1
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Imaging-based profiling for elucidation of antibacterial mechanisms of action. Biotechnol Appl Biochem 2024. [PMID: 39467068 DOI: 10.1002/bab.2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
In this review, we aim to summarize experimental data and approaches to identifying cellular targets or mechanisms of action of antibacterials based on imaging techniques. Imaging-based profiling methods, such as bacterial cytological profiling, dynamic bacterial morphology imaging, and others, have become a useful research tool for mechanistic studies of new antibiotics as well as combinations with conventional ones and other therapeutic options. The main methodological and experimental details and obtained results are summarized and discussed. The review covers the literature up to February 2024.
Collapse
Affiliation(s)
- Anna A Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vera A Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anton P Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Schäfer AB, Sidarta M, Abdelmesseh Nekhala I, Marinho Righetto G, Arshad A, Wenzel M. Dissecting antibiotic effects on the cell envelope using bacterial cytological profiling: a phenotypic analysis starter kit. Microbiol Spectr 2024; 12:e0327523. [PMID: 38289933 PMCID: PMC10913488 DOI: 10.1128/spectrum.03275-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Phenotypic analysis assays such as bacterial cytological profiling (BCP) have become increasingly popular for antibiotic mode of action analysis. A plethora of dyes, protein fusions, and reporter strains are available and have been used for this purpose, enabling both rapid mode of action categorization and in-depth analysis of antibiotic mechanisms. However, non-expert researchers may struggle choosing suitable assays and interpreting results. This is a particular problem for antibiotics that have multiple or complex targets, such as the bacterial cell envelope. Here, we set out to curate a minimal set of accessible and affordable phenotypic assays that allow distinction between membrane and cell wall targets, can identify dual-action inhibitors, and can be implemented in most research environments. To this end, we employed BCP, membrane potential, fluidity, and cell wall synthesis assays. To assess specificity and ease of interpretation, we tested three well-characterized and commercially available reference antibiotics: the potassium ionophore valinomycin, the lipid II-binding glycopeptide vancomycin, and the dual-action lantibiotic nisin, which binds lipid II and forms a membrane pore. Based on our experiments, we suggest a minimal set of BCP, a membrane-potentiometric probe, and fluorescent protein fusions to MinD and MreB as basic assay set and recommend complementing these assays with Laurdan-based fluidity measurements and a PliaI reporter fusion, where indicated. We believe that our results can provide guidance for researchers who wish to use phenotypic analysis for mode of action studies but do not possess the specialized equipment or expert knowledge to employ the full breadth of possible techniques.IMPORTANCEPhenotypic analysis assays using specialized fluorescence fusions and dyes have become increasingly popular in antibiotic mode of action analysis. However, it can be difficult to implement these methods due to the need for specialized equipment and/or the complexity of bacterial cell biology and physiology, making the interpretation of results difficult for non-experts. This is especially problematic for compounds that have multiple or pleiotropic effects, such as inhibitors of the bacterial cell envelope. In order to make phenotypic analysis assays accessible to labs, whose primary expertise is not bacterial cell biology, or with limited equipment and resources, a set of simple and broadly accessible assays is needed that is easy to implement, execute, and interpret. Here, we have curated a set of assays and strains that does not need highly specialized equipment, can be performed in most labs, and is straightforward to interpret without knowing the intricacies of bacterial cell biology.
Collapse
Affiliation(s)
- Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Margareth Sidarta
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Ireny Abdelmesseh Nekhala
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Gabriela Marinho Righetto
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Aysha Arshad
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| |
Collapse
|
3
|
Kurmanjiang T, Wang X, Li J, Mamat N, Nurmamat M, Xu G. A novel pyrazolone complex P-FAH-Cu-bpy induces death of Escherichia coli and Staphylococcus aureus by disrupting cell structure and blocking energy. Arch Microbiol 2023; 205:376. [PMID: 37940792 DOI: 10.1007/s00203-023-03714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
A novel pyrazolone-based copper complex [Cu(L)(bpy)]∙CH3OH (P-FAH-Cu-bpy) was synthesized and previously characterized to have antitumor properties. This study aimed to investigate its antibacterial properties and action modes against Escherichia coli and Staphylococcus aureus. By agar diffusion assay, P-FAH-Cu-bpy showed strong antibacterial activity against E. coli and S. aureus with the diameter of inhibition zone of 10.17-12.50 mm and 11.83-14 mm, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the complex were 1.5 and 3 μM, respectively. Destroyed bacteria cells and debris were clearly observed by SEM. At 2 MIC and 4 MIC of P-FAH-Cu-bpy, 1.1683 and 1.9083 pg copper per cell was taken by E. coli, and 4.5670 and 8.5250 pg per cell by S. aureus, respectively. Multi-step resistance selection showed both bacteria were sensitive to P-FAH-Cu-bpy without induction of resistance within 30 generations. With P-FAH-Cu-bpy treatment, the release of nucleotides and proteins and alkaline phosphatase was increased, but the activity of K+-Na+-ATPase and Ca2+-Mg2+-ATPase and membrane conductivity were decreased in both pathogens. In conclusion, P-FAH-Cu-bpy induced death of both bacteria by destroying the cell membrane structure and blocking energy and exhibited strong antibacterial activity against E. coli and S. aureus without inducing microbial resistance.
Collapse
Affiliation(s)
- Tamasha Kurmanjiang
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Xiaojing Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Jinyu Li
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China.
| | - Nuramina Mamat
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Marhaba Nurmamat
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Guanchen Xu
- Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, China
| |
Collapse
|
4
|
Jeong JY, Jung IG, Yum SH, Hwang YJ. In Vitro Synergistic Inhibitory Effects of Plant Extract Combinations on Bacterial Growth of Methicillin-Resistant Staphylococcus aureus. Pharmaceuticals (Basel) 2023; 16:1491. [PMID: 37895962 PMCID: PMC10610001 DOI: 10.3390/ph16101491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common pathogens of healthcare-associated infections. Medicinal plants have long been used in the traditional treatment of diseases or syndromes worldwide. Combined use of plant extracts could improve the effectiveness of pharmacological action by obtaining synergism, acting on multiple targets simultaneously, reducing the doses of individual components, and minimizing side effects. We aimed to investigate the synergistic inhibitory effects of selected medicinal plants (Caesalpinia sappan L. (CS), Glycyrrhiza uralensis Fisch. (GU), Sanguisorba officinalis L. (SO), and Uncaria gambir Roxb. (UG)) on the bacterial growth of MRSA and its clinical isolates. SO and UG extracts generated the best synergistic interaction as adjudged by checkerboard synergy assays. MICs of the individual extracts decreased 4-fold from 250 to 62.5 μg/mL, respectively. The SO + UG combination was further evaluated for its effects on bacterial growth inhibition, minimum bactericidal/inhibitory concentration (MBC/MIC) ratio, and time-kill kinetics. The results indicate that the SO + UG combination synergistically inhibited the bacterial growth of MRSA strains with bactericidal effects. SO + UG combination also exhibited more potent effects against clinical isolates. In multistep resistance selection experiments, both standard and isolates of MRSA showed no resistance to the SO + UG combination even after repeated exposure over fourteen passages. Our data suggest that using plant extract combinations could be a potential strategy to treat MRSA infections.
