.
Collapse
Affiliation(s)
- Sara García-Ravelo
- Departamento Biología Animal, Edafología y Geología, Facultad de Ciencias, Instituto de Tecnologías Biomédicas (ITB) y Centro de Investigaciones Biomédicas de Canarias (CIBICAN) Universidad de La Laguna, La Laguna, Spain
| | - Nieves Marta Díaz-Gómez
- Sección de Medicina, Enfermería y Fisioterapia, Facultad de Ciencias de la Salud, Instituto de Tecnologías Biomédicas (ITB) y Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, La Laguna, Spain
| | | | - Roberto Dorta-Guerra
- Departamento de Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de La Laguna, La Laguna, Spain
| | - Mercedes Murray
- Servicio de Pediatría, Hospital Universitario de Canarias, Tenerife, Spain
| | - Diana Escuder
- Banco Regional de Leche Materna, Hospital 12 de Octubre, Madrid, Spain
| | - Covadonga Rodríguez
- Departamento Biología Animal, Edafología y Geología, Facultad de Ciencias, Instituto de Tecnologías Biomédicas (ITB) y Centro de Investigaciones Biomédicas de Canarias (CIBICAN) Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
33
|
Xu Y, Qi C, Yu R, Wang X, Zhou Q, Sun J, Jin Q, Wang X. Total and sn-2 fatty acid profile of breast milk from women delivering preterm infants under the influence of maternal characteristics. Food Funct 2018; 9:5750-5758. [PMID: 30321251 DOI: 10.1039/c8fo00642c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Data on the total fatty acid (FA) profile and position-specific triacylglycerides (TAGs) in preterm infants' maternal milk are essential for establishing the recommended requirement of FA in preterm infants in China. We aimed to determine the composition and positional distribution of FAs in preterm infants' maternal milk in China and further investigate the effect of maternal background on the FA composition. Breast milk samples (4, 11, 30, 60, and 90 (all ±3) days post-partum) were collected from 59 healthy women delivering preterm infants. The total and sn-2 milk FA composition was determined using gas chromatography. The multivariate statistical analysis showed significant differences in the FA profiles of milk with different lactation times, gestational ages and maternal ages. In particular, the content of linoleic and linolenic acid (ALA) was much higher, whereas the content of docosahexaenoic (DHA) and arachidonic acid were lower in the preterm milk from the Wuxi district than that from America and countries in Europe. The content of sn-2 polyunsaturated FAs (ALA: p = 0.013 and DHA: p = 0.003) were lower in the preterm colostrum from women aged over 30 years. Overall, these results suggest that the European and American standards of preterm formula may not be suitable for Chinese preterm infants, and polyunsaturated FA fortification in the maternal diet or preterm formula is needed for women with advanced age.
Collapse
Affiliation(s)
- Yahua Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Macular carotenoids in lipid food matrices: DOE-based high energy extraction of egg yolk xanthophylls and quantification through a validated APCI(+) LC-MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1096:160-171. [PMID: 30173082 DOI: 10.1016/j.jchromb.2018.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/03/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023]
Abstract
Lutein and zeaxanthin exhibit significant biological activities therefore their dietary intake through carotenoid-rich foods and supplements is strongly recommended as preventive approach. Hence their extraction from natural substrates targets to their commercial exploitation as nutraceuticals and ocular pharmaceuticals. Since carotenoids' bioavailability is higher in fat-containing substrates, egg yolk is considered an ideal food matrix. DOE-based optimization of novel high energy extraction practices achieves efficient recovery of xanthophylls from lipid sources. In this research, 23 full factorial and Box-Behnken designs (BBD) were applied for optimizing ultrasound- (UAE) and microwave-assisted extraction (MAE) variables (i.e. extraction solvent, temperature, time, US or MW power and solvent/material ratio). LC-MS/MS results pointed out the precedence of UAE in lutein and zeaxanthin extraction, where higher yields were obtained with 1:1 n-hexane-acetone as solvent mixture at 19 min, 600 W and 35 mL g-1. UAE carotenoid content was higher than MAE due to the different mechanisms laying behind the two processes and due to more complete granule rupture caused by higher US power. Evaluating the current results, DOE-based UAE analytical methodology stands out as an auspicious and sustainable alternative for commercial-based extraction of lipidic bioactive compounds for food and drug industrial applications.
