1
|
Dabour MS, George MY, Grant MKO, Zordoky BN. Canagliflozin differentially modulates carfilzomib-induced endoplasmic reticulum stress in multiple myeloma and endothelial cells. Arch Toxicol 2025; 99:729-744. [PMID: 39645617 DOI: 10.1007/s00204-024-03913-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
Carfilzomib (CFZ), a second-generation proteasome inhibitor, is a key treatment for multiple myeloma (MM), but its use is associated with significant cardiovascular adverse events (CVAEs), including heart failure and hypertension. Endothelial dysfunction is believed to contribute to these CVAEs. Building on our previous findings that CFZ induces endothelial toxicity and that canagliflozin protects against CFZ-induced endothelial apoptosis, this study aimed to evaluate CFZ-induced endoplasmic reticulum (ER) stress and autophagy in endothelial and MM cells, as well as the impact of canagliflozin on these processes and its impact on the anticancer effects of CFZ in MM cells. Endothelial cells (HUVECs and EA.hy926) and multiple myeloma cells (RPMI8226) were treated with 0.5 µM CFZ, either alone or in combination with canagliflozin (5-20 µM), to assess the effects on ER stress and autophagy in both cell types. CFZ induced ER stress in endothelial and MM cells. In endothelial cells, canagliflozin mitigated CFZ-induced markers of ER stress, while unexpectedly upregulating CFZ-induced CHOP. Whereas, in MM cells, canagliflozin did not alter CFZ-induced ER stress, but instead further upregulated CFZ-induced ATF-4. In addition, CFZ induced autophagy in endothelial cells while inhibiting it in MM cells. Canagliflozin abrogated CFZ-induced autophagy in endothelial cells. In striking contrast to its effects in endothelial cells, canagliflozin enhanced the cytotoxic effects of CFZ in MM cells. Intriguingly, in an innovative co-culture system, canagliflozin enhanced CFZ-induced apoptosis in MM cells while protecting endothelial cells. These findings underscore the dual role of canagliflozin in reducing CFZ-induced endothelial toxicity, while enhancing its cytotoxic effect in MM.
Collapse
Affiliation(s)
- Mohamed S Dabour
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mina Y George
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Li C, Zhang B, Kim M, Liu H, Yang F, Chen K, Shi H. Atractylenolide Ⅲ partially alleviates tunicamycin-induced damage in porcine oocytes during in vitro maturation by reducing oxidative stress. Anim Reprod Sci 2025; 273:107761. [PMID: 39765131 DOI: 10.1016/j.anireprosci.2024.107761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025]
Abstract
Assisted reproductive technology (ART) is widely used to address infertility and enhance reproductive outcomes in livestock. Among various ART techniques, in vitro maturation (IVM) is commonly used to obtain high-quality oocytes but is susceptible to oxidative stress. In traditional Chinese medicine, Rhizoma Atractylodis Macrocephalae (Bai Zhu) is used to enhance maternal and fetal health. Atractylenolide Ⅲ (AⅢ), a major component of Bai Zhu, has shown both antioxidant properties and oxidative stress induction, leading to controversy. This study used porcine oocytes as a model to investigate the effects of AⅢ under tunicamycin (TM)-induced oxidative stress. During IVM, oocytes were treated with various concentrations of AⅢ and a constant dose of TM. AⅢ promoted oocyte maturation and cumulus cell expansion, with the optimal concentration being 1 mg/L. AⅢ reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels, indicating reduced oxidative damage. Mitochondrial function and membrane potential (MMP) were preserved in AⅢ-treated oocytes. Additionally, AIII could alleviate TM-induced endoplasmic reticulum (ER) stress, as shown by decreased mRNA expression of ER stress markers. Following parthenogenetic activation (PA), AⅢ-treated oocytes exhibited increased cleavage and blastocyst formation rates with reduced apoptosis compared to the TM group. These findings suggest that AⅢ protects against oxidative stress, improving oocyte quality and developmental potential, with potential applications in ART.
Collapse
Affiliation(s)
- Chuang Li
- China-Japan Union Hospital of Jilin University, Rehabilitation Medicine Department, Changchun, Jilin, China; Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Butian Zhang
- China-Japan Union Hospital of Jilin University, Rehabilitation Medicine Department, Changchun, Jilin, China
| | - Minkyu Kim
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea; MK biotech Inc., Daejeon, South Korea
| | - Haixing Liu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Feiyang Yang
- College of Computer Science and Technology, Jilin University, Jilin, China
| | - Ke Chen
- Department of international trade, College of Economics and Management, Chungnam National University, Daejeon, South Korea
| | - Hongfeng Shi
- China-Japan Union Hospital of Jilin University, Rehabilitation Medicine Department, Changchun, Jilin, China.
| |
Collapse
|
3
|
Huang CM, Huang HM, Li YH, Liang XW, Kim NH, Xu YN. Effects of Caffeic Acid Phenethyl Ester on Embryonic Development Through Regulation of Mitochondria and Endoplasmic Reticulum. Vet Sci 2024; 11:625. [PMID: 39728965 DOI: 10.3390/vetsci11120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is one of the main active components of the natural medicine propolis, which has antioxidant, anti-tumor, and immunomodulatory activities. This study aimed to analyze the effects and underlying mechanisms of CAPE added to the medium of in vitro cultures on the developmental competence, mitochondria, and endoplasmic reticulum of porcine embryos. The results demonstrated that 1 nM of CAPE significantly improved the quality of porcine embryos, increased the rate of blastocyst formation, and enhanced the proliferation ability. It also enhanced mitochondrial function by increasing the level of mitochondrial membrane potential and expression of the mitochondrial biogenesis-related protein PPARgamma coactivator 1 alpha and beta (PGC1 alpha and beta), regulating mitochondrial biogenesis, and increasing adenosine triphosphate (ATP) content. In addition, CAPE alleviated oxidative and endoplasmic reticulum (ER) stress in embryos by decreasing ROS accumulation and increasing glutathione content, as well as elevating Nrf2 and reducing GRP78 (ER stress marker) expression levels. Moreover, CAPE reduced the levels of apoptosis and autophagy in the cultivated embryos. These results indicate that CAPE improves the quality and enhances the mitochondrial function of in vitro-produced porcine embryos by alleviating oxidative and ER stress.
Collapse
Affiliation(s)
- Chu-Man Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China
| | - Hui-Mei Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China
| | - Xing-Wei Liang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China
| |
Collapse
|
4
|
Moir RD, Merheb E, Chitu V, Stanley ER, Willis IM. Molecular basis of neurodegeneration in a mouse model of Polr3-related disease. eLife 2024; 13:RP95314. [PMID: 39499645 PMCID: PMC11537486 DOI: 10.7554/elife.95314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.
Collapse
Affiliation(s)
- Robyn D Moir
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Emilio Merheb
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronxUnited States
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronxUnited States
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
- Department of Systems and Computational Biology, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
5
|
Sánchez V, Baumann A, Kromm F, Yergaliyev T, Brandt A, Scholda J, Kopp F, Camarinha-Silva A, Bergheim I. Oral supplementation of choline attenuates the development of alcohol-related liver disease (ALD). Mol Med 2024; 30:181. [PMID: 39425011 PMCID: PMC11488139 DOI: 10.1186/s10020-024-00950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Chronic alcohol intake is associated with alterations of choline metabolism in various tissues. Here, we assessed if an oral choline supplementation attenuated the development of alcohol-related liver disease (ALD) in mice. METHODS Female C57BL/6 J mice (n = 8/group) were either pair-fed a liquid control diet, or a Lieber DeCarli liquid diet (5% ethanol) ± 2.7 g choline/kg diet for 29 days. Liver damage, markers of intestinal permeability and intestinal microbiota composition were determined. Moreover, the effects of choline on ethanol-induced intestinal permeability were assessed in an ex vivo model. RESULTS ALD development as determined by liver histology and assessing markers of inflammation (e.g., nitric oxide, interleukin 6 and 4-hydroxynonenal protein adducts) was attenuated by the supplementation of choline. Intestinal permeability in small intestine being significantly higher in ethanol-fed mice was at the level of controls in ethanol-fed mice receiving choline. In contrast, no effects of the choline supplementation were found on intestinal microbiota composition. Choline also significantly attenuated the ethanol-induced intestinal barrier dysfunction in small intestinal tissue ex vivo, an effect almost entirely abolished by the choline oxidase inhibitor dimbunol. CONCLUSION Our results suggest that an oral choline supplementation attenuates the development of ALD in mice and is related to a protection from intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Franziska Kromm
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Timur Yergaliyev
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Julia Scholda
- Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Vienna, Austria
| | - Florian Kopp
- Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Vienna, Austria
| | - Amélia Camarinha-Silva
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria.
| |
Collapse
|
6
|
Belcher DJ, Kim N, Navarro‐Llinas B, Möller M, López‐Soriano FJ, Busquets S, Nader GA. Anabolic deficits and divergent unfolded protein response underlie skeletal and cardiac muscle growth impairments in the Yoshida hepatoma tumor model of cancer cachexia. Physiol Rep 2024; 12:e70044. [PMID: 39294861 PMCID: PMC11410559 DOI: 10.14814/phy2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer cachexia manifests as whole body wasting, however, the precise mechanisms governing the alterations in skeletal muscle and cardiac anabolism have yet to be fully elucidated. In this study, we explored changes in anabolic processes in both skeletal and cardiac muscles in the Yoshida AH-130 ascites hepatoma model of cancer cachexia. AH-130 tumor-bearing rats experienced significant losses in body weight, skeletal muscle, and heart mass. Skeletal and cardiac muscle loss was associated with decreased ribosomal (r)RNA, and hypophosphorylation of the eukaryotic factor 4E binding protein 1. Endoplasmic reticulum stress was evident by higher activating transcription factor mRNA in skeletal muscle and growth arrest and DNA damage-inducible protein (GADD)34 mRNA in both skeletal and cardiac muscles. Tumors provoked an increase in tissue expression of interferon-γ in the heart, while an increase in interleukin-1β mRNA was apparent in both skeletal and cardiac muscles. We conclude that compromised skeletal muscle and heart mass in the Yoshida AH-130 ascites hepatoma model involves a marked reduction translational capacity and efficiency. Furthermore, our observations suggest that endoplasmic reticulum stress and tissue production of pro-inflammatory factors may play a role in the development of skeletal and cardiac muscle wasting.