Collapse
Affiliation(s)
- Jae-Young Jeong
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - In-Geun Jung
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| | - Seung-Hoon Yum
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| | - You-Jin Hwang
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
5
|
Asadi M, Taheri-Anganeh M, Ranjbar M, Khatami SH, Maleksabet A, Mostafavi-Pour Z, Ghasemi Y, Keshavarzi A, Savardashtaki A. LYZ2-SH3b as a novel and efficient enzybiotic against methicillin-resistant Staphylococcus aureus. BMC Microbiol 2023; 23:257. [PMID: 37704938 PMCID: PMC10500863 DOI: 10.1186/s12866-023-03002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Enzybiotics are promising alternatives to conventional antibiotics for drug-resistant infections. Exolysins, as a class of enzybiotics, show antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). This study evaluated a novel exolysin containing an SH3b domain for its antibacterial activity against MRSA. METHODS This study designed a chimeric exolysin by fusing the Cell-binding domain (SH3b) from Lysostaphin with the lytic domain (LYZ2) from the gp61 enzyme. Subsequently, LYZ2-SH3b was cloned and expressed in Escherichia coli (E. coli). Finally, the antibacterial effects of LYZ2-SH3b compared with LYZ2 and vancomycin against reference and clinical isolates of MRSA were measured using the disc diffusion method, the minimal inhibitory concentration (MIC), and the minimal bactericidal concentration (MBC) assays. RESULTS Analysis of bioinformatics showed that LYZ2-SH3b was stable, soluble, and non-allergenic. Protein purification was performed with a 0.8 mg/ml yield for LYZ2-SH3b. The plate lysis assay results indicated that, at the same concentrations, LYZ2-SH3b has a more inhibitory effect than LYZ2. The MICs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239). This suggests a higher efficiency of LYZ2-SH3b compared to LYZ2. Furthermore, the MBCs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239), thus confirming the superior lytic activity of LYZ2-SH3b over LYZ2. CONCLUSIONS The study suggests that phage endolysins, such as LYZ2-SH3b, may represent a promising new approach to treating MRSA infections, particularly in cases where antibiotic resistance is a concern. But further studies are needed.
Collapse
Affiliation(s)
- Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Ranjbar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Mostafavi-Pour
- Recombinant Protein Laboratory, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Omara M, Hagras M, Elsebaie MM, Abutaleb NS, Nour El-Din HT, Mekhail MO, Attia AS, Seleem MN, Sarg MT, Mayhoub AS. Exploring novel aryl/heteroaryl-isosteres of phenylthiazole against multidrug-resistant bacteria. RSC Adv 2023; 13:19695-19709. [PMID: 37425632 PMCID: PMC10323310 DOI: 10.1039/d3ra02778c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Antimicrobial resistance has become a concern as a worldwide threat. A novel scaffold of phenylthiazoles was recently evaluated against multidrug-resistant Staphylococci to control the emergence and spread of antimicrobial resistance, showing good results. Several structural modifications are needed based on the structure-activity relationships (SARs) of this new antibiotic class. Previous studies revealed the existence of two key structural features essential for the antibacterial activity, the guanidine head and lipophilic tail. In this study, a new series of twenty-three phenylthiazole derivatives were synthesized utilizing the Suzuki coupling reaction to explore the lipophilic part. The in vitro antibacterial activity was evaluated against a range of clinical isolates. The three most promising compounds, 7d, 15d and 17d, with potent MIC values against MRSA USA300 were selected for further antimicrobial evaluation. The tested compounds exhibited potent results against the tested MSSA, MRSA, and VRSA strains (concentration: 0.5 to 4 μg mL-1). Compound 15d inhibited MRSA USA400 at a concentration of 0.5 μg mL-1 (one-fold more potent than vancomycin) and showed low MIC values against ten clinical isolates, including linezolid-resistant strain MRSA NRS119 and three vancomycin-resistant isolates VRSA 9/10/12. Moreover, compound 15d retained its potent antibacterial activity using the in vivo model by the burden reduction of MRSA USA300 in skin-infected mice. The tested compounds also showed good toxicity profiles and were found to be highly tolerable to Caco-2 cells at concentrations of up to 16 μg mL-1, with 100% of the cells remaining viable.
Collapse
Affiliation(s)
- Mariam Omara
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Mohamed M Elsebaie
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Maria O Mekhail
- PharmD-Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Department of Microbiology and Immunology, School of Pharmacy, Newgiza University Giza Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Center for One Health Research, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - Marwa T Sarg
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
- Nanoscience Program, University of Science and Technology, Zewail City of Science and Technology Giza Egypt
| |
Collapse
|
7
|
Ahmed ETM, Hassan M, Shamma RN, Makky A, Hassan DH. Controlling the Evolution of Selective Vancomycin Resistance through Successful Ophthalmic Eye-Drop Preparation of Vancomycin-Loaded Nanoliposomes Using the Active-Loading Method. Pharmaceutics 2023; 15:1636. [PMID: 37376084 DOI: 10.3390/pharmaceutics15061636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Vancomycin is the front-line defense and drug of choice for the most serious and life-threatening methicillin-resistant Staphylococcus aureus (MRSA) infections. However, poor vancomycin therapeutic practice limits its use, and there is a consequent rise of the threat of vancomycin resistance by complete loss of its antibacterial activity. Nanovesicles as a drug-delivery platform, with their featured capabilities of targeted delivery and cell penetration, are a promising strategy to resolve the shortcomings of vancomycin therapy. However, vancomycin's physicochemical properties challenge its effective loading. In this study, we used the ammonium sulfate gradient method to enhance vancomycin loading into liposomes. Depending on the pH difference between the extraliposomal vancomycin-Tris buffer solution (pH 9) and the intraliposomal ammonium sulfate solution (pH 5-6), vancomycin was actively and successfully loaded into liposomes (up to 65% entrapment efficiency), while the liposomal size was maintained at 155 nm. Vancomycin-loaded nanoliposomes effectively enhanced the bactericidal effect of vancomycin; the minimum inhibitory concentration (MIC) value for MRSA decreased 4.6-fold. Furthermore, they effectively inhibited and killed heteroresistant vancomycin-intermediate S.aureous (h-VISA) with an MIC of 0.338 μg mL-1. Moreover, MRSA could not develop resistance against vancomycin that was loaded into and delivered by liposomes. Vancomycin-loaded nanoliposomes could be a feasible solution for enhancing vancomycin's therapeutic use and controlling the emerging vancomycin resistance.
Collapse
Affiliation(s)
- El Tahra M Ahmed
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza 12585, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy Cairo University, Cairo 12613, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez 43511, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Cairo University, Cairo 12613, Egypt
| | - Amna Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Cairo University, Cairo 12613, Egypt
| | - Doaa H Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza 12585, Egypt
| |
Collapse
|
8
|
Nour El-Din HT, Elsebaie MM, Abutaleb NS, Kotb AM, Attia AS, Seleem MN, Mayhoub AS. Expanding the structure-activity relationships of alkynyl diphenylurea scaffold as promising antibacterial agents. RSC Med Chem 2023; 14:367-377. [PMID: 36846365 PMCID: PMC9945853 DOI: 10.1039/d2md00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
With the continuous and alarming threat of exhausting the current antimicrobial arsenals, efforts are urgently needed to develop new effective ones. In this study, the antibacterial efficacy of a set of structurally related acetylenic-diphenylurea derivatives carrying the aminoguanidine moiety was tested against a panel of multidrug-resistant Gram-positive clinical isolates. Compound 18 was identified with a superior bacteriological profile than the lead compound I. Compound 18 demonstrated an excellent antibacterial profile in vitro: low MIC values, extended post-antibiotic effect, refractory ability to resistance development upon extended repeated exposure, and high tolerability towards mammalian cells. Finally, when assessed in a MRSA skin infection animal model, compound 18 showed considerable healing and less inflammation, decrease in the bacterial loads in skin lesions, and it surpassed fusidic acid in controlling the systemic dissemination of S. aureus. Collectively, compound 18 represents a promising lead anti-MRSA agent that merits further investigation for the development of new anti-staphylococcal therapeutics.