Collapse
|
35
|
Miliku K, Azad MB. Breastfeeding and the Developmental Origins of Asthma: Current Evidence, Possible Mechanisms, and Future Research Priorities. Nutrients 2018; 10:E995. [PMID: 30061501 PMCID: PMC6115903 DOI: 10.3390/nu10080995] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/14/2018] [Accepted: 07/26/2018] [Indexed: 01/06/2023] Open
Abstract
Breastfeeding has many established health benefits, but its impact on asthma development is uncertain. Breastfeeding appears to have a positive and dose-dependent impact on respiratory health, particularly during early childhood and in high-risk populations; however, the strength and causality of these associations are unclear. It is challenging to compare results across studies due to methodological differences and biological variation. Resolving these inconsistencies will require well-designed, prospective studies that accurately capture asthma diagnoses and infant feeding exposures (including breastfeeding duration, exclusivity, and method of feeding), account for key confounders, evaluate dose effects, and consider effect modification and reverse causality. Mechanistic studies examining human milk bioactives and their impact on lung health and asthma development are beginning to emerge, and these will be important in establishing the causality and mechanistic basis of the observed associations between breastfeeding and asthma. In this review, we summarize current evidence on this topic, identify possible reasons for disagreement across studies, discuss potential mechanisms for a causal association, and provide recommendations for future research.
Collapse
Affiliation(s)
- Kozeta Miliku
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Meghan B Azad
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
36
|
Santiago LTC, Meira Júnior JDD, Freitas NAD, Kurokawa CS, Rugolo LMSDS. COLOSTRUM FAT AND ENERGY CONTENT: EFFECT OF GESTATIONAL AGE AND FETAL GROWTH. ACTA ACUST UNITED AC 2018; 36:286-291. [PMID: 29995137 PMCID: PMC6202904 DOI: 10.1590/1984-0462/;2018;36;3;00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/13/2017] [Indexed: 11/22/2022]
Abstract
Objective: To determine whether fat content and energy value change in colostrum
according to gestational age and fetal growth. Methods: Cross-sectional study with mothers of preterm and term infants born in a
tertiary center in 2015-2016. Inclusion criteria: single pregnancy, absence
of diabetes, chorioamnionitis and mastitis, no use of illicit drugs or
alcohol, without fetal congenital malformation or infection. Four groups
were formed according to gestational age and fetal growth: preterm infants
small for gestational age (PT-SGA; n=33) and appropriate for gestational age
(PT-AGA; n=60), term infants small for gestational age (T-SGA; n=59) and
appropriate for gestational age (T-AGA; control, n=73). Colostrum was
collected between 24-72 hours postpartum. Gestational and birth variables
were analyzed. Outcome variables were: fat content in colostrum (evaluated
by crematocrit method) and estimated energy value. Chi-square or Fisher
exact tests, ANOVA, and multivariable linear regression were used for
comparison among groups. Results: Mean gestational age was 34 weeks in preterm infants and 39 weeks in term
neonates. Crematocrit did not differ between groups, with mean values
varying between 3.3 and 4.0%; estimated energy value was 52 to 56 kcal/dL.
Crematocrit ≥4% was more frequent in the T-SGA group. Only in the PT-SGA
group there was a correlation between crematocrit and body mass index of the
mother. Conclusions: The fat content and energy value of colostrum did not change according to
gestational age or fetal growth.
Collapse
|
37
|
Zhao P, Zhang S, Liu L, Pang X, Yang Y, Lu J, Lv J. Differences in the Triacylglycerol and Fatty Acid Compositions of Human Colostrum and Mature Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4571-4579. [PMID: 29658706 DOI: 10.1021/acs.jafc.8b00868] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human colostrum is important for immune system development and plays a protective role for infants. However, the comprehensive exploration of lipids, which account for 3-5% of milk, and their biological functions in human colostrum was limited. In present study, the triacylglycerol (TAG) and fatty acid (FA) compositions of human colostrum and mature milk were analyzed and compared. Variations were observed in both the TAG and FA compositions. The concentrations of 18:1/18:1/16:0 TAG, high-molecular-weight and unsaturated TAGs were significantly higher in colostrum, whereas mature milk contained more low/medium-molecular-weight TAGs and medium-chain FAs. Furthermore, there were also specific TAGs in both colostrum and mature milk. Our data highlighted targets for further investigation to elucidate the biological function of lipids in colostrum milk. In addition, the comprehensive analysis of TAGs in Chinese colostrum might help in designing infant formula for Chinese babies, especially the preterm ones.