Collapse
Affiliation(s)
- Daniel J. Belcher
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Nina Kim
- Department of KinesiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Blanca Navarro‐Llinas
- Department of Biochemistry and Molecular MedicineUniversity of BarcelonaBarcelonaSpain
| | - Maria Möller
- Department of Biochemistry and Molecular MedicineUniversity of BarcelonaBarcelonaSpain
| | - Francisco J. López‐Soriano
- Department of Biochemistry and Molecular MedicineUniversity of BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
| | - Silvia Busquets
- Department of Biochemistry and Molecular MedicineUniversity of BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
| | - Gustavo A. Nader
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of KinesiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Penn State Cancer InstituteThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
7
|
Daniel EJP, Edmondson AC, Argon Y, Alsharhan H, Lam C, Freeze HH, He M. Deficient glycan extension and endoplasmic reticulum stresses in ALG3-CDG. J Inherit Metab Dis 2024; 47:766-777. [PMID: 38597022 PMCID: PMC11251843 DOI: 10.1002/jimd.12739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
ALG3-CDG is a rare congenital disorder of glycosylation (CDG) with a clinical phenotype that includes neurological manifestations, transaminitis, and frequent infections. The ALG3 enzyme catalyzes the first step of endoplasmic reticulum (ER) luminal glycan extension by adding mannose from Dol-P-Man to Dol-PP-Man5GlcNAc2 (Man5) forming Dol-PP-Man6. Such glycan extension is the first and fastest cellular response to ER stress, which is deficient in ALG3-CDG. In this study, we provide evidence that the unfolded protein response (UPR) and ER-associated degradation activities are increased in ALG3-CDG patient-derived cultured skin fibroblasts and there is constitutive activation of UPR mediated by the IRE1-α pathway. In addition, we show that N-linked Man3-4 glycans are increased in cellular glycoproteins and secreted plasma glycoproteins with hepatic or non-hepatic origin. We found that like other CDGs such as ALG1- or PMM2-CDG, in transferrin, the assembling intermediate Man5 in ALG3-CDG, are likely further processed into a distinct glycan, NeuAc1Gal1GlcNAc1Man3GlcNAc2, probably by Golgi mannosidases and glycosyltransferases. We predict it to be a mono-antennary glycan with the same molecular weight as the truncated glycan described in MGAT2-CDG. In summary, this study elucidates multiple previously unrecognized biochemical consequences of the glycan extension deficiency in ALG3-CDG which will have important implications in the pathogenesis of CDG.
Collapse
Affiliation(s)
- Earnest J P Daniel
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Andrew C Edmondson
- Department of Pediatrics, Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yair Argon
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hind Alsharhan
- Department of Pediatrics, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Li C, Ji KB, Choi HY, Liu H, Kim M. Schisandrin B enhances embryo competence and potentially mitigates endoplasmic reticulum stress during porcine preimplantation development. Theriogenology 2024; 220:26-34. [PMID: 38460201 DOI: 10.1016/j.theriogenology.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Endoplasmic reticulum (ER) stress induced by agents such as tunicamycin (TM) substantially impedes the developmental progression of porcine embryos. Lignan compounds such as Schisandrin B (Sch-B), may have the potential to mitigate this stress. However, there are few studies on the effects of Sch-B on embryo development. To address this research gap, this study evaluates the protective efficacy of Sch-B against TM-induced ER stress during pivotal stages of porcine embryogenesis. Notably, embryos treated with Sch-B exhibited pronounced resistance to TM-induced developmental arrest, particularly at the 4-cell stage, facilitating progression to the 8-cell stage and subsequent blastocyst formation. It was also observed that Sch-B effectively reduced reactive oxygen species (ROS) levels and improved mitochondrial membrane potential (MMP). Furthermore, Sch-B positively influenced the expression of several stress-related genes. These findings highlight the promising role of Sch-B in improving porcine embryo development and mitigating ER stress.
Collapse
Affiliation(s)
- Chuang Li
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Kuk Bin Ji
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Ho Yong Choi
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Haixing Liu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Minkyu Kim
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea; MK Biotech Inc., 99 Daehak-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
9
|
Terry AR, Nogueira V, Rho H, Ramakrishnan G, Li J, Kang S, Pathmasiri KC, Bhat SA, Jiang L, Kuchay S, Cologna SM, Hay N. CD36 maintains lipid homeostasis via selective uptake of monounsaturated fatty acids during matrix detachment and tumor progression. Cell Metab 2023; 35:2060-2076.e9. [PMID: 37852255 PMCID: PMC11748917 DOI: 10.1016/j.cmet.2023.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 04/11/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
A high-fat diet (HFD) promotes metastasis through increased uptake of saturated fatty acids (SFAs). The fatty acid transporter CD36 has been implicated in this process, but a detailed understanding of CD36 function is lacking. During matrix detachment, endoplasmic reticulum (ER) stress reduces SCD1 protein, resulting in increased lipid saturation. Subsequently, CD36 is induced in a p38- and AMPK-dependent manner to promote preferential uptake of monounsaturated fatty acids (MUFAs), thereby maintaining a balance between SFAs and MUFAs. In attached cells, CD36 palmitoylation is required for MUFA uptake and protection from palmitate-induced lipotoxicity. In breast cancer mouse models, CD36-deficiency induced ER stress while diminishing the pro-metastatic effect of HFD, and only a palmitoylation-proficient CD36 rescued this effect. Finally, AMPK-deficient tumors have reduced CD36 expression and are metastatically impaired, but ectopic CD36 expression restores their metastatic potential. Our results suggest that, rather than facilitating HFD-driven tumorigenesis, CD36 plays a supportive role by preventing SFA-induced lipotoxicity.
Collapse
Affiliation(s)
- Alexander R Terry
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Veronique Nogueira
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hyunsoo Rho
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gopalakrishnan Ramakrishnan
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jing Li
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Soeun Kang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Koralege C Pathmasiri
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sameer Ahmed Bhat
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Liping Jiang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Shafi Kuchay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Stephanie M Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
10
|
Wu S, Lin W. Endoplasmic reticulum associated degradation is essential for maintaining the viability or function of mature myelinating cells in adults. Glia 2023; 71:1360-1376. [PMID: 36708285 PMCID: PMC10023378 DOI: 10.1002/glia.24346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/29/2023]
Abstract
Endoplasmic reticulum associated degradation (ERAD) is responsible for recognition and degradation of unfolded or misfolded proteins in the ER. Sel1L is essential for the ERAD activity of Sel1L-Hrd1 complex, the best-known ERAD machinery. Using a continuous Sel1L knockout mouse model (CNP/Cre; Sel1LloxP/loxP mice), our previous studies showed that Sel1L knockout in myelinating cells, oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS), leads to adult-onset myelin abnormalities in the CNS and PNS. Because Sel1L is deleted in myelinating cells of CNP/Cre; Sel1LloxP/loxP mice starting at very early stage of differentiation, it is impossible to rule out the possibility that the adult-onset myelin abnormalities in these mice results from developmental myelination defects caused by Sel1L knockout in myelinating cells during development. Thus, using an inducible Sel1L knockout mouse model (PLP/CreERT ; Sel1LloxP/loxP mice) that has normal, intact myelin and myelinating cells in the adult CNS and PNS prior to tamoxifen treatment, we sought to determine if Sel1L knockout in mature myelinating cells of adult mice leads to myelin abnormalities in the CNS and PNS. We showed that Sel1L knockout in mature myelinating cells caused ERAD impairment, ER stress and UPR activation. Interesting, Sel1L knockout in mature oligodendrocytes impaired their myelinating function by suppressing myelin protein translation, and resulted in progressive myelin thinning in the adult CNS. Conversely, Sel1L knockout in mature Schwann cells led to Schwann cell apoptosis and demyelination in the adult PNS. These findings demonstrate the essential roles of ERAD in mature myelinating cells in the adult CNS and PNS under physiological conditions.
Collapse
Affiliation(s)
- Shuangchan Wu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States, 55455
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States, 55455
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States, 55455
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States, 55455
| |
Collapse
|
11
|
Shen WB, Wang B, Yao R, Goetzinger KR, Wu S, Gao H, Yang P. Obesity impacts placental function through activation of p-IRE1a-XBP1s signaling. Front Cell Dev Biol 2023; 11:1023327. [PMID: 36819099 PMCID: PMC9929362 DOI: 10.3389/fcell.2023.1023327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Maternal obesity is associated with a variety of obstetrical outcomes including stillbirth, preeclampsia, and gestational diabetes, and increases the risk of fetuses for congenital heart defects. Obesity during pregnancy represents a major contribution to metabolic dysregulation, which not only plays a key role in the pathogenesis of adverse outcome but also can potently induce endoplasmic reticulum (ER) stress. However, the mechanism associating such an obesogenic metabolic environment and adverse pregnancy outcomes has remained poorly understood. In this study, we aimed to determine whether the ER stress pathways (also named unfolded protein response (UPR)) were activated in the placenta by obesity. We collected placenta from the obese pregnancy (n = 12) and non-obese pregnancy (n = 12) following delivery by Caesarean-section at term. The specimens were assessed with immunocytochemistry staining and RT-QPCR. Our results revealed that in the obese placenta, p-IRE1α and XBP1s were significantly increased, CHOP and nine UPR chaperone genes were upregulated, including GRP95, PDIA6, Calnexin, p58IPK, SIL-1, EDEM, Herp, GRP58 and Calreticulin. However, Perk and BiP are not activated in the obese placenta. Our data suggest that upregulated p-IRE1α and XBP1s signaling, and UPR chaperone genes may play an important role in maternal obesity-induced placental pathology. In conclusion, this is the first report on ER stress and UPR activation in the placenta of maternal obesity. Our findings represent the first step in the understanding of one of the key ER signaling pathways, also referred to IRE1α-XBP1, in placental pathophysiology affected by obesity, which may be an important mechanism accounting for the observed higher maternal and perinatal risks.
Collapse
Affiliation(s)
- Wei-Bin Shen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Bingbing Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ruofan Yao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Katherine R. Goetzinger
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sheng Wu
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University School of Medicine, Philadelphia, PA, United States
| | - Haijun Gao
- Departmentof Physiology and Biophysics, Howard University College of Medicine, Washington, DC, United States
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States,*Correspondence: Peixin Yang,
| |
Collapse
|
12
|
Blocking the cytohesin-2/ARF1 axis by SecinH3 ameliorates osteoclast-induced bone loss via attenuating JNK-mediated IRE1 endoribonuclease activity. Pharmacol Res 2022; 185:106513. [DOI: 10.1016/j.phrs.2022.106513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
|
13
|
Nguyen LC, Renner DM, Silva D, Yang D, Parenti NA, Medina KM, Nicolaescu V, Gula H, Drayman N, Valdespino A, Mohamed A, Dann C, Wannemo K, Robinson-Mailman L, Gonzalez A, Stock L, Cao M, Qiao Z, Moellering RE, Tay S, Randall G, Beers MF, Rosner MR, Oakes SA, Weiss SR. SARS-CoV-2 Diverges from Other Betacoronaviruses in Only Partially Activating the IRE1α/XBP1 Endoplasmic Reticulum Stress Pathway in Human Lung-Derived Cells. mBio 2022; 13:e0241522. [PMID: 36125275 PMCID: PMC9600248 DOI: 10.1128/mbio.02415-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed to be essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found that human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE SARS-CoV-2 is the third lethal respiratory coronavirus, after MERS-CoV and SARS-CoV, to emerge this century, causing millions of deaths worldwide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.