Collapse
Affiliation(s)
- Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Mohamed M Elsebaie
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Ahmed M Kotb
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Department of Microbiology and Immunology, School of Pharmacy, Newgiza University Giza Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Center for One Health Research, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
- Nanoscience Program, University of Science and Technology, Zewail City of Science and Technology Giza Egypt
| |
Collapse
|
9
|
Brunelli F, Ceresa C, Aprile S, Coppo L, Castiglioni B, Bosetti M, Fracchia L, Tron GC. Isocyanides in med chem: A scaffold hopping approach for the identification of novel 4-isocyanophenylamides as potent antibacterial agents against methicillin-resistant Staphylococcusaureus. Eur J Med Chem 2023; 246:114950. [PMID: 36462437 DOI: 10.1016/j.ejmech.2022.114950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
We describe the rational use of the neglected isocyano moiety as pharmacophoric group for the design of novel 4-isocyanophenylamides as antibacterial agents. This class of novel compounds showed to be highly effective against methicillin resistant Staphylococcus aureus strains. In particular, from an extensive screening, we identified compound 42 as lead compound. It has shown a potent antimicrobial activity, an additive effect with most antibiotics currently in use, the ability not to induce the formation of resistant strains after ten passages, and the ability to block the biofilm formation. A nontoxic profile on mammalian cells and a proper metabolic stability on human liver microsome complete the picture of this new weapon against methicillin resistant Staphylococcus aureus infections.
Collapse
Affiliation(s)
- Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Chiara Ceresa
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Silvio Aprile
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Lorenza Coppo
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Beatrice Castiglioni
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Michela Bosetti
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Letizia Fracchia
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy.
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy.
| |
Collapse
|
10
|
Xie Y, Wang L, Yang Y, Zha L, Zhang J, Rong K, Tang W, Zhang J. Antibacterial and anti-biofilm activity of diarylureas against Enterococcus faecium by suppressing the gene expression of peptidoglycan hydrolases and adherence. Front Microbiol 2022; 13:1071255. [PMID: 36590419 PMCID: PMC9797508 DOI: 10.3389/fmicb.2022.1071255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Enterococcus faecium (E. faecium) is a clinical multidrug-resistant pathogen causing life-threatening infection, which makes it important to discover antibacterial agents with novel scaffolds and unique mechanism. In this study, the diarylurea scaffold was found to have potent antibacterial effect on E. faecium. Diarylurea ZJ-2 with benign drug-like property exhibited potent antibacterial and anti-biofilm activity through inhibiting the genes expression of NlpC/p60 hydrolase-secreted antigen A (sagA) and autolysins (atlA), down-regulating the expression of biofilm adherence related genes aggregation substance (agg), enterococcal surface protein (esp) against E. faecium. Moreover, ZJ-2 can be docked into SagA to inhibit daughter cell separation. In a mouse model of abdominal infection, ZJ-2 decreased the bacterial load and the level of IL-6 and TNF-α in a time-dependent manner. Overall, these findings indicated that diarylurea ZJ-2 has the potential to be developed as a therapeutic agent to treat drug-resistant enterococci and biofilm-related infections.
Collapse
Affiliation(s)
- Yunfeng Xie
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Lei Wang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Yang Yang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Liang Zha
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jiazhen Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Kuanrong Rong
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei, China,*Correspondence: Wenjian Tang,
| | - Jing Zhang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei, China,Jing Zhang,
| |
Collapse
|
11
|
Membrane acting Povarov-Doebner derived compounds potently disperse preformed multidrug resistant Gram-positive bacterial biofilms. Eur J Med Chem 2022; 240:114550. [DOI: 10.1016/j.ejmech.2022.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022]
|
12
|
Naclerio GA, Onyedibe KI, Karanja CW, Aryal UK, Sintim HO. Comparative Studies to Uncover Mechanisms of Action of N-(1,3,4-Oxadiazol-2-yl)benzamide Containing Antibacterial Agents. ACS Infect Dis 2022; 8:865-877. [PMID: 35297603 PMCID: PMC9188027 DOI: 10.1021/acsinfecdis.1c00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drug-resistant bacterial pathogens still cause high levels of mortality annually despite the availability of many antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is especially problematic, and the rise in resistance to front-line treatments like vancomycin and linezolid calls for new chemical modalities to treat chronic and relapsing MRSA infections. Halogenated N-(1,3,4-oxadiazol-2-yl)benzamides are an interesting class of antimicrobial agents, which have been described by multiple groups to be effective against different bacterial pathogens. The modes of action of a few N-(1,3,4-oxadiazol-2-yl)benzamides have been elucidated. For example, oxadiazoles KKL-35 and MBX-4132 have been described as inhibitors of trans-translation (a ribosome rescue pathway), while HSGN-94 was shown to inhibit lipoteichoic acid (LTA). However, other similarly halogenated N-(1,3,4-oxadiazol-2-yl)benzamides neither inhibit trans-translation nor LTA biosynthesis but are potent antimicrobial agents. For example, HSGN-220, -218, and -144 are N-(1,3,4-oxadiazol-2-yl)benzamides that are modified with OCF3, SCF3, or SF5 and have remarkable minimum inhibitory concentrations ranging from 1 to 0.06 μg/mL against MRSA clinical isolates and show a low propensity to develop resistance to MRSA over 30 days. The mechanism of action of these highly potent oxadiazoles is however unknown. To provide insights into how these halogenated N-(1,3,4-oxadiazol-2-yl)benzamides inhibit bacterial growth, we performed global proteomics and RNA expression analysis of some essential genes of S. aureus treated with HSGN-220, -218, and -144. These studies revealed that the oxadiazoles HSGN-220, -218, and -144 are multitargeting antibiotics that regulate menaquinone biosynthesis and other essential proteins like DnaX, Pol IIIC, BirA, LexA, and DnaC. In addition, these halogenated N-(1,3,4-oxadiazol-2-yl)benzamides were able to depolarize bacterial membranes and regulate siderophore biosynthesis and heme regulation. Iron starvation appears to be part of the mechanism of action that led to bacterial killing. This study demonstrates that N-(1,3,4-oxadiazol-2-yl)benzamides are indeed privileged scaffolds for the development of antibacterial agents and that subtle modifications lead to changes to the mechanism of action.
Collapse
Affiliation(s)
- George A. Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kenneth I. Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Inflammation, Immunology, and Infectious Diseases, West Lafayette, Indiana 47907, United States
| | - Caroline W. Karanja
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Herman O. Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Inflammation, Immunology, and Infectious Diseases, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Discovery of polypyridyl iridium(III) complexes as potent agents against resistant Candida albicans. Eur J Med Chem 2022; 233:114250. [DOI: 10.1016/j.ejmech.2022.114250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022]
|
14
|
Elsebaie MM, El-Din HT, Abutaleb NS, Abuelkhir AA, Liang HW, Attia AS, Seleem MN, Mayhoub AS. Exploring the structure-activity relationships of diphenylurea as an antibacterial scaffold active against methicillin- and vancomycin-resistant Staphylococcus aureus. Eur J Med Chem 2022; 234:114204. [DOI: 10.1016/j.ejmech.2022.114204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023]
|
15
|
Wenholz DS, Miller M, Dawson C, Bhadbhade M, Black DS, Griffith R, Dinh H, Cain A, Lewis P, Kumar N. Inhibitors of bacterial RNA polymerase transcription complex. Bioorg Chem 2021; 118:105481. [PMID: 34801947 DOI: 10.1016/j.bioorg.2021.105481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 01/28/2023]
Abstract
A series of hybrid compounds that incorporated anthranilic acid with activated 1H-indoles through a glyoxylamide linker were designed to target bacterial RNA polymerase holoenzyme formation using computational docking. Synthesis, in vitro transcription inhibition assays, and biological testing of the hybrids identified a range of potent anti-transcription inhibitors with activity against a range of pathogenic bacteria with MICs as low as 3.1 μM. A structure activity relationship study identified the key structural components necessary for inhibition of both bacterial growth and transcription. Correlation of in vitro transcription inhibition activity with in vivo mechanism of action was established using fluorescence microscopy and resistance passaging using Gram-positive bacteria showed no resistance development over 30 days. Furthermore, no toxicity was observed from the compounds in a wax moth larvae model, establishing a platform for the development of a series of new antibacterial drugs with an established mode of action.
Collapse
Affiliation(s)
- Daniel S Wenholz
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia
| | - Michael Miller
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Catherine Dawson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohan Bhadbhade
- Mark Wainwright Analytical Centre, UNSW Sydney, NSW 2052, Australia
| | - David StC Black
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia
| | - Renate Griffith
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia
| | - Hue Dinh
- Department of Biological Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Amy Cain
- Department of Biological Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Peter Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia.
| |
Collapse
|
16
|
Onyedibe KI, Dayal N, Sintim HO. SF 5- and SCF 3-substituted tetrahydroquinoline compounds as potent bactericidal agents against multidrug-resistant persister Gram-positive bacteria. RSC Med Chem 2021; 12:1879-1893. [PMID: 34825185 DOI: 10.1039/d1md00211b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Bacteria persister cells are immune to most antibiotics and hence compounds that are active against persister bacteria are needed. We screened a chemical library of SF5- and SCF3-substituted tetrahydroquinoline compounds, synthesized via the Povarov reaction, for antibacterial activity and identified active compounds that displayed good activities against many Gram-positive bacteria, including persisters. The most potent of these compounds, HSD1835, inhibited the growth of drug-resistant Gram-positive bacterial pathogens (including clinical strains) at concentrations ranging from 1 μg mL-1 to 4 μg mL-1. Several of the SCF3- and SF5-containing compounds were active against methicillin-resistant Staphylococcus aureus (MRSA) and against the two most fatal strains of vancomycin-resistant Enterococcus (VRE), VRE faecalis and VRE faecium. The compounds showed bactericidal activity against stationary phase persister MRSA in time-kill assays. Mechanistic studies showed that HSD1835 acts by disrupting bacterial membranes. Scanning electron microscopy (SEM) was used to confirm bacterial membrane disruption. Interestingly, in a 30 day serial exposure experiment, MRSA remained susceptible to low-dose HSD1835 whilst resistance to ciprofloxacin and mupirocin emerged by day 10. Analogs of HSD1835, which did not bear the SF5 or SCF3 moieties, were inactive against bacteria. Recent reports (G. A. Naclerio, N. S. Abutaleb, K. I. Onyedibe, M. N. Seleem and H. O. Sintim, RSC Med. Chem. 2020, 11, 102-110 and G. A. Naclerio, N. S. Abutaleb, D. Li, M. N. Seleem and H. O. Sintim, J. Med. Chem. 2020, 63(20), 11934-11944) also demonstrated that adding the SF5 or SCF3 groups to a different scaffold (oxadiazoles) enhanced the antibacterial properties of the compounds, so it appears that these groups are privileged moieties that enhance the antimicrobial activities of compounds.
Collapse
Affiliation(s)
- Kenneth I Onyedibe
- Department of Chemistry, Purdue University 560 Oval Drive, West Lafayette Indiana 47907 USA .,Purdue Institute of Inflammation, Immunology, and Infectious Disease West Lafayette IN 47907 USA
| | - Neetu Dayal
- Department of Chemistry, Purdue University 560 Oval Drive, West Lafayette Indiana 47907 USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University 560 Oval Drive, West Lafayette Indiana 47907 USA .,Purdue Institute of Inflammation, Immunology, and Infectious Disease West Lafayette IN 47907 USA.,Center for Drug Discovery, Purdue University 720 Clinic Drive, West Lafayette Indiana 47907 USA
| |
Collapse
|
17
|
Tyurin AP, Alferova VA, Paramonov AS, Shuvalov MV, Kudryakova GK, Rogozhin EA, Zherebker AY, Brylev VA, Chistov AA, Baranova AA, Biryukov MV, Ivanov IA, Prokhorenko IA, Grammatikova NE, Kravchenko TV, Isakova EB, Mirchink EP, Gladkikh EG, Svirshchevskaya EV, Mardanov AV, Beletsky AV, Kocharovskaya MV, Kulyaeva VV, Shashkov AS, Tsvetkov DE, Nifantiev NE, Apt AS, Majorov KB, Efimova SS, Ravin NV, Nikolaev EN, Ostroumova OS, Katrukha GS, Lapchinskaya OA, Dontsova OA, Terekhov SS, Osterman IA, Shenkarev ZO, Korshun VA. Gausemycins A,B: Cyclic Lipoglycopeptides from
Streptomyces
sp.**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Antibacterial Activity of Co(III) Complexes with Diamine Chelate Ligands against a Broad Spectrum of Bacteria with a DNA Interaction Mechanism. Pharmaceutics 2021; 13:pharmaceutics13070946. [PMID: 34202624 PMCID: PMC8309019 DOI: 10.3390/pharmaceutics13070946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/21/2022] Open
Abstract
Cobalt coordination complexes are very attractive compounds for their therapeutic uses as antiviral, antibacterial, antifungal, antiparasitic, or antitumor agents. Two Co(III) complexes with diamine chelate ligands ([CoCl2(dap)2]Cl (1) and [CoCl2(en)2]Cl (2)) (where dap = 1,3-diaminopropane, en = ethylenediamine) were synthesized and characterized by elemental analysis, an ATR technique, and a scan method and sequentially tested against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration results revealed that anaerobic and microaerophilic bacteria were found to be the most sensitive; the serial passages assay presented insignificant increases in bacterial resistance to both compounds after 20 passages. The synergy assay showed a significant reduction in the MIC values of nalidixic acid when combined with Compounds (1) or (2). The assessment of cell damage by the complexes was performed using scanning electron microscopy, transmission electron microscopy, and confocal microscopy, which indicated cell membrane permeability, deformation, and altered cell morphology. DNA interaction studies of the Co(III) complexes with plasmid pBR322 using spectrophotometric titration methods revealed that the interaction between Complex (1) or (2) and DNA suggested an electrostatic and intercalative mode of binding, respectively. Furthermore, the DNA cleavage ability of compounds by agarose gel electrophoresis showed nuclease activity for both complexes. The results suggest that the effect of the tested compounds against bacteria can be complex.
Collapse
|
19
|
Tyurin AP, Alferova VA, Paramonov AS, Shuvalov MV, Kudryakova GK, Rogozhin EA, Zherebker AY, Brylev VA, Chistov AA, Baranova AA, Biryukov MV, Ivanov IA, Prokhorenko IA, Grammatikova NE, Kravchenko TV, Isakova EB, Mirchink EP, Gladkikh EG, Svirshchevskaya EV, Mardanov AV, Beletsky AV, Kocharovskaya MV, Kulyaeva VV, Shashkov AS, Tsvetkov DE, Nifantiev NE, Apt AS, Majorov KB, Efimova SS, Ravin NV, Nikolaev EN, Ostroumova OS, Katrukha GS, Lapchinskaya OA, Dontsova OA, Terekhov SS, Osterman IA, Shenkarev ZO, Korshun VA. Gausemycins A,B: Cyclic Lipoglycopeptides from Streptomyces sp.*. Angew Chem Int Ed Engl 2021; 60:18694-18703. [PMID: 34009717 DOI: 10.1002/anie.202104528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 11/10/2022]
Abstract
We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated. The compounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual positions of d-amino acids, lack of the Ca2+ -binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), and N-acylation of the ornithine side chain. Gausemycins have pronounced activity against Gram-positive bacteria. Mechanistic studies highlight significant differences compared to known glyco- and lipopeptides. Gausemycins exhibit only slight Ca2+ -dependence of activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.