Collapse
Affiliation(s)
- Pu Zhao
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| | - Shuwen Zhang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| | - Lu Liu
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| | - Xiaoyang Pang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| | - Yang Yang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| | - Jing Lu
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| | - Jiaping Lv
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| |
Collapse
|
38
|
Bardanzellu F, Fanos V, Strigini FAL, Artini PG, Peroni DG. Human Breast Milk: Exploring the Linking Ring Among Emerging Components. Front Pediatr 2018; 6:215. [PMID: 30131948 PMCID: PMC6091001 DOI: 10.3389/fped.2018.00215] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
Maternal breast milk (BM) is a complex and unique fluid that evolution adapted to satisfy neonatal needs; in addition to classical nutrients, it contains several bioactive components. BM characteristically shows inter-individual variability, modifying its composition during different phases of lactation. BM composition, determining important consequences on neonatal gut colonization, influences both short and long-term development. Maternal milk can also shape neonatal microbiota, through its glycobiome rich in Lactobacilli spp. and Bifidobacteria spp. Therefore, neonatal nourishment during the first months of life seems the most important determinant of individual's outcomes. Our manuscript aims to provide new evidence in the characterization of BM metabolome and microbiome, and its comparison to formula milk, allowing the evaluation of each nutrient's influence on neonatal metabolism. This result very interesting since potentially offers an innovative approach to investigate the complex relationship between BM components and infant's health, also providing the chance to intervene in a sartorial way on diet composition, according to the nutritional requests. Future research, integrating metabolomics, microbiomics and stem cells knowledge, could make significant steps forward in understanding BM extraordinary properties and functions.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Azienda Ospedaliera Universitaria di Cagliari, University of Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Azienda Ospedaliera Universitaria di Cagliari, University of Cagliari, Cagliari, Italy
| | | | - Paolo G Artini
- Gynecology and Obstetrics, Università degli Studi di Pisa, Pisa, Italy
| | - Diego G Peroni
- Section of Pediatric, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
39
|
Genomics of lactation: role of nutrigenomics and nutrigenetics in the fatty acid composition of human milk. Br J Nutr 2017; 118:161-168. [PMID: 28831952 DOI: 10.1017/s0007114517001854] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human milk covers the infant's nutrient requirements during the first 6 months of life. The composition of human milk progressively changes during lactation and it is influenced by maternal nutritional factors. Nowadays, it is well known that nutrients have the ability to interact with genes and modulate molecular mechanisms impacting physiological functions. This has led to a growing interest among researchers in exploring nutrition at a molecular level and to the development of two fields of study: nutrigenomics, which evaluates the influence of nutrients on gene expression, and nutrigenetics, which evaluates the heterogeneous individual response to nutrients due to genetic variation. Fatty acids are one of the nutrients most studied in relation to lactation given their biologically important roles during early postnatal life. Fatty acids modulate transcription factors involved in the regulation of lipid metabolism, which in turn causes a variation in the proportion of lipids in milk. This review focuses on understanding, on the one hand, the gene transcription mechanisms activated by maternal dietary fatty acids and, on the other hand, the interaction between dietary fatty acids and genetic variation in genes involved in lipid metabolism. Both of these mechanisms affect the fatty acid composition of human milk.
Collapse
|
40
|
Bardanzellu F, Fanos V, Reali A. "Omics" in Human Colostrum and Mature Milk: Looking to Old Data with New Eyes. Nutrients 2017; 9:E843. [PMID: 28783113 PMCID: PMC5579636 DOI: 10.3390/nu9080843] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
Human Milk (HM) is the best source for newborn nutrition until at least six months; it exerts anti-inflammatory and anti-infective functions, promotes immune system formation and supports organ development. Breastfeeding could also protect from obesity, diabetes and cardiovascular disease. Furthermore, human colostrum (HC) presents a peculiar role in newborn support as a protective effect against allergic and chronic diseases, in addition to long-term metabolic benefits. In this review, we discuss the recent literature regarding "omics" technologies and growth factors (GF) in HC and the effects of pasteurization on its composition. Our aim was to provide new evidence in terms of transcriptomics, proteomics, metabolomics, and microbiomics, also in relation to maternal metabolic diseases and/or fetal anomalies and to underline the functions of GF. Since HC results are so precious, particularly for the vulnerable pre-terms category, we also discuss the importance of HM pasteurization to ensure donated HC even to neonates whose mothers are unable to provide. To the best of our knowledge, this is the first review analyzing in detail the molecular pattern, microbiota, bioactive factors, and dynamic profile of HC, finding clinical correlations of such mediators with their possible in vivo effects and with the consequent impact on neonatal outcomes.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, 09124 Cagliari, Italy.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, 09124 Cagliari, Italy.
| | - Alessandra Reali
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, 09124 Cagliari, Italy.
| |
Collapse
|