Collapse
Affiliation(s)
- Long C. Nguyen
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - David M. Renner
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Diane Silva
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Dongbo Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Nicholas A. Parenti
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaeri M. Medina
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Haley Gula
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Nir Drayman
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Andrea Valdespino
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Adil Mohamed
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Christopher Dann
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Kristin Wannemo
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | | | - Alan Gonzalez
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Letícia Stock
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Mengrui Cao
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Zeyu Qiao
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA
| | | | - Savas Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Michael F. Beers
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Scott A. Oakes
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Pandeya A, Khalko RK, Singh S, Kumar M, Gosipatala SB. Hcmv-miR-UL148D regulates the staurosporine-induced apoptosis by targeting the Endoplasmic Reticulum to Nucleus signaling 1(ERN1). PLoS One 2022; 17:e0275072. [PMID: 36156601 PMCID: PMC9512192 DOI: 10.1371/journal.pone.0275072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
The propensity of viruses to co-opt host cellular machinery by reprogramming the host's RNA-interference machinery has been a major focus of research, however, regulation of host defense mechanisms by virus-encoded miRNA, is an additional regulatory realm gaining momentum in the arena of host-viral interactions. The Human Cytomegalovirus (HCMV) miRNAs, regulate many cellular pathways alone or in concordance with HCMV proteins, thereby paving a conducive environment for successful infection in the human host. We show that HCMV miRNA, hcmv-miR-UL148D inhibits staurosporine-induced apoptosis in HEK293T cells. We establish that ERN1 mRNA is a bonafide target of hcmv-miR-UL148D and its encoded protein IRE1α is translationally repressed by the overexpression of hcmv-miR-UL148D resulting in the attenuation of apoptosis. Unlike the host microRNA seed sequence (6-8 nucleotides), hcmv-miR-UL148D has long complementarity to 3' UTR of ERN1 mRNA resulting in mRNA degradation. The repression of IRE1α by the hcmv-miR-UL148D further downregulates Xbp1 splicing and c-Jun N-terminal kinase phosphorylation thus regulating ER-stress and ER-stress induced apoptotic pathways. Strikingly, depletion of ERN1 attenuates staurosporine-induced apoptosis which further suggests that hcmv-miR-UL148D functions through regulation of its target ERN1. These results uncover a role for hcmv-miR-UL148D and its target ERN1 in regulating ER stress-induced apoptosis.
Collapse
Affiliation(s)
- Abhishek Pandeya
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Raj Kumar Khalko
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sukhveer Singh
- Developmental Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Manish Kumar
- National Heart Lung and Blood Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - Sunil Babu Gosipatala
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
15
|
Branche E, Wang YT, Viramontes KM, Valls Cuevas JM, Xie J, Ana-Sosa-Batiz F, Shafee N, Duttke SH, McMillan RE, Clark AE, Nguyen MN, Garretson AF, Crames JJ, Spann NJ, Zhu Z, Rich JN, Spector DH, Benner C, Shresta S, Carlin AF. SREBP2-dependent lipid gene transcription enhances the infection of human dendritic cells by Zika virus. Nat Commun 2022; 13:5341. [PMID: 36097162 PMCID: PMC9465152 DOI: 10.1038/s41467-022-33041-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/29/2022] [Indexed: 02/07/2023] Open
Abstract
The emergence of Zika virus (ZIKV) as a global health threat has highlighted the unmet need for ZIKV-specific vaccines and antiviral treatments. ZIKV infects dendritic cells (DC), which have pivotal functions in activating innate and adaptive antiviral responses; however, the mechanisms by which DC function is subverted to establish ZIKV infection are unclear. Here we develop a genomics profiling method that enables discrete analysis of ZIKV-infected versus neighboring, uninfected primary human DCs to increase the sensitivity and specificity with which ZIKV-modulated pathways can be identified. The results show that ZIKV infection specifically increases the expression of genes enriched for lipid metabolism-related functions. ZIKV infection also increases the recruitment of sterol regulatory element-binding protein (SREBP) transcription factors to lipid gene promoters, while pharmacologic inhibition or genetic silencing of SREBP2 suppresses ZIKV infection of DCs. Our data thus identify SREBP2-activated transcription as a mechanism for promoting ZIKV infection amenable to therapeutic targeting.
Collapse
Affiliation(s)
- Emilie Branche
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ying-Ting Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Karla M Viramontes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Joan M Valls Cuevas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Jialei Xie
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Fernanda Ana-Sosa-Batiz
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Rachel E McMillan
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA, 92093, USA
| | - Alex E Clark
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Aaron F Garretson
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jan J Crames
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Nathan J Spann
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhe Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Jeremy N Rich
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Deborah H Spector
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Aaron F Carlin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Jain K, Tyagi T, Du J, Hu X, Patell K, Martin KA, Hwa J. Unfolded Protein Response Differentially Modulates the Platelet Phenotype. Circ Res 2022; 131:290-307. [PMID: 35862006 PMCID: PMC9357223 DOI: 10.1161/circresaha.121.320530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Unfolded protein response (UPR) is a multifaceted signaling cascade that alleviates protein misfolding. Although well studied in nucleated cells, UPR in absence of transcriptional regulation has not been described. Intricately associated with cardiovascular diseases, platelets, despite being anucleate, respond rapidly to stressors in blood. We investigate the UPR in anucleate platelets and explore its role, if any, on platelet physiology and function. METHODS Human and mouse platelets were studied using a combination of ex vivo and in vivo experiments. Platelet lineage-specific knockout mice were generated independently for each of the 3 UPR pathways, PERK (protein kinase RNA [PKR]-like endoplasmic reticulum kinase), XBP1 (X-binding protein), and ATF6 (activating transcription factor 6). Diabetes patients were prospectively recruited, and platelets were evaluated for activation of UPR under chronic pathophysiological disease conditions. RESULTS Tunicamycin induced the IRE1α (inositol-requiring enzyme-1alpha)-XBP1 pathway in human and mouse platelets, while oxidative stress predominantly activated the PERK pathway. PERK deletion significantly increased platelet aggregation and apoptosis and phosphorylation of PLCγ2, PLCβ3, and p38 MAPK. Deficiency of XBP1 increased platelet aggregation, with higher PLCβ3 and PKCδ activation. ATF6 deletion mediated a relatively modest effect on platelet phenotype with increased PKA (protein kinase A). Platelets from diabetes patients exhibited a positive correlation between disease severity, platelet activation, and protein aggregation, with only IRE1α-XBP1 activation. Moreover, IRE1α inhibition increased platelet aggregation, while clinically approved chemical chaperone, sodium 4-phenylbutyrate reduced the platelet hyperactivation. CONCLUSIONS We show for the first time, that UPR activation occurs in platelets and can be independent of genomic regulation, with selective induction being specific to the source and severity of stress. Each UPR pathway plays a key role and can differentially modulate the platelet activation pathways and phenotype. Targeting the specific arms of UPR may provide a new antiplatelet strategy to mitigate thrombotic risk in diabetes and other cardiovascular diseases.
Collapse
Affiliation(s)
- Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Jing Du
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Xiaoyue Hu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Kanchi Patell
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| |
Collapse
|
17
|
Baeken MW, Yokobayashi Y. Identification of an ERN1 target site within EGFP mRNA. J Cell Biochem 2022; 123:1298-1305. [PMID: 35908204 PMCID: PMC9544080 DOI: 10.1002/jcb.30314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
EGFP (enhanced green fluorescent protein) is one of the most common tools used in life sciences, including research focusing on proteostasis. Here we report that ERN1 (endoplasmic reticulum to nucleus signaling 1), which is upregulated by UPR (unfolded protein response), targets an RNA hairpin loop motif in EGFP mRNA. A silent mutation introduced into EGFP mRNA abolished the ERN1‐dependent mRNA decay. Therefore, experiments that employ EGFP as a reporter gene in studies that involve upregulation of the UPR pathway should be interpreted carefully, and a mutant devoid of the ERN1 target motif may be more suitable for such studies.
Collapse
Affiliation(s)
- Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
18
|
Yakita M, Chujo T, Wei FY, Hirayama M, Kato K, Takahashi N, Naganuma K, Nagata M, Kawahara K, Nakayama H, Tomizawa K. Extracellular N6 -isopentenyladenosine (i 6A) addition induces cotranscriptional i 6A incorporation into ribosomal RNAs. RNA (NEW YORK, N.Y.) 2022; 28:1013-1027. [PMID: 35414588 PMCID: PMC9202588 DOI: 10.1261/rna.079176.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
N6 -isopentenyladenosine (i6A), a modified adenosine monomer, is known to induce cell death upon its addition to the culture medium. However, the molecular fate of extracellularly added i6A has yet to be identified. Here we show that i6A addition to cell culture medium results in i6A incorporation into cellular RNA in several cell lines, including the 5-fluorouracil (5-FU)-resistant human oral squamous cell carcinoma cell line FR2-SAS and its parental 5-FU-sensitive cell line SAS. i6A was predominantly incorporated into 18S and 28S rRNAs, and i6A incorporation into total RNA was mostly suppressed by treating these cell lines with an RNA polymerase I (Pol I) inhibitor. i6A was incorporated into RNA even upon inactivation of TRIT1, the only cellular i6A-modifying enzyme. These results indicate that upon cellular uptake of i6A, it is anabolized to be used for Pol I transcription. Interestingly, at lower i6A concentrations, the cytotoxic effect of i6A was substantially more pronounced in FR2-SAS cells than in SAS cells. Moreover, in FR2-SAS cells, i6A treatment decreased the rate of cellular protein synthesis and increased intracellular protein aggregation, and these effects were more pronounced than in SAS cells. Our work provides insights into the molecular fate of extracellularly applied i6A in the context of intracellular nucleic acid anabolism and suggests investigation of i6A as a candidate for a chemotherapy agent against 5-FU-resistant cancer cells.
Collapse
Affiliation(s)
- Maya Yakita
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Mayumi Hirayama
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Koji Kato
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Nozomu Takahashi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenta Naganuma
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
19
|
Li M, Liu S, Tan L, Luo Y, Gao Z, Liu J, Wu Y, Fan W, DeSaeger S, Song S. Fumonisin B 1 induced intestinal epithelial barrier damage through endoplasmic reticulum stress triggered by the ceramide synthase 2 depletion. Food Chem Toxicol 2022; 166:113263. [PMID: 35777715 DOI: 10.1016/j.fct.2022.113263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Fumonisin B1 (FB1) contamination in feed is of great concern nowadays. The intestine would be the first line when FB1-contaminated food or feed was ingested. However, the intestinal toxicity and mechanism of FB1 have rarely been studied. In this study, we found that FB1 inhibited cell viability, and promoted the severe release of lactate dehydrogenase. Meantime, FB1 destroyed the intestinal physical barrier by reducing the expressions of tight junctions. And FB1 induced excessive production of cytokines like tumor necrosis factor-α, resulting in damage to the intestinal immunological barrier. Furthermore, we observed that FB1 preferentially inhibited the expressions of ceramide synthase 2 (CerS2) and upregulated the expression of endoplasmic reticulum (ER) stress markers. The siRNA-mediated knockdown of CerS2 and CerS2 overexpression proved that CerS2 depletion induced by FB1 triggered ER stress, which then destructed the intestinal barrier. FB1-induced intestinal impairment could be restored by CerS2 over-expression or 4-Phenylbutyric acid (ER stress inhibitor). Overall, our findings demonstrated intestinal toxicity and potential mechanism of FB1, and the intestinal impairment risk posed by FB1 must be taken seriously.
Collapse
Affiliation(s)
- Mengcong Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Sarah DeSaeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
20
|
Nguyen LC, Renner DM, Silva D, Yang D, Parenti N, Medina KM, Nicolaescu V, Gula H, Drayman N, Valdespino A, Mohamed A, Dann C, Wannemo K, Robinson-Mailman L, Gonzalez A, Stock L, Cao M, Qiao Z, Moellering RE, Tay S, Randall G, Beers MF, Rosner MR, Oakes SA, Weiss SR. SARS-CoV-2 diverges from other betacoronaviruses in only partially activating the IRE1α/XBP1 ER stress pathway in human lung-derived cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.12.30.474519. [PMID: 35821981 PMCID: PMC9275661 DOI: 10.1101/2021.12.30.474519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available, or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE SARS-CoV-2 is the third lethal respiratory coronavirus after MERS-CoV and SARS-CoV to emerge this century, causing millions of deaths world-wide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.
Collapse
Affiliation(s)
- Long C. Nguyen
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - David M. Renner
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diane Silva
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Dongbo Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Nicholas Parenti
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kaeri M. Medina
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, IL 60637, U.S.A
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Haley Gula
- Department of Microbiology, University of Chicago, Chicago, IL 60637, U.S.A
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Nir Drayman
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Andrea Valdespino
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Adil Mohamed
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Christopher Dann
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Kristin Wannemo
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | | | - Alan Gonzalez
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Letícia Stock
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Mengrui Cao
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Zeyu Qiao
- Department of Chemistry, University of Chicago, Chicago, IL 60637, U.S.A
| | | | - Savas Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, IL 60637, U.S.A
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael F. Beers
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Scott A. Oakes
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Khalatbari A, Aghazadeh Z, Ji C. Adverse Effects of Anti-Covid-19 Drug Candidates and Alcohol on Cellular Stress Responses of Hepatocytes. Hepatol Commun 2022; 6:1262-1277. [PMID: 34910385 PMCID: PMC9134820 DOI: 10.1002/hep4.1887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/16/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022] Open
Abstract
During the pandemic, dexamethasone (DEX), remdesivir (RDV), hydroxychloroquine (HCQ), thapsigargin (TG), camostat mesylate (CaM), and pralatrexate were repurposed drugs for coronavirus disease 2019 (COVID-19). However, the side effects on the liver associated with the anti-COVID therapies are unknown. Cellular stresses by these drugs at 0-30 μM were studied using HepG2, Huh7, and/or primary human hepatocytes. DEX or RDV induced endoplasmic reticulum stress with increased X-box binding protein 1 and autophagic response with increased accumulation of microtubule-associated protein 1A/1B-light chain 3 (LC3-II). DEX and RDV had additive effects on the stress responses in the liver cells, which further increased expression of activating transcription factor 4 and C/EBP homology protein 1 (CHOP), and cell death. Alcohol pretreatment (50 mM) and DEX induced greater cellular stress responses than DEX and RDV. Pralatrexate induced Golgi fragmentation, cell cycle arrest at G0/G1 phase, activations of poly (ADP-ribose) polymerase-1 (PARP) and caspases, and cell death. Pralatrexate and alcohol had synergistic effects on the cell death mediators of Bim, caspase3, and PARP. The protease inhibitor CaM and TG induced autophagic response and mitochondrial stress with altered mitochondrial membrane potential, B-cell lymphoma 2, and cytochrome C. TG and HCQ induced autophagic response markers of Unc-51 like autophagy activating kinase, LC3-II, Beclin1, and Atg5, and severe ER stress marker CHOP. Conclusion: These results suggest that the anti-COVID-19 drugs, especially with drug-drug or alcohol-drug combinations, cause cellular stress responses and injuries in the liver cells.
Collapse
Affiliation(s)
- Atousa Khalatbari
- Department of MedicineKeck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCAUSA
| | | | | |
Collapse
|
22
|
Kanti MM, Striessnig-Bina I, Wieser BI, Schauer S, Leitinger G, Eichmann TO, Schweiger M, Winkler M, Winter E, Lana A, Kufferath I, Marsh LM, Kwapiszewska G, Zechner R, Hoefler G, Vesely PW. Adipose triglyceride lipase-mediated lipid catabolism is essential for bronchiolar regeneration. JCI Insight 2022; 7:e149438. [PMID: 35349484 PMCID: PMC9090255 DOI: 10.1172/jci.insight.149438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
The lung airways are constantly exposed to inhaled toxic substances, resulting in cellular damage that is repaired by local expansion of resident bronchiolar epithelial club cells. Disturbed bronchiolar epithelial damage repair lies at the core of many prevalent lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, and lung cancer. However, it is still not known how bronchiolar club cell energy metabolism contributes to this process. Here, we show that adipose triglyceride lipase (ATGL), the rate-limiting enzyme for intracellular lipolysis, is critical for normal club cell function in mice. Deletion of the gene encoding ATGL, Pnpla2 (also known as Atgl), induced substantial triglyceride accumulation, decreased mitochondrial numbers, and decreased mitochondrial respiration in club cells. This defect manifested as bronchiolar epithelial thickening and increased airway resistance under baseline conditions. After naphthalene‑induced epithelial denudation, a regenerative defect was apparent. Mechanistically, dysfunctional PPARα lipid-signaling underlies this phenotype because (a) ATGL was needed for PPARα lipid-signaling in regenerating bronchioles and (b) administration of the specific PPARα agonist WY14643 restored normal bronchiolar club cell ultrastructure and regenerative potential. Our data emphasize the importance of the cellular energy metabolism for lung epithelial regeneration and highlight the significance of ATGL-mediated lipid catabolism for lung health.
Collapse
Affiliation(s)
- Manu Manjunath Kanti
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabelle Striessnig-Bina
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Beatrix Irene Wieser
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- BioTechMed-Graz, Graz, Austria
- Division of Cell Biology, Histology, and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Thomas O. Eichmann
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Martina Schweiger
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margit Winkler
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Graz, Austria
| | - Elke Winter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Lana
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iris Kufferath
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Leigh Matthew Marsh
- BioTechMed-Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- BioTechMed-Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Giessen, Germany
| | - Rudolf Zechner
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Paul Willibald Vesely
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
23
|
Shyam R, Ogando DG, Bonanno JA. Mitochondrial ROS in Slc4a11 KO Corneal Endothelial Cells Lead to ER Stress. Front Cell Dev Biol 2022; 10:878395. [PMID: 35557943 PMCID: PMC9086159 DOI: 10.3389/fcell.2022.878395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies from Slc4a11 -/- mice have identified glutamine-induced mitochondrial dysfunction as a significant contributor toward oxidative stress, impaired lysosomal function, aberrant autophagy, and cell death in this Congenital Hereditary Endothelial Dystrophy (CHED) model. Because lysosomes are derived from endoplasmic reticulum (ER)-Golgi, we asked whether ER function is affected by mitochondrial ROS in Slc4a11 KO corneal endothelial cells. In mouse Slc4a11 -/- corneal endothelial tissue, we observed the presence of dilated ER and elevated expression of ER stress markers BIP and CHOP. Slc4a11 KO mouse corneal endothelial cells incubated with glutamine showed increased aggresome formation, BIP and GADD153, as well as reduced ER Ca2+ release as compared to WT. Induction of mitoROS by ETC inhibition also led to ER stress in WT cells. Treatment with the mitochondrial ROS quencher MitoQ, restored ER Ca2+ release and relieved ER stress markers in Slc4a11 KO cells in vitro. Systemic MitoQ also reduced BIP expression in Slc4a11 KO endothelium. We conclude that mitochondrial ROS can induce ER stress in corneal endothelial cells.
Collapse
Affiliation(s)
- Rajalekshmy Shyam
- Vision Science Program, School of Optometry, Indiana University, Bloomington, IN, United States
| | | | | |
Collapse
|
24
|
Nguyen LC, Yang D, Nicolaescu V, Best TJ, Gula H, Saxena D, Gabbard JD, Chen SN, Ohtsuki T, Friesen JB, Drayman N, Mohamed A, Dann C, Silva D, Robinson-Mailman L, Valdespino A, Stock L, Suárez E, Jones KA, Azizi SA, Demarco JK, Severson WE, Anderson CD, Millis JM, Dickinson BC, Tay S, Oakes SA, Pauli GF, Palmer KE, Meltzer DO, Randall G, Rosner MR. Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. SCIENCE ADVANCES 2022; 8:eabi6110. [PMID: 35050692 DOI: 10.1126/sciadv.abi6110] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The spread of SARS-CoV-2 and ongoing COVID-19 pandemic underscores the need for new treatments. Here we report that cannabidiol (CBD) inhibits infection of SARS-CoV-2 in cells and mice. CBD and its metabolite 7-OH-CBD, but not THC or other congeneric cannabinoids tested, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after viral entry, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD inhibits SARS-CoV-2 replication in part by up-regulating the host IRE1α RNase endoplasmic reticulum (ER) stress response and interferon signaling pathways. In matched groups of human patients from the National COVID Cohort Collaborative, CBD (100 mg/ml oral solution per medical records) had a significant negative association with positive SARS-CoV-2 tests. This study highlights CBD as a potential preventative agent for early-stage SARS-CoV-2 infection and merits future clinical trials. We caution against use of non-medical formulations including edibles, inhalants or topicals as a preventative or treatment therapy at the present time.
Collapse
Affiliation(s)
- Long Chi Nguyen
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Dongbo Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Thomas J Best
- Center for Health and the Social Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Haley Gula
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Divyasha Saxena
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40222, USA
| | - Jon D Gabbard
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40222, USA
| | - Shao-Nong Chen
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Takashi Ohtsuki
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - John Brent Friesen
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nir Drayman
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Adil Mohamed
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Christopher Dann
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Diane Silva
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | - Andrea Valdespino
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Letícia Stock
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Eva Suárez
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Krysten A Jones
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Saara-Anne Azizi
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer K Demarco
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40222, USA
| | - William E Severson
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40222, USA
| | - Charles D Anderson
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40222, USA
| | | | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Scott A Oakes
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Guido F Pauli
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kenneth E Palmer
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40222, USA
| | - David O Meltzer
- Center for Health and the Social Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
25
|
Chen H, Miao Y, Bian A, Ye J, Wang J, Cong X, Jian S, Yi Z, Liang L, Sun Z, Yang F, Ding T. A novel small-molecule activator of unfolded protein response suppresses castration-resistant prostate cancer growth. Cancer Lett 2022; 532:215580. [PMID: 35121048 DOI: 10.1016/j.canlet.2022.215580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
Abstract
Androgen receptor-targeted therapy improves survival in castration-resistant prostate cancer (CRPC). However, almost all patients with CRPC eventually develop secondary resistance to these drugs. Therefore, alternative therapeutic approaches for incurable metastatic CRPC are urgently needed. Unfolded protein response (UPR) is regarded as a cytoprotective mechanism that removes misfolded proteins in rapidly proliferating tumor cells. However, acute activation of the UPR directly leads to tumor cell death. This study has shown that WJ-644A, a novel small molecule activator of UPR, potently inhibited the proliferation of prostate cancer cells and caused tumor regression with a good safety profile in multiple animal models. Mechanistically, we have identified that WJ-644A induced cell methuosis and autophagy upon UPR activation. Our study not only identifies the UPR as an actionable target for CRPC treatment, but also establishes WJ-644A as a novel UPR activator that has potential therapeutic value for CRPC.
Collapse
Affiliation(s)
- Huang Chen
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Ying Miao
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Aiwu Bian
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jiangnan Ye
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jing Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development & Shanghai Key Laboratory of Green Chemistry and Chemical Processes, SCME, East China Normal University, Shanghai, 200062, China
| | - Xiaonan Cong
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Shuyi Jian
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Zhengfang Yi
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Lin Liang
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China, 201499
| | - Zhenliang Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China, 201499.
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development & Shanghai Key Laboratory of Green Chemistry and Chemical Processes, SCME, East China Normal University, Shanghai, 200062, China.
| | - Tao Ding
- Department of Urology, Southern Medical University Affifiliated Fengxian Hospital, Shanghai, China, 201499.
| |
Collapse
|
26
|
Induction of the Unfolded Protein Response at High Temperature in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms23031669. [PMID: 35163590 PMCID: PMC8836091 DOI: 10.3390/ijms23031669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/10/2023] Open
Abstract
Ire1 is an endoplasmic reticulum (ER)-located endoribonuclease that is activated in response to ER stress. In yeast Saccharomyces cerevisiae cells, Ire1 promotes HAC1-mRNA splicing to remove the intron sequence from the HAC1u mRNA (“u” stands for “uninduced”). The resulting mRNA, which is named HAC1i mRNA (“i” stands for “induced”), is then translated into a transcription factor that is involved in the unfolded protein response (UPR). In this study, we designed an oligonucleotide primer that specifically hybridizes to the exon-joint site of the HAC1i cDNA. This primer allowed us to perform real-time reverse transcription-PCR to quantify HAC1i mRNA abundance with high sensitivity. Using this method, we detected a minor induction of HAC1-mRNA splicing in yeast cells cultured at their maximum growth temperature of 39 °C. Based on our analyses of IRE1-gene mutant strains, we propose that when yeast cells are cultured at or near their maximum growth temperature, protein folding in the ER is disturbed, leading to a minor UPR induction that supports cellular growth.
Collapse
|
27
|
Sargin P, Roethle MF, Jia S, Pant T, Ciecko AE, Atkinson SN, Salzman NH, Teng RJ, Chen YG, Cabrera SM, Hessner MJ. Lactiplantibacillus plantarum 299v supplementation modulates β-cell ER stress and antioxidative defense pathways and prevents type 1 diabetes in gluten-free BioBreeding rats. Gut Microbes 2022; 14:2136467. [PMID: 36261888 PMCID: PMC9586621 DOI: 10.1080/19490976.2022.2136467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/03/2022] [Indexed: 02/04/2023] Open
Abstract
The increasing incidence of Type 1 diabetes has coincided with the emergence of the low-fiber, high-gluten Western diet and other environmental factors linked to dysbiosis. Since Lactiplantibacillus plantarum 299 v (Lp299v) supplementation improves gut barrier function and reduces systemic inflammation, we studied its effects in spontaneously diabetic DRlyp/lyp rats provided a normal cereal diet (ND) or a gluten-free hydrolyzed casein diet (HCD). All rats provided ND developed diabetes (62.5±7.7 days); combining ND with Lp299v did not improve survival. Diabetes was delayed by HCD (72.2±9.4 days, p = .01) and further delayed by HCD+Lp299v (84.9±14.3 days, p < .001). HCD+Lp299v pups exhibited increased plasma propionate and butyrate levels, which correlated with enriched fecal Bifidobacteriaceae and Clostridiales taxa. Islet transcriptomic and histologic analyses at 40-days of age revealed that rats fed HCD expressed an autophagy profile, while those provided HCD+Lp299v expressed ER-associated protein degradation (ERAD) and antioxidative defense pathways, including Nrf2. Exposing insulinoma cells to propionate and butyrate promoted the antioxidative defense response but did not recapitulate the HCD+Lp299v islet ERAD transcriptomic profile. Here, both diet and microbiota influenced diabetes susceptibility. Moreover, Lp299v supplement modulated antioxidative defense and ER stress responses in β-cells, potentially offering a new therapeutic direction to thwart diabetes progression and preserve insulin secretion.
Collapse
Affiliation(s)
- Pinar Sargin
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mark F. Roethle
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shuang Jia
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tarun Pant
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley E. Ciecko
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samantha N. Atkinson
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nita H. Salzman
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Gastroenterology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ru-Jeng Teng
- Department of Pediatrics, Division of Neonatology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Susanne M. Cabrera
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Martin J. Hessner
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
28
|
Quigley M, Rieger S, Capobianco E, Wang Z, Zhao H, Hewison M, Lisse TS. Vitamin D Modulation of Mitochondrial Oxidative Metabolism and mTOR Enforces Stress Adaptations and Anticancer Responses. JBMR Plus 2022; 6:e10572. [PMID: 35079680 PMCID: PMC8771003 DOI: 10.1002/jbm4.10572] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023] Open
Abstract
The relationship between the active form of vitamin D3 (1,25-dihydroxyvitamin D, 1,25(OH)2D) and reactive oxygen species (ROS), two integral signaling molecules of the cell, is poorly understood. This is striking, given that both factors are involved in cancer cell regulation and metabolism. Mitochondria (mt) dysfunction is one of the main drivers of cancer, producing more mitochondria, higher cellular energy, and ROS that can enhance oxidative stress and stress tolerance responses. To study the effects of 1,25(OH)2D on metabolic and mt dysfunction, we used the vitamin D receptor (VDR)-sensitive MG-63 osteosarcoma cell model. Using biochemical approaches, 1,25(OH)2D decreased mt ROS levels, membrane potential (ΔΨmt), biogenesis, and translation, while enforcing endoplasmic reticulum/mitohormetic stress adaptive responses. Using a mitochondria-focused transcriptomic approach, gene set enrichment and pathway analyses show that 1,25(OH)2D lowered mt fusion/fission and oxidative phosphorylation (OXPHOS). By contrast, mitophagy, ROS defense, and epigenetic gene regulation were enhanced after 1,25(OH)2D treatment, as well as key metabolic enzymes that regulate fluxes of substrates for cellular architecture and a shift toward non-oxidative energy metabolism. ATACseq revealed putative oxi-sensitive and tumor-suppressing transcription factors that may regulate important mt functional genes such as the mTORC1 inhibitor, DDIT4/REDD1. DDIT4/REDD1 was predominantly localized to the outer mt membrane in untreated MG-63 cells yet sequestered in the cytoplasm after 1,25(OH)2D and rotenone treatments, suggesting a level of control by membrane depolarization to facilitate its cytoplasmic mTORC1 inhibitory function. The results show that 1,25(OH)2D activates distinct adaptive metabolic responses involving mitochondria to regain redox balance and control the growth of osteosarcoma cells. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mikayla Quigley
- Biology DepartmentUniversity of MiamiCoral GablesFLUSA
- Dana Farber Cancer InstituteBostonMAUSA
| | - Sandra Rieger
- Biology DepartmentUniversity of MiamiCoral GablesFLUSA
- Sylvester Comprehensive Cancer Center, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Enrico Capobianco
- Institute for Data Science and ComputingUniversity of MiamiCoral GablesFLUSA
| | - Zheng Wang
- Department of Computer ScienceUniversity of MiamiCoral GablesFLUSA
| | - Hengguang Zhao
- Department of DermatologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Martin Hewison
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
| | - Thomas S Lisse
- Biology DepartmentUniversity of MiamiCoral GablesFLUSA
- Sylvester Comprehensive Cancer Center, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| |
Collapse
|
29
|
Jacquier A, Risson V, Simonet T, Roussange F, Lacoste N, Ribault S, Carras J, Theuriet J, Girard E, Grosjean I, Le Goff L, Kröger S, Meltoranta J, Bauché S, Sternberg D, Fournier E, Kostera-Pruszczyk A, O’Connor E, Eymard B, Lochmüller H, Martinat C, Schaeffer L. Severe congenital myasthenic syndromes caused by agrin mutations affecting secretion by motoneurons. Acta Neuropathol 2022; 144:707-731. [PMID: 35948834 PMCID: PMC9468088 DOI: 10.1007/s00401-022-02475-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/28/2023]
Abstract
Congenital myasthenic syndromes (CMS) are predominantly characterized by muscle weakness and fatigability and can be caused by a variety of mutations in genes required for neuromuscular junction formation and maintenance. Among them, AGRN encodes agrin, an essential synaptic protein secreted by motoneurons. We have identified severe CMS patients with uncharacterized p.R1671Q, p.R1698P and p.L1664P mutations in the LG2 domain of agrin. Overexpression in primary motoneurons cultures in vitro and in chick spinal motoneurons in vivo revealed that the mutations modified agrin trafficking, leading to its accumulation in the soma and/or in the axon. Expression of mutant agrins in cultured cells demonstrated accumulation of agrin in the endoplasmic reticulum associated with induction of unfolded protein response (UPR) and impaired secretion in the culture medium. Interestingly, evaluation of the specific activity of individual agrins on AChR cluster formation indicated that when secreted, mutant agrins retained a normal capacity to trigger the formation of AChR clusters. To confirm agrin accumulation and secretion defect, iPS cells were derived from a patient and differentiated into motoneurons. Patient iPS-derived motoneurons accumulated mutant agrin in the soma and increased XBP1 mRNA splicing, suggesting UPR activation. Moreover, co-cultures of patient iPS-derived motoneurons with myotubes confirmed the deficit in agrin secretion and revealed a reduction in motoneuron survival. Altogether, we report the first mutations in AGRN gene that specifically affect agrin secretion by motoneurons. Interestingly, the three patients carrying these mutations were initially suspected of spinal muscular atrophy (SMA). Therefore, in the presence of patients with a clinical presentation of SMA but without mutation in the SMN1 gene, it can be worth to look for mutations in AGRN.
Collapse
Affiliation(s)
- Arnaud Jacquier
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France ,grid.413852.90000 0001 2163 3825Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Valérie Risson
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France
| | - Thomas Simonet
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France ,grid.413852.90000 0001 2163 3825Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Florine Roussange
- grid.503216.30000 0004 0618 2124INSERM/UEPS UMR 861, Paris Saclay Université, I-STEM, 91100 Corbeil-Essonnes, France
| | - Nicolas Lacoste
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France
| | - Shams Ribault
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France ,grid.413852.90000 0001 2163 3825Service de Médecine Physique et de Réadaptation, Hôpital Henry Gabrielle, Hospices Civils de Lyon, 69230 Saint-Genis-Laval, France
| | - Julien Carras
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France ,grid.413852.90000 0001 2163 3825Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Julian Theuriet
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France ,grid.413852.90000 0001 2163 3825Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Emmanuelle Girard
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France
| | - Isabelle Grosjean
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France
| | - Laure Le Goff
- grid.413852.90000 0001 2163 3825Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Planegg, Martinsried, Germany
| | - Julia Meltoranta
- Department of Physiological Genomics, Biomedical Center, Planegg, Martinsried, Germany
| | - Stéphanie Bauché
- grid.462844.80000 0001 2308 1657Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, Sorbonne Universités, 75013 Paris, France
| | - Damien Sternberg
- grid.462844.80000 0001 2308 1657Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, Sorbonne Universités, 75013 Paris, France ,grid.411439.a0000 0001 2150 9058APHP, UF Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Emmanuel Fournier
- grid.462844.80000 0001 2308 1657Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, Sorbonne Universités, 75013 Paris, France ,grid.411439.a0000 0001 2150 9058AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France ,grid.462844.80000 0001 2308 1657Département d’Éthique de l’Université et des enseignements de Physiologie de la Faculté de Médecine Pitié-Salpêtrière, 75013 Paris, France
| | - Anna Kostera-Pruszczyk
- grid.13339.3b0000000113287408Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Emily O’Connor
- grid.28046.380000 0001 2182 2255Division of Neurology, Department of Medicine, Children’s Hospital of Eastern Ontario Research Institute, The Ottawa Hospital and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Bruno Eymard
- grid.462844.80000 0001 2308 1657Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, Sorbonne Universités, 75013 Paris, France ,grid.411439.a0000 0001 2150 9058AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Hanns Lochmüller
- grid.28046.380000 0001 2182 2255Division of Neurology, Department of Medicine, Children’s Hospital of Eastern Ontario Research Institute, The Ottawa Hospital and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Cécile Martinat
- grid.503216.30000 0004 0618 2124INSERM/UEPS UMR 861, Paris Saclay Université, I-STEM, 91100 Corbeil-Essonnes, France
| | - Laurent Schaeffer
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France ,grid.413852.90000 0001 2163 3825Hospices Civils de Lyon, Groupement Est, Bron, France
| |
Collapse
|
30
|
Soto-Moreno EJ, Balboula A, Spinka C, Rivera RM. Serum supplementation during bovine embryo culture affects their development and proliferation through macroautophagy and endoplasmic reticulum stress regulation. PLoS One 2021; 16:e0260123. [PMID: 34882691 PMCID: PMC8659681 DOI: 10.1371/journal.pone.0260123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Serum supplementation during bovine embryo culture has been demonstrated to promote cell proliferation and preimplantation embryo development. However, these desirable outcomes, have been associated with gene expression alterations of pathways involved in macroautophagy, growth, and development at the blastocyst stage, as well as with developmental anomalies such as fetal overgrowth and placental malformations. In order to start dissecting the molecular pathways by which serum supplementation of the culture medium during the preimplantation stage promotes developmental abnormalities, we examined blastocyst morphometry, inner cell mass and trophectoderm cell allocations, macroautophagy, and endoplasmic reticulum stress. On day 5 post-insemination, > 16 cells embryos were selected and cultured in medium containing 10% serum or left as controls. Embryo diameter, inner cell mass and trophectoderm cell number, and macroautophagy were measured on day 8 blastocysts (BL) and expanded blastocysts (XBL). On day 5 and day 8, we assessed transcript level of the ER stress markers HSPA5, ATF4, MTHFD2, and SHMT2 as well as XBP1 splicing (a marker of the unfolded protein response). Serum increased diameter and proliferation of embryos when compared to the no-serum group. In addition, serum increased macroautophagy of BL when compared to controls, while the opposite was true for XBL. None of the genes analyzed was differentially expressed at any stage, except that serum decreased HSPA5 in day 5 > 16 cells stage embryos. XBP1 splicing was decreased in BL when compared to XBL, but only in the serum group. Our data suggest that serum rescues delayed embryos by alleviating endoplasmic reticulum stress and promotes development of advanced embryos by decreasing macroautophagy.
Collapse
Affiliation(s)
- Edgar Joel Soto-Moreno
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| | - Ahmed Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| | - Christine Spinka
- College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States of America
| | - Rocío Melissa Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
31
|
Kojima T, Wasano K, Takahashi S, Homma K. Cell death-inducing cytotoxicity in truncated KCNQ4 variants associated with DFNA2 hearing loss. Dis Model Mech 2021; 14:272416. [PMID: 34622280 PMCID: PMC8628632 DOI: 10.1242/dmm.049015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/22/2021] [Indexed: 01/30/2023] Open
Abstract
KCNQ4 encodes the homotetrameric voltage-dependent potassium ion channel Kv7.4, and is the causative gene for autosomal dominant nonsyndromic sensorineural hearing loss, DFNA2. Dominant-negative inhibition accounts for the observed dominant inheritance of many DFNA2-associated KCNQ4 variants. In addition, haploinsufficiency has been presumed as the pathological mechanism for truncated Kv7.4 variants lacking the C-terminal tetramerization region, as they are unlikely to exert a dominant-negative inhibitory effect. Such truncated Kv7.4 variants should result in relatively mild hearing loss when heterozygous; however, this is not always the case. In this study, we characterized Kv7.4Q71fs (c.211delC), Kv7.4W242X (c.725G>A) and Kv7.4A349fs (c.1044_1051del8) in heterologous expression systems and found that expression of these truncated Kv7.4 variants induced cell death. We also found similar cell death-inducing cytotoxic effects in truncated Kv7.1 (KCNQ1) variants, suggesting that the generality of our findings could account for the dominant inheritance of many, if not most, truncated Kv7 variants. Moreover, we found that the application of autophagy inducers can ameliorate the cytotoxicity, providing a novel insight for the development of alternative therapeutic strategies for Kv7.4 variants. Summary: Expression of truncated KCNQ4 variants lacking the C-terminal tetramerization domain results in cell-death inducing cytotoxicity, providing novel insight into the development of alternative therapeutic strategies for DFNA2 hearing loss.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Koichiro Wasano
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
32
|
Title AC, Silva PN, Godbersen S, Hasenöhrl L, Stoffel M. The miR-200-Zeb1 axis regulates key aspects of β-cell function and survival in vivo. Mol Metab 2021; 53:101267. [PMID: 34116231 PMCID: PMC8258987 DOI: 10.1016/j.molmet.2021.101267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The miR-200-Zeb1 axis regulates the epithelial-to-mesenchymal transition (EMT), differentiation, and resistance to apoptosis. A better understanding of these processes in diabetes is highly relevant, as β-cell dedifferentiation and apoptosis contribute to the loss of functional β-cell mass and diabetes progression. Furthermore, EMT promotes the loss of β-cell identity in the in vitro expansion of human islets. Though the miR-200 family has previously been identified as a regulator of β-cell apoptosis in vivo, studies focusing on Zeb1 are lacking. The aim of this study was thus to investigate the role of Zeb1 in β-cell function and survival in vivo. METHODS miR-200 and Zeb1 are involved in a double-negative feedback loop. We characterized a mouse model in which miR-200 binding sites in the Zeb1 3'UTR are mutated (Zeb1200), leading to a physiologically relevant upregulation of Zeb1 mRNA expression. The role of Zeb1 was investigated in this model via metabolic tests and analysis of isolated islets. Further insights into the distinct contributions of the miR-200 and Zeb1 branches of the feedback loop were obtained by crossing the Zeb1200 allele into a background of miR-141-200c overexpression. RESULTS Mild Zeb1 derepression in vivo led to broad transcriptional changes in islets affecting β-cell identity, EMT, insulin secretion, cell-cell junctions, the unfolded protein response (UPR), and the response to ER stress. The aggregation and insulin secretion of dissociated islets of mice homozygous for the Zeb1200 mutation (Zeb1200M) were impaired, and Zeb1200M islets were resistant to thapsigargin-induced ER stress ex vivo. Zeb1200M mice had increased circulating proinsulin levels but no overt metabolic phenotype, reflecting the strong compensatory ability of islets to maintain glucose homeostasis. CONCLUSIONS This study signifies the importance of the miR-200-Zeb1 axis in regulating key aspects of β-cell function and survival. A better understanding of this axis is highly relevant in developing therapeutic strategies for inducing β-cell redifferentiation and maintaining β-cell identity in in vitro islet expansion.
Collapse
Affiliation(s)
- Alexandra C Title
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland; Competence Center Personalized Medicine, ETH Zürich, Voltastrasse 24, 8044, Zürich, Switzerland
| | - Pamuditha N Silva
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Lynn Hasenöhrl
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland; Competence Center Personalized Medicine, ETH Zürich, Voltastrasse 24, 8044, Zürich, Switzerland; Medical Faculty, University of Zürich, 8091, Zürich, Switzerland.
| |
Collapse
|
33
|
Vildanova M, Vishnyakova P, Saidova A, Konduktorova V, Onishchenko G, Smirnova E. Gibberellic Acid Initiates ER Stress and Activation of Differentiation in Cultured Human Immortalized Keratinocytes HaCaT and Epidermoid Carcinoma Cells A431. Pharmaceutics 2021; 13:pharmaceutics13111813. [PMID: 34834228 PMCID: PMC8622727 DOI: 10.3390/pharmaceutics13111813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Diterpenoid plant hormone gibberellic acid (GA) plays an important role in regulation of plant growth and development and is commonly used in agriculture for activation of plant growth and food production. It is known that many plant-derived compounds have miscellaneous biological effects on animals and humans, influencing specific cellular functions and metabolic pathways. However, the effect of GA on animal and human cells remains controversial. We investigated the effect of GA on cultured human cell lines of epidermoid origin-immortalized non-tumorigenic keratinocytes HaCaT and carcinoma A431 cells. We found that at a non-toxic dose, GA upregulated the expression of genes associated with the ER stress response-CHOP, sXBP1, GRP87 in both cell lines, and ATF4 predominantly in A431 cells. We also showed that GA was more effective in upregulating the production of ER stress marker GRP78, autophagy marker LC3B-II, and differentiation markers involucrin and filaggrin in A431 cells than in HaCaT. We conclude that GA induces mild ER stress in both cell lines, followed by the activation of differentiation via upregulation of autophagy. However, in comparison with immortalized keratinocytes HaCaT, GA is more effective in inducing differentiation of carcinoma A431 cells, probably due to the inherently lower differentiation status of A431 cells. The activation of differentiation in poorly differentiated and highly malignant A431 cells by GA may lower the level of malignancy of these cells and decrease their tumorigenic potential.
Collapse
Affiliation(s)
- Mariya Vildanova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119234 Moscow, Russia; (A.S.); (V.K.); (G.O.); (E.S.)
- Correspondence: or
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Laboratory of Regenerative Medicine, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia;
- Histology Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Aleena Saidova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119234 Moscow, Russia; (A.S.); (V.K.); (G.O.); (E.S.)
| | - Victoria Konduktorova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119234 Moscow, Russia; (A.S.); (V.K.); (G.O.); (E.S.)
| | - Galina Onishchenko
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119234 Moscow, Russia; (A.S.); (V.K.); (G.O.); (E.S.)
| | - Elena Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119234 Moscow, Russia; (A.S.); (V.K.); (G.O.); (E.S.)
| |
Collapse
|
34
|
Tan J, Che Y, Liu Y, Hu J, Wang W, Hu L, Zhou Q, Wang H, Li J. CELSR2 deficiency suppresses lipid accumulation in hepatocyte by impairing the UPR and elevating ROS level. FASEB J 2021; 35:e21908. [PMID: 34478580 DOI: 10.1096/fj.202100786rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023]
Abstract
Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2), a mammalian orthologue of drosophila flamingo, belongs to the cadherin subfamily. CELSR2 mainly function in neural development and cilium polarity. Recent studies showed that the CELSR2 gene is related to many human diseases, including coronary artery disease, idiopathic scoliosis, and cancer. Genome-Wide Association Studies data showed that SNP in the CELSR2-PSRC1-SORT1 gene loci has a strong association with circulating lipid levels and coronary artery disease. However, the function and underlying mechanism of CELSR2 in hepatic lipid metabolism remain unknown. Here, we found that CELSR2 expression is decreased in the liver of NAFLD/NASH patients and db/db mice. Depletion of CELSR2 significantly decreased the lipid accumulation in hepatocytes by suppressing the expression of lipid synthesis enzymes. Moreover, CELSR2 deficiency impaired the physiological unfolded protein response (UPR), which damages the ER homeostasis, and elevates the reactive oxygen species (ROS) level by decreasing the antioxidant expression. Scavenging of ROS by N-acetylcysteine treatment could restore the decreased lipid accumulation of CELSR2 knockdown cells. Furthermore, CELSR2 loss impaired cell survival by suppressing cell proliferation and promoting apoptosis. Our results uncovered a new role of CELSR2 in regulating lipid homeostasis and UPR, suggesting CELSR2 may be a new therapeutic target for non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Junyang Tan
- Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yaping Che
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yanyan Liu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Jiaqiao Hu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Wenjun Wang
- Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liubing Hu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Qinghua Zhou
- Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hao Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianshuang Li
- Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| |
Collapse
|
35
|
SRP54 mutations induce congenital neutropenia via dominant-negative effects on XBP1 splicing. Blood 2021; 137:1340-1352. [PMID: 33227812 DOI: 10.1182/blood.2020008115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/03/2020] [Indexed: 11/20/2022] Open
Abstract
Heterozygous de novo missense variants of SRP54 were recently identified in patients with congenital neutropenia (CN) who display symptoms that overlap with Shwachman-Diamond syndrome (SDS). Here, we investigate srp54 knockout zebrafish as the first in vivo model of SRP54 deficiency. srp54-/- zebrafish experience embryonic lethality and display multisystemic developmental defects along with severe neutropenia. In contrast, srp54+/- zebrafish are viable, fertile, and show only mild neutropenia. Interestingly, injection of human SRP54 messenger RNAs (mRNAs) that carry mutations observed in patients (T115A, T117Δ, and G226E) aggravated neutropenia and induced pancreatic defects in srp54+/- fish, mimicking the corresponding human clinical phenotypes. These data suggest that the various phenotypes observed in patients may be a result of mutation-specific dominant-negative effects on the functionality of the residual wild-type SRP54 protein. Overexpression of mutated SRP54 also consistently induced neutropenia in wild-type fish and impaired the granulocytic maturation of human promyelocytic HL-60 cells and healthy cord blood-derived CD34+ hematopoietic stem and progenitor cells. Mechanistically, srp54-mutant fish and human cells show impaired unconventional splicing of the transcription factor X-box binding protein 1 (Xbp1). Moreover, xbp1 morphants recapitulate phenotypes observed in srp54 deficiency and, importantly, injection of spliced, but not unspliced, xbp1 mRNA rescues neutropenia in srp54+/- zebrafish. Together, these data indicate that SRP54 is critical for the development of various tissues, with neutrophils reacting most sensitively to the loss of SRP54. The heterogenic phenotypes observed in patients that range from mild CN to SDS-like disease may be the result of different dominant-negative effects of mutated SRP54 proteins on downstream XBP1 splicing, which represents a potential therapeutic target.
Collapse
|
36
|
Abuaita BH, Sule GJ, Schultz TL, Gao F, Knight JS, O'Riordan MX. The IRE1α Stress Signaling Axis Is a Key Regulator of Neutrophil Antimicrobial Effector Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:210-220. [PMID: 34145058 DOI: 10.4049/jimmunol.2001321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Activation of the endoplasmic reticulum stress sensor, IRE1α, is required for effective immune responses against bacterial infection and is associated with human inflammatory diseases in which neutrophils are a key immune component. However, the specific role of IRE1α in regulating neutrophil effector function has not been studied. In this study, we show that infection-induced IRE1α activation licenses neutrophil antimicrobial capacity, including IL-1β production, formation of neutrophil extracellular traps (NETs), and methicillin-resistant Staphylococcus aureus (MRSA) killing. Inhibition of IRE1α diminished production of mitochondrial reactive oxygen species and decreased CASPASE-2 activation, which both contributed to neutrophil antimicrobial activity. Mice deficient in CASPASE-2 or neutrophil IRE1α were highly susceptible to MRSA infection and failed to effectively form NETs in the s.c. abscess. IRE1α activation enhanced calcium influx and citrullination of histone H3 independently of mitochondrial reactive oxygen species production, suggesting that IRE1α coordinates multiple pathways required for NET formation. Our data demonstrate that the IRE1α-CASPASE-2 axis is a major driver of neutrophil activity against MRSA infection and highlight the importance of IRE1α in neutrophil antibacterial function.
Collapse
Affiliation(s)
- Basel H Abuaita
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| | - Gautam J Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| | - Fushan Gao
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| |
Collapse
|
37
|
Koshenov Z, Oflaz FE, Hirtl M, Pilic J, Bachkoenig OA, Gottschalk B, Madreiter-Sokolowski CT, Rost R, Malli R, Graier WF. Sigma-1 Receptor Promotes Mitochondrial Bioenergetics by Orchestrating ER Ca 2+ Leak during Early ER Stress. Metabolites 2021; 11:422. [PMID: 34206832 PMCID: PMC8305890 DOI: 10.3390/metabo11070422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is a complex, multifunctional organelle of eukaryotic cells and responsible for the trafficking and processing of nearly 30% of all human proteins. Any disturbance to these processes can cause ER stress, which initiates an adaptive mechanism called unfolded protein response (UPR) to restore ER functions and homeostasis. Mitochondrial ATP production is necessary to meet the high energy demand of the UPR, while the molecular mechanisms of ER to mitochondria crosstalk under such stress conditions remain mainly enigmatic. Thus, better understanding the regulation of mitochondrial bioenergetics during ER stress is essential to combat many pathologies involving ER stress, the UPR, and mitochondria. This article investigates the role of Sigma-1 Receptor (S1R), an ER chaperone, has in enhancing mitochondrial bioenergetics during early ER stress using human neuroblastoma cell lines. Our results show that inducing ER stress with tunicamycin, a known ER stressor, greatly enhances mitochondrial bioenergetics in a time- and S1R-dependent manner. This is achieved by enhanced ER Ca2+ leak directed towards mitochondria by S1R during the early phase of ER stress. Our data point to the importance of S1R in promoting mitochondrial bioenergetics and maintaining balanced H2O2 metabolism during early ER stress.
Collapse
Affiliation(s)
- Zhanat Koshenov
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Furkan E. Oflaz
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Martin Hirtl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Johannes Pilic
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Olaf A. Bachkoenig
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Corina T. Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
38
|
Wang J, Wong WP, Link EO, Olivares S, Adelman CT, Henkel AS, El Muayed M. Single well, single-common primer pair, dual probe, duplex qPCR assay for the quantification of mRNA splicing variants. Biol Methods Protoc 2021; 6:bpab002. [PMID: 33655078 PMCID: PMC7903517 DOI: 10.1093/biomethods/bpab002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 12/03/2022] Open
Abstract
Quantifying the ratio of alternatively spliced mRNA variants of genes with known alternative splicing variants is highly relevant for many applications. Herein, we describe the validation of a quantitative PCR design for the simplified quantification of known mRNA splice variants. The assay uses a single-common primer pair, dual probe design for the determination of splicing variants in a single well configuration. We used murine XBP-1 splicing variants, XBP-1S and XBP-1U, to validate and demonstrate the performance characteristics of this approach. Using synthetic XBP-1S and XBP-1U cDNA as well as cDNA synthesized from mouse beta-cell line MIN6, we established the performance parameters and dynamic range of the assay. Reliable quantification of both variants at varying concentration gradients was shown. No cross detection of XBP-1U by the XBP-1S probe was detected and only marginal XBP-1S cross detection by the XBP-1U probe was detected at high concentration gradients that are unlikely to be relevant. We demonstrated that the assay accurately detected changes of XBP-1 splice variants in mouse liver subjected to pharmacologically induced ER stress without the need for normalization to a reference gene.
Collapse
Affiliation(s)
- Janice Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Winifred P Wong
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Emma O Link
- Masters of Biomedical Studies Program, Drexel University, Philadelphia, PA 19104, USA
| | - Shantel Olivares
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cade T Adelman
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Biomedical Engineering, George Washington University School of Engineering and Applied Sciences, Washington, DC 20052, USA
| | - Anne S Henkel
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Malek El Muayed
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
39
|
Yang HJ, Song BS, Sim BW, Jung Y, Chae U, Lee DG, Cha JJ, Baek SJ, Lim KS, Choi WS, Lee HY, Son HC, Park SH, Jeong KJ, Kang P, Baek SH, Koo BS, Kim HN, Jin YB, Park YH, Choo YK, Kim SU. Establishment and Characterization of Immortalized Miniature Pig Pancreatic Cell Lines Expressing Oncogenic K-Ras G12D. Int J Mol Sci 2020; 21:ijms21228820. [PMID: 33233448 PMCID: PMC7700231 DOI: 10.3390/ijms21228820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
In recent decades, many studies on the treatment and prevention of pancreatic cancer have been conducted. However, pancreatic cancer remains incurable, with a high mortality rate. Although mouse models have been widely used for preclinical pancreatic cancer research, these models have many differences from humans. Therefore, large animals may be more useful for the investigation of pancreatic cancer. Pigs have recently emerged as a new model of pancreatic cancer due to their similarities to humans, but no pig pancreatic cancer cell lines have been established for use in drug screening or analysis of tumor biology. Here, we established and characterized an immortalized miniature pig pancreatic cell line derived from primary pancreatic cells and pancreatic cancer-like cells expressing K-rasG12D regulated by the human PTF1A promoter. Using this immortalized cell line, we analyzed the gene expression and phenotypes associated with cancer cell characteristics. Notably, we found that acinar-to-ductal transition was caused by K-rasG12D in the cell line constructed from acinar cells. This may constitute a good research model for the analysis of acinar-to-ductal metaplasia in human pancreatic cancer.
Collapse
Affiliation(s)
- Hae-Jun Yang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
| | - Yena Jung
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
| | - Unbin Chae
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
| | - Dong Gil Lee
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
| | - Jae-Jin Cha
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
| | - Seo-Jong Baek
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
| | - Won Seok Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (W.S.C.); (S.-H.P.); (K.-J.J.); (S.H.B.); (B.-S.K.); (H.-N.K.); (Y.B.J.)
| | - Hwal-Yong Lee
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
| | - Hee-Chang Son
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
| | - Sung-Hyun Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (W.S.C.); (S.-H.P.); (K.-J.J.); (S.H.B.); (B.-S.K.); (H.-N.K.); (Y.B.J.)
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (W.S.C.); (S.-H.P.); (K.-J.J.); (S.H.B.); (B.-S.K.); (H.-N.K.); (Y.B.J.)
| | - Philyong Kang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
| | - Seung Ho Baek
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (W.S.C.); (S.-H.P.); (K.-J.J.); (S.H.B.); (B.-S.K.); (H.-N.K.); (Y.B.J.)
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (W.S.C.); (S.-H.P.); (K.-J.J.); (S.H.B.); (B.-S.K.); (H.-N.K.); (Y.B.J.)
| | - Han-Na Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (W.S.C.); (S.-H.P.); (K.-J.J.); (S.H.B.); (B.-S.K.); (H.-N.K.); (Y.B.J.)
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (W.S.C.); (S.-H.P.); (K.-J.J.); (S.H.B.); (B.-S.K.); (H.-N.K.); (Y.B.J.)
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: (Y.-H.P.); (Y.-K.C.); (S.-U.K.); Tel.: +82-43-240-6321 (S.-U.K.); Fax: +82-43-240-6309 (S.-U.K.)
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
- Correspondence: (Y.-H.P.); (Y.-K.C.); (S.-U.K.); Tel.: +82-43-240-6321 (S.-U.K.); Fax: +82-43-240-6309 (S.-U.K.)
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si 28116, Korea; (H.-J.Y.); (B.-S.S.); (B.-W.S.); (Y.J.); (U.C.); (D.G.L.); (J.-J.C.); (S.-J.B.); (K.S.L.); (H.-Y.L.); (H.-C.S.); (P.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: (Y.-H.P.); (Y.-K.C.); (S.-U.K.); Tel.: +82-43-240-6321 (S.-U.K.); Fax: +82-43-240-6309 (S.-U.K.)
| |
Collapse
|
40
|
The Integrated UPR and ERAD in Oligodendrocytes Maintain Myelin Thickness in Adults by Regulating Myelin Protein Translation. J Neurosci 2020; 40:8214-8232. [PMID: 32958569 DOI: 10.1523/jneurosci.0604-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/09/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Myelin proteins, which are produced in the endoplasmic reticulum (ER), are essential and necessary for maintaining myelin structure. The integrated unfold protein response (UPR) and ER-associated degradation (ERAD) are the primary ER quality control mechanism. The adaptor protein Sel1L (Suppressor/Enhancer of Lin-12-like) controls the stability of the E3 ubiquitin ligase Hrd1 (hydroxymethylglutaryl reductase degradation protein 1), and is necessary for the ERAD activity of the Sel1L-Hrd1 complex. Herein, we showed that Sel1L deficiency specifically in oligodendrocytes caused ERAD impairment, the UPR activation, and attenuation of myelin protein biosynthesis; and resulted in late-onset, progressive myelin thinning in the CNS of adult mice (both male and female). The pancreatic ER kinase (PERK) branch of the UPR functions as the master regulator of protein translation in ER-stressed cells. Importantly, PERK inactivation reversed attenuation of myelin protein biosynthesis in oligodendrocytes and restored myelin thickness in the CNS of oligodendrocyte-specific Sel1L-deficient mice (both male and female). Conversely, blockage of proteolipid protein production exacerbated myelin thinning in the CNS of oligodendrocyte-specific Sel1L-deficient mice (both male and female). These findings suggest that impaired ERAD in oligodendrocytes reduces myelin thickness in the adult CNS through suppression of myelin protein translation by activating PERK.SIGNIFICANCE STATEMENT Myelin is an enormous extended plasma membrane of oligodendrocytes that wraps and insulates axons. Myelin structure, including thickness, was thought to be extraordinarily stable in adults. Myelin proteins, which are produced in the endoplasmic reticulum (ER), are essential and necessary for maintaining myelin structure. The integrated unfolded protein response (UPR) and ER-associated degradation (ERAD) are the primary mechanism that maintains ER protein homeostasis. Herein, we explored the role of the integrated UPR and ERAD in oligodendrocytes in regulating myelin protein production and maintaining myelin structure using mouse models. The results presented in this study imply that the integrated UPR and ERAD in oligodendrocytes maintain myelin thickness in adults by regulating myelin protein production.
Collapse
|
41
|
Wu S, Stone S, Yue Y, Lin W. Endoplasmic reticulum associated degradation is required for maintaining endoplasmic reticulum homeostasis and viability of mature Schwann cells in adults. Glia 2020; 69:489-506. [PMID: 32935902 DOI: 10.1002/glia.23910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 01/11/2023]
Abstract
The integrated unfolded protein response (UPR) and endoplasmic reticulum associated degradation (ERAD) is the principle mechanisms that maintain endoplasmic reticulum (ER) homeostasis. Schwann cells (SCs) must produce an enormous amount of myelin proteins via the ER to assemble and maintain myelin structure; however, it is unclear how SCs maintain ER homeostasis. It is known that Suppressor/Enhancer of Lin-12-like (Sel1L) is necessary for the ERAD activity of the Sel1L- hydroxymethylglutaryl reductase degradation protein 1(Hrd1) complex. Herein, we showed that Sel1L deficiency in SCs impaired the ERAD activity of the Sel1L-Hrd1 complex and led to ER stress and activation of the UPR. Interestingly, Sel1L deficiency had no effect on actively myelinating SCs during development, but led to later-onset mature SC apoptosis and demyelination in the adult PNS. Moreover, inactivation of the pancreatic ER kinase (PERK) branch of the UPR did not influence the viability and function of actively myelinating SCs, but resulted in exacerbation of ER stress and apoptosis of mature SCs in SC-specific Sel1L deficient mice. These findings suggest that the integrated UPR and ERAD is dispensable to actively myelinating SCs during development, but is necessary for maintaining ER homeostasis and the viability and function of mature SCs in adults.
Collapse
Affiliation(s)
- Shuangchan Wu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarrabeth Stone
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuan Yue
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
42
|
Barthet MM, Pierpont CL, Tavernier E. Unraveling the role of the enigmatic MatK maturase in chloroplast group IIA intron excision. PLANT DIRECT 2020; 4:e00208. [PMID: 32185246 PMCID: PMC7068846 DOI: 10.1002/pld3.208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 05/18/2023]
Abstract
Maturases are prokaryotic enzymes that aid self-excision of introns in precursor RNAs and have evolutionary ties to the nuclear spliceosome. Both the mitochondria and chloroplast, due to their prokaryotic origin, encode a single intron maturase, MatR for the mitochondria and MatK for the chloroplast. MatK is proposed to aid excision of seven different chloroplast group IIA introns that reside within precursor RNAs for essential