1
|
Napoli M, Bauer J, Bonod C, Vadon-Le Goff S, Moali C. PCPE-2 (procollagen C-proteinase enhancer-2): The non-identical twin of PCPE-1. Matrix Biol 2024; 134:59-78. [PMID: 39251075 DOI: 10.1016/j.matbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
PCPE-2 was discovered at the beginning of this century, and was soon identified as a close homolog of PCPE-1 (procollagen C-proteinase enhancer 1). After the demonstration that it could also stimulate the proteolytic maturation of fibrillar procollagens by BMP-1/tolloid-like proteinases (BTPs), PCPE-2 did not attract much attention as it was thought to fulfill the same functions as PCPE-1 which was already well-described. However, the tissue distribution of PCPE-2 shows both common points and significant differences with PCPE-1, suggesting that their activities are not fully overlapping. Also, the recently established connections between PCPE-2 (gene name PCOLCE2) and several important diseases such as atherosclerosis, inflammatory diseases and cancer have highlighted the need for a thorough reappraisal of the in vivo roles of this regulatory protein. In this context, the recent finding that, while retaining the ability to bind fibrillar procollagens and to activate their C-terminal maturation, PCPE-2 can also bind BTPs and inhibit their activity has substantially extended its potential functions. In this review, we describe the current knowledge about PCPE-2 with a focus on collagen fibrillogenesis, lipid metabolism and inflammation, and discuss how we could further advance our understanding of PCPE-2-dependent biological processes.
Collapse
Affiliation(s)
- Manon Napoli
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Julien Bauer
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Christelle Bonod
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Sandrine Vadon-Le Goff
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Catherine Moali
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France.
| |
Collapse
|
2
|
Niu N, Miao H, Ren H. Transcriptome Analysis of Myocardial Ischemic-Hypoxic Injury in Rats and Hypoxic H9C2 Cells. ESC Heart Fail 2024; 11:3775-3795. [PMID: 39010664 PMCID: PMC11631282 DOI: 10.1002/ehf2.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 07/17/2024] Open
Abstract
AIMS This study aimed to address inconsistencies in results between the H9C2 myocardial hypoxia (MH) cell line and myocardial infarction (MI) rat models used in MI research. We identified differentially expressed genes (DEGs) and underlying molecular mechanisms using RNA sequencing technology. METHODS RNA sequencing was used to analyse DEGs in MI rat tissues and H9C2 cells exposed to hypoxia for 24 h. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify key biological processes and pathways. Weighted correlation network analysis [weighted gene co-expression network analysis (WGCNA)] was used to construct gene co-expression networks, and hub genes were compared with published MI datasets [Gene Expression Omnibus (GEO)] for target identification. RESULTS GO analysis revealed enrichment of immune inflammation and mitochondrial respiration processes among 5139 DEGs in MI tissues and 2531 in H9C2 cells. KEGG analysis identified 537 overlapping genes associated with metabolism and oxidative stress pathways. Cross-analyses using the published GSE35088 and GSE47495 datasets identified 40 and 16 overlapping genes, respectively, with nine genes overlapping across all datasets and our models. WGCNA identified a key module in the MI model enriched for mRNA processing and protein binding. GO analysis revealed enrichment of mRNA processing, protein binding and mitochondrial respiratory chain complex I assembly in MI and H9C2 MH models. Five relevant hub genes were identified via a cross-analysis between the 92 hub genes that showed a common expression trend in both models. CONCLUSIONS This study reveals both shared and distinct transcriptomic responses in the MI and H9C2 models, highlighting the importance of model selection for studying myocardial ischaemia and hypoxia.
Collapse
Affiliation(s)
- Nan Niu
- Department of Cardiovascular MedicinePeople's Hospital of Ningxia Hui Autonomous RegionYinchuanChina
| | - Huangtai Miao
- Coronary Heart Disease Center,Beijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Hongmei Ren
- Department of Cardiovascular MedicinePeople's Hospital of Ningxia Hui Autonomous RegionYinchuanChina
| |
Collapse
|
3
|
Sun Y, Xu H, Ye K. Genome-wide association studies and multi-omics integrative analysis reveal novel loci and their molecular mechanisms for circulating polyunsaturated, monounsaturated, and saturated fatty acids. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.11.24317110. [PMID: 39606376 PMCID: PMC11601680 DOI: 10.1101/2024.11.11.24317110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Previous genome-wide association studies (GWAS) have identified genetic loci associated with the circulating levels of FAs, but the biological mechanisms of these genetic associations remain largely unexplored. Here, we conducted GWAS to identify additional genetic loci for 19 circulating fatty acid (FA) traits in UK Biobank participants of European ancestry (N = 239,268) and five other ancestries (N = 508 - 4,663). We leveraged the GWAS findings to characterize genetic correlations and colocalized regions among FAs, explore sex differences, examine FA loci influenced by lipoprotein metabolism, and apply statistical fine-mapping to pinpoint putative causal variants. We integrated GWAS signals with multi-omics quantitative trait loci (QTL) to reveal intermediate molecular phenotypes mediating the associations between the genetic loci and FA levels. Altogether, we identified 215 significant loci for polyunsaturated fatty acids (PUFAs)-related traits in European participants, 163 loci for monounsaturated fatty acids (MUFAs)-related traits, and 119 loci for saturated fatty acids (SFAs)-related traits, including 70, 61, and 54 novel loci, respectively. A novel locus for total FAs, the percentage of omega-6 PUFAs in total FAs, and total MUFAs (around genes GSTT1/2/2B) overlapped with QTL signals for all six molecular phenotypes examined, including gene expression, protein abundance, DNA methylation, splicing, histone modification, and chromatin accessibility. Across 19 FA traits, 65% of GWAS loci overlapped with QTL signals for at least one molecular phenotype. Our study identifies novel genetic loci for circulating FA levels and systematically uncovers their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yitang Sun
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Huifang Xu
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Thomas MJ, Xu H, Wang A, Beg MA, Sorci-Thomas MG. PCPE2: Expression of multifunctional extracellular glycoprotein associated with diverse cellular functions. J Lipid Res 2024; 65:100664. [PMID: 39374805 PMCID: PMC11567036 DOI: 10.1016/j.jlr.2024.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
Procollagen C-endopeptidase enhancer 2, known as PCPE2 or PCOC2 (gene name, PCOLCE2) is a glycoprotein that resides in the extracellular matrix, and is similar in domain organization to PCPE1/PCPE, PCOC1 (PCOLCE1/PCOLCE). Due to the many similarities between the two related proteins, PCPE2 has been assumed to have biological functions similar to PCPE. PCPE is a well-established enhancer of procollagen processing activating the enzyme, BMP-1. However, reports show that PCPE2 has a strikingly different tissue expression profile compared to PCPE. With that in mind and given the paucity of published studies on PCPE2, this review examines the current literature citing PCPE2 and its association with specific cell types and signaling pathways. Additionally, this review will present a brief history of PCPE2's discovery, highlighting structural and functional similarities and differences compared to PCPE. Considering the widespread use of RNA sequencing techniques to examine associations between cell-specific gene expression and disease states, we will show that PCPE2 is repeatedly found as a differentially regulated gene (DEG) significantly associated with a number of cellular processes, well beyond the scope of procollagen fibril processing.
Collapse
Affiliation(s)
- Michael J Thomas
- Division of Endocrinology and Molecular Medicine, Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hao Xu
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Angela Wang
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mirza Ahmar Beg
- Division of Endocrinology and Molecular Medicine, Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mary G Sorci-Thomas
- Division of Endocrinology and Molecular Medicine, Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
5
|
Abou Assi A, Heude B, Plancoulaine S, Sarté C, Tafflet M, Yuan WL, Charles MA, Armand M, Bernard JY. Patterns of perinatal polyunsaturated fatty acid status and associated dietary or candidate-genetic factors. J Lipid Res 2024; 65:100562. [PMID: 38762122 PMCID: PMC11231547 DOI: 10.1016/j.jlr.2024.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
Perinatal exposure to omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) can be characterized through biomarkers in maternal or cord blood or breast milk. Objectives were to describe perinatal PUFA status combining multiple biofluids and to investigate how it was influenced by dietary intake during pregnancy and maternal FADS and ELOVL gene polymorphisms. This study involved 1,901 mother-child pairs from the EDEN cohort, with PUFA levels measured in maternal and cord erythrocytes, and colostrum. Maternal dietary PUFA intake during the last trimester was derived from a food frequency questionnaire. Twelve single-nucleotide polymorphisms in FADS and ELOVL genes were genotyped from maternal DNA. Principal component analysis incorporating PUFA levels from the three biofluids identified patterns of perinatal PUFA status. Spearman's correlations explored associations between patterns and PUFA dietary intake, and linear regression models examined pattern associations with FADS or ELOVL haplotypes. Five patterns were retained: "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs"; "Omega-6 LC-PUFAs"; "Colostrum LC-PUFAs"; "Omega-6 precursor (LA) and DGLA"; "Omega-6 precursor and colostrum ALA". Maternal omega-3 LC-PUFA intakes were correlated with "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs" (r(DHA) = 0.33) and "Omega-6 LC-PUFAs" (r(DHA) = -0.19) patterns. Strong associations were found between FADS haplotypes and PUFA patterns except for "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs". Lack of genetic association with the "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs" pattern, highly correlated with maternal omega-3 LC-PUFA intake, emphasizes the importance of adequate omega-3 LC-PUFA intake during pregnancy and lactation. This study offers a more comprehensive assessment of perinatal PUFA status and its determinants.
Collapse
Affiliation(s)
- Aline Abou Assi
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France.
| | - Sabine Plancoulaine
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France; Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, WAKING, Bron, France
| | | | - Muriel Tafflet
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Wen Lun Yuan
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France; Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A∗STAR), Singapore, Singapore
| | - Marie-Aline Charles
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Martine Armand
- Aix Marseille Université, CNRS, CRMBM, Marseille, France
| | - Jonathan Y Bernard
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| |
Collapse
|
6
|
Annevelink CE, Westra J, Sala-Vila A, Harris WS, Tintle NL, Shearer GC. A Genome-Wide Interaction Study of Erythrocyte ω-3 Polyunsaturated Fatty Acid Species and Memory in the Framingham Heart Study Offspring Cohort. J Nutr 2024; 154:1640-1651. [PMID: 38141771 PMCID: PMC11347816 DOI: 10.1016/j.tjnut.2023.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Cognitive decline, and more specifically Alzheimer's disease, continues to increase in prevalence globally, with few, if any, adequate preventative approaches. Several tests of cognition are utilized in the diagnosis of cognitive decline that assess executive function, short- and long-term memory, cognitive flexibility, and speech and motor control. Recent studies have separately investigated the genetic component of both cognitive health, using these measures, and circulating fatty acids. OBJECTIVES We aimed to examine the potential moderating effect of main species of ω-3 polyunsaturated fatty acids (PUFAs) on an individual's genetically conferred risk of cognitive decline. METHODS The Offspring cohort from the Framingham Heart Study was cross-sectionally analyzed in this genome-wide interaction study (GWIS). Our sample included all individuals with red blood cell ω-3 PUFA, genetic, cognitive testing (via Trail Making Tests [TMTs]), and covariate data (N = 1620). We used linear mixed effects models to predict each of the 3 cognitive measures (TMT A, TMT B, and TMT D) by each ω-3 PUFA, single nucleotide polymorphism (SNP) (0, 1, or 2 minor alleles), ω-3 PUFA by SNP interaction term, and adjusting for sex, age, education, APOE ε4 genotype status, and kinship (relatedness). RESULTS Our analysis identified 31 unique SNPs from 24 genes reaching an exploratory significance threshold of 1×10-5. Fourteen of the 24 genes have been previously associated with the brain/cognition, and 5 genes have been previously associated with circulating lipids. Importantly, 8 of the genes we identified, DAB1, SORCS2, SERINC5, OSBPL3, CPA6, DLG2, MUC19, and RGMA, have been associated with both cognition and circulating lipids. We identified 22 unique SNPs for which individuals with the minor alleles benefit substantially from increased ω-3 fatty acid concentrations and 9 unique SNPs for which the common homozygote benefits. CONCLUSIONS In this GWIS of ω-3 PUFA species on cognitive outcomes, we identified 8 unique genes with plausible biology suggesting individuals with specific polymorphisms may have greater potential to benefit from increased ω-3 PUFA intake. Additional replication in prospective settings with more diverse samples is needed.
Collapse
Affiliation(s)
- Carmen E Annevelink
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Jason Westra
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States
| | - Aleix Sala-Vila
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Cardiovascular Risk and Nutrition, Hospital del Mar Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - William S Harris
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States
| | - Nathan L Tintle
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Department of Population Health Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, United States
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
7
|
Yang C, Veenstra J, Bartz TM, Pahl MC, Hallmark B, Chen YDI, Westra J, Steffen LM, Brown CD, Siscovick D, Tsai MY, Wood AC, Rich SS, Smith CE, O'Connor TD, Mozaffarian D, Grant SFA, Chilton FH, Tintle NL, Lemaitre RN, Manichaikul A. Genome-wide association studies and fine-mapping identify genomic loci for n-3 and n-6 polyunsaturated fatty acids in Hispanic American and African American cohorts. Commun Biol 2023; 6:852. [PMID: 37587153 PMCID: PMC10432561 DOI: 10.1038/s42003-023-05219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play critical roles in human health. Prior genome-wide association studies (GWAS) of n-3 and n-6 PUFAs in European Americans from the CHARGE Consortium have documented strong genetic signals in/near the FADS locus on chromosome 11. We performed a GWAS of four n-3 and four n-6 PUFAs in Hispanic American (n = 1454) and African American (n = 2278) participants from three CHARGE cohorts. Applying a genome-wide significance threshold of P < 5 × 10-8, we confirmed association of the FADS signal and found evidence of two additional signals (in DAGLA and BEST1) within 200 kb of the originally reported FADS signal. Outside of the FADS region, we identified novel signals for arachidonic acid (AA) in Hispanic Americans located in/near genes including TMX2, SLC29A2, ANKRD13D and POLD4, and spanning a > 9 Mb region on chromosome 11 (57.5 Mb ~ 67.1 Mb). Among these novel signals, we found associations unique to Hispanic Americans, including rs28364240, a POLD4 missense variant for AA that is common in CHARGE Hispanic Americans but absent in other race/ancestry groups. Our study sheds light on the genetics of PUFAs and the value of investigating complex trait genetics across diverse ancestry populations.
Collapse
Affiliation(s)
- Chaojie Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Jenna Veenstra
- Departments of Biology and Statistics, Dordt University, Sioux Center, IA, USA
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian Hallmark
- Center for Biomedical Informatics and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jason Westra
- Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Timothy D O'Connor
- Institute for Genome Sciences; Program in Personalized and Genomic Medicine; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science & Policy, Tufts University, Tufts School of Medicine and Division of Cardiology, Tufts Medical Center, Boston, MA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, USA
- University of Illinois, Chicago, Chicago, IL, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Westra J, Annevelink C, Orchard T, Hou L, Harris WS, O'Connell TD, Shearer G, Tintle N. Genome-wide association study of Red Blood Cell fatty acids in the Women's Health Initiative Memory Study. Prostaglandins Leukot Essent Fatty Acids 2023; 194:102577. [PMID: 37285607 PMCID: PMC10320552 DOI: 10.1016/j.plefa.2023.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Despite their widespread associations with a wide variety of disease phenotypes, the genetics of red blood cell fatty acids remains understudied. We present one of the first genome-wide association studies of red blood cell fatty acid levels, using the Women's Health Initiative Memory study - a prospective cohort of N = 7,479 women aged 65-79. Approximately 9 million SNPs were measured directly or imputed and, in separate linear models adjusted for age and genetic principal components of ethnicity, SNPs were used to predict 28 different fatty acids. SNPs were considered genome-wide significant using a standard genome-wide significance level of p < 1 × 10-8. Twelve separate loci were identified, seven of which replicated results of a prior RBC-FA GWAS. Of the five novel loci, two have functional annotations directly related to fatty acids (ELOVL6 and ACSL6). While overall explained variation is low, the twelve loci identified provide strong evidence of direct relationships between these genes and fatty acid levels. Further studies are needed to establish and confirm the biological mechanisms by which these genes may directly contribute to fatty acid levels.
Collapse
Affiliation(s)
- Jason Westra
- Fatty Acid Research Institute, Sioux Falls, SD, United States of America
| | - Carmen Annevelink
- Department of Nutrition, Penn State University, State College, PA, United States of America
| | - Tonya Orchard
- Human Nutrition Program, Department of Human Sciences, Ohio State University, Columbus, OH, United States of America
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD, United States of America; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States of America
| | - Timothy D O'Connell
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States of America
| | - Gregory Shearer
- Department of Nutrition, Penn State University, State College, PA, United States of America
| | - Nathan Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, United States of America; Department of Population Health Nursing Science, College of Nursing, University of Illinois - Chicago, Chicago, IL, United States of America.
| |
Collapse
|
9
|
Balatskyi VV, Dobrzyn P. Role of Stearoyl-CoA Desaturase 1 in Cardiovascular Physiology. Int J Mol Sci 2023; 24:ijms24065531. [PMID: 36982607 PMCID: PMC10059744 DOI: 10.3390/ijms24065531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
Stearoyl-CoA desaturase is a rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Monounsaturated fatty acids limit the toxicity of exogenous saturated fats. Studies have shown that stearoyl-CoA desaturase 1 is involved in the remodeling of cardiac metabolism. The loss of stearoyl-CoA desaturase 1 reduces fatty acid oxidation and increases glucose oxidation in the heart. Such a change is protective under conditions of a high-fat diet, which reduces reactive oxygen species-generating β-oxidation. In contrast, stearoyl-CoA desaturase 1 deficiency predisposes individuals to atherosclerosis under conditions of hyperlipidemia but protects against apnea-induced atherosclerosis. Stearoyl-CoA desaturase 1 deficiency also impairs angiogenesis after myocardial infarction. Clinical data show a positive correlation between blood stearoyl-CoA Δ-9 desaturation rates and cardiovascular disease and mortality. Moreover, stearoyl-CoA desaturase inhibition is considered an attractive intervention in some obesity-associated pathologies, and the importance of stearoyl-CoA desaturase in the cardiovascular system might be a limitation for developing such therapy. This review discusses the role of stearoyl-CoA desaturase 1 in the regulation of cardiovascular homeostasis and the development of heart disease and presents markers of systemic stearoyl-CoA desaturase activity and their predictive potential in the diagnosis of cardiovascular disorders.
Collapse
|
10
|
Yang C, Veenstra J, Bartz T, Pahl M, Hallmark B, Chen YDI, Westra J, Steffen L, Brown C, Siscovick D, Tsai M, Wood A, Rich S, Smith C, O'Connor T, Mozaffarian D, Grant S, Chilton F, Tintle N, Lemaitre R, Manichaikul A. Genome-Wide Association Studies and fine-mapping of genomic loci for n-3 and n-6 Polyunsaturated Fatty Acids in Hispanic American and African American Cohorts. RESEARCH SQUARE 2023:rs.3.rs-2073736. [PMID: 36865120 PMCID: PMC9980229 DOI: 10.21203/rs.3.rs-2073736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play critical roles in human health. Prior genome-wide association studies (GWAS) of n-3 and n-6 PUFAs in European Americans from the CHARGE Consortium have documented strong genetic signals in/near the FADS locus on chromosome 11. We performed a GWAS of four n-3 and four n-6 PUFAs in Hispanic American (n = 1454) and African American (n = 2278) participants from three CHARGE cohorts. Applying a genome-wide significance threshold of P < 5 x 10 - 8 , we confirmed association of the FADS signal and found evidence of two additional signals (in DAGLA and BEST1 ) within 200 kb of the originally reported FADS signal. Outside of the FADS region, we identified novel signals for arachidonic acid (AA) in Hispanic Americans located in/near genes including TMX2 , SLC29A2 , ANKRD13D and POLD4, and spanning a > 9 Mb region on chromosome 11 (57.5Mb ~ 67.1Mb). Among these novel signals, we found associations unique to Hispanic Americans, including rs28364240, a POLD4 missense variant for AA that is common in CHARGE Hispanic Americans but absent in other race/ancestry groups. Our study sheds light on the genetics of PUFAs and the value of investigating complex trait genetics across diverse ancestry populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Yii-Der Ida Chen
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | | | | | | | | | | | | | | | | | | | | | - Struan Grant
- Children's Hospital of Philadelphia Research Institute
| | | | | | - Rozenn Lemaitre
- Cardiovascular Health Research Unit, University of Washington
| | | |
Collapse
|
11
|
Zigarelli AM, Venera HM, Receveur BA, Wolf JM, Westra J, Tintle NL. Multimarker omnibus tests by leveraging individual marker summary statistics from large biobanks. Ann Hum Genet 2023; 87:125-136. [PMID: 36683423 DOI: 10.1111/ahg.12495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
As biobanks become increasingly popular, access to genotypic and phenotypic data continues to increase in the form of precomputed summary statistics (PCSS). Widespread accessibility of PCSS alleviates many issues related to biobank data, including that of data privacy and confidentiality, as well as high computational costs. However, questions remain about how to maximally leverage PCSS for downstream statistical analyses. Here we present a novel method for testing the association of an arbitrary number of single nucleotide variants (SNVs) on a linear combination of phenotypes after adjusting for covariates for common multimarker tests (e.g., SKAT, SKAT-O) without access to individual patient-level data (IPD). We validate exact formulas for each method, and demonstrate their accuracy through simulation studies and an application to fatty acid phenotypic data from the Framingham Heart Study.
Collapse
Affiliation(s)
- Angela M Zigarelli
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Massachusetts, USA
| | - Hanna M Venera
- Division of Biostatistics, University of Michigan, Michigan, USA
| | - Brody A Receveur
- Department of Statistics, George Mason University, Virginia, USA
| | - Jack M Wolf
- Division of Biostatistics, University of Minnesota, Minnesota, USA
| | - Jason Westra
- Department of Math, Computer Science, and Statistics, Dordt University, Iowa, USA
| | - Nathan L Tintle
- Department of Population Health Nursing Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Association between Omega-3 Index and Hyperglycemia Depending on Body Mass Index among Adults in the United States. Nutrients 2022; 14:nu14204407. [PMID: 36297090 PMCID: PMC9611386 DOI: 10.3390/nu14204407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
There is inconsistency regarding the association between long-chain n-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA; 20:5n3) and docosahexaenoic acid (DHA; 22:6n3) and the risk of type 2 diabetes. The present study aimed to investigate the association between the Omega-3 Index (erythrocyte EPA + DHA) and glycemic status as a function of body mass index (BMI). Cross-sectional data from routine clinical laboratory testing with a total of 100,572 people aged over 18 years and BMI ≥ 18.5 kg/m2 were included. Of the patients, 10% were hyperglycemic (fasting plasma glucose levels ≥ 126 mg/dL) and 24.7% were of normal weight, 35.0% were overweight, and 40.3% were obese. Odds ratios (ORs) of being hyperglycemic were inversely associated with the Omega-3 Index, but weakened as BMI increased. Thus, ORs (95% CI) comparing quintile 5 with quintile 1 were 0.54 (0.44-0.66) in the normal weight group, 0.70 (0.61-0.79) in the overweight group, and 0.74 (0.67-0.81) in the obese group. Similar patterns were seen for EPA and DHA separately. The present study suggested that a low Omega-3 Index is associated with a greater risk of disordered glucose metabolism and this is independent of BMI.
Collapse
|
13
|
Abstract
Information on the Omega-3 Index (O3I) in the United Kingdom (UK) are scarce. The UK-Biobank (UKBB) contains data on total plasma omega-3 polyunsaturated fatty acids (n3-PUFA%) and DHA% measured by NMR. The aim of our study was to create an equation to estimate the O3I (eO3I) from these data. We first performed an interlaboratory experiment with 250 random blood samples in which the O3I was measured in erythrocytes by gas chromatography, and total n3% and DHA% were measured in plasma by NMR. The best predictor of eO3I included both DHA% and a derived metric, the total n3%-DHA%. Together these explained 65% of the variability (r=0.832, p<0.0001). We then estimated the O3I in 117,108 UKBB subjects and correlated it with demographic and lifestyle variables in multivariable adjusted models. The mean (SD) eO3I was 5.58% (2.35%) this UKBB cohort. Several predictors were significantly correlated with eO3I (all p<0.0001). In general order of impact and with directionality (- = inverse, + = direct): oily-fish consumption (+), fish oil supplement use (+), female sex (+), older age (+), alcohol use (+), smoking (-), higher waist circumference and BMI (-), lower socioeconomic status and less education (-). Only 20.5% of eO3I variability could be explained by predictors investigated, and oily-fish consumption accounted for 7.0% of that. With the availability of the eO3I in the UKBB cohort we will be in a position to link risk for a variety of diseases with this commonly-used and well-documented marker of n3-PUFA biostatus.
Collapse
|
14
|
Sala-Vila A, Satizabal CL, Tintle N, Melo van Lent D, Vasan RS, Beiser AS, Seshadri S, Harris WS. Red Blood Cell DHA Is Inversely Associated with Risk of Incident Alzheimer's Disease and All-Cause Dementia: Framingham Offspring Study. Nutrients 2022; 14:2408. [PMID: 35745137 PMCID: PMC9228504 DOI: 10.3390/nu14122408] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Docosahexaenoic acid (DHA) might help prevent Alzheimer's disease (AD). Red blood cell (RBC) status of DHA is an objective measure of long-term dietary DHA intake. In this prospective observational study conducted within the Framingham Offspring Cohort (1490 dementia-free participants aged ≥65 years old), we examined the association of RBC DHA with incident AD, testing for an interaction with APOE-ε4 carriership. During the follow-up (median, 7.2 years), 131 cases of AD were documented. In fully adjusted models, risk for incident AD in the highest RBC DHA quintile (Q5) was 49% lower compared with the lowest quintile (Q1) (Hazard ratio [HR]: 0.51, 95% confidence interval [CI]: 0.27, 0.96). An increase in RBC DHA from Q1 to Q5 was predicted to provide an estimated 4.7 additional years of life free of AD. We observed an interaction DHA × APOE-ε4 carriership for AD. Borderline statistical significance for a lower risk of AD was observed per standard deviation increase in RBC DHA (HR: 0.71, 95% CI: 0.51, 1.00, p = 0.053) in APOE-ε4 carriers, but not in non-carriers (HR: 0.85, 95% CI: 0.65, 1.11, p = 0.240). These findings add to the increasing body of literature suggesting a robust association worth exploring dietary DHA as one strategy to prevent or delay AD.
Collapse
Affiliation(s)
- Aleix Sala-Vila
- Fatty Acid Research Institute, Sioux Falls, SD 57106, USA; (N.T.); (W.S.H.)
- Cardiovascular Risk and Nutrition, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78299, USA; (C.L.S.); (D.M.v.L.); (S.S.)
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX 78229, USA
- The Framingham Heart Study, Framingham, MA 01702, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nathan Tintle
- Fatty Acid Research Institute, Sioux Falls, SD 57106, USA; (N.T.); (W.S.H.)
- Department of Statistics, Dordt University, Sioux Center, IA 51250, USA
| | - Debora Melo van Lent
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78299, USA; (C.L.S.); (D.M.v.L.); (S.S.)
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX 78229, USA
- The Framingham Heart Study, Framingham, MA 01702, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Alexa S. Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA;
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78299, USA; (C.L.S.); (D.M.v.L.); (S.S.)
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX 78229, USA
- The Framingham Heart Study, Framingham, MA 01702, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - William S. Harris
- Fatty Acid Research Institute, Sioux Falls, SD 57106, USA; (N.T.); (W.S.H.)
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57069, USA
| |
Collapse
|
15
|
Videla LA, Hernandez-Rodas MC, Metherel AH, Valenzuela R. Influence of the nutritional status and oxidative stress in the desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Prostaglandins Leukot Essent Fatty Acids 2022; 181:102441. [PMID: 35537354 DOI: 10.1016/j.plefa.2022.102441] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Polyunsaturated fatty acids (PUFA) play essential roles in cell membrane structure and physiological processes including signal transduction, cellular metabolism and tissue homeostasis to combat diseases. PUFA are either consumed from food or synthesized by enzymatic desaturation, elongation and peroxisomal β-oxidation. The nutritionally essential precursors α-linolenic acid (C18:3n-3; ALA) and linoleic acid (C18:2n-6; LA) are subjected to desaturation by Δ6D/Δ5D desaturases and elongation by elongases 2/5, enzymes that are induced by insulin and repressed by PUFA. Maintaining an optimally low n-6/n-3 PUFA ratio is linked to prevention of the development of several diseases, including nonalcoholic fatty liver disease (NAFLD) that is characterized by depletion of PUFA promoting hepatic steatosis and inflammation. In this context, supplementation with n-3 PUFA revealed significant lowering of hepatic steatosis in obese patients, whereas prevention of fatty liver by high-fat diet in mice is observed in n-3 PUFA and hydroxytyrosol co-administration. The aim of this work is to review the role of nutritional status and nutrient availability on markers of PUFA biosynthesis. In addition, the impact of oxidative stress developed as a result of NAFLD, a redox imbalance that may alter the expression and activity of the enzymes involved, and diminished n-3 PUFA levels by free-radical dependent peroxidation processes will be discussed.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Schuchardt JP, Cerrato M, Ceseri M, DeFina LF, Delgado GE, Gellert S, Hahn A, Howard BV, Kadota A, Kleber ME, Latini R, Maerz W, Manson JE, Mora S, Park Y, Sala-Vila A, von Schacky C, Sekikawa A, Tintle N, Tucker KL, Vasan RS, Harris WS. Red blood cell fatty acid patterns from 7 countries: Focus on the Omega-3 index. Prostaglandins Leukot Essent Fatty Acids 2022; 179:102418. [PMID: 35366625 PMCID: PMC10440636 DOI: 10.1016/j.plefa.2022.102418] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
Red blood cell (RBC) fatty acid (FA) patterns are becoming recognized as long-term biomarkers of tissue FA composition, but different analytical methods have complicated inter-study and international comparisons. Here we report RBC FA data, with a focus on the Omega-3 Index (EPA + DHA in% of total FAs in RBC), from samples of seven countries (USA, Canada, Italy, Spain, Germany, South Korea, and Japan) including 167,347 individuals (93% of all samples were from the US). FA data were generated by a uniform methodology from a variety of interventional and observational studies and from clinical laboratories. The cohorts differed in size, demographics, health status, and year of collection. Only the Canadian cohort was a formal, representative population-based survey. The mean Omega-3 Index of each country was categorized as desirable (>8%), moderate (>6% to 8%), low (>4% to 6%), or very low (≤4%). Only cohorts from Alaska (treated separately from the US), South Korea and Japan showed a desirable Omega-3 Index. The Spanish cohort had a moderate Omega-3 Index, while cohorts from the US, Canada, Italy, and Germany were all classified as low. This study is limited by the use of cohorts of convenience and small sample sizes in some countries. Countries undertaking national health status studies should utilize a uniform method to measure Omega-3 FA levels.
Collapse
Affiliation(s)
- Jan Philipp Schuchardt
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Am Kleinen Felde 30, Hannover 30167, Germany; The Fatty Acid Research Institute, Sioux Falls, SD, USA.
| | - Marianna Cerrato
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Martina Ceseri
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sandra Gellert
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Am Kleinen Felde 30, Hannover 30167, Germany
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Am Kleinen Felde 30, Hannover 30167, Germany
| | | | - Aya Kadota
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Roberto Latini
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Winfried Maerz
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria; Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; SYNLAB Academy, Mannheim, Germany
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Samia Mora
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yongsoon Park
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Food and Nutrition, Hanyang University, Seoul, South Korea
| | - Aleix Sala-Vila
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Cardiovascular risk and nutrition group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - Akira Sekikawa
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Tintle
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Population Health Nursing Science, College of Nursing, University of Illinois - Chicago, Chicago, IL, USA
| | - Katherine L Tucker
- Department of Biomedical Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA, USA
| | - Ramachandran S Vasan
- Department of Medicine, Preventive Medicine & Epidemiology, School of Medicine, Boston University, Boston, MA, USA
| | - William S Harris
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
17
|
Wolf JM, Westra J, Tintle N. Using Summary Statistics to Model Multiplicative Combinations of Initially Analyzed Phenotypes With a Flexible Choice of Covariates. Front Genet 2021; 12:745901. [PMID: 34712269 PMCID: PMC8546319 DOI: 10.3389/fgene.2021.745901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
While the promise of electronic medical record and biobank data is large, major questions remain about patient privacy, computational hurdles, and data access. One promising area of recent development is pre-computing non-individually identifiable summary statistics to be made publicly available for exploration and downstream analysis. In this manuscript we demonstrate how to utilize pre-computed linear association statistics between individual genetic variants and phenotypes to infer genetic relationships between products of phenotypes (e.g., ratios; logical combinations of binary phenotypes using "and" and "or") with customized covariate choices. We propose a method to approximate covariate adjusted linear models for products and logical combinations of phenotypes using only pre-computed summary statistics. We evaluate our method's accuracy through several simulation studies and an application modeling ratios of fatty acids using data from the Framingham Heart Study. These studies show consistent ability to recapitulate analysis results performed on individual level data including maintenance of the Type I error rate, power, and effect size estimates. An implementation of this proposed method is available in the publicly available R package pcsstools.
Collapse
Affiliation(s)
- Jack M. Wolf
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Jason Westra
- Department of Mathematics, Computer Science, and Statistics, Dordt University, Sioux Center, IA, United States
| | - Nathan Tintle
- Department of Mathematics, Computer Science, and Statistics, Dordt University, Sioux Center, IA, United States
- Department of Population Health Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Nevola KT, Nagarajan A, Hinton AC, Trajanoska K, Formosa MM, Xuereb-Anastasi A, van der Velde N, Stricker BH, Rivadeneira F, Fuggle NR, Westbury LD, Dennison EM, Cooper C, Kiel DP, Motyl KJ, Lary CW. Pharmacogenomic Effects of β-Blocker Use on Femoral Neck Bone Mineral Density. J Endocr Soc 2021; 5:bvab092. [PMID: 34195528 PMCID: PMC8237849 DOI: 10.1210/jendso/bvab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
CONTEXT Recent studies have shown that β-blocker (BB) users have a decreased risk of fracture and higher bone mineral density (BMD) compared to nonusers, likely due to the suppression of adrenergic signaling in osteoblasts, leading to increased BMD. There is also variability in the effect size of BB use on BMD in humans, which may be due to pharmacogenomic effects. OBJECTIVE To investigate potential single-nucleotide variations (SNVs) associated with the effect of BB use on femoral neck BMD, we performed a cross-sectional analysis using clinical data, dual-energy x-ray absorptiometry, and genetic data from the Framingham Heart Study's (FHS) Offspring Cohort. We then sought to validate our top 4 genetic findings using data from the Rotterdam Study, the BPROOF Study, the Malta Osteoporosis Fracture Study (MOFS), and the Hertfordshire Cohort Study. METHODS We used sex-stratified linear mixed models to determine SNVs that had a significant interaction effect with BB use on femoral neck (FN) BMD across 11 gene regions. We also evaluated the association of our top SNVs from the FHS with microRNA (miRNA) expression in blood and identified potential miRNA-mediated mechanisms by which these SNVs may affect FN BMD. RESULTS One variation (rs11124190 in HDAC4) was validated in females using data from the Rotterdam Study, while another (rs12414657 in ADRB1) was validated in females using data from the MOFS. We performed an exploratory meta-analysis of all 5 studies for these variations, which further validated our findings. CONCLUSION This analysis provides a starting point for investigating the pharmacogenomic effects of BB use on BMD measures.
Collapse
Affiliation(s)
- Kathleen T Nevola
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Archana Nagarajan
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| | - Alexandra C Hinton
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Melissa M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta
- Centre for Molecular Medicine and Biobanking, MSD 2080, Malta
| | - Angela Xuereb-Anastasi
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta
- Centre for Molecular Medicine and Biobanking, MSD 2080, Malta
| | - Nathalie van der Velde
- Department of Internal Medicine, Geriatrics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, 1105 AZ, the Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Nicholas R Fuggle
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Leo D Westbury
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
- Victoria University of Wellington, Wellington, New Zealand
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Douglas P Kiel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Hinda and Arthur Marcus Institute for Aging Research Hebrew SeniorLife, Boston, MA 02131, USA
| | - Katherine J Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | - Christine W Lary
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| |
Collapse
|
19
|
McBurney MI, Tintle NL, Vasan RS, Sala-Vila A, Harris WS. Using an erythrocyte fatty acid fingerprint to predict risk of all-cause mortality: the Framingham Offspring Cohort. Am J Clin Nutr 2021; 114:1447-1454. [PMID: 34134132 PMCID: PMC8488873 DOI: 10.1093/ajcn/nqab195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/18/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND RBC long-chain omega-3 (n-3) fatty acid (FA) percentages (of total fatty acids) are associated with lower risk for total mortality, but it is unknown if a suite of FAs could improve risk prediction. OBJECTIVES The objective of this study was to compare a combination of RBC FA levels with standard risk factors for cardiovascular disease (CVD) in predicting risk of all-cause mortality. METHODS Framingham Offspring Cohort participants without prevalent CVD having RBC FA measurements and relevant baseline clinical covariates (n = 2240) were evaluated during 11 y of follow-up. A forward, stepwise approach was used to systematically evaluate the association of 8 standard risk factors (age, sex, total cholesterol, HDL cholesterol, hypertension treatment, systolic blood pressure, smoking status, and prevalent diabetes) and 28 FA metrics with all-cause mortality. A 10-fold cross-validation process was used to build and validate models adjusted for age and sex. RESULTS Four of 28 FA metrics [14:0, 16:1n-7, 22:0, and omega-3 index (O3I; 20:5n-3 + 22:6n-3)] appeared in ≥5 of the discovery models as significant predictors of all-cause mortality. In age- and sex-adjusted models, a model with 4 FA metrics was at least as good at predicting all-cause mortality as a model including the remaining 6 standard risk factors (C-statistic: 0.778; 95% CI: 0.759, 0.797; compared with C-statistic: 0.777; 95% CI: 0.753, 0.802). A model with 4 FA metrics plus smoking and diabetes (FA + Sm + D) had a higher C-statistic (0.790; 95% CI: 0.770, 0.811) compared with the FA (P < 0.01) or Sm + D models alone (C-statistic: 0.766; 95% CI: 0.739, 0.794; P < 0.001). A variety of other highly correlated FAs could be substituted for 14:0, 16:1n-7, 22:0, or O3I with similar predicted outcomes. CONCLUSIONS In this community-based population in their mid-60s, RBC FA patterns were as predictive of risk for death during the next 11 y as standard risk factors. Replication is needed in other cohorts to validate this FA fingerprint as a predictor of all-cause mortality.
Collapse
Affiliation(s)
| | - Nathan L Tintle
- The Fatty Acid Research Institute, Sioux Falls, SD, USA,Department of Statistics, Dordt University, Sioux Center, IA, USA
| | | | - Aleix Sala-Vila
- The Fatty Acid Research Institute, Sioux Falls, SD, USA,Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - William S Harris
- The Fatty Acid Research Institute, Sioux Falls, SD, USA,Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
20
|
Tsuboi A, Matsui H, Shiraishi N, Murakami T, Otsuki A, Kawashima J, Kiyama T, Tamahara T, Goto M, Koyama S, Sugawara J, Kodama EN, Metoki H, Hozawa A, Kuriyama S, Tomita H, Kikuya M, Minegishi N, Suzuki K, Koshiba S, Tamiya G, Fuse N, Aoki Y, Takai-Igarashi T, Ogishima S, Nakamura T, Sakurai-Yageta M, Nagami F, Kinoshita K, Kure S, Shimizu R, Sasaki K, Yamamoto M. Design and Progress of Oral Health Examinations in the Tohoku Medical Megabank Project. TOHOKU J EXP MED 2021; 251:97-115. [PMID: 32581193 DOI: 10.1620/tjem.251.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to assess the long-term impact of the Great East Japan Earthquake on the oral health of disaster victims and to evaluate gene-environmental interactions in the development of major oral diseases and oral-systemic associations, the oral part of two large-scale genome cohort studies by the Tohoku Medical Megabank Organization (ToMMo), including the Community-based cohort (CommCohort) study and the Birth and Three-Generation cohort (BirThree) study, have been conducted. The study population comprised 32,185 subjects, including 16,886 participants in the CommCohort study and 15,299 participants in the BirThree cohort study, recruited from 2013 to 2017. The oral studies consist of a questionnaire regarding oral hygiene behavior, clinical examinations by dentists, and oral plaque and saliva sampling for microbiome analyses, which were carried out at seven community support centers in Miyagi prefecture. The median age of all participants was 55.0 years, and 66.1% of participants were women. Almost all participants reported that they brushed their teeth more than once a day. The median number of present teeth was 27.0, and the decayed, missing and filled tooth number was 16.0, with a significant difference according to age and sex. The median periodontal pocket and clinical attachment level was 2.48 mm and 4.00 mm, respectively. Periodontal parameters increased significantly according to age, except for the accumulation of dental calculus. The oral part of these extensive cross-sectional studies provides a unique and important platform for future studies on oral health and diseases that elicit through interactions with systemic diseases, lifestyles, life events and genetic backgrounds, and contributes to researches clarifying the long-term effects of disasters on oral health.
Collapse
Affiliation(s)
- Akito Tsuboi
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Dentistry, Tohoku University.,Graduate School of Medicine, Tohoku University
| | - Hiroyuki Matsui
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Dentistry, Tohoku University
| | | | - Takahisa Murakami
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Dentistry, Tohoku University.,Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Akihito Otsuki
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University
| | | | - Tomomi Kiyama
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Dentistry, Tohoku University
| | - Toru Tamahara
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Dentistry, Tohoku University
| | - Maki Goto
- Tohoku Medical Megabank Organization, Tohoku University
| | | | - Junichi Sugawara
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University
| | - Eiichi N Kodama
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University.,International Research Institute of Disaster Science, Tohoku University
| | - Hirohito Metoki
- Tohoku Medical Megabank Organization, Tohoku University.,Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University.,International Research Institute of Disaster Science, Tohoku University
| | - Hiroaki Tomita
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University.,International Research Institute of Disaster Science, Tohoku University
| | - Masahiro Kikuya
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University.,Teikyo University School of Medicine
| | - Naoko Minegishi
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University
| | - Kichiya Suzuki
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University.,Center for Advanced Intelligence Project, RIKEN
| | - Nobuo Fuse
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Information Sciences, Tohoku University
| | - Takako Takai-Igarashi
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University
| | - Soichi Ogishima
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University
| | - Tomohiro Nakamura
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University
| | | | - Fuji Nagami
- Tohoku Medical Megabank Organization, Tohoku University
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Information Sciences, Tohoku University
| | - Shigeo Kure
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University
| | - Ritsuko Shimizu
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University
| | | | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University.,Graduate School of Medicine, Tohoku University
| |
Collapse
|
21
|
Harris WS, Tintle NL, Manson JE, Metherel AH, Robinson JG. Effects of menopausal hormone therapy on erythrocyte n-3 and n-6 PUFA concentrations in the Women's Health Initiative randomized trial. Am J Clin Nutr 2021; 113:1700-1706. [PMID: 33710263 PMCID: PMC8168349 DOI: 10.1093/ajcn/nqaa443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/21/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The factors other than dietary intake that determine tissue concentrations of EPA and DHA remain obscure. Prior studies suggested that, in women, endogenous estrogen may accelerate synthesis of DHA from ɑ-linolenic acid (ALA), but the effects of exogenous estrogen on RBC n-3 (ɷ-3) PUFA concentrations are unknown. OBJECTIVE We tested the hypothesis that menopausal hormone therapy (HT) would increase RBC n-3 PUFA concentrations. METHODS Postmenopausal women (ages 50-79 y) were assigned to HT or placebo in the Women's Health Initiative (WHI) randomized trial. The present analyses included a subset of 1170 women (ages 65-79 y) who had RBC PUFA concentrations measured at baseline and at 1 y as participants in the WHI Memory Study. HT included conjugated equine estrogens (E) alone for women without a uterus (n = 560) and E plus medroxyprogesterone acetate (P) for those with an intact uterus (n = 610). RBC n-3 and n-6 (ɷ-6) PUFAs were quantified. RESULTS Effects of E alone and E+P on PUFA profiles were similar and were thus combined in the analyses. Relative to the changes in the placebo group after 1 y of HT, docosapentaenoic acid (DPA; n-3) concentrations decreased by 10% (95% CI: 7.3%, 12.5%), whereas DHA increased by 11% (95% CI: 7.4%, 13.9%) in the HT group. Like DHA, DPA n-6 increased by 13% from baseline (95% CI: 10.0%, 20.3%), whereas linoleic acid decreased by 2.0% (95% CI: 1.0%, 4.1%; P values at least <0.01 for all). EPA and arachidonic acid concentrations were unchanged. CONCLUSIONS HT increased RBC concentrations of the terminal n-3 and n-6 PUFAs (DHA and DPA n-6). These findings are consistent with an estrogen-induced increase in DHA and DPA n-6 synthesis, which is consistent with an upregulation of fatty acid elongases and/or desaturases in the PUFA synthetic pathway. The clinical implications of these changes require further study. The Women's Health Initiative Memory Study is registered at clinicaltrials.gov as NCT00685009. Note that the data presented here were not planned as part of the original trial, and therefore are to be considered exploratory.
Collapse
Affiliation(s)
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, USA,Department of Mathematics and Statistics, Dordt College, Sioux Center, IA, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jennifer G Robinson
- Department of Epidemiology, College of Public Health, Iowa City, IA, USA,Department of Internal Medicine, College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
22
|
Metherel AH, Irfan M, Klingel SL, Mutch DM, Bazinet RP. Higher Increase in Plasma DHA in Females Compared to Males Following EPA Supplementation May Be Influenced by a Polymorphism in ELOVL2: An Exploratory Study. Lipids 2020; 56:211-228. [PMID: 33174255 DOI: 10.1002/lipd.12291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Young adult females have higher blood docosahexaenoic acid (DHA), 22:6n-3 levels than males, and this is believed to be due to higher DHA synthesis rates, although DHA may also accumulate due to a longer half-life or a combination of both. However, sex differences in blood fatty acid responses to eicosapentaenoic acid (EPA), 20:5n-3 or DHA supplementation have not been fully investigated. In this exploratory analysis, females and males (n = 14-15 per group) were supplemented with 3 g/day EPA, 3 g/day DHA, or olive oil control for 12 weeks. Plasma was analyzed for sex effects at baseline and changes following 12 weeks' supplementation for fatty acid levels and carbon-13 signature (δ13 C). Following EPA supplementation, the increase in plasma DHA in females (+23.8 ± 11.8, nmol/mL ± SEM) was higher than males (-13.8 ± 9.2, p < 0.01). The increase in plasma δ13 C-DHA of females (+2.79 ± 0.31, milliUrey (mUr ± SEM) compared with males (+1.88 ± 0.44) did not reach statistical significance (p = 0.10). The sex effect appears driven largely by increased plasma DHA in the AA genotype of females (+58.8 ± 11.5, nmol/mL ± SEM, n = 5) compared to GA + GG in females (+4.34 ± 13.5, n = 9) and AA in males (-29.1 ± 17.2, n = 6) for rs953413 in the ELOVL2 gene (p < 0.001). In conclusion, EPA supplementation increases plasma DHA levels in females compared to males, which may be dependent on the AA genotype for rs953413 in ELOVL2.
Collapse
Affiliation(s)
- Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maha Irfan
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shannon L Klingel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
23
|
Coltell O, Sorlí JV, Asensio EM, Barragán R, González JI, Giménez-Alba IM, Zanón-Moreno V, Estruch R, Ramírez-Sabio JB, Pascual EC, Ortega-Azorín C, Ordovas JM, Corella D. Genome-Wide Association Study for Serum Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Exploratory Analysis of the Sex-Specific Effects and Dietary Modulation in Mediterranean Subjects with Metabolic Syndrome. Nutrients 2020; 12:E310. [PMID: 31991592 PMCID: PMC7071282 DOI: 10.3390/nu12020310] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Many early studies presented beneficial effects of polyunsaturated fatty acids (PUFA) on cardiovascular risk factors and disease. However, results from recent meta-analyses indicate that this effect would be very low or nil. One of the factors that may contribute to the inconsistency of the results is that, in most studies, genetic factors have not been taken into consideration. It is known that fatty acid desaturase (FADS) gene cluster in chromosome 11 is a very important determinant of plasma PUFA, and that the prevalence of the single nucleotide polymorphisms (SNPs) varies greatly between populations and may constitute a bias in meta-analyses. Previous genome-wide association studies (GWAS) have been carried out in other populations and none of them have investigated sex and Mediterranean dietary pattern interactions at the genome-wide level. Our aims were to undertake a GWAS to discover the genes most associated with serum PUFA concentrations (omega-3, omega-6, and some fatty acids) in a scarcely studied Mediterranean population with metabolic syndrome, and to explore sex and adherence to Mediterranean diet (MedDiet) interactions at the genome-wide level. Serum PUFA were determined by NMR spectroscopy. We found strong robust associations between various SNPs in the FADS cluster and omega-3 concentrations (top-ranked in the adjusted model: FADS1-rs174547, p = 3.34 × 10-14; FADS1-rs174550, p = 5.35 × 10-14; FADS2-rs1535, p = 5.85 × 10-14; FADS1-rs174546, p = 6.72 × 10-14; FADS2-rs174546, p = 9.75 × 10-14; FADS2- rs174576, p = 1.17 × 10-13; FADS2-rs174577, p = 1.12 × 10-12, among others). We also detected a genome-wide significant association with other genes in chromosome 11: MYRF (myelin regulatory factor)-rs174535, p = 1.49 × 10-12; TMEM258 (transmembrane protein 258)-rs102275, p = 2.43 × 10-12; FEN1 (flap structure-specific endonuclease 1)-rs174538, p = 1.96 × 10-11). Similar genome-wide statistically significant results were found for docosahexaenoic fatty acid (DHA). However, no such associations were detected for omega-6 PUFAs or linoleic acid (LA). For total PUFA, we observed a consistent gene*sex interaction with the DNTTIP2 (deoxynucleotidyl transferase terminal interacting protein 2)-rs3747965 p = 1.36 × 10-8. For adherence to MedDiet, we obtained a relevant interaction with the ME1 (malic enzyme 1) gene (a gene strongly regulated by fat) in determining serum omega-3. The top-ranked SNP for this interaction was ME1-rs3798890 (p = 2.15 × 10-7). In the regional-wide association study, specifically focused on the FADS1/FASD2/FADS3 and ELOVL (fatty acid elongase) 2/ELOVL 5 regions, we detected several statistically significant associations at p < 0.05. In conclusion, our results confirm a robust role of the FADS cluster on serum PUFA in this population, but the associations vary depending on the PUFA. Moreover, the detection of some sex and diet interactions underlines the need for these associations/interactions to be studied in all specific populations so as to better understand the complex metabolism of PUFA.
Collapse
Affiliation(s)
- Oscar Coltell
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
| | - Jose V. Sorlí
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Eva M. Asensio
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Rocío Barragán
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - José I. González
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Ignacio M. Giménez-Alba
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Vicente Zanón-Moreno
- Area of Health Sciences, Valencian International University, 46002 Valencia, Spain;
- Red Temática de Investigación Cooperativa en Patología Ocular (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Ophthalmology Research Unit “Santiago Grisolia”, Dr. Peset University Hospital, 46017 Valencia, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | | | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- Assisted Reproduction Unit of the University Hospital of Valencia, 46010 Valencia, Spain
| | - Carolina Ortega-Azorín
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 USA;
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- IMDEA Alimentación, 28049 Madrid, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
24
|
Wolf JM, Barnard M, Xia X, Ryder N, Westra J, Tintle N. Computationally efficient, exact, covariate-adjusted genetic principal component analysis by leveraging individual marker summary statistics from large biobanks. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020; 25:719-730. [PMID: 31797641 PMCID: PMC6907735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The popularization of biobanks provides an unprecedented amount of genetic and phenotypic information that can be used to research the relationship between genetics and human health. Despite the opportunities these datasets provide, they also pose many problems associated with computational time and costs, data size and transfer, and privacy and security. The publishing of summary statistics from these biobanks, and the use of them in a variety of downstream statistical analyses, alleviates many of these logistical problems. However, major questions remain about how to use summary statistics in all but the simplest downstream applications. Here, we present a novel approach to utilize basic summary statistics (estimates from single marker regressions on single phenotypes) to evaluate more complex phenotypes using multivariate methods. In particular, we present a covariate-adjusted method for conducting principal component analysis (PCA) utilizing only biobank summary statistics. We validate exact formulas for this method, as well as provide a framework of estimation when specific summary statistics are not available, through simulation. We apply our method to a real data set of fatty acid and genomic data.
Collapse
Affiliation(s)
- Jack M Wolf
- Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN 55057, USA,
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The human genome has been proposed to contribute to interpersonal variability in the way we respond to nutritional intake. However, personalized diets solely based on gene-nutrient interactions have not lived up to their expectations to date. Advances in microbiome research have indicated that a science-based generation of a personalized diet based on a combination of clinical and microbial features may constitute a promising new approach enabling accurate prediction of dietary responses. In addition, scientific advances in our understanding of defined dietary components and their effects on human physiology led to the incorporation and testing of defined diets as preventive and treatment approaches for diseases, such as epilepsy, ulcerative colitis, Crohn disease, and type 1 diabetes mellitus. Additionally, exciting new studies show that tailored diet regiments have the potential to modulate pharmaceutical treatment efficacy in cancer treatment. Overall, the true therapeutic potential of nutritional interventions is coming to light but is also facing substantial challenges in understanding mechanisms of activity, optimization of dietary interventions for specific human subpopulations, and elucidation of adverse effects potentially stemming from some dietary components in a number of individuals.
Collapse
|
26
|
Jackson KH, Polreis JM, Tintle NL, Kris-Etherton PM, Harris WS. Association of reported fish intake and supplementation status with the omega-3 index. Prostaglandins Leukot Essent Fatty Acids 2019; 142:4-10. [PMID: 30773210 DOI: 10.1016/j.plefa.2019.01.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/31/2018] [Accepted: 01/10/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND An Omega-3 Index (O3I; EPA+DHA as a % of erythrocyte total fatty acids) in the desirable range (8%-12%) has been associated with improved heart and brain health. OBJECTIVE To determine the combination of fish intake and supplement use that is associated with an O3I of >8%. DESIGN Two cross-sectional studies comparing the O3I to EPA+DHA/fish intake. PARTICIPANTS/SETTING The first study included 28 individuals and assessed their fish and EPA+DHA intake using both a validated triple-pass 24-hr recall dietary survey and a single fish-intake question. The second study used de-identified data from 3,458 adults (84% from US) who self-tested their O3I and answered questions about their fish intake and supplement use. STATISTICAL ANALYSES PERFORMED Study 1, chi-squared, one-way ANOVA, and Pearson correlations were computed. In Study 2, multi-variable regression models were used to predict O3I levels from reported fish/supplement intakes. RESULTS The mean ± SD O3I was 4.87 ± 1.32%, and 5.99 ± 2.29% in the first and second studies, respectively. Both studies showed that for every increase in fish intake category the O3I increased by 0.50-0.65% (p < 0.0001). In the second study, about half of the population was taking omega-3 supplements, 32% reported no fish intake and 17% reported eating fish >2 times per week. Taking an EPA+DHA supplement increased the O3I by 2.2% (p < 0.0001). The odds of having an O3I of ≥8% were 44% in the highest intake group (≥3 servings/week and supplementation) and 2% in the lowest intake group (no fish intake or supplementation); and in those consuming 2 fish meals per week but not taking supplements (as per recommendations), 10%. CONCLUSIONS Current AHA recommendations are unlikely to produce a desirable O3I. Consuming at least 3 fish servings per week plus taking an EPA+DHA supplement markedly increases the likelihood of achieving this target level.
Collapse
Affiliation(s)
- K H Jackson
- OmegaQuant, LLC, 5009W. 12th St., Suite 8, Sioux Falls, SD 57106, United States.
| | - J M Polreis
- OmegaQuant, LLC, 5009W. 12th St., Suite 8, Sioux Falls, SD 57106, United States
| | - N L Tintle
- Department of Mathematics and Statistics, Dordt College, Sioux Center, IA, United States
| | - P M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - W S Harris
- OmegaQuant, LLC, 5009W. 12th St., Suite 8, Sioux Falls, SD 57106, United States; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States
| |
Collapse
|
27
|
Gasdaska A, Friend D, Chen R, Westra J, Zawistowski M, Lindsey W, Tintle N. Leveraging summary statistics to make inferences about complex phenotypes in large biobanks. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2019; 24:391-402. [PMID: 30963077 PMCID: PMC6417828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As genetic sequencing becomes less expensive and data sets linking genetic data and medical records (e.g., Biobanks) become larger and more common, issues of data privacy and computational challenges become more necessary to address in order to realize the benefits of these datasets. One possibility for alleviating these issues is through the use of already-computed summary statistics (e.g., slopes and standard errors from a regression model of a phenotype on a genotype). If groups share summary statistics from their analyses of biobanks, many of the privacy issues and computational challenges concerning the access of these data could be bypassed. In this paper we explore the possibility of using summary statistics from simple linear models of phenotype on genotype in order to make inferences about more complex phenotypes (those that are derived from two or more simple phenotypes). We provide exact formulas for the slope, intercept, and standard error of the slope for linear regressions when combining phenotypes. Derived equations are validated via simulation and tested on a real data set exploring the genetics of fatty acids.
Collapse
Affiliation(s)
- Angela Gasdaska
- Department of Mathematics and Computer Science and Department of Quantitative Theory and Methods, Emory University, Atlanta, GA 30322, USA,
| | - Derek Friend
- Department of Geography, University of Nevada, Reno, NV 89557, USA,
| | - Rachel Chen
- Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA,
| | - Jason Westra
- Department of Math, Computer Science, and Statistics, Dordt College, Sioux Center, IA 51250, USA,
| | - Matthew Zawistowski
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA,
| | - William Lindsey
- Department of Math, Computer Science, and Statistics, Dordt College, Sioux Center, IA 51250, USA
| | - Nathan Tintle
- Department of Math, Computer Science, and Statistics, Dordt College, Sioux Center, IA 51250, USA
| |
Collapse
|