1
|
Willis AB, Zelikovich AS, Sufit R, Ajroud-Driss S, Vandenborne K, Demonbreun AR, Batra A, Walter GA, McNally EM. Serum protein and imaging biomarkers after intermittent steroid treatment in muscular dystrophy. Sci Rep 2024; 14:28745. [PMID: 39567576 PMCID: PMC11579281 DOI: 10.1038/s41598-024-79024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Weekly Steroids in Muscular Dystrophy (WSiMD) was a pilot study to evaluate once weekly prednisone in patients with Limb Girdle and Becker muscular dystrophy (LGMD and BMD, respectively). At study endpoint, there were trends towards increased lean mass, reduced fat mass, reduced creatine kinase and improved motor function. The investigation was motivated by studies in mouse muscular dystrophy models in which once weekly glucocorticoid exposure enhanced muscle strength and reduced fibrosis. WSiMD participants provided blood samples for aptamer serum profiling at baseline and after 6 months of weekly steroids. A subset completed magnetic resonance (MR) evaluation of muscle at study onset and endpoint. At baseline compared to age and sex-matched healthy controls, the aggregate serum protein profile in the WSiMD cohort was dominated by muscle proteins, reflecting leak of muscle proteins into serum. Disease status produced more proteins differentially present in serum compared to steroid-treatment effect. Nonetheless, a response to prednisone was discernable in the WSiMD cohort, even at this low dose. Glucocorticoids decreased muscle proteins and increased certain immune process- and matrix-associated proteins. Muscle MR fat fraction showed trends with functional status. The prednisone-responsive markers could be used in larger trial of prednisone efficacy.
Collapse
Affiliation(s)
- Alexander B Willis
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E Superior SQ 5-516, Chicago, IL, 60611, USA
| | - Aaron S Zelikovich
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E Superior SQ 5-516, Chicago, IL, 60611, USA
| | - Robert Sufit
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Senda Ajroud-Driss
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E Superior SQ 5-516, Chicago, IL, 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Abhinandan Batra
- Department of Physical Therapy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Glenn A Walter
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E Superior SQ 5-516, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Willis AB, Zelikovich AS, Sufit R, Ajroud-Driss S, Vandenborne K, Demonbreun AR, Batra A, Walter GA, McNally EM. Serum protein and imaging biomarkers after intermittent steroid treatment in muscular dystrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308858. [PMID: 38947030 PMCID: PMC11213068 DOI: 10.1101/2024.06.14.24308858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Weekly Steroids in Muscular Dystrophy (WSiMD) was a pilot study to evaluate once weekly prednisone in patients with Limb Girdle and Becker muscular dystrophy (LGMD and BMD, respectively). At study endpoint, there were trends towards increased lean mass, reduced fat mass, reduced creatine kinase and improved motor function. The investigation was motivated by studies in mouse muscular dystrophy models in which once weekly glucocorticoid exposure enhanced muscle strength and reduced fibrosis. Methods WSiMD participants provided blood samples for aptamer serum profiling at baseline and after 6 months of weekly steroids. A subset completed magnetic resonance (MR) evaluation of muscle at study onset and endpoint. Results/Conclusions At baseline compared to age and sex-matched healthy controls, the aggregate serum protein profile in the WSiMD cohort was dominated by muscle proteins, reflecting leak of muscle proteins into serum. Disease status produced more proteins differentially present in serum compared to steroid-treatment effect. Nonetheless, a response to prednisone was discernable in the WSiMD cohort, even at this low dose. Glucocorticoids downregulated muscle proteins and upregulated certain immune process- and matrix-associated proteins. Muscle MR fat fraction showed trends with functional status. The prednisone-responsive markers could be used in larger trial of prednisone efficacy.
Collapse
Affiliation(s)
- Alexander B. Willis
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aaron S. Zelikovich
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Robert Sufit
- Dept of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Senda Ajroud-Driss
- Dept of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Alexis R. Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Abhinandan Batra
- Department of Physical Therapy, University of Louisiana at Monroe, Monroe, LA
| | - Glenn A. Walter
- Department of Physiology and Aging, University of Florida, Gainesville, FL
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Tebbenkamp AT, Huggett SB, Lombardi V, Zampedri L, AlQahtani A, Kokkinis A, Malaspina A, Rinaldi C, Grunseich C, Fratta P, Viglietta V. Protein biomarker signature in patients with spinal and bulbar muscular atrophy. JCI Insight 2024; 9:e176383. [PMID: 38973610 PMCID: PMC11383357 DOI: 10.1172/jci.insight.176383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a slowly progressing disease with limited sensitive biomarkers that support clinical research. We analyzed plasma and serum samples from patients with SBMA and matched healthy controls in multiple cohorts, identifying 40 highly reproducible SBMA-associated proteins out of nearly 3,000 measured. These proteins were robustly enriched in gene sets of skeletal muscle expression and processes related to mitochondria and calcium signaling. Many proteins outperformed currently used clinical laboratory tests (e.g., creatine kinase [CK]) in distinguishing patients from controls and in their correlations with clinical and functional traits in patients. Two of the 40 proteins, Ectodysplasin A2 receptor (EDA2R) and Repulsive guidance molecule A (RGMA), were found to be associated with decreased survival and body weight in a mouse model of SBMA. In summary, we identified what we believe to be a robust and novel set of fluid protein biomarkers in SBMA that are linked with relevant disease features in patients and in a mouse model of disease. Changes in these SBMA-associated proteins could be used as an early predictor of treatment effects in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Luca Zampedri
- University College London (UCL), London, United Kingdom
| | - Abdullah AlQahtani
- Neurogenetics Branch, National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela Kokkinis
- Neurogenetics Branch, National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Carlo Rinaldi
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Pietro Fratta
- University College London (UCL), London, United Kingdom
| | | |
Collapse
|
4
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
5
|
Gellhaus B, Böker KO, Gsaenger M, Rodenwaldt E, Hüser MA, Schilling AF, Saul D. Foxo3 Knockdown Mediates Decline of Myod1 and Myog Reducing Myoblast Conversion to Myotubes. Cells 2023; 12:2167. [PMID: 37681900 PMCID: PMC10486649 DOI: 10.3390/cells12172167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Sarcopenia has a high prevalence among the aging population. Sarcopenia is of tremendous socioeconomic importance because it can lead to falls and hospitalization, subsequently increasing healthcare costs while limiting quality of life. In sarcopenic muscle fibers, the E3 ubiquitin ligase F-Box Protein 32 (Fbxo32) is expressed at substantially higher levels, driving ubiquitin-proteasomal muscle protein degradation. As one of the key regulators of muscular equilibrium, the transcription factor Forkhead Box O3 (FOXO3) can increase the expression of Fbxo32, making it a possible target for the regulation of this detrimental pathway. To test this hypothesis, murine C2C12 myoblasts were transduced with AAVs carrying a plasmid for four specific siRNAs against Foxo3. Successfully transduced myoblasts were selected via FACS cell sorting to establish single clone cell lines. Sorted myoblasts were further differentiated into myotubes and stained for myosin heavy chain (MHC) by immunofluorescence. The resulting area was calculated. Myotube contractions were induced by electrical stimulation and quantified. We found an increased Foxo3 expression in satellite cells in human skeletal muscle and an age-related increase in Foxo3 expression in older mice in silico. We established an in vitro AAV-mediated FOXO3 knockdown on protein level. Surprisingly, the myotubes with FOXO3 knockdown displayed a smaller myotube size and a lower number of nuclei per myotube compared to the control myotubes (AAV-transduced with a functionless control plasmid). During differentiation, a lower level of FOXO3 reduced the expression Fbxo32 within the first three days. Moreover, the expression of Myod1 and Myog via ATM and Tp53 was reduced. Functionally, the Foxo3 knockdown myotubes showed a higher contraction duration and time to peak. Early Foxo3 knockdown seems to terminate the initiation of differentiation due to lack of Myod1 expression, and mediates the inhibition of Myog. Subsequently, the myotube size is reduced and the excitability to electrical stimulation is altered.
Collapse
Affiliation(s)
- Benjamin Gellhaus
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany; (B.G.); (K.O.B.); (E.R.); (A.F.S.)
| | - Kai O. Böker
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany; (B.G.); (K.O.B.); (E.R.); (A.F.S.)
| | - Marlene Gsaenger
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany; (B.G.); (K.O.B.); (E.R.); (A.F.S.)
| | - Eyck Rodenwaldt
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany; (B.G.); (K.O.B.); (E.R.); (A.F.S.)
| | - Marc A. Hüser
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany;
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany; (B.G.); (K.O.B.); (E.R.); (A.F.S.)
| | - Dominik Saul
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany; (B.G.); (K.O.B.); (E.R.); (A.F.S.)
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Nieves-Rodriguez S, Barthélémy F, Woods JD, Douine ED, Wang RT, Scripture-Adams DD, Chesmore KN, Galasso F, Miceli MC, Nelson SF. Transcriptomic analysis of paired healthy human skeletal muscles to identify modulators of disease severity in DMD. Front Genet 2023; 14:1216066. [PMID: 37576554 PMCID: PMC10415210 DOI: 10.3389/fgene.2023.1216066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Muscle damage and fibro-fatty replacement of skeletal muscles is a main pathologic feature of Duchenne muscular dystrophy (DMD) with more proximal muscles affected earlier and more distal affected later in the disease course, suggesting that different skeletal muscle groups possess distinctive characteristics that influence their susceptibility to disease. To explore transcriptomic factors driving differential gene expression and modulating DMD skeletal muscle severity, we characterized the transcriptome of vastus lateralis (VL), a more proximal and susceptible muscle, relative to tibialis anterior (TA), a more distal and protected muscle, in 15 healthy individuals using bulk RNA sequencing to identify gene expression differences that may mediate their relative susceptibility to damage with loss of dystrophin. Matching single nuclei RNA sequencing data was generated for 3 of the healthy individuals, to infer cell composition in the bulk RNA sequencing dataset and to improve mapping of differentially expressed genes to their cell source of expression. A total of 3,410 differentially expressed genes were identified and mapped to cell type using single nuclei RNA sequencing of muscle, including long non-coding RNAs and protein coding genes. There was an enrichment of genes involved in calcium release from the sarcoplasmic reticulum, particularly in the myofibers and these myofiber genes were higher in the VL. There was an enrichment of genes in "Collagen-Containing Extracellular Matrix" expressed by fibroblasts, endothelial, smooth muscle and pericytes, with most genes higher in the TA, as well as genes in "Regulation Of Apoptotic Process" expressed across all cell types. Previously reported genetic modifiers were also enriched within the differentially expressed genes. We also identify 6 genes with differential isoform usage between the VL and TA. Lastly, we integrate our findings with DMD RNA sequencing data from the TA, and identify "Collagen-Containing Extracellular Matrix" and "Negative Regulation Of Apoptotic Process" as differentially expressed between DMD compared to healthy. Collectively, these findings propose novel candidate mechanisms that may mediate differential muscle susceptibility in muscular dystrophies and provide new insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Shirley Nieves-Rodriguez
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Florian Barthélémy
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeremy D. Woods
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emilie D. Douine
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Richard T. Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Deirdre D. Scripture-Adams
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin N. Chesmore
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Francesca Galasso
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - M. Carrie Miceli
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Visvabharathy L, Hanson BA, Orban ZS, Lim PH, Palacio NM, Jimenez M, Clark JR, Graham EL, Liotta EM, Tachas G, Penaloza-MacMaster P, Koralnik IJ. Neuro-PASC is characterized by enhanced CD4+ and diminished CD8+ T cell responses to SARS-CoV-2 Nucleocapsid protein. Front Immunol 2023; 14:1155770. [PMID: 37313412 PMCID: PMC10258318 DOI: 10.3389/fimmu.2023.1155770] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Many people with long COVID symptoms suffer from debilitating neurologic post-acute sequelae of SARS-CoV-2 infection (Neuro-PASC). Although symptoms of Neuro-PASC are widely documented, it is still unclear whether PASC symptoms impact virus-specific immune responses. Therefore, we examined T cell and antibody responses to SARS-CoV-2 Nucleocapsid protein to identify activation signatures distinguishing Neuro-PASC patients from healthy COVID convalescents. Results We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated CD4+ T cell responses and diminished CD8+ memory T cell activation toward the C-terminal region of SARS-CoV-2 Nucleocapsid protein when examined both functionally and using TCR sequencing. CD8+ T cell production of IL-6 correlated with increased plasma IL-6 levels as well as heightened severity of neurologic symptoms, including pain. Elevated plasma immunoregulatory and reduced pro-inflammatory and antiviral response signatures were evident in Neuro-PASC patients compared with COVID convalescent controls without lasting symptoms, correlating with worse neurocognitive dysfunction. Discussion We conclude that these data provide new insight into the impact of virus-specific cellular immunity on the pathogenesis of long COVID and pave the way for the rational design of predictive biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Barbara A. Hanson
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Zachary S. Orban
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Patrick H. Lim
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Nicole M. Palacio
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Millenia Jimenez
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeffrey R. Clark
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Edith L. Graham
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eric M. Liotta
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - George Tachas
- Drug Discovery & Patents, Antisense Therapeutics Ltd., Melbourne, VIC, Australia
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Igor J. Koralnik
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Krishna S, Spaulding HR, Koltes JE, Quindry JC, Valentine RJ, Selsby JT. Indicators of increased ER stress and UPR in aged D2-mdx and human dystrophic skeletal muscles. Front Physiol 2023; 14:1152576. [PMID: 37179835 PMCID: PMC10166835 DOI: 10.3389/fphys.2023.1152576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease that results in muscle wasting, wheelchair dependence, and eventual death due to cardiac and respiratory complications. In addition to muscle fragility, dystrophin deficiency also results in multiple secondary dysfunctions, which may lead to the accumulation of unfolded proteins causing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). The purpose of this investigation was to understand how ER stress and the UPR are modified in muscle from D2-mdx mice, an emerging DMD model, and from humans with DMD. We hypothesized that markers of ER stress and the UPR are upregulated in D2-mdx and human dystrophic muscles compared to their healthy counterparts. Immunoblotting in diaphragms from 11-month-old D2-mdx and DBA mice indicated increased ER stress and UPR in dystrophic diaphragms compared to healthy, including increased relative abundance of ER stress chaperone CHOP, canonical ER stress transducers ATF6 and pIRE1α S724, and transcription factors that regulate the UPR such as ATF4, XBP1s, and peIF2α S51. The publicly available Affymetrix dataset (GSE38417) was used to analyze the expression of ER stress and UPR-related transcripts and processes. Fifty-eight upregulated genes related to ER stress and the UPR in human dystrophic muscles suggest pathway activation. Further, based on analyses using iRegulon, putative transcription factors that regulate this upregulation profile were identified, including ATF6, XBP1, ATF4, CREB3L2, and EIF2AK3. This study adds to and extends the emerging knowledge of ER stress and the UPR in dystrophin deficiency and identifies transcriptional regulators that may be responsible for these changes and be of therapeutic interest.
Collapse
Affiliation(s)
- Swathy Krishna
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Hannah R. Spaulding
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - James E. Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - John C. Quindry
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, United States
| | - Rudy J. Valentine
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Joshua T. Selsby
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Jiang W, Jones JC, Shankavaram U, Sproull M, Camphausen K, Krauze AV. Analytical Considerations of Large-Scale Aptamer-Based Datasets for Translational Applications. Cancers (Basel) 2022; 14:2227. [PMID: 35565358 PMCID: PMC9105298 DOI: 10.3390/cancers14092227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
The development and advancement of aptamer technology has opened a new realm of possibilities for unlocking the biocomplexity available within proteomics. With ultra-high-throughput and multiplexing, alongside remarkable specificity and sensitivity, aptamers could represent a powerful tool in disease-specific research, such as supporting the discovery and validation of clinically relevant biomarkers. One of the fundamental challenges underlying past and current proteomic technology has been the difficulty of translating proteomic datasets into standards of practice. Aptamers provide the capacity to generate single panels that span over 7000 different proteins from a singular sample. However, as a recent technology, they also present unique challenges, as the field of translational aptamer-based proteomics still lacks a standardizing methodology for analyzing these large datasets and the novel considerations that must be made in response to the differentiation amongst current proteomic platforms and aptamers. We address these analytical considerations with respect to surveying initial data, deploying proper statistical methodologies to identify differential protein expressions, and applying datasets to discover multimarker and pathway-level findings. Additionally, we present aptamer datasets within the multi-omics landscape by exploring the intersectionality of aptamer-based proteomics amongst genomics, transcriptomics, and metabolomics, alongside pre-existing proteomic platforms. Understanding the broader applications of aptamer datasets will substantially enhance current efforts to generate translatable findings for the clinic.
Collapse
Affiliation(s)
- Will Jiang
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, NIH/NCI/CCR, Bethesda, MD 20892, USA;
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| | - Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| |
Collapse
|
10
|
Fiorentino G, Visintainer R, Domenici E, Lauria M, Marchetti L. MOUSSE: Multi-Omics Using Subject-Specific SignaturEs. Cancers (Basel) 2021; 13:cancers13143423. [PMID: 34298641 PMCID: PMC8304726 DOI: 10.3390/cancers13143423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Modern profiling technologies have led to relevant progress toward precision medicine and disease management. A new trend in patient classification is to integrate multiple data types for the same subjects to increase the chance of identifying meaningful phenotype groups. However, these methodologies are still in their infancy, with their performance varying widely depending on the biological conditions analyzed. We developed MOUSSE, a new unsupervised and normalization-free tool for multi-omics integration able to maintain good clustering performance across a wide range of omics data. We verified its efficiency in clustering patients based on survival for ten different cancer types. The results we obtained show a higher average score in classification performance than ten other state-of-the-art algorithms. We have further validated the method by identifying a list of biological features potentially involved in patient survival, finding a high degree of concordance with the literature. Abstract High-throughput technologies make it possible to produce a large amount of data representing different biological layers, examples of which are genomics, proteomics, metabolomics and transcriptomics. Omics data have been individually investigated to understand the molecular bases of various diseases, but this may not be sufficient to fully capture the molecular mechanisms and the multilayer regulatory processes underlying complex diseases, especially cancer. To overcome this problem, several multi-omics integration methods have been introduced but a commonly agreed standard of analysis is still lacking. In this paper, we present MOUSSE, a novel normalization-free pipeline for unsupervised multi-omics integration. The main innovations are the use of rank-based subject-specific signatures and the use of such signatures to derive subject similarity networks. A separate similarity network was derived for each omics, and the resulting networks were then carefully merged in a way that considered their informative content. We applied it to analyze survival in ten different types of cancer. We produced a meaningful clusterization of the subjects and obtained a higher average classification score than ten state-of-the-art algorithms tested on the same data. As further validation, we extracted from the subject-specific signatures a list of relevant features used for the clusterization and investigated their biological role in survival. We were able to verify that, according to the literature, these features are highly involved in cancer progression and differential survival.
Collapse
Affiliation(s)
- Giuseppe Fiorentino
- Fondazione The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy; (G.F.); (R.V.); (E.D.); (M.L.)
- Department of Cellular, Computational, and Integrative Biology (CiBio), University of Trento, 38123 Povo, Italy
| | - Roberto Visintainer
- Fondazione The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy; (G.F.); (R.V.); (E.D.); (M.L.)
| | - Enrico Domenici
- Fondazione The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy; (G.F.); (R.V.); (E.D.); (M.L.)
- Department of Cellular, Computational, and Integrative Biology (CiBio), University of Trento, 38123 Povo, Italy
| | - Mario Lauria
- Fondazione The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy; (G.F.); (R.V.); (E.D.); (M.L.)
- Department of Mathematics, University of Trento, 38123 Povo, Italy
| | - Luca Marchetti
- Fondazione The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy; (G.F.); (R.V.); (E.D.); (M.L.)
- Correspondence:
| |
Collapse
|
11
|
Amor F, Vu Hong A, Corre G, Sanson M, Suel L, Blaie S, Servais L, Voit T, Richard I, Israeli D. Cholesterol metabolism is a potential therapeutic target in Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2021; 12:677-693. [PMID: 34037326 PMCID: PMC8200436 DOI: 10.1002/jcsm.12708] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a lethal muscle disease detected in approximately 1:5000 male births. DMD is caused by mutations in the DMD gene, encoding a critical protein that links the cytoskeleton and the extracellular matrix in skeletal and cardiac muscles. The primary consequence of the disrupted link between the extracellular matrix and the myofibre actin cytoskeleton is thought to involve sarcolemma destabilization, perturbation of Ca2+ homeostasis, activation of proteases, mitochondrial damage, and tissue degeneration. A recently emphasized secondary aspect of the dystrophic process is a progressive metabolic change of the dystrophic tissue; however, the mechanism and nature of the metabolic dysregulation are yet poorly understood. In this study, we characterized a molecular mechanism of metabolic perturbation in DMD. METHODS We sequenced plasma miRNA in a DMD cohort, comprising 54 DMD patients treated or not by glucocorticoid, compared with 27 healthy controls, in three groups of the ages of 4-8, 8-12, and 12-20 years. We developed an original approach for the biological interpretation of miRNA dysregulation and produced a novel hypothesis concerning metabolic perturbation in DMD. We used the mdx mouse model for DMD for the investigation of this hypothesis. RESULTS We identified 96 dysregulated miRNAs (adjusted P-value <0.1), of which 74 were up-regulated and 22 were down-regulated in DMD. We confirmed the dysregulation in DMD of Dystro-miRs, Cardio-miRs, and a large number of the DLK1-DIO3 miRNAs. We also identified numerous dysregulated miRNAs yet unreported in DMD. Bioinformatics analysis of both target and host genes for dysregulated miRNAs predicted that lipid metabolism might be a critical metabolic perturbation in DMD. Investigation of skeletal muscles of the mdx mouse uncovered dysregulation of transcription factors of cholesterol and fatty acid metabolism (SREBP-1 and SREBP-2), perturbation of the mevalonate pathway, and the accumulation of cholesterol in the dystrophic muscles. Elevated cholesterol level was also found in muscle biopsies of DMD patients. Treatment of mdx mice with Simvastatin, a cholesterol-reducing agent, normalized these perturbations and partially restored the dystrophic parameters. CONCLUSIONS This investigation supports that cholesterol metabolism and the mevalonate pathway are potential therapeutic targets in DMD.
Collapse
Affiliation(s)
- Fatima Amor
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - Ai Vu Hong
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - Guillaume Corre
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - Mathilde Sanson
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - Laurence Suel
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | | | - Laurent Servais
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, UK & Division of Child Neurology, Centre de Référence des Maladies Neuromusculaires, Department of PaediatricsUniversity Hospital of Liège & University of LiègeLiègeBelgium
| | - Thomas Voit
- NIHR Great Ormond Street Hospital Biomedical Research Centre and Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Isabelle Richard
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| | - David Israeli
- GénéthonEvryFrance
- Université Paris‐Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951EvryFrance
| |
Collapse
|
12
|
María Hernández-Domínguez E, Sofía Castillo-Ortega L, García-Esquivel Y, Mandujano-González V, Díaz-Godínez G, Álvarez-Cervantes J. Bioinformatics as a Tool for the Structural and Evolutionary Analysis of Proteins. Comput Biol Chem 2020. [DOI: 10.5772/intechopen.89594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This chapter deals with the topic of bioinformatics, computational, mathematics, and statistics tools applied to biology, essential for the analysis and characterization of biological molecules, in particular proteins, which play an important role in all cellular and evolutionary processes of the organisms. In recent decades, with the next generation sequencing technologies and bioinformatics, it has facilitated the collection and analysis of a large amount of genomic, transcriptomic, proteomic, and metabolomic data from different organisms that have allowed predictions on the regulation of expression, transcription, translation, structure, and mechanisms of action of proteins as well as homology, mutations, and evolutionary processes that generate structural and functional changes over time. Although the information in the databases is greater every day, all bioinformatics tools continue to be constantly modified to improve performance that leads to more accurate predictions regarding protein functionality, which is why bioinformatics research remains a great challenge.
Collapse
|
13
|
Xiu MX, Zeng B, Kuang BH. Identification of hub genes, miRNAs and regulatory factors relevant for Duchenne muscular dystrophy by bioinformatics analysis. Int J Neurosci 2020; 132:296-305. [DOI: 10.1080/00207454.2020.1810030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University, Nanchang, China
| | - Bin Zeng
- Medical School of Nanchang University, Nanchang, China
| | - Bo-Hai Kuang
- Medical School of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Tweedie D, Karnati HK, Mullins R, Pick CG, Hoffer BJ, Goetzl EJ, Kapogiannis D, Greig NH. Time-dependent cytokine and chemokine changes in mouse cerebral cortex following a mild traumatic brain injury. eLife 2020; 9:55827. [PMID: 32804078 PMCID: PMC7473773 DOI: 10.7554/elife.55827] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is a serious global health problem, many individuals live with TBI-related neurological dysfunction. A lack of biomarkers of TBI has impeded medication development. To identify new potential biomarkers, we time-dependently evaluated mouse brain tissue and neuronally derived plasma extracellular vesicle proteins in a mild model of TBI with parallels to concussive head injury. Mice (CD-1, 30–40 g) received a sham procedure or 30 g weight-drop and were euthanized 8, 24, 48, 72, 96 hr, 7, 14 and 30 days later. We quantified ipsilateral cortical proteins, many of which differed from sham by 8 hours post-mTBI, particularly GAS-1 and VEGF-B were increased while CXCL16 reduced, 23 proteins changed in 4 or more of the time points. Gene ontology pathways mapped from altered proteins over time related to pathological and physiological processes. Validation of proteins identified in this study may provide utility as treatment response biomarkers.
Collapse
Affiliation(s)
- David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| | - Hanuma Kumar Karnati
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| | - Roger Mullins
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Sylvan Adams Sports Institute, and Dr. Miriam and SheldonG. Adelson Chair and Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv, Israel
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Edward J Goetzl
- Department of Medicine, University of California Medical Center, San Francisco, San Francisco, United States
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| |
Collapse
|
15
|
Al-Khalili Szigyarto C. Duchenne Muscular Dystrophy: recent advances in protein biomarkers and the clinical application. Expert Rev Proteomics 2020; 17:365-375. [PMID: 32713262 DOI: 10.1080/14789450.2020.1773806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Early biomarker discovery studies have praised the value of their emerging results, predicting an unprecedented impact on health care. Biomarkers are expected to provide tests with increased specificity and sensitivity compared to existing measures, improve the decision-making process, and accelerate the development of therapies. For rare disorders, like Duchenne Muscular Dystrophy (DMD) such biomarkers can assist the development of therapies, therefore also helping to find a cure for the disease. AREA COVERED State-of-the-art technologies have been used to identify blood biomarkers for DMD and efforts have been coordinated to develop and promote translation of biomarkers for clinical practice. Biomarker translation to clinical practice is however, adjoined by challenges related to the complexity of the disease, involving numerous biological processes, and the limited sample resources. This review highlights the current progress on the development of biomarkers, describing the proteomics technologies used, the most promising findings and the challenges encountered. EXPERT OPINION Strategies for effective use of samples combined with orthogonal proteomics methods for protein quantification are essential for translating biomarkers to the patient's bed side. Progress is achieved only if strong evidence is provided that the biomarker constitutes a reliable indicator of the patient's health status for a specific context of use.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Science for Life Laboratory, KTH - Royal Institute of Technology , Solna, Sweden.,School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology , Stockholm, Sweden
| |
Collapse
|
16
|
Ciciani M, Cantore T, Lauria M. rScudo: an R package for classification of molecular profiles using rank-based signatures. Bioinformatics 2020; 36:4095-4096. [PMID: 32399554 DOI: 10.1093/bioinformatics/btaa296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/13/2020] [Accepted: 05/05/2020] [Indexed: 11/15/2022] Open
Abstract
SUMMARY The classification of biological samples by means of their respective molecular profiles is a topic of great interest for its potential diagnostic, prognostic and investigational applications. rScudo is an R package for the classification of molecular profiles based on a radically new approach consisting in the analysis of the similarity of rank-based sample-specific signatures. The validity of rScudo unconventional approach has been validated through direct comparison with current methods in the international SBV IMPROVER Diagnostic Signature Challenge. Due to its novelty, there is ample room for conceptual improvements and for exploring additional applications. The rScudo package has been specifically designed to facilitate experimenting with the rank-based signature approach, to test its application to different types of molecular profiles and to simplify direct comparison with existing methods. AVAILABILITY AND IMPLEMENTATION The package is available as part of the Bioconductor suite at https://bioconductor.org/packages/rScudo.
Collapse
Affiliation(s)
| | | | - Mario Lauria
- Department of Mathematics, University of Trento, 38123 Povo, Trentino, Italy.,The Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Trentino, Italy
| |
Collapse
|
17
|
Grounds MD, Terrill JR, Al-Mshhdani BA, Duong MN, Radley-Crabb HG, Arthur PG. Biomarkers for Duchenne muscular dystrophy: myonecrosis, inflammation and oxidative stress. Dis Model Mech 2020; 13:13/2/dmm043638. [PMID: 32224496 PMCID: PMC7063669 DOI: 10.1242/dmm.043638] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease that causes severe loss of muscle mass and function in young children. Promising therapies for DMD are being developed, but the long lead times required when using clinical outcome measures are hindering progress. This progress would be facilitated by robust molecular biomarkers in biofluids, such as blood and urine, which could be used to monitor disease progression and severity, as well as to determine optimal drug dosing before a full clinical trial. Many candidate DMD biomarkers have been identified, but there have been few follow-up studies to validate them. This Review describes the promising biomarkers for dystrophic muscle that have been identified in muscle, mainly using animal models. We strongly focus on myonecrosis and the associated inflammation and oxidative stress in DMD muscle, as the lack of dystrophin causes repeated bouts of myonecrosis, which are the key events that initiate the resultant severe dystropathology. We discuss the early events of intrinsic myonecrosis, along with early regeneration in the context of histological and other measures that are used to quantify its incidence. Molecular biomarkers linked to the closely associated events of inflammation and oxidative damage are discussed, with a focus on research related to protein thiol oxidation and to neutrophils. We summarise data linked to myonecrosis in muscle, blood and urine of dystrophic animal species, and discuss the challenge of translating such biomarkers to the clinic for DMD patients, especially to enhance the success of clinical trials. Summary: This Review discusses biomarkers in blood and urine linked to myonecrosis, inflammation and oxidative stress, to enhance development of therapies for DMD, and the challenges to be overcome for clinical translation.
Collapse
Affiliation(s)
- Miranda D Grounds
- School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Jessica R Terrill
- School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Basma A Al-Mshhdani
- School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Marisa N Duong
- School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Hannah G Radley-Crabb
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Peter G Arthur
- School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
18
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Proteomic profiling of fatty acid binding proteins in muscular dystrophy. Expert Rev Proteomics 2020; 17:137-148. [PMID: 32067530 DOI: 10.1080/14789450.2020.1732214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Duchenne muscular dystrophy is a neuromuscular disorder, which is caused by abnormalities in the DMD gene that encodes the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle wasting, dystrophinopathy also affects non-skeletal muscle tissues, including cells in the cardio-respiratory system, the central nervous system, the liver and the kidney.Areas covered: This review summarizes the proteomic characterization of a key class of lipid chaperones, the large family of fatty acid binding proteins, and their potential role in muscular dystrophy. Recent proteomic surveys using animal models and patient specimens are reviewed. Pathobiochemical changes in specific proteoforms of fatty acid binding protein in the multi-system pathology of dystrophinopathy are discussed.Expert opinion: The mass spectrometric identification of distinct changes in fatty acid binding proteins in muscle, heart, liver, kidney and serum demonstrates that considerable alterations occur in key steps of metabolite transport and fat metabolism in muscular dystrophy. These new findings might be helpful to further develop a comprehensive biomarker signature of metabolic changes in X-linked muscular dystrophy, which should improve (i) our understanding of complex pathobiochemical changes due to dystrophin deficiency, (ii) the identification of novel therapeutic targets, and (iii) the design of differential diagnostic, prognostic and therapy-monitoring approaches.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
19
|
Gene expression signature of antidepressant treatment response/non-response in Flinders Sensitive Line rats subjected to maternal separation. Eur Neuropsychopharmacol 2020; 31:69-85. [PMID: 31813757 DOI: 10.1016/j.euroneuro.2019.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
Neurobiological underpinnings of treatment-resistant depression, a debilitating condition associated with significant functional impairment, have not been elucidated. Consequently, the aim of this study was to use animal models of response and resistance to antidepressant treatment, in an attempt to identify differences in associated transcriptional responses. Flinders Sensitive Line rats were subjected to maternal separation (MS) and chronically treated with Escitalopram or Nortriptyline. Antidepressants reduced immobility time in the forced swim test in non-MS rats, while lack of antidepressant behavioural response was observed in MS animals. We developed a novel bioinformatic algorithm that enabled identification of transcriptional signatures in hippocampus and pre-frontal cortex that discriminate vehicle- and antidepressant-treated subjects in both MS and non-MS rats. Functional annotation analysis showed that in antidepressant-responder rats the most enriched pathways included IQGAPs activation, toll-like receptor trafficking, energy metabolism, and regulation of endopeptidase activity. The analysis of interacting proteins implicated synaptic vesicles and neurotransmitter release, ubiquitin regulation, cytoskeleton organisation and carbohydrate metabolism. In contrast, in treatment-resistant MS rats, main expression changes were revealed in ribosomal proteins, inflammatory responses, transcriptional/epigenetic regulation, and small GTPases. Susceptibility signature shared Rtn1, Zdhhc5, Igsf6, and Sim1 genes with the latest depression GWAS meta-analysis, while antidepressant resistance signature shared Ctnnd1, Rbms3, Atp1a3, and Pla2r1 genes. In conclusion, this study demonstrated that distinct transcriptional signatures are associated with behavioural response or non-response to antidepressant treatment. The identification of genes involved in antidepressant response will increase the comprehension of the neurobiological underpinnings of treatment-resistant depression, thus contributing to identification of novel therapeutic targets.
Collapse
|
20
|
Transcriptomic Analysis Reveals Involvement of the Macrophage Migration Inhibitory Factor Gene Network in Duchenne Muscular Dystrophy. Genes (Basel) 2019; 10:genes10110939. [PMID: 31752120 PMCID: PMC6896047 DOI: 10.3390/genes10110939] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive hereditary muscular disease with X-linked recessive inheritance, that leads patients to premature death. The loss of dystrophin determines membrane instability, causing cell damage and inflammatory response. Macrophage migration inhibitory factor (MIF) is a cytokine that exerts pleiotropic properties and is implicated in the pathogenesis of a variety of diseases. Recently, converging data from independent studies have pointed to a possible role of MIF in dystrophic muscle disorders, including DMD. In the present study, we have investigated the modulation of MIF and MIF-related genes in degenerative muscle disorders, by making use of publicly available whole-genome expression datasets. We show here a significant enrichment of MIF and related genes in muscle samples from DMD patients, as well as from patients suffering from Becker’s disease and limb-girdle muscular dystrophy type 2B. On the other hand, transcriptomic analysis of in vitro differentiated myotubes from healthy controls and DMD patients revealed no significant alteration in the expression levels of MIF-related genes. Finally, by analyzing DMD samples as a time series, we show that the modulation of the genes belonging to the MIF network is an early event in the DMD muscle and does not change with the increasing age of the patients, Overall, our analysis suggests that MIF may play a role in vivo during muscle degeneration, likely promoting inflammation and local microenvironment reaction.
Collapse
|
21
|
Dowling P, Murphy S, Zweyer M, Raucamp M, Swandulla D, Ohlendieck K. Emerging proteomic biomarkers of X-linked muscular dystrophy. Expert Rev Mol Diagn 2019; 19:739-755. [PMID: 31359811 DOI: 10.1080/14737159.2019.1648214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Progressive skeletal muscle wasting is the manifesting symptom of Duchenne muscular dystrophy, an X-linked inherited disorder triggered by primary abnormalities in the DMD gene. The almost complete loss of dystrophin isoform Dp427 causes a multi-system pathology that features in addition to skeletal muscle weakness also late-onset cardio-respiratory deficiencies, impaired metabolism and abnormalities in the central nervous system. Areas covered: This review focuses on the mass spectrometry-based proteomic characterization of X-linked muscular dystrophy with special emphasis on the identification of novel biomarker candidates in skeletal muscle tissues, as well as non-muscle tissues and various biofluids. Individual sections focus on molecular and cellular aspects of the pathogenic changes in dystrophinopathy, proteomic workflows used in biomarker research, the proteomics of the dystrophin-glycoprotein complex and the potential usefulness of newly identified protein markers involved in fibre degeneration, fibrosis and inflammation. Expert opinion: The systematic application of large-scale proteomic surveys has identified a distinct cohort of both tissue- and biofluid-associated protein species with considerable potential for improving diagnostic, prognostic and therapy-monitoring procedures. Novel proteomic markers include components involved in fibre contraction, cellular signalling, ion homeostasis, cellular stress response, energy metabolism and the immune response, as well as maintenance of the cytoskeletal and extracellular matrix.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland , Kildare , Ireland.,Human Health Research Institute, Maynooth University , Kildare , Ireland
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University , Newcastle upon Tyne , UK
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn , Bonn , Germany
| | - Maren Raucamp
- Institute of Physiology II, University of Bonn , Bonn , Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland , Kildare , Ireland.,Human Health Research Institute, Maynooth University , Kildare , Ireland
| |
Collapse
|
22
|
Sanese P, Forte G, Disciglio V, Grossi V, Simone C. FOXO3 on the Road to Longevity: Lessons From SNPs and Chromatin Hubs. Comput Struct Biotechnol J 2019; 17:737-745. [PMID: 31303978 PMCID: PMC6606898 DOI: 10.1016/j.csbj.2019.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Health span is driven by a precise interplay between genes and the environment. Cell response to environmental cues is mediated by signaling cascades and genetic variants that affect gene expression by regulating chromatin plasticity. Indeed, they can promote the interaction of promoters with regulatory elements by forming active chromatin hubs. FOXO3 encodes a transcription factor with a strong impact on aging and age-related phenotypes, as it regulates stress response, therefore affecting lifespan. A significant association has been shown between human longevity and several FOXO3 variants located in intron 2. This haplotype block forms a putative aging chromatin hub in which FOXO3 has a central role, as it modulates the physical connection and activity of neighboring genes involved in age-related processes. Here we describe the role of FOXO3 and its single-nucleotide polymorphisms (SNPs) in healthy aging, with a focus on the enhancer region encompassing the SNP rs2802292, which upregulates FOXO3 expression and can promote the activity of the aging hub in response to different stress stimuli. FOXO3 protective effect on lifespan may be due to the accessibility of this region to transcription factors promoting its expression. This could in part explain the differences in FOXO3 association with longevity between genders, as its activity in females may be modulated by estrogens through estrogen receptor response elements located in the rs2802292-encompassing region. Altogether, the molecular mechanisms described here may help establish whether the rs2802292 SNP can be taken advantage of in predictive medicine and define the potential of targeting FOXO3 for age-related diseases.
Collapse
Key Words
- 3C, Chromosome conformation capture
- 5′UTR, Five prime untranslated region
- ACH, Active chromatin hub
- Aging
- Chromatin hub
- ER, Estrogen receptor
- ERE, Estrogen-responsive element
- FHRE, Forkhead response element
- FOXO3
- FOXO3, Forkhead box 3
- GPx, Glutathione peroxidase
- GWAS, Genome-wide association study
- HPS, Hamartomatous polyposis syndrome
- HSE, Heat shock element
- HSF1, Heat shock factor 1
- IGF-1, Insulin growth factor-1
- LD, Linkage disequilibrium
- Longevity
- PHTS, PTEN hamartoma tumor syndrome
- PJS, Peutz-Jeghers syndrome
- ROS, Reactive oxygen species
- SNP
- SNP, Single nucleotide polymorphism
- SNV, Single nucleotide variant
- SOD2, Superoxide dismutase 2
- TAD, Topologically associated domain
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology 'S. de Bellis' Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology 'S. de Bellis' Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology 'S. de Bellis' Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| | - Cristiano Simone
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy.,Medical Genetics, National Institute of Gastroenterology 'S. de Bellis' Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| |
Collapse
|
23
|
Abstract
The forkhead box O3 (FOXO3, or FKHRL1) protein is a member of the FOXO subclass of transcription factors. FOXO proteins were originally identified as regulators of insulin-related genes; however, they are now established regulators of genes involved in vital biological processes, including substrate metabolism, protein turnover, cell survival, and cell death.
FOXO3 is one of the rare genes that have been consistently linked to longevity in
in vivo models. This review provides an update of the most recent research pertaining to the role of FOXO3 in (i) the regulation of protein turnover in skeletal muscle, the largest protein pool of the body, and (ii) the genetic basis of longevity. Finally, it examines (iii) the role of microRNAs in the regulation of FOXO3 and its impact on the regulation of the cell cycle.
Collapse
Affiliation(s)
- Renae J Stefanetti
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah Voisin
- Institute for Health and Sport, Victoria University, Footscray, Australia
| | - Aaron Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|