1
|
Buck HV, Torre OM, Leser JM, Gould NR, Ward CW, Stains JP. Nitric oxide contributes to rapid sclerostin protein loss following mechanical load. Biochem Biophys Res Commun 2024; 727:150315. [PMID: 38950493 DOI: 10.1016/j.bbrc.2024.150315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
In response to mechanical loading of bone, osteocytes produce nitric oxide (NO•) and decrease sclerostin protein expression, leading to an increase in bone mass. However, it is unclear whether NO• production and sclerostin protein loss are mechanistically linked, and, if so, the nature of their hierarchical relationship within an established mechano-transduction pathway. Prior work showed that following fluid-shear stress (FSS), osteocytes produce NOX2-derived reactive oxygen species, inducing calcium (Ca2+) influx. Increased intracellular Ca2+ results in calcium-calmodulin dependent protein kinase II (CaMKII) activation, which regulates the lysosomal degradation of sclerostin protein. Here, we extend our discoveries, identifying NO• as a regulator of sclerostin degradation downstream of mechano-activated CaMKII. Pharmacological inhibition of nitric oxide synthase (NOS) activity in Ocy454 osteocyte-like cells prevented FSS-induced sclerostin protein loss. Conversely, short-term treatment with a NO• donor in Ocy454 cells or isolated murine long bones was sufficient to induce the rapid decrease in sclerostin protein abundance, independent of changes in Sost gene expression. Ocy454 cells express all three NOS genes, and transfection with siRNAs targeting eNOS/Nos3 was sufficient to prevent FSS-induced loss of sclerostin protein, while siRNAs targeting iNOS/Nos2 mildly blunted the loss of sclerostin but did not reach statistical significance. Similarly, siRNAs targeting both eNOS/Nos3 and iNOS/Nos2 prevented FSS-induced NO• production. Together, these data show iNOS/Nos2 and eNOS/Nos3 are the primary producers of FSS-dependent NO•, and that NO• is necessary and sufficient for sclerostin protein control. Further, selective inhibition of elements within this sclerostin-controlling mechano-transduction pathway indicated that NO• production occurs downstream of CaMKII activation. Targeting Camk2d and Camk2g with siRNA in Ocy454 cells prevented NO• production following FSS, indicating that CaMKII is needed for NO• production. However, NO• donation (1min) resulted in a significant increase in CaMKII activation, suggesting that NO• may have the ability to tune CaMKII response. Together, these data support that CaMKII is necessary for, and may be modulated by NO•, and that the interaction of these two signals is involved in the control of sclerostin protein abundance, consistent with a role in bone anabolic responses.
Collapse
Affiliation(s)
- Heather V Buck
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Olivia M Torre
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Nicole R Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Christopher W Ward
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Yong J, Song J. CaMKII activity and metabolic imbalance-related neurological diseases: Focus on vascular dysfunction, synaptic plasticity, amyloid beta accumulation, and lipid metabolism. Biomed Pharmacother 2024; 175:116688. [PMID: 38692060 DOI: 10.1016/j.biopha.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
Metabolic syndrome (MetS) is characterized by insulin resistance, hyperglycemia, excessive fat accumulation and dyslipidemia, and is known to be accompanied by neuropathological symptoms such as memory loss, anxiety, and depression. As the number of MetS patients is rapidly increasing globally, studies on the mechanisms of metabolic imbalance-related neuropathology are emerging as an important issue. Ca2+/calmodulin-dependent kinase II (CaMKII) is the main Ca2+ sensor and contributes to diverse intracellular signaling in peripheral organs and the central nervous system (CNS). CaMKII exerts diverse functions in cells, related to mechanisms such as RNA splicing, reactive oxygen species (ROS) generation, cytoskeleton, and protein-protein interactions. In the CNS, CaMKII regulates vascular function, neuronal circuits, neurotransmission, synaptic plasticity, amyloid beta toxicity, lipid metabolism, and mitochondrial function. Here, we review recent evidence for the role of CaMKII in neuropathologic issues associated with metabolic disorders.
Collapse
Affiliation(s)
- Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
3
|
Marder M, Remmert C, Perschel JA, Otgonbayar M, von Toerne C, Hauck S, Bushe J, Feuchtinger A, Sheikh B, Moussus M, Meier M. Stem cell-derived vessels-on-chip for cardiovascular disease modeling. Cell Rep 2024; 43:114008. [PMID: 38536819 DOI: 10.1016/j.celrep.2024.114008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
The metabolic syndrome is accompanied by vascular complications. Human in vitro disease models are hence required to better understand vascular dysfunctions and guide clinical therapies. Here, we engineered an open microfluidic vessel-on-chip platform that integrates human pluripotent stem cell-derived endothelial cells (SC-ECs). The open microfluidic design enables seamless integration with state-of-the-art analytical technologies, including single-cell RNA sequencing, proteomics by mass spectrometry, and high-resolution imaging. Beyond previous systems, we report SC-EC maturation by means of barrier formation, arterial toning, and high nitric oxide synthesis levels under gravity-driven flow. Functionally, we corroborate the hallmarks of early-onset atherosclerosis with low sample volumes and cell numbers under flow conditions by determining proteome and secretome changes in SC-ECs stimulated with oxidized low-density lipoprotein and free fatty acids. More broadly, our organ-on-chip platform enables the modeling of patient-specific human endothelial tissue and has the potential to become a general tool for animal-free vascular research.
Collapse
Affiliation(s)
- Maren Marder
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Caroline Remmert
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Julius A Perschel
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | | | | | - Stefanie Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Judith Bushe
- Core Facility Pathology & Tissue Analytics, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Annette Feuchtinger
- Core Facility Pathology & Tissue Analytics, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Bilal Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany; Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Michel Moussus
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany; Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
4
|
Chacar S, Abdi A, Almansoori K, Alshamsi J, Al Hageh C, Zalloua P, Khraibi AA, Holt SG, Nader M. Role of CaMKII in diabetes induced vascular injury and its interaction with anti-diabetes therapy. Rev Endocr Metab Disord 2024; 25:369-382. [PMID: 38064002 PMCID: PMC10943158 DOI: 10.1007/s11154-023-09855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 03/16/2024]
Abstract
Diabetes mellitus is a metabolic disorder denoted by chronic hyperglycemia that drives maladaptive structural changes and functional damage to the vasculature. Attenuation of this pathological remodeling of blood vessels remains an unmet target owing to paucity of information on the metabolic signatures of this process. Ca2+/calmodulin-dependent kinase II (CaMKII) is expressed in the vasculature and is implicated in the control of blood vessels homeostasis. Recently, CaMKII has attracted a special attention in view of its chronic upregulated activity in diabetic tissues, yet its role in the diabetic vasculature remains under investigation.This review highlights the physiological and pathological actions of CaMKII in the diabetic vasculature, with focus on the control of the dialogue between endothelial (EC) and vascular smooth muscle cells (VSMC). Activation of CaMKII enhances EC and VSMC proliferation and migration, and increases the production of extracellular matrix which leads to maladaptive remodeling of vessels. This is manifested by activation of genes/proteins implicated in the control of the cell cycle, cytoskeleton organization, proliferation, migration, and inflammation. Endothelial dysfunction is paralleled by impaired nitric oxide signaling, which is also influenced by CaMKII signaling (activation/oxidation). The efficiency of CaMKII inhibitors is currently being tested in animal models, with a focus on the genetic pathways involved in the regulation of CaMKII expression (microRNAs and single nucleotide polymorphisms). Interestingly, studies highlight an interaction between the anti-diabetic drugs and CaMKII expression/activity which requires further investigation. Together, the studies reviewed herein may guide pharmacological approaches to improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| | - Abdulhamid Abdi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Khalifa Almansoori
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jawaher Alshamsi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Cynthia Al Hageh
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Pierre Zalloua
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Ali A Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Stephen G Holt
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- SEHA Kidney Care, SEHA, Abu Dhabi, UAE
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Whitehead AK, Li Z, LaPenna KB, Abbes N, Sharp TE, Lefer DJ, Lazartigues E, Yue X. Cardiovascular dysfunction induced by combined exposure to nicotine inhalation and high-fat diet. Am J Physiol Heart Circ Physiol 2024; 326:H278-H290. [PMID: 38038717 PMCID: PMC11219050 DOI: 10.1152/ajpheart.00474.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Smoking and high-fat diet (HFD) consumption are two modifiable risk factors for cardiovascular (CV) diseases, and individuals who are overweight or obese due to unhealthy diet are more likely to use tobacco products. In this study, we aim to investigate the combined effects of nicotine (the addictive component of all tobacco products) and HFD on CV health, which are poorly understood. C57BL/6N male mice were placed on either HFD (60 kcal% fat) or regular diet (22 kcal% fat) and exposed to air or nicotine vapor for 10-12 wk. CV function was monitored by echocardiography and radiotelemetry, with left ventricular (LV) catheterization and aortic ring vasoreactivity assays performed at end point. Mice on HFD exhibited increased heart rate and impaired parasympathetic tone, whereas nicotine exposure increased sympathetic vascular tone as evidenced by increased blood pressure (BP) response to ganglionic blockade. Although neither nicotine nor HFD alone or in combination significantly altered BP, nicotine exposure disrupted circadian BP regulation with reduced BP dipping. LV catheterization revealed that combined exposure to nicotine and HFD led to LV diastolic dysfunction with increased LV end-diastolic pressure (LVEDP). Moreover, combined exposure resulted in increased inhibitory phosphorylation of endothelial nitric oxide synthase and greater impairment of endothelium-dependent vasodilation. Finally, a small cohort of C57BL/6N females with combined exposure exhibited similar increases in LVEDP, indicating that both sexes are susceptible to the combined effect of nicotine and HFD. In summary, combined exposure to nicotine and HFD leads to greater CV harm, including both additive and new-onset CV dysfunction.NEW & NOTEWORTHY Nicotine product usage and high-fat diet consumption are two modifiable risk factors for cardiovascular diseases. Here, we demonstrate that in mice, combined exposure to inhaled nicotine and high-fat diet results in unique cardiovascular consequences compared with either treatment alone, including left ventricular diastolic dysfunction, dysregulation of blood pressure, autonomic dysfunction, and greater impairment of endothelium-dependent vasorelaxation. These findings indicate that individuals who consume both nicotine products and high-fat diet have distinctive cardiovascular risks.
Collapse
Affiliation(s)
- Anna K Whitehead
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Kyle B LaPenna
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Nour Abbes
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Thomas E Sharp
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Medicine Section of Cardiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Southeast Louisiana Veterans Health Care Systems, New Orleans, Louisiana, United States
| | - Xinping Yue
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| |
Collapse
|
6
|
Alves SAS, Teixeira DE, Peruchetti DB, Silva LS, Brandão LFP, Caruso-Neves C, Pinheiro AAS. Bradykinin produced during Plasmodium falciparum erythrocytic cycle drives monocyte adhesion to human brain microvascular endothelial cells. Brain Res 2024; 1822:148669. [PMID: 37951562 DOI: 10.1016/j.brainres.2023.148669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.
Collapse
Affiliation(s)
- Sarah A S Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Felipe P Brandão
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Lecluze E, Lettre G. Association Analyses of Predicted Loss-of-Function Variants Prioritized 15 Genes as Blood Pressure Regulators. Can J Cardiol 2023; 39:1888-1897. [PMID: 37451613 DOI: 10.1016/j.cjca.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Hypertension, clinically defined by elevated blood pressure (BP), is an important cause of mortality and morbidity worldwide. Many risk factors for hypertension are known, including a positive family history, which suggests that genetics contribute to interindividual BP variation. Genome-wide association studies (GWAS) have identified > 1000 loci associated with BP, yet the identity of the genes responsible for these associations remains largely unknown. METHODS To pinpoint genes that causally affect variation of BP in humans, we analyzed predicted loss-of-function (pLoF) variants in the UK Biobank whole-exome sequencing dataset (n = 454,709 participants, 6% non-European ancestry). We analyzed genetic associations between systolic or diastolic BP (SBP/DBP) and single pLoF variants (additive and recessive genetic models) as well as with the burden of very rare pLoF variants (minor allele frequency [MAF] < 0.01%). RESULTS Single pLoF variants in 10 genes were associated with BP (ANKDD1B, ENPEP, PNCK, BTN3A2, C1orf145 [OBSCN-AS1], CASP9, DBH, KIAA1161 [MYORG], OR4X1, and TMC3). We also found a burden of rare pLoF variants in 5 additional genes associated with BP (TTN, NOS3, FES, SMAD6, COL21A1). Except for PNCK, which is located on the X-chromosome, these genes map near variants previously associated with BP by GWAS, validating the study of pLoF variants to prioritize causal genes at GWAS loci. CONCLUSIONS Our study highlights 15 genes that likely modulate BP in humans, including 5 genes that harbour pLoF variants associated with lower BP.
Collapse
Affiliation(s)
- Estelle Lecluze
- Montreal Heart Institute, Montréal, Québec, Canada; Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, Québec, Canada; Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Sjöberg E, Melssen M, Richards M, Ding Y, Chanoca C, Chen D, Nwadozi E, Pal S, Love DT, Ninchoji T, Shibuya M, Simons M, Dimberg A, Claesson-Welsh L. Endothelial VEGFR2-PLCγ signaling regulates vascular permeability and antitumor immunity through eNOS/Src. J Clin Invest 2023; 133:e161366. [PMID: 37651195 PMCID: PMC10575733 DOI: 10.1172/jci161366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Endothelial phospholipase Cγ (PLCγ) is essential for vascular development; however, its role in healthy, mature, or pathological vessels is unexplored. Here, we show that PLCγ was prominently expressed in vessels of several human cancer forms, notably in renal cell carcinoma (RCC). High PLCγ expression in clear cell RCC correlated with angiogenic activity and poor prognosis, while low expression correlated with immune cell activation. PLCγ was induced downstream of vascular endothelial growth factor receptor 2 (VEGFR2) phosphosite Y1173 (pY1173). Heterozygous Vegfr2Y1173F/+ mice or mice lacking endothelial PLCγ (Plcg1iECKO) exhibited a stabilized endothelial barrier and diminished vascular leakage. Barrier stabilization was accompanied by decreased expression of immunosuppressive cytokines, reduced infiltration of B cells, helper T cells and regulatory T cells, and improved response to chemo- and immunotherapy. Mechanistically, pY1173/PLCγ signaling induced Ca2+/protein kinase C-dependent activation of endothelial nitric oxide synthase (eNOS), required for tyrosine nitration and activation of Src. Src-induced phosphorylation of VE-cadherin at Y685 was accompanied by disintegration of endothelial junctions. This pY1173/PLCγ/eNOS/Src pathway was detected in both healthy and tumor vessels in Vegfr2Y1173F/+ mice, which displayed decreased activation of PLCγ and eNOS and suppressed vascular leakage. Thus, we believe that we have identified a clinically relevant endothelial PLCγ pathway downstream of VEGFR2 pY1173, which destabilizes the endothelial barrier and results in loss of antitumor immunity.
Collapse
Affiliation(s)
- Elin Sjöberg
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Marit Melssen
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Mark Richards
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Yindi Ding
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Catarina Chanoca
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Dongying Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emmanuel Nwadozi
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Sagnik Pal
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Dominic T. Love
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Takeshi Ninchoji
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Murray KO, Ludwig KR, Darvish S, Coppock ME, Seals DR, Rossman MJ. Chronic mitochondria antioxidant treatment in older adults alters the circulating milieu to improve endothelial cell function and mitochondrial oxidative stress. Am J Physiol Heart Circ Physiol 2023; 325:H187-H194. [PMID: 37326998 PMCID: PMC10312314 DOI: 10.1152/ajpheart.00270.2023] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Excessive reactive oxygen species production by mitochondria (mtROS) is a key contributor to age-related vascular endothelial dysfunction. We recently showed in a crossover design, placebo-controlled clinical trial in older adults that 6 wk of treatment with the mitochondria-targeted antioxidant (MitoQ) improved endothelial function, as measured by nitric oxide (NO)-mediated endothelium-dependent dilation (EDD), by lowering mtROS and was associated with reduced circulating levels of oxidized low-density lipoprotein (oxLDL). Here, we conducted an ancillary analysis using plasma samples from our clinical trial to determine if MitoQ treatment-mediated changes in the "circulating milieu" (plasma) contribute to improvements in endothelial function and the mechanisms involved. With the use of an ex vivo model of endothelial function, acetylcholine-stimulated NO production was quantified in human aortic endothelial cells (HAECs) exposed to plasma collected after chronic MitoQ and placebo supplementation in 19 older adults (67 ± 1 yr; 11 females). We also assessed the influence of plasma on endothelial cell (EC) mtROS bioactivity and the role of lower circulating oxLDL in plasma-mediated changes. NO production was ∼25% higher (P = 0.0002) and mtROS bioactivity was ∼25% lower (P = 0.003) in HAECs exposed to plasma collected from subjects after MitoQ treatment versus placebo. Improvements in NO production ex vivo and NO-mediated EDD in vivo with MitoQ were correlated (r = 0.4683; P = 0.0431). Increasing oxLDL in plasma collected after MitoQ to placebo levels abolished MitoQ treatment effects on NO production and mtROS bioactivity, whereas inhibition of endogenous oxLDL binding to its lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) prevented these effects. These findings provide novel insight into the mechanisms by which MitoQ treatment improves endothelial function in older adults.NEW & NOTEWORTHY Chronic supplementation with a mitochondria-targeted antioxidant (MitoQ) improves vascular endothelial function in older adults, but the mechanisms of action are incompletely understood. Here, we show that MitoQ supplementation leads to changes in the circulating milieu (plasma), including reductions in oxidized low-density lipoprotein that enhance nitric oxide production and reduce mitochondrial oxidative stress in endothelial cells. These findings provide new information regarding the mechanisms by which MitoQ improves age-related endothelial dysfunction.
Collapse
Affiliation(s)
- Kevin O Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Katelyn R Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Sanna Darvish
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - McKinley E Coppock
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
10
|
Akoumianakis I, Polkinghorne M, Antoniades C. Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:783-797. [PMID: 35697779 PMCID: PMC9191761 DOI: 10.1038/s41569-022-00718-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
WNT signalling comprises a diverse spectrum of receptor-mediated pathways activated by a large family of WNT ligands and influencing fundamental biological processes. WNT signalling includes the β-catenin canonical pathway and the non-canonical pathways, namely the planar cell polarity and the calcium-dependent pathways. Advances over the past decade have linked non-canonical WNT signalling with key mechanisms of atherosclerosis, including oxidative stress, endothelial dysfunction, macrophage activation and vascular smooth muscle cell phenotype regulation. In addition, non-canonical WNT signalling is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and oxidative stress. Importantly, non-canonical WNT signalling activation has complex effects in adipose tissue in the context of obesity, thereby potentially linking metabolic and vascular diseases. Tissue-specific targeting of non-canonical WNT signalling might be associated with substantial risks of off-target tumorigenesis, challenging its therapeutic potential. However, novel technologies, such as monoclonal antibodies, recombinant decoy receptors, tissue-specific gene silencing with small interfering RNAs and gene editing with CRISPR-Cas9, might enable more efficient therapeutic targeting of WNT signalling in the cardiovascular system. In this Review, we summarize the components of non-canonical WNT signalling, their links with the main mechanisms of atherosclerosis, heart failure and arrhythmias, and the rationale for targeting individual components of non-canonical WNT signalling for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Murray Polkinghorne
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Damacena de Angelis C, Endoni BT, Nuno D, Lamping K, Ledolter J, Koval OM, Grumbach IM. Sex‐Specific Differences in Endothelial Function Are Driven by Divergent Mitochondrial Ca
2+
Handling. J Am Heart Assoc 2022; 11:e023912. [PMID: 35766269 PMCID: PMC9333382 DOI: 10.1161/jaha.121.023912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Sex‐specific differences in vasodilation are mediated in part by differences in cytosolic Ca
2+
handling, but how variations in mitochondrial Ca
2+
contributes to this effect remains unknown. Here, we investigated the extent to which mitochondrial Ca
2+
entry via the MCU (mitochondrial Ca
2+
uniporter) drives sex differences in vasoreactivity in resistance arteries.
Methods and Results
Enhanced vasodilation of mesenteric resistance arteries to acetylcholine (ACh) was reduced to larger extent in female compared with male mice in 2 genetic models of endothelial MCU ablation. Ex vivo Ca
2+
imaging of mesenteric arteries with Fura‐2AM confirmed higher cytosolic Ca
2+
transients triggered by ACh in arteries from female mice versus male mice. MCU inhibition both strongly reduced cytosolic Ca
2+
transients and blocked mitochondrial Ca
2+
entry. In cultured human aortic endothelial cells, treatment with physiological concentrations of estradiol enhanced cytosolic Ca
2+
transients, Ca
2+
buffering capacity, and mitochondrial Ca
2+
entry in response to ATP or repeat Ca
2+
boluses. Further experiments to establish the mechanisms underlying these effects did not reveal significant differences in the expression of MCU subunits, at either the mRNA or protein level. However, estradiol treatment was associated with an increase in mitochondrial mass, mitochondrial fusion, and the mitochondrial membrane potential and reduced mitochondrial superoxide production.
Conclusions
Our data confirm that mitochondrial function in endothelial cells differs by sex, with female mice having enhanced Ca
2+
uptake capacity, and that these differences are attributable to the presence of more mitochondria and a higher mitochondrial membrane potential in female mice rather than differences in composition of the MCU complex.
Collapse
Affiliation(s)
- Celio Damacena de Angelis
- Department of Internal Medicine, Abboud Cardiovascular Research Center University of Iowa Iowa City IA
| | - Benney T. Endoni
- Department of Internal Medicine, Abboud Cardiovascular Research Center University of Iowa Iowa City IA
| | - Daniel Nuno
- Department of Internal Medicine, Abboud Cardiovascular Research Center University of Iowa Iowa City IA
| | - Kathryn Lamping
- Department of Internal Medicine, Abboud Cardiovascular Research Center University of Iowa Iowa City IA
- Department of Pharmacology Carver College of Medicine University of Iowa Iowa City IA
- Iowa City VA Healthcare System Iowa City IA
| | - Johannes Ledolter
- Tippie College of Business University of Iowa Iowa City IA
- College of Liberal Arts and Sciences University of Iowa Iowa City IA
| | - Olha M. Koval
- Department of Internal Medicine, Abboud Cardiovascular Research Center University of Iowa Iowa City IA
| | - Isabella M. Grumbach
- Department of Internal Medicine, Abboud Cardiovascular Research Center University of Iowa Iowa City IA
- Redox and Radiation Biology Program Holden Comprehensive Cancer Center University of Iowa Iowa City IA
- Iowa City VA Healthcare System Iowa City IA
| |
Collapse
|
12
|
Ling Y, Shi J, Ma Q, Yang Q, Rong Y, He J, Chen M. Vasodilatory Effect of Guanxinning Tablet on Rabbit Thoracic Aorta is Modulated by Both Endothelium-Dependent and -Independent Mechanism. Front Pharmacol 2021; 12:754527. [PMID: 34925014 PMCID: PMC8672209 DOI: 10.3389/fphar.2021.754527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Vasodilatory therapy plays an important role in the treatment of cardiovascular diseases, especially hypertension and coronary heart disease. Previous research found that Guanxinning tablet (GXNT), a traditional Chinese compound preparation composed of Salvia miltiorrhiza (Danshen) and Ligusticum chuanxiong (Chuanxiong), increase blood flow in the arteries, but whether vasodilation plays a role in this effect remains unclear. Here, we found that GXNT significantly alleviated the vasoconstriction of isolated rabbit thoracic aorta induced by phenylephrine (PE), norepinephrine (NE), and KCl in a dose-dependent manner with or without endothelial cells (ECs). Changes in calcium ion levels in vascular smooth muscle cells (VSMCs) showed that both intracellular calcium release and extracellular calcium influx through receptor-dependent calcium channel (ROC) declined with GXNT treatment. Experiments to examine potassium channels suggested that endothelium-denuded vessels were also regulated by calcium-activated potassium channels (Kca) and ATP-related potassium channels (KATP) but not voltage-gated potassium channels (kv) and inward rectifying potassium channels (KIR). For endothelium-intact vessels, the nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) contents in vascular tissue obviously increased after GXNT treatment, and pretreatment with the NO synthase inhibitor Nw-nitro-L-arginine methyl ester (L-NAME) or guanylyl cyclase inhibitor methylthionine chloride (MB) significantly inhibited vasodilation. An assessment of NO-related pathway protein expression revealed that GXNT enhanced the expression of phosphorylated endothelial NO synthase (eNOS) in a dose-dependent manner but had no effect on total eNOS, p-Akt, Akt, or PI3K levels in human umbilical vein ECs (HUVECs). In addition to PI3K/AKT signaling, Ca2+/calmodulin (CaM)-Ca2+/CaM-dependent protein kinase II (CaMKII) signaling is a major signal transduction pathway involved in eNOS activation in ECs. Further results showed that free calcium ion levels were decreased in HUVECs with GXNT treatment, accompanied by an increase in p-CaMKII expression, implying an increase in the Ca2+/CaM-Ca2+/CaMKII cascade. Taken together, these findings suggest that the GXNT may have exerted their vasodilative effect by activating the endothelial CaMKII/eNOS signaling pathway in endothelium-intact rings and calcium-related ion channels in endothelium-denuded vessels.
Collapse
Affiliation(s)
- Yun Ling
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiajun Shi
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Quanxin Ma
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinqin Yang
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Yili Rong
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiangmin He
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Minli Chen
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
13
|
Zheng Z, Wang X, Wang Y, King JAC, Xie P, Wu S. CaMK4 is a downstream effector of the α 1G T-type calcium channel to determine the angiogenic potential of pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 2021; 321:C964-C977. [PMID: 34586897 DOI: 10.1152/ajpcell.00216.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 01/25/2023]
Abstract
Pulmonary microvascular endothelial cells (PMVECs) uniquely express an α1G-subtype of voltage-gated T-type Ca2+ channel. We have previously revealed that the α1G channel functions as a background Ca2+ entry pathway that is critical for the cell proliferation, migration, and angiogenic potential of PMVECs, a novel function attributed to the coupling between α1G-mediated Ca2+ entry and constitutive Akt phosphorylation and activation. Despite this significance, mechanism(s) that link the α1G-mediated Ca2+ entry to Akt phosphorylation remain incompletely understood. In this study, we demonstrate that Ca2+/calmodulin-dependent protein kinase (CaMK) 4 serves as a downstream effector of the α1G-mediated Ca2+ entry to promote the angiogenic potential of PMVECs. Notably, CaMK2 and CaMK4 are both expressed in PMVECs. Pharmacological blockade or genetic knockdown of the α1G channel led to a significant reduction in the phosphorylation level of CaMK4 but not the phosphorylation level of CaMK2. Pharmacological inhibition as well as genetic knockdown of CaMK4 significantly decreased cell proliferation, migration, and network formation capacity in PMVECs. However, CaMK4 inhibition or knockdown did not alter Akt phosphorylation status in PMVECs, indicating that α1G/Ca2+/CaMK4 is independent of the α1G/Ca2+/Akt pathway in sustaining the cells' angiogenic potential. Altogether, these findings suggest a novel α1G-CaMK4 signaling complex that regulates the Ca2+-dominated angiogenic potential in PMVECs.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xuelin Wang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuxia Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Judy A C King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana
| | - Peilin Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Dalal PJ, Sullivan DP, Weber EW, Sacks DB, Gunzer M, Grumbach IM, Heller Brown J, Muller WA. Spatiotemporal restriction of endothelial cell calcium signaling is required during leukocyte transmigration. J Exp Med 2021; 218:152118. [PMID: 32970800 PMCID: PMC7953625 DOI: 10.1084/jem.20192378] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/04/2020] [Accepted: 07/07/2020] [Indexed: 12/30/2022] Open
Abstract
Endothelial cell calcium flux is critical for leukocyte transendothelial migration (TEM), which in turn is essential for the inflammatory response. Intravital microscopy of endothelial cell calcium dynamics reveals that calcium increases locally and transiently around the transmigration pore during TEM. Endothelial calmodulin (CaM), a key calcium signaling protein, interacts with the IQ domain of IQGAP1, which is localized to endothelial junctions and is required for TEM. In the presence of calcium, CaM binds endothelial calcium/calmodulin kinase IIδ (CaMKIIδ). Disrupting the function of CaM or CaMKII with small-molecule inhibitors, expression of a CaMKII inhibitory peptide, or expression of dominant negative CaMKIIδ significantly reduces TEM by interfering with the delivery of the lateral border recycling compartment (LBRC) to the site of TEM. Endothelial CaMKII is also required for TEM in vivo as shown in two independent mouse models. These findings highlight novel roles for endothelial CaM and CaMKIIδ in transducing the spatiotemporally restricted calcium signaling required for TEM.
Collapse
Affiliation(s)
- Prarthana J Dalal
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - David P Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Evan W Weber
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Isabella M Grumbach
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, La Jolla, CA
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
15
|
Shraim BA, Moursi MO, Benter IF, Habib AM, Akhtar S. The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol 2021; 12:701390. [PMID: 34408653 PMCID: PMC8365470 DOI: 10.3389/fphar.2021.701390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a major debilitating disease whose global incidence is progressively increasing with currently over 463 million adult sufferers and this figure will likely reach over 700 million by the year 2045. It is the complications of diabetes such as cardiovascular, renal, neuronal and ocular dysfunction that lead to increased patient morbidity and mortality. Of these, cardiovascular complications that can result in stroke and cardiomyopathies are 2- to 5-fold more likely in diabetes but the underlying mechanisms involved in their development are not fully understood. Emerging research suggests that members of the Epidermal Growth Factor Receptor (EGFR/ErbB/HER) family of tyrosine kinases can have a dual role in that they are beneficially required for normal development and physiological functioning of the cardiovascular system (CVS) as well as in salvage pathways following acute cardiac ischemia/reperfusion injury but their chronic dysregulation may also be intricately involved in mediating diabetes-induced cardiovascular pathologies. Here we review the evidence for EGFR/ErbB/HER receptors in mediating these dual roles in the CVS and also discuss their potential interplay with the Renin-Angiotensin-Aldosterone System heptapeptide, Angiotensin-(1-7), as well the arachidonic acid metabolite, 20-HETE (20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid). A greater understanding of the multi-faceted roles of EGFR/ErbB/HER family of tyrosine kinases and their interplay with other key modulators of cardiovascular function could facilitate the development of novel therapeutic strategies for treating diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Bara A Shraim
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Moaz O Moursi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
16
|
Mammedova JT, Sokolov AV, Freidlin IS, Starikova EA. The Mechanisms of L-Arginine Metabolism Disorder in Endothelial Cells. BIOCHEMISTRY (MOSCOW) 2021; 86:146-155. [PMID: 33832413 DOI: 10.1134/s0006297921020036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
L-arginine is a key metabolite for nitric oxide production by endothelial cells, as well as signaling molecule of the mTOR signaling pathway. mTOR supports endothelial cells homeostasis and regulates activity of L-arginine-metabolizing enzymes, endothelial nitric oxide synthase, and arginase II. Disruption of the L-arginine metabolism in endothelial cells leads to the development of endothelial dysfunction. Conflicting results of the use of L-arginine supplement to improve endothelial function reveals a controversial role of the amino acid in the endothelial cell biology. The review is aimed at analysis of the current data on the role of L-arginine metabolism in the development of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Alexey V Sokolov
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - Irina S Freidlin
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | | |
Collapse
|
17
|
Kosuru R, Singh B, Lakshmikanthan S, Nishijima Y, Vasquez-Vivar J, Zhang DX, Chrzanowska M. Distinct Signaling Functions of Rap1 Isoforms in NO Release From Endothelium. Front Cell Dev Biol 2021; 9:687598. [PMID: 34222255 PMCID: PMC8247587 DOI: 10.3389/fcell.2021.687598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022] Open
Abstract
Small GTPase Rap1 plays a prominent role in endothelial cell (EC) homeostasis by promoting NO release. Endothelial deletion of the two highly homologous Rap1 isoforms, Rap1A and Rap1B, leads to endothelial dysfunction ex vivo and hypertension in vivo. Mechanistically, we showed that Rap1B promotes NO release in response to shear flow by promoting mechanosensing complex formation involving VEGFR2 and Akt activation. However, the specific contribution of the Rap1A isoform to NO release and the underlying molecular mechanisms through which the two Rap1 isoforms control endothelial function are unknown. Here, we demonstrate that endothelial dysfunction resulting from knockout of both Rap1A and Rap1B isoforms is ameliorated by exogenous L-Arg administration to rescue NO-dependent vasorelaxation and blood pressure. We confirmed that Rap1B is rapidly activated in response to agonists that trigger eNOS activation, and its deletion in ECs attenuates eNOS activation, as detected by decreased Ser1177 phosphorylation. Somewhat surprising was the finding that EC deletion of Rap1A does not lead to impaired agonist-induced vasorelaxation ex vivo. Mechanistically, the deletion of Rap1A led to elevated eNOS phosphorylation both at the inhibitory, T495, and the activating Ser1177 residues. These findings indicate that the two Rap1 isoforms act via distinct signaling pathways: while Rap1B directly positively regulates eNOS activation, Rap1A prevents negative regulation of eNOS. Notably, the combined deficiency of Rap1A and Rap1B has a severe effect on eNOS activity and NO release with an in vivo impact on endothelial function and vascular homeostasis.
Collapse
Affiliation(s)
- Ramoji Kosuru
- Blood Research Institute, Versiti, Milwaukee, WI, United States
| | - Bandana Singh
- Blood Research Institute, Versiti, Milwaukee, WI, United States
| | | | - Yoshinori Nishijima
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeannette Vasquez-Vivar
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Magdalena Chrzanowska
- Blood Research Institute, Versiti, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
18
|
Ottolini M, Sonkusare SK. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021; 11:1831-1869. [PMID: 33792900 PMCID: PMC10388069 DOI: 10.1002/cphy.c200030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contractile state of resistance arteries and arterioles is a crucial determinant of blood pressure and blood flow. Physiological regulation of arterial contractility requires constant communication between endothelial and smooth muscle cells. Various Ca2+ signals and Ca2+ -sensitive targets ensure dynamic control of intercellular communications in the vascular wall. The functional effect of a Ca2+ signal on arterial contractility depends on the type of Ca2+ -sensitive target engaged by that signal. Recent studies using advanced imaging methods have identified the spatiotemporal signatures of individual Ca2+ signals that control arterial and arteriolar contractility. Broadly speaking, intracellular Ca2+ is increased by ion channels and transporters on the plasma membrane and endoplasmic reticular membrane. Physiological roles for many vascular Ca2+ signals have already been confirmed, while further investigation is needed for other Ca2+ signals. This article focuses on endothelial and smooth muscle Ca2+ signaling mechanisms in resistance arteries and arterioles. We discuss the Ca2+ entry pathways at the plasma membrane, Ca2+ release signals from the intracellular stores, the functional and physiological relevance of Ca2+ signals, and their regulatory mechanisms. Finally, we describe the contribution of abnormal endothelial and smooth muscle Ca2+ signals to the pathogenesis of vascular disorders. © 2021 American Physiological Society. Compr Physiol 11:1831-1869, 2021.
Collapse
Affiliation(s)
- Matteo Ottolini
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K Sonkusare
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
19
|
Duran J, Nickel L, Estrada M, Backs J, van den Hoogenhof MMG. CaMKIIδ Splice Variants in the Healthy and Diseased Heart. Front Cell Dev Biol 2021; 9:644630. [PMID: 33777949 PMCID: PMC7991079 DOI: 10.3389/fcell.2021.644630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
RNA splicing has been recognized in recent years as a pivotal player in heart development and disease. The Ca2+/calmodulin dependent protein kinase II delta (CaMKIIδ) is a multifunctional Ser/Thr kinase family and generates at least 11 different splice variants through alternative splicing. This enzyme, which belongs to the CaMKII family, is the predominant family member in the heart and functions as a messenger toward adaptive or detrimental signaling in cardiomyocytes. Classically, the nuclear CaMKIIδB and cytoplasmic CaMKIIδC splice variants are described as mediators of arrhythmias, contractile function, Ca2+ handling, and gene transcription. Recent findings also put CaMKIIδA and CaMKIIδ9 as cardinal players in the global CaMKII response in the heart. In this review, we discuss and summarize the new insights into CaMKIIδ splice variants and their (proposed) functions, as well as CaMKII-engineered mouse phenotypes and cardiac dysfunction related to CaMKIIδ missplicing. We also discuss RNA splicing factors affecting CaMKII splicing. Finally, we discuss the translational perspective derived from these insights and future directions on CaMKIIδ splicing research in the healthy and diseased heart.
Collapse
Affiliation(s)
- Javier Duran
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lennart Nickel
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel Estrada
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
20
|
Gambardella J, Sorriento D, Bova M, Rusciano M, Loffredo S, Wang X, Petraroli A, Carucci L, Mormile I, Oliveti M, Bruno Morelli M, Fiordelisi A, Spadaro G, Campiglia P, Sala M, Trimarco B, Iaccarino G, Santulli G, Ciccarelli M. Role of Endothelial G Protein-Coupled Receptor Kinase 2 in Angioedema. Hypertension 2020; 76:1625-1636. [PMID: 32895019 DOI: 10.1161/hypertensionaha.120.15130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Excessive BK (bradykinin) stimulation is responsible for the exaggerated permeabilization of the endothelium in angioedema. However, the molecular mechanisms underlying these responses have not been investigated. BK receptors are Gq-protein-coupled receptors phosphorylated by GRK2 (G protein-coupled receptor kinase 2) with a hitherto unknown biological and pathophysiological significance. In the present study, we sought to identify the functional role of GRK2 in angioedema through the regulation of BK signaling. We found that the accumulation of cytosolic Ca2+ in endothelial cells induced by BK was sensitive to GRK2 activity, as it was significantly augmented by inhibiting the kinase. Accordingly, permeabilization and NO production induced by BK were enhanced, as well. In vivo, mice with reduced GRK2 levels in the endothelium (Tie2-CRE/GRK2fl+/fl-) exhibited an increased response to BK in terms of vascular permeability and extravasation. Finally, patients with reduced GRK2 levels displayed a severe phenotype of angioedema. Taken together, these findings establish GRK2 as a novel pivotal regulator of BK signaling with an essential role in the pathophysiology of vascular permeability and angioedema.
Collapse
Affiliation(s)
- Jessica Gambardella
- From the Department of Advanced Biomedical Science (J.G., D.S., A.F., B.T., G.I., G. Santulli), University of Naples Federico II, NA, Italy.,Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., X.W., M.B.M., G. Santulli), Albert Einstein College of Medicine, Montefiore University Hospital, NY.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM) (J.G., X.W., M.B.M., G. Santulli), Albert Einstein College of Medicine, Montefiore University Hospital, NY.,International Translational Research and Medical Education Consortium (ITME), NA, Italy (J.G., B.T., G. Santulli)
| | - Daniela Sorriento
- Department of Translational Medical Sciences and Interdepartmental Center for Research in Basic and Clinical Immunology Sciences (M.B., S.L., A.P., L.C., I.M., G. Spadaro), University of Naples Federico II, NA, Italy
| | - Maria Bova
- Department of Translational Medical Sciences and Interdepartmental Center for Research in Basic and Clinical Immunology Sciences (M.B., S.L., A.P., L.C., I.M., G. Spadaro), University of Naples Federico II, NA, Italy
| | - Mariarosaria Rusciano
- Montevergine Hospital, Mercogliano, Italy (M.R.).,Department of Medicine and Surgery (M.R., M.O., M.C.), University of Salerno, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Interdepartmental Center for Research in Basic and Clinical Immunology Sciences (M.B., S.L., A.P., L.C., I.M., G. Spadaro), University of Naples Federico II, NA, Italy
| | - Xujun Wang
- Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., X.W., M.B.M., G. Santulli), Albert Einstein College of Medicine, Montefiore University Hospital, NY.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM) (J.G., X.W., M.B.M., G. Santulli), Albert Einstein College of Medicine, Montefiore University Hospital, NY
| | - Angelica Petraroli
- Department of Translational Medical Sciences and Interdepartmental Center for Research in Basic and Clinical Immunology Sciences (M.B., S.L., A.P., L.C., I.M., G. Spadaro), University of Naples Federico II, NA, Italy
| | - Laura Carucci
- Department of Translational Medical Sciences and Interdepartmental Center for Research in Basic and Clinical Immunology Sciences (M.B., S.L., A.P., L.C., I.M., G. Spadaro), University of Naples Federico II, NA, Italy
| | - Ilaria Mormile
- Department of Translational Medical Sciences and Interdepartmental Center for Research in Basic and Clinical Immunology Sciences (M.B., S.L., A.P., L.C., I.M., G. Spadaro), University of Naples Federico II, NA, Italy
| | - Marco Oliveti
- Department of Medicine and Surgery (M.R., M.O., M.C.), University of Salerno, Italy
| | - Marco Bruno Morelli
- Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., X.W., M.B.M., G. Santulli), Albert Einstein College of Medicine, Montefiore University Hospital, NY.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM) (J.G., X.W., M.B.M., G. Santulli), Albert Einstein College of Medicine, Montefiore University Hospital, NY
| | - Antonella Fiordelisi
- From the Department of Advanced Biomedical Science (J.G., D.S., A.F., B.T., G.I., G. Santulli), University of Naples Federico II, NA, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences and Interdepartmental Center for Research in Basic and Clinical Immunology Sciences (M.B., S.L., A.P., L.C., I.M., G. Spadaro), University of Naples Federico II, NA, Italy
| | - Pietro Campiglia
- Division of Biomedicine, Department of Pharmaceutical Science (P.C., M.S.), University of Salerno, Italy
| | - Marina Sala
- Division of Biomedicine, Department of Pharmaceutical Science (P.C., M.S.), University of Salerno, Italy
| | - Bruno Trimarco
- International Translational Research and Medical Education Consortium (ITME), NA, Italy (J.G., B.T., G. Santulli)
| | - Guido Iaccarino
- From the Department of Advanced Biomedical Science (J.G., D.S., A.F., B.T., G.I., G. Santulli), University of Naples Federico II, NA, Italy
| | - Gaetano Santulli
- From the Department of Advanced Biomedical Science (J.G., D.S., A.F., B.T., G.I., G. Santulli), University of Naples Federico II, NA, Italy.,Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., X.W., M.B.M., G. Santulli), Albert Einstein College of Medicine, Montefiore University Hospital, NY.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM) (J.G., X.W., M.B.M., G. Santulli), Albert Einstein College of Medicine, Montefiore University Hospital, NY.,International Translational Research and Medical Education Consortium (ITME), NA, Italy (J.G., B.T., G. Santulli)
| | - Michele Ciccarelli
- Department of Medicine and Surgery (M.R., M.O., M.C.), University of Salerno, Italy
| |
Collapse
|
21
|
Masaki N, Ido Y, Yamada T, Yamashita Y, Toya T, Takase B, Hamburg NM, Adachi T. Endothelial Insulin Resistance of Freshly Isolated Arterial Endothelial Cells From Radial Sheaths in Patients With Suspected Coronary Artery Disease. J Am Heart Assoc 2020; 8:e010816. [PMID: 30885039 PMCID: PMC6475050 DOI: 10.1161/jaha.118.010816] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Endothelial insulin resistance is insulin‐insensitivity in the vascular endothelium and can be observed in experimental models. This study aimed to investigate endothelial insulin resistance in patients with suspected coronary artery disease. To this end, a novel method of obtaining freshly isolated arterial endothelial cells from a radial catheter sheath was developed. Methods and Results Freshly isolated arterial endothelial cells were retrieved from catheter sheaths placed in radial arteries for coronary angiography (n=69, patient age 64±12 years). The endothelial cells were divided into groups for incubation with or without insulin, vascular endothelial growth factor, or acetylcholine. The intensity of phosphorylated endothelial nitric oxide synthase at Ser1177 (p‐eNOS) was quantified by immunofluorescence microscopy. The percentage increase of insulin‐induced phosphorylated endothelial nitric oxide synthase correlated negatively with derivatives of reactive oxygen metabolites, an oxidative stress test (r=−0.348, n=53, P=0.011), E/E′, an index of left ventricular diastolic dysfunction in Doppler echocardiography (ρ=−0.374, n=49, P=0.008), and log‐transformed brain natriuretic peptide (r=−0.266, n=62, P=0.037). Furthermore, percentage increase of insulin‐induced p‐eNOS was an independent factor for the cardio‐ankle vascular index (standardized coefficient β=−0.293, n=42, P=0.021) in the multivariate regression analysis of adaptive least absolute shrinkage and selection operator. Conclusions Our results suggested that endothelial insulin resistance is associated with oxidative stress, left ventricular diastolic dysfunction, heart failure, and arterial stiffness.
Collapse
Affiliation(s)
- Nobuyuki Masaki
- 1 Department of Intensive Care Medicine National Defense Medical College Tokorozawa Japan
| | - Yasuo Ido
- 2 Department of Cardiology National Defense Medical College Tokorozawa Japan
| | - Toshiyuki Yamada
- 3 Department of Cardiovascular Surgery Keio University Graduate School of Medicine Tokyo Japan
| | - Youhei Yamashita
- 2 Department of Cardiology National Defense Medical College Tokorozawa Japan
| | - Takumi Toya
- 2 Department of Cardiology National Defense Medical College Tokorozawa Japan
| | - Bonpei Takase
- 1 Department of Intensive Care Medicine National Defense Medical College Tokorozawa Japan
| | - Naomi M Hamburg
- 4 The Whitaker Cardiovascular Institute Department of Medicine Boston University School of Medicine Boston MA
| | - Takeshi Adachi
- 2 Department of Cardiology National Defense Medical College Tokorozawa Japan
| |
Collapse
|
22
|
The Intrinsic Virtues of EGCG, an Extremely Good Cell Guardian, on Prevention and Treatment of Diabesity Complications. Molecules 2020; 25:molecules25133061. [PMID: 32635492 PMCID: PMC7411588 DOI: 10.3390/molecules25133061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
The pandemic proportion of diabesity—a combination of obesity and diabetes—sets a worldwide health issue. Experimental and clinical studies have progressively reinforced the pioneering epidemiological observation of an inverse relationship between consumption of polyphenol-rich nutraceutical agents and mortality from cardiovascular and metabolic diseases. With chemical identification of epigallocatechin-3-gallate (EGCG) as the most abundant catechin of green tea, a number of cellular and molecular mechanisms underlying the activities of this unique catechin have been proposed. Favorable effects of EGCG have been initially attributed to its scavenging effects on free radicals, inhibition of ROS-generating mechanisms and upregulation of antioxidant enzymes. Biologic actions of EGCG are concentration-dependent and under certain conditions EGCG may exert pro-oxidant activities, including generation of free radicals. The discovery of 67-kDa laminin as potential EGCG membrane target has broaden the likelihood that EGCG may function not only because of its highly reactive nature, but also via receptor-mediated activation of multiple signaling pathways involved in cell proliferation, angiogenesis and apoptosis. Finally, by acting as epigenetic modulator of DNA methylation and chromatin remodeling, EGCG may alter gene expression and modify miRNA activities. Despite unceasing research providing detailed insights, ECGC composite activities are still not completely understood. This review summarizes the most recent evidence on molecular mechanisms by which EGCG may activate signal transduction pathways, regulate transcription factors or promote epigenetic changes that may contribute to prevent pathologic processes involved in diabesity and its cardiovascular complications.
Collapse
|
23
|
Roy SJ, Koval OM, Sebag SC, Ait-Aissa K, Allen BG, Spitz DR, Grumbach IM. Inhibition of CaMKII in mitochondria preserves endothelial barrier function after irradiation. Free Radic Biol Med 2020; 146:287-298. [PMID: 31711984 PMCID: PMC7274136 DOI: 10.1016/j.freeradbiomed.2019.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 01/03/2023]
Abstract
Damage to the microvascular endothelium is an important part of normal tissue injury after radiation exposure and driven by the production of pro-oxidants. The Ca2+/calmodulin-dependent protein kinase II is present in the mitochondrial matrix (mitoCaMKII) where it regulates Ca2+ uptake via the mitochondrial Ca2+ uniporter (MCU) and pro-oxidant production. Here, we demonstrate that radiation exposure disrupts endothelial cell barrier integrity in vitro, but can be abrogated by inhibition of mitoCaMKII, MCU, or opening of the mitochondrial transition pore. Scavenging of mitochondrial pro-oxidants with mitoTEMPO before, but not after irradiation, protected barrier function. Furthermore, markers of apoptosis and mitochondrial pro-oxidant production were elevated at 24 h following irradiation and abolished by mitoCaMKII inhibition. Endothelial barrier dysfunction was detected as early as 2 h after irradiation. Despite only mildly impaired mitochondrial respiration, the intracellular ATP levels were significantly reduced 4 h after irradiation and correlated with barrier function. MitoCaMKII inhibition improved intracellular ATP concentrations by increasing glycolysis. Finally, DNA double strand break repair and non-homologous end joining, two major drivers of ATP consumption after irradiation, were greatly increased but not significantly affected by mitoCaMKII inhibition. These findings support the hypothesis that mitoCaMKII activity is linked to mitochondrial pro-oxidant production, reduced ATP production, and loss of endothelial barrier function following irradiation. The inhibition of mitoCaMKII is a promising approach to limiting radiation-induced endothelial injury.
Collapse
Affiliation(s)
- Stephen J Roy
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, 169 Newton Rd, 4336 PBDB, University of Iowa, Iowa City, IA, 52242, USA
| | - Olha M Koval
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, 169 Newton Rd, 4336 PBDB, University of Iowa, Iowa City, IA, 52242, USA
| | - Sara C Sebag
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, 169 Newton Rd, 4336 PBDB, University of Iowa, Iowa City, IA, 52242, USA
| | - Karima Ait-Aissa
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, 169 Newton Rd, 4336 PBDB, University of Iowa, Iowa City, IA, 52242, USA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, B180 Medical Laboratories, University of Iowa, Iowa City, IA, 52242, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, B180 Medical Laboratories, University of Iowa, Iowa City, IA, 52242, USA
| | - Isabella M Grumbach
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, 169 Newton Rd, 4336 PBDB, University of Iowa, Iowa City, IA, 52242, USA; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, B180 Medical Laboratories, University of Iowa, Iowa City, IA, 52242, USA; Veterans Affairs Health Care System, 601 Hwy 6 West Iowa City, IA, 52246, USA.
| |
Collapse
|
24
|
Alfazema N, Barrier M, de Procé SM, Menzies RI, Carter R, Stewart K, Diaz AG, Moyon B, Webster Z, Bellamy CO, Arends MJ, Stimson RH, Morton NM, Aitman TJ, Coan PM. Camk2n1 Is a Negative Regulator of Blood Pressure, Left Ventricular Mass, Insulin Sensitivity, and Promotes Adiposity. Hypertension 2019; 74:687-696. [PMID: 31327268 PMCID: PMC6686962 DOI: 10.1161/hypertensionaha.118.12409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/04/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome is a cause of coronary artery disease and type 2 diabetes mellitus. Camk2n1 resides in genomic loci for blood pressure, left ventricle mass, and type 2 diabetes mellitus, and in the spontaneously hypertensive rat model of metabolic syndrome, Camk2n1 expression is cis-regulated in left ventricle and fat and positively correlates with adiposity. Therefore, we knocked out Camk2n1 in spontaneously hypertensive rat to investigate its role in metabolic syndrome. Compared with spontaneously hypertensive rat, Camk2n1-/- rats had reduced cardiorenal CaMKII (Ca2+/calmodulin-dependent kinase II) activity, lower blood pressure, enhanced nitric oxide bioavailability, and reduced left ventricle mass associated with altered hypertrophic networks. Camk2n1 deficiency reduced insulin resistance, visceral fat, and adipogenic capacity through the altered cell cycle and complement pathways, independent of CaMKII. In human visceral fat, CAMK2N1 expression correlated with adiposity and genomic variants that increase CAMK2N1 expression associated with increased risk of coronary artery disease and type 2 diabetes mellitus. Camk2n1 regulates multiple networks that control metabolic syndrome traits and merits further investigation as a therapeutic target in humans.
Collapse
Affiliation(s)
- Neza Alfazema
- From the MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom (N.A., M.B., S.M.d.P., T.J.A., P.M.C.)
| | - Marjorie Barrier
- From the MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom (N.A., M.B., S.M.d.P., T.J.A., P.M.C.)
| | - Sophie Marion de Procé
- From the MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom (N.A., M.B., S.M.d.P., T.J.A., P.M.C.)
| | - Robert I. Menzies
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, United Kingdom (R.I.M., R.C., K.S., R.H.S., N.M.M.)
| | - Roderick Carter
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, United Kingdom (R.I.M., R.C., K.S., R.H.S., N.M.M.)
| | - Kevin Stewart
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, United Kingdom (R.I.M., R.C., K.S., R.H.S., N.M.M.)
| | - Ana Garcia Diaz
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.G.D., B.M., Z.W.)
| | - Ben Moyon
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.G.D., B.M., Z.W.)
| | - Zoe Webster
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.G.D., B.M., Z.W.)
| | - Christopher O.C. Bellamy
- Division of Pathology, Centre for Comparative Pathology, Edinburgh CRUK Cancer Centre, United Kingdom (C.O.C.B., M.J.A.)
| | - Mark J. Arends
- Division of Pathology, Centre for Comparative Pathology, Edinburgh CRUK Cancer Centre, United Kingdom (C.O.C.B., M.J.A.)
| | - Roland H. Stimson
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, United Kingdom (R.I.M., R.C., K.S., R.H.S., N.M.M.)
| | - Nicholas M. Morton
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, United Kingdom (R.I.M., R.C., K.S., R.H.S., N.M.M.)
| | - Timothy J. Aitman
- From the MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom (N.A., M.B., S.M.d.P., T.J.A., P.M.C.)
| | - Philip M. Coan
- From the MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom (N.A., M.B., S.M.d.P., T.J.A., P.M.C.)
| |
Collapse
|
25
|
García-Prieto CF, Gil-Ortega M, Plaza A, Manzano-Lista FJ, González-Blázquez R, Alcalá M, Rodríguez-Rodríguez P, Viana M, Aránguez I, Gollasch M, Somoza B, Fernández-Alfonso MS. Caloric restriction induces H 2O 2 formation as a trigger of AMPK-eNOS-NO pathway in obese rats: Role for CAMKII. Free Radic Biol Med 2019; 139:35-45. [PMID: 31100477 DOI: 10.1016/j.freeradbiomed.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
Abstract
Caloric restriction (CR) improves endothelial function through the upregulation of adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Moreover, hydrogen peroxide (H2O2) is upregulated in yeast subjected to CR. Our aim was to assess if mild short-term CR increases vascular H2O2 formation as a link with AMPK and eNOS activation. Twelve-week old Zucker obese (fa/fa) and control Zucker lean male rats were fed a standard chow either ad libitum (AL, n=10) or with a 20% CR (CR, n=10) for two weeks. CR significantly improved relaxation to ACh in fa/fa rats because of an enhanced endogenous production of H2O2 in aortic rings (H2O2 levels fa/faAL=0.5 ± 0.05 nmol/mg vs. H2O2 levels fa/faCR=0.76 ± 0.07 nmol/mg protein; p<0.05). Expression of mitochondrial superoxide dismutase (Mn-SOD) and total SOD activity were increased in aorta from fa/fa animals after CR. In cultured aortic endothelial cells, serum deprivation or 2-deoxy-d-glucose induced a significant increase in: i) superoxide anion and H2O2 levels, ii) p-AMPK/AMPK and p-eNOS/eNOS expression and iii) nitric oxide levels. This effect was reduced by catalase and strongly inhibited by Ca2+/calmodulin-dependent kinase II (CamkII) silencing. In conclusion, we propose that mild short-term CR might be a trigger of mechanisms aimed at protecting the vascular wall by the increase of H2O2, which then activates AMPK and nitric oxide release, thus improving endothelium-dependent relaxation. In addition, we demonstrate that CAMKII plays a key role in mediating CR-induced AMPK activation through H2O2 increase.
Collapse
Affiliation(s)
- Concha F García-Prieto
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - F J Manzano-Lista
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | | | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Isabel Aránguez
- Instituto Pluridisciplinar and Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Maik Gollasch
- Experimental and Clinical Research Center, Charité - University Medicine Berlin and the Max Delbrück Center for Molecular Medicine Berlin, Germany
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
26
|
McCluskey C, Mooney L, Paul A, Currie S. Compromised cardiovascular function in aged rats corresponds with increased expression and activity of calcium/calmodulin dependent protein kinase IIδ in aortic endothelium. Vascul Pharmacol 2019; 118-119:106560. [PMID: 31051256 DOI: 10.1016/j.vph.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
Ageing is the greatest risk factor for cardiovascular disease. Calcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) plays a fundamental role in the pathology of heart disease yet a potential role for CaMKIIδ in cardiovascular pathology associated with ageing remains unclear. Taking a combined in vivo and in vitro approach, we have for the first time investigated whether CaMKIIδ expression and CaMKII activity may be altered following age-related cardiovascular deterioration. Both cardiac contractility and aortic blood flow are compromised in aged rats and we have shown that this occurs in parallel with increased inflammation and crucially, autonomous activation of CaMKII. Endothelial cells isolated from young and aged aortae exhibit differences in cell phenotype and physiology. In line with observations in aortic tissue, aged aortic endothelial cells also show increased basal levels of pro-inflammatory markers and oxidative stress with concurrent increased basal activation of CaMKII. These results are the first to demonstrate that elevated CaMKIIδ expression and CaMKII activation occur in parallel with the pathological progression associated with ageing of the heart and vasculature. Specifically, CaMKIIδ expression is significantly increased and activated in the endothelium of aged aorta. As such, CaMKIIδ could serve as an important marker of endothelial dysfunction that accompanies the ageing process and may be an appropriate candidate for investigating targeted therapeutic intervention.
Collapse
Affiliation(s)
- Claire McCluskey
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Laura Mooney
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Andrew Paul
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Susan Currie
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
27
|
Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 127:246-259. [PMID: 30633874 DOI: 10.1016/j.yjmcc.2019.01.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes and significantly contributes to cardiac remodeling with increased risk of cardiac arrhythmias. Diabetes is frequently associated with atrial fibrillation, coronary artery disease, and heart failure, which may further enhance CaMKII. Activation of CaMKII occurs downstream of neurohormonal stimulation (e.g. via G-protein coupled receptors) and involve various posttranslational modifications including autophosphorylation, oxidation, S-nitrosylation and O-GlcNAcylation. CaMKII signaling regulates diverse cellular processes in a spatiotemporal manner including excitation-contraction and excitation-transcription coupling, mechanics and energetics in cardiac myocytes. Chronic activation of CaMKII results in cellular remodeling and ultimately arrhythmogenic alterations in Ca2+ handling, ion channels, cell-to-cell coupling and metabolism. This review addresses the detrimental effects of the upregulated CaMKII signaling to enhance the arrhythmogenic substrate and trigger mechanisms in the heart. We also briefly summarize preclinical studies using kinase inhibitors and genetically modified mice targeting CaMKII in diabetes. The mechanistic understanding of CaMKII signaling, cardiac remodeling and arrhythmia mechanisms may reveal new therapeutic targets and ultimately better treatment in diabetes and heart disease in general.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
28
|
Dymkowska D, Drabarek B, Michalik A, Nowak N, Zabłocki K. TNFα stimulates NO release in EA.hy926 cells by activating the CaMKKβ-AMPK-eNOS pathway. Int J Biochem Cell Biol 2019; 106:57-67. [DOI: 10.1016/j.biocel.2018.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 12/28/2022]
|
29
|
Ebenebe OV, Heather A, Erickson JR. CaMKII in Vascular Signalling: "Friend or Foe"? Heart Lung Circ 2017; 27:560-567. [PMID: 29409723 DOI: 10.1016/j.hlc.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Signalling mechanisms within and between cells of the vasculature enable function and maintain homeostasis. However, a number of these mechanisms also contribute to the pathophysiology of vascular disease states. The multifunctional signalling molecule calcium/calmodulin-dependent kinase II (CaMKII) has been shown to have critical functional effects in many tissue types. For example, CaMKII is known to have a dual role in cardiac physiology and pathology. The function of CaMKII within the vasculature is incompletely understood, but emerging evidence points to potential physiological and pathological roles. This review discusses the evidence for CaMKII signalling within the vasculature, with the aim to better understand both positive and potentially deleterious effects of CaMKII activation in vascular tissue.
Collapse
Affiliation(s)
- Obialunanma V Ebenebe
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Alison Heather
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand.
| |
Collapse
|