Collapse
Affiliation(s)
- Anton P Tyurin
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Vera A Alferova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Maxim V Shuvalov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia
| | | | - Eugene A Rogozhin
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander Y Zherebker
- Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Vladimir A Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexey A Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Anna A Baranova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Mikhail V Biryukov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Igor A Prokhorenko
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | | | - Tatyana V Kravchenko
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Elena B Isakova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Elena P Mirchink
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Elena G Gladkikh
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Elena V Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, 119071, Moscow, Russia
| | - Aleksey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, 119071, Moscow, Russia
| | - Milita V Kocharovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprydny, 141700, Moscow region, Russia
| | - Valeriya V Kulyaeva
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Alexander S Shashkov
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Dmitry E Tsvetkov
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Nikolay E Nifantiev
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Alexander S Apt
- Central Tuberculosis Research Institute, Yauzskaya Alley 2, 107564, Moscow, Russia
| | - Konstantin B Majorov
- Central Tuberculosis Research Institute, Yauzskaya Alley 2, 107564, Moscow, Russia
| | - Svetlana S Efimova
- Institute of Cytology RAS, Tikhoretsky Prospect 4, 194064, St. Petersburg, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, 119071, Moscow, Russia
| | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Olga S Ostroumova
- Institute of Cytology RAS, Tikhoretsky Prospect 4, 194064, St. Petersburg, Russia
| | - Genrikh S Katrukha
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Olda A Lapchinskaya
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Olga A Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia.,Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Stanislav S Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia
| | - Ilya A Osterman
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia.,Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprydny, 141700, Moscow region, Russia
| | - Vladimir A Korshun
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| |
Collapse
|
20
|
Evaluation of ebselen in resolving a methicillin-resistant Staphylococcus aureus infection of pressure ulcers in obese and diabetic mice. PLoS One 2021; 16:e0247508. [PMID: 33617589 PMCID: PMC7899319 DOI: 10.1371/journal.pone.0247508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
Pressure ulcers (PUs) are a source of morbidity in individuals with restricted mobility including individuals that are obese or diabetic. Infection of PUs with pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), impairs ulcers from healing. The present study evaluated ebselen as a topical antibacterial to treat MRSA-infected PUs. Against two different S. aureus strains, including MRSA USA300, resistance to ebselen did not emerge after 14 consecutive passages. Resistance to mupirocin emerged after only five passages. Additionally, ebselen was found to exert a modest postantibiotic effect of five hours against two MRSA strains. Ebselen was subsequently evaluated in MRSA-infected PUs in two models using obese and diabetic mice. In obese mice, topical ebselen (89.2% reduction) and oral linezolid (84.5% reduction) similarly reduced the burden of MRSA in infected PUs. However, in diabetic mice, topical ebselen (45.8% reduction in MRSA burden) was less effective. Histopathological evaluation of ulcers in diabetic mice determined that ebselen treatment resulted in fewer bacterial colonies deep within the dermis and that the treatment exhibited evidence of epithelial regeneration. Topical mupirocin was superior to ebselen in reducing MRSA burden in infected PUs both in obese (98.7% reduction) and diabetic (99.3% reduction) mice. Ebselen’s antibacterial activity was negatively impacted as the bacterial inoculum was increased from 105 CFU/mL to 107 CFU/mL. These results suggest that a higher dose of ebselen, or a longer course of treatment, may be needed to achieve a similar effect as mupirocin in topically treating MRSA-infected pressure ulcers.
Collapse
|
21
|
Diarylureas: Repositioning from Antitumor to Antimicrobials or Multi-Target Agents against New Pandemics. Antibiotics (Basel) 2021; 10:antibiotics10010092. [PMID: 33477901 PMCID: PMC7833385 DOI: 10.3390/antibiotics10010092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Antimicrobials have allowed medical advancements over several decades. However, the continuous emergence of antimicrobial resistance restricts efficacy in treating infectious diseases. In this context, the drug repositioning of already known biological active compounds to antimicrobials could represent a useful strategy. In 2002 and 2003, the SARS-CoV pandemic immobilized the Far East regions. However, the drug discovery attempts to study the virus have stopped after the crisis declined. Today’s COVID-19 pandemic could probably have been avoided if those efforts against SARS-CoV had continued. Recently, a new coronavirus variant was identified in the UK. Because of this, the search for safe and potent antimicrobials and antivirals is urgent. Apart from antiviral treatment for severe cases of COVID-19, many patients with mild disease without pneumonia or moderate disease with pneumonia have received different classes of antibiotics. Diarylureas are tyrosine kinase inhibitors well known in the art as anticancer agents, which might be useful tools for a reposition as antimicrobials. The first to come onto the market as anticancer was sorafenib, followed by some other active molecules. For this interesting class of organic compounds antimicrobial, antiviral, antithrombotic, antimalarial, and anti-inflammatory properties have been reported in the literature. These numerous properties make these compounds interesting for a new possible pandemic considering that, as well as for other viral infections also for CoVID-19, a multitarget therapeutic strategy could be favorable. This review is meant to be an overview on diarylureas, focusing on their biological activities, not dwelling on the already known antitumor activity. Quite a lot of papers present in the literature underline and highlight the importance of these molecules as versatile scaffolds for the development of new and promising antimicrobials and multitarget agents against new pandemic events.
Collapse
|
22
|
Schäfer AB, Wenzel M. A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides. Front Cell Infect Microbiol 2020; 10:540898. [PMID: 33194788 PMCID: PMC7604286 DOI: 10.3389/fcimb.2020.540898] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a promising alternative to classical antibiotics in the fight against multi-resistant bacteria. They are produced by organisms from all domains of life and constitute a nearly universal defense mechanism against infectious agents. No drug can be approved without information about its mechanism of action. In order to use them in a clinical setting, it is pivotal to understand how AMPs work. While many pore-forming AMPs are well-characterized in model membrane systems, non-pore-forming peptides are often poorly understood. Moreover, there is evidence that pore formation may not happen or not play a role in vivo. It is therefore imperative to study how AMPs interact with their targets in vivo and consequently kill microorganisms. This has been difficult in the past, since established methods did not provide much mechanistic detail. Especially, methods to study membrane-active compounds have been scarce. Recent advances, in particular in microscopy technology and cell biological labeling techniques, now allow studying mechanisms of AMPs in unprecedented detail. This review gives an overview of available in vivo methods to investigate the antibacterial mechanisms of AMPs. In addition to classical mode of action classification assays, we discuss global profiling techniques, such as genomic and proteomic approaches, as well as bacterial cytological profiling and other cell biological assays. We cover approaches to determine the effects of AMPs on cell morphology, outer membrane, cell wall, and inner membrane properties, cellular macromolecules, and protein targets. We particularly expand on methods to examine cytoplasmic membrane parameters, such as composition, thickness, organization, fluidity, potential, and the functionality of membrane-associated processes. This review aims to provide a guide for researchers, who seek a broad overview of the available methodology to study the mechanisms of AMPs in living bacteria.
Collapse
Affiliation(s)
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
23
|
Auranofin Rapidly Eradicates Methicillin-resistant Staphylococcus aureus (MRSA) in an Infected Pressure Ulcer Mouse Model. Sci Rep 2020; 10:7251. [PMID: 32350417 PMCID: PMC7190694 DOI: 10.1038/s41598-020-64352-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Pressure ulcers (PUs) frequently occur in individuals with limited mobility including patients that are hospitalized or obese. PUs are challenging to resolve when infected by antibiotic-resistant bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA). In this study, we investigated the potential of repurposing auranofin to treat pressure ulcers infected with MRSA. Auranofin’s in vitro activity against strains of S. aureus (including MRSA) was not affected in the presence of higher bacterial inoculum (107 CFU/mL) or by lowering the pH in standard media to simulate the environment present on the surface of the skin. Additionally, S. aureus did not develop resistance to auranofin after repeated exposure for two weeks via a multi-step resistance selection experiment. In contrast, S. aureus resistance to mupirocin emerged rapidly. Moreover, auranofin exhibited a long postantibiotic effect (PAE) in vitro against three strains of S. aureus tested. Remarkably, topical auranofin completely eradicated MRSA (8-log10 reduction) in infected PUs of obese mice after just four days of treatment. This was superior to both topical mupirocin (1.96-log10 reduction) and oral clindamycin (1.24-log10 reduction), which are used to treat infected PUs clinically. The present study highlights auranofin’s potential to be investigated further as a treatment for mild-to-moderate PUs infected with S. aureus.
Collapse
|
24
|
Dayal N, Opoku-Temeng C, Mohammad H, Abutaleb NS, Hernandez D, Onyedibe KI, Wang M, Zeller M, Seleem MN, Sintim HO. Inhibitors of Intracellular Gram-Positive Bacterial Growth Synthesized via Povarov-Doebner Reactions. ACS Infect Dis 2019; 5:1820-1830. [PMID: 31512848 DOI: 10.1021/acsinfecdis.9b00022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus can survive both inside and outside of phagocytic and nonphagocytic host cells. Once in the intracellular milieu, most antibiotics have reduced ability to kill S. aureus, thus resulting in relapse of infection. Consequently, there is a need for antibacterial agents that can accumulate to lethal concentrations within host cells to clear intracellular infections. We have identified tetrahydrobenzo[a or c]phenanthridine and tetrahydrobenzo[a or c]acridine compounds, synthesized via a one-flask Povarov-Doebner operation from readily available amines, aldehydes, and cyclic ketones, as potent agents against drug-resistant S. aureus. Importantly, the tetrahydrobenzo[a or c]phenanthridine and tetrahydrobenzo[a or c]acridine compounds can accumulate in macrophage cells and reduce the burden of intracellular MRSA better than the drug of choice, vancomycin. We observed that MRSA could not develop resistance (by passage 30) against tetrahydrobenzo[a or c]acridine compound 15. Moreover, tetrahydrobenzo[c]acridine compound 15 and tetrahydrobenzo[c]phenanthridine compound 16 were nontoxic to red blood cells and were nonmutagenic. Preliminary data indicated that compound 16 reduced bacterial load (MRSA USA300) in mice (thigh infection model) to the same degree as vancomycin. These observations suggest that compounds 15 and 16 and analogues thereof could become therapeutic agents for the treatment of chronic MRSA infections.
Collapse
Affiliation(s)
- Neetu Dayal
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Clement Opoku-Temeng
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Chemistry and Biochemistry Department, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Haroon Mohammad
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Delmis Hernandez
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Kenneth Ikenna Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Modi Wang
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Herman O. Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Shao X, AbdelKhalek A, Abutaleb NS, Velagapudi UK, Yoganathan S, Seleem MN, Talele TT. Chemical Space Exploration around Thieno[3,2- d]pyrimidin-4(3 H)-one Scaffold Led to a Novel Class of Highly Active Clostridium difficile Inhibitors. J Med Chem 2019; 62:9772-9791. [PMID: 31584822 DOI: 10.1021/acs.jmedchem.9b01198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clostridium difficile infection (CDI) is the leading cause of healthcare-associated infection in the United States. Therefore, development of novel treatments for CDI is a high priority. Toward this goal, we began in vitro screening of a structurally diverse in-house library of 67 compounds against two pathogenic C. difficile strains (ATCC BAA 1870 and ATCC 43255), which yielded a hit compound, 2-methyl-8-nitroquinazolin-4(3H)-one (2) with moderate potency (MIC = 312/156 μM). Optimization of 2 gave lead compound 6a (2-methyl-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one) with improved potency (MIC = 19/38 μM), selectivity over normal gut microflora, CC50s > 606 μM against mammalian cell lines, and acceptable stability in simulated gastric and intestinal fluid. Further optimization of 6a at C2-, N3-, C4-, and C7-positions resulted in a library of >50 compounds with MICs ranging from 3 to 800 μM against clinical isolates of C. difficile. Compound 8f (MIC = 3/6 μM) was identified as a promising lead for further optimization.
Collapse
Affiliation(s)
- Xuwei Shao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences , St. John's University , Queens , New York 11439-0001 , United States
| | - Ahmed AbdelKhalek
- Department of Comparative Pathobiology , Purdue University College of Veterinary Medicine , West Lafayette , Indiana 47907-2027 , United States
| | - Nader S Abutaleb
- Department of Comparative Pathobiology , Purdue University College of Veterinary Medicine , West Lafayette , Indiana 47907-2027 , United States
| | - Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences , St. John's University , Queens , New York 11439-0001 , United States
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences , St. John's University , Queens , New York 11439-0001 , United States
| | - Mohamed N Seleem
- Department of Comparative Pathobiology , Purdue University College of Veterinary Medicine , West Lafayette , Indiana 47907-2027 , United States.,Purdue Institute of Inflammation, Immunology, and Infectious Disease , West Lafayette , Indiana 47907-2027 , United States
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences , St. John's University , Queens , New York 11439-0001 , United States
| |
Collapse
|
26
|
Gram-negative synergy and mechanism of action of alkynyl bisbenzimidazoles. Sci Rep 2019; 9:14171. [PMID: 31578425 PMCID: PMC6775084 DOI: 10.1038/s41598-019-48898-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/15/2019] [Indexed: 01/08/2023] Open
Abstract
Bisbenzimidazoles with terminal alkynyl linkers, selective inhibitors of bacterial topoisomerase I, have been evaluated using bacterial cytological profiling (BCP) to ascertain their mechanism of action and screened for synergism to improve Gram-negative bacterial coverage. Principal component analysis of high throughput fluorescence images suggests a dual-mechanism of action affecting DNA synthesis and cell membrane integrity. Fluorescence microscopy of bacteria challenged with two of the alkynyl-benzimidazoles revealed changes in the cellular ultrastructure that differed from topoisomerase II inhibitors including induction of spheroplasts and membrane lysis. The cytoskeleton recruitment enzyme inhibitor A22 in combination with one of the alkynyl-benzimidazoles was synergistic against Acinetobacter baumannii and Escherichia coli. Gram-positive coverage remained unchanged in the A22-alkynyl bisbenzimidazole combination. Efflux inhibitors were not synergistic, suggesting that the Gram-negative outer membrane was a significant barrier for alkynyl-bisbenzimidazole uptake. Time-kill assays demonstrated the A22-bisbenzimidazole combination had a similar growth inhibition curve to that of norfloxacin in E.coli. Bisbenzimidazoles with terminal alkynyl linkers likely impede bacterial growth by compromising cell membrane integrity and by interfering with DNA synthesis against Gram-positive pathogens and in the synergistic combination against Gram-negative pathogens including E. coli and multidrug-resistant A. baumanii.
Collapse
|
27
|
Helal AM, Sayed AM, Omara M, Elsebaei MM, Mayhoub AS. Peptidoglycan pathways: there are still more! RSC Adv 2019; 9:28171-28185. [PMID: 35530449 PMCID: PMC9071014 DOI: 10.1039/c9ra04518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/22/2019] [Indexed: 11/21/2022] Open
Abstract
The discovery of 3rd and 4th generations of currently existing classes of antibiotics has not hindered bacterial resistance, which is escalating at an alarming global level. This review follows WHO recommendations through implementing new criteria for newly discovered antibiotics. These recommendations focus on abandoning old scaffolds and hitting new targets. In light of these recommendations, this review discusses seven bacterial proteins that no commercial antibiotics have targeted yet, alongside their reported chemical scaffolds.
Collapse
Affiliation(s)
- Ahmed M Helal
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Ahmed M Sayed
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Mariam Omara
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
- University of Science and Technology, Zewail City of Science and Technology Giza Egypt
| |
Collapse
|
28
|
Elsebaei MM, Abutaleb NS, Mahgoub AA, Li D, Hagras M, Mohammad H, Seleem MN, Mayhoub AS. Phenylthiazoles with nitrogenous side chain: An approach to overcome molecular obesity. Eur J Med Chem 2019; 182:111593. [PMID: 31446245 DOI: 10.1016/j.ejmech.2019.111593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 02/01/2023]
Abstract
A novel series of phenylthiazoles bearing cyclic amines at the phenyl-4 position was prepared with the objective of decreasing lipophilicity and improving the overall physicochemical properties and pharmacokinetic profile of the compounds. Briefly, the piperidine ring (compounds 10 and 12) provided the best ring size in terms of antibacterial activity when tested against 16 multidrug-resistant clinical isolates. Both compounds were superior to vancomycin in the ability to eliminate methicillin-resistant Staphylococcus aureus (MRSA), residing within infected macrophages and to disrupt mature MRSA biofilm. Additionally, compounds 10 and 12 exhibited a fast-bactericidal mode of action in vitro. Furthermore, the new derivatives were 160-times more soluble in water than the previous lead compound 1b. Consequently, compound 10 was orally bioavailable with a highly-acceptable pharmacokinetic profile in vivo that exhibited a half-life of 4 h and achieved a maximum plasma concentration that exceeded the minimum inhibitory concentration (MIC) values against all tested bacterial isolates.
Collapse
Affiliation(s)
- Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Abdulrahman A Mahgoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Daoyi Li
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, 47907, USA.
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt; University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt.
| |
Collapse
|
29
|
Mohammad H, Kyei-Baffour K, Abutaleb NS, Dai M, Seleem MN. An aryl isonitrile compound with an improved physicochemical profile that is effective in two mouse models of multidrug-resistant Staphylococcus aureus infection. J Glob Antimicrob Resist 2019; 19:1-7. [PMID: 31051286 DOI: 10.1016/j.jgar.2019.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the antibacterial activity of a synthetic aryl isonitrile compound (35) that was developed as part of a compound library to identify new antibacterial agents effective against methicillin-resistant Staphylococcus aureus (MRSA). METHODS Compound 35 was evaluated against MRSA isolates by the broth microdilution assay and for toxicity to mammalian keratinocytes using the MTS assay. A multistep resistance selection assay was conducted to investigate MRSA resistance development to 35. A Caco-2 bidirectional permeability assay was employed to evaluate the ability of 35 to permeate across the gastrointestinal tract, and compound 35 was incubated with human liver microsomes to determine susceptibility to hepatic metabolism. Finally, compound 35 was evaluated in an uncomplicated MRSA skin infection mouse model and an MRSA neutropenic thigh infection mouse model. RESULTS Compound 35 inhibited the growth of MRSA clinical isolates at 2-4μM and was non-toxic to human keratinocytes. No resistance formation was observed with MRSA against compound 35 after 10 serial passages. In a murine skin wound model, compound 35 significantly reduced the burden of MRSA, similar to the antibiotic fusidic acid. Compound 35 exhibited a marked improvement both in permeability and stability to hepatic metabolism (half-life >11h) relative to the first-generation lead compound. In a neutropenic thigh infection mouse model, compound 35 successfully reduced the burden of MRSA in immunocompromised mice. CONCLUSION In summary, compound 35 was identified as a new lead aryl isonitrile compound that warrants further investigation as a novel antibacterial agent.
Collapse
Affiliation(s)
- Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| | - Kwaku Kyei-Baffour
- Department of Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| | - Mingji Dai
- Department of Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, 610 Purdue Mall, West Lafayette, IN 47907, USA.
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, 610 Purdue Mall, West Lafayette, IN 47907, USA.
| |
Collapse
|
30
|
Elsebaei MM, Mohammad H, Samir A, Abutaleb NS, Norvil AB, Michie AR, Moustafa MM, Samy H, Gowher H, Seleem MN, Mayhoub AS. Lipophilic efficient phenylthiazoles with potent undecaprenyl pyrophosphatase inhibitory activity. Eur J Med Chem 2019; 175:49-62. [PMID: 31075608 DOI: 10.1016/j.ejmech.2019.04.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/26/2022]
Abstract
Antibiotic resistance remains a pressing medical challenge for which novel antibacterial agents are urgently needed. The phenylthiazole scaffold represents a promising platform to develop novel antibacterial agents for drug-resistant infections. However, enhancing the physicochemical profile of this class of compounds remains a challenging endeavor to address to successfully translate these molecules into novel antibacterial agents in the clinic. We extended our understanding of the SAR of the phenylthiazoles' lipophilic moiety by exploring its ability to accommodate a hydrophilic group or a smaller sized hetero-ring with the objective of enhancing the physicochemical properties of this class of novel antimicrobials. Overall, the 2-thienyl derivative 20 and the hydroxyl-containing derivative 31 emerged as the most promising antibacterial agents inhibiting growth of drug-resistant Staphylococcus aureus at a concentration as low as 1 μg/mL. Remarkably, compound 20 suppressed bacterial undecaprenyl pyrophosphatase (UppP), the molecular target of the phenylthiazole compounds, in a sub nano-molar concentration range (almost 20,000 times more potent than the lead compounds 1a and 1b). Compound 31 possessed the most balanced antibacterial and physicochemical profile. The compound exhibited rapid bactericidal activity against S. aureus, and successfully cleared intracellular S. aureus within infected macrophages. Furthermore, insertion of the hydroxyl group enhanced the aqueous solubility of 31 by more than 50-fold relative to the first-generation lead 1c.
Collapse
Affiliation(s)
- Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Amgad Samir
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Allison B Norvil
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA
| | - Amie R Michie
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA
| | - Mahmoud M Moustafa
- Department of Pharmaceutical Chemistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Hebatallah Samy
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt
| | - Humaira Gowher
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, 47907, USA.
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt; University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt.
| |
Collapse
|
31
|
Peters CE, Lamsa A, Liu RB, Quach D, Sugie J, Brumage L, Pogliano J, Lopez-Garrido J, Pogliano K. Rapid Inhibition Profiling Identifies a Keystone Target in the Nucleotide Biosynthesis Pathway. ACS Chem Biol 2018; 13:3251-3258. [PMID: 30133247 DOI: 10.1021/acschembio.8b00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding the mechanism of action (MOA) of new antimicrobial agents is a critical step in drug discovery but is notoriously difficult for compounds that appear to inhibit multiple cellular pathways. We recently described image-based approaches [bacterial cytological profiling and rapid inducible profiling (RIP)] for identifying the cellular pathways targeted by antibiotics. Here we have applied these methods to examine the effects of proteolytically degrading enzymes involved in pyrimidine nucleotide biosynthesis, a pathway that produces intermediates for transcription, DNA replication, and cell envelope synthesis. We show that rapid removal of enzymes directly involved in deoxyribonucleotide synthesis blocks DNA replication. However, degradation of cytidylate kinase (CMK), which catalyzes reactions involved in the synthesis of both ribonucleotides and deoxyribonucleotides, blocks both DNA replication and wall teichoic acid biosynthesis, producing cytological effects identical to those created by simultaneously inhibiting both processes with the antibiotics ciprofloxacin and tunicamycin. Our results suggest that RIP can be used to identify and characterize potential keystone enzymes like CMK whose inhibition dramatically affects multiple pathways, thereby revealing important metabolic connections. Identifying and understanding the role of keystone targets might also help to determine the MOAs of drugs that appear to inhibit multiple targets.
Collapse
Affiliation(s)
- Christine E. Peters
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Anne Lamsa
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Roland B. Liu
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Diana Quach
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Joseph Sugie
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Lauren Brumage
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Javier Lopez-Garrido
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
32
|
Hagras M, Abutaleb NS, Ali AO, Abdel-Aleem JA, Elsebaei MM, Seleem MN, Mayhoub AS. Naphthylthiazoles: Targeting Multidrug-Resistant and Intracellular Staphylococcus aureus with Biofilm Disruption Activity. ACS Infect Dis 2018; 4:1679-1691. [PMID: 30247876 DOI: 10.1021/acsinfecdis.8b00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Thirty-two new naphthylthiazole derivatives were synthesized with the aim of exploring their antimicrobial effect on multidrug-resistant Gram-positive bacteria. Compounds 25 and 32, with ethylenediamine and methylguanidine side chains, represent the most promising derivatives, as their antibacterial spectrum includes activity against multidrug-resistant staphylococcal and enterococcal strains. Moreover, the new derivatives are highly advantageous over the existing frontline therapeutics for the treatment of multidrug-resistant Gram-positive bacteria. In this vein, compound 25 possesses three attributes: no bacterial resistance was developed against it even after 15 passages, it was very efficient in targeting intracellular pathogens, and it exhibited a concentration-dependent ability to disrupt the preformed bacterial biofilm.
Collapse
Affiliation(s)
- Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhaiam Eldaem Street, Cairo 11884, Egypt
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Alsagher O. Ali
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Division of Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Jelan A. Abdel-Aleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt
| | - Mohamed M. Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhaiam Eldaem Street, Cairo 11884, Egypt
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Abdelrahman S. Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhaiam Eldaem Street, Cairo 11884, Egypt
- University of
Science and Technology, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Giza, 12578, Egypt
| |
Collapse
|
33
|
Opoku-Temeng C, Naclerio GA, Mohammad H, Dayal N, Abutaleb NS, Seleem MN, Sintim HO. N-(1,3,4-oxadiazol-2-yl)benzamide analogs, bacteriostatic agents against methicillin- and vancomycin-resistant bacteria. Eur J Med Chem 2018; 155:797-805. [PMID: 29957525 DOI: 10.1016/j.ejmech.2018.06.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/17/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Various reports of multidrug-resistant bacteria that are immune to all available FDA-approved drugs demand the development of novel chemical scaffolds as antibiotics. From screening a chemical library, we identified compounds with antibacterial activity. The most potent compounds, F6-5 and F6, inhibited growth of various drug-resistant Gram-positive bacterial pathogens at concentrations ranging from 1 μg/mL to 2 μg/mL. Both compounds were active against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate and vancomycin-resistant S. aureus (VISA and VRSA respectively) and vancomycin-resistant Enterococcus faecalis (VRE). Resistance generation experiments revealed that MRSA could develop resistance to the antibiotic ciprofloxacin but not to F6. Excitingly, F6 was found to be non-toxic against mammalian cells. In a mouse skin wound infection model, F6 was equipotent to the antibiotic fusidic acid in reducing MRSA burden.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA; Graduate Program in Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - George A Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Haroon Mohammad
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, N47907, USA
| | - Neetu Dayal
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, N47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, N47907, USA
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
34
|
AbdelKhalek A, Abutaleb NS, Elmagarmid KA, Seleem MN. Repurposing auranofin as an intestinal decolonizing agent for vancomycin-resistant enterococci. Sci Rep 2018; 8:8353. [PMID: 29844350 PMCID: PMC5974018 DOI: 10.1038/s41598-018-26674-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Multidrug-resistant enterococcal pathogens, especially vancomycin-resistant enterococci (VRE), are among the pathogens that require new antibiotic innovation. The colonization of the gut represents a major pathway by which VRE can cause infection and spread to other patients. In the current study, auranofin (FDA-approved rheumatoid arthritis drug) is evaluated for its potential use as a decolonizing agent for VRE. Auranofin was found to exert potent antimicrobial activity against a wide range of enterococcal clinical isolates with a minimum inhibitory concentration of 1 μg/mL. No resistant mutants could be developed against auranofin over the course of 14 passages. Auranofin was also found to exert potent anti-biofilm activity against VRE. Auranofin was superior to linezolid, the drug of choice for VRE infection treatment, in the in vivo mouse model. Auranofin significantly reduced the VRE burden in feces, cecum, and ileum contents after 8 days of treatment. Accordingly, this study provides valuable evidence that auranofin has significant promise as a novel gastrointestinal decolonizing agent for VRE.
Collapse
Affiliation(s)
- Ahmed AbdelKhalek
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Khalifa A Elmagarmid
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Inflammation, Immunology, and Infectious Diseases, West Lafayette, IN, 47907, USA.
| |
Collapse
|
35
|
ElAwamy M, Mohammad H, Hussien A, Abutaleb NS, Hagras M, Serya RA, Taher AT, Abouzid KAM, Seleem MN, Mayhoub AS. Alkoxyphenylthiazoles with broad-spectrum activity against multidrug-resistant gram-positive bacterial pathogens. Eur J Med Chem 2018; 152:318-328. [DOI: 10.1016/j.ejmech.2018.04.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 11/30/2022]
|
36
|
Kotb A, Abutaleb NS, Seleem MA, Hagras M, Mohammad H, Bayoumi A, Ghiaty A, Seleem MN, Mayhoub AS. Phenylthiazoles with tert-Butyl side chain: Metabolically stable with anti-biofilm activity. Eur J Med Chem 2018; 151:110-120. [PMID: 29605807 DOI: 10.1016/j.ejmech.2018.03.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 11/24/2022]
Abstract
A new series of phenylthiazoles with t-butyl lipophilic component was synthesized and their antibacterial activity against a panel of multidrug-resistant bacterial pathogens was evaluated. Five compounds demonstrated promising antibacterial activity against methicillin-resistant staphylococcal strains and several vancomycin-resistant staphylococcal and enterococcal species. Additionally, three derivatives 19, 23 and 26 exhibited rapid bactericidal activity, and remarkable ability to disrupt mature biofilm produced by MRSA USA300. More importantly, a resistant mutant to 19 couldn't be isolated after subjecting MRSA to sub-lethal doses for 14 days. Lastly, this new series of phenylthiazoles possesses an advantageous attribute over the first-generation compounds in their stability to hepatic metabolism, with a biological half-life of more than 9 h.
Collapse
Affiliation(s)
- Ahmed Kotb
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, 47907, IN, USA
| | - Mohamed A Seleem
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, 47907, IN, USA
| | - Ashraf Bayoumi
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Adel Ghiaty
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, 47907, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, 47907, USA.
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
| |
Collapse
|
37
|
Mohammad H, AbdelKhalek A, Abutaleb NS, Seleem MN. Repurposing niclosamide for intestinal decolonization of vancomycin-resistant enterococci. Int J Antimicrob Agents 2018; 51:897-904. [PMID: 29432868 DOI: 10.1016/j.ijantimicag.2018.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/24/2018] [Accepted: 02/03/2018] [Indexed: 01/07/2023]
Abstract
Enterococci are commensal micro-organisms present in the gastrointestinal tract of humans. Although normally innocuous to the host, strains of enterococcus exhibiting resistance to vancomycin (VRE) have been associated with high rates of infection and mortality in immunocompromised patients. Decolonization of VRE represents a key strategy to curb infection in highly-susceptible patients. However, there is a dearth of decolonizing agents available clinically that are effective against VRE. The present study found that niclosamide, an anthelmintic drug, has potent antibacterial activity against clinical isolates of vancomycin-resistant Enterococcus faecium (minimum inhibitory concentration 1-8 µg/mL). E. faecium mutants exhibiting resistance to niclosamide could not be isolated even after multiple (10) serial passages. Based upon these promising in-vitro results and the limited permeability of niclosamide across the gastrointestinal tract (when administered orally), niclosamide was evaluated in a VRE colonization-reduction murine model. Remarkably, niclosamide outperformed linezolid, an antibiotic used clinically to treat VRE infections. Niclosamide was as effective as ramoplanin in reducing the burden of vancomycin-resistant E. faecium in the faeces, caecal content and ileal content of infected mice after only 8 days of treatment. Linezolid, in contrast, was unable to decrease the burden of VRE in the gastrointestinal tract of mice. The results obtained indicate that niclosamide warrants further evaluation as a novel decolonizing agent to suppress VRE infections.
Collapse
Affiliation(s)
- Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Ahmed AbdelKhalek
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA.
| |
Collapse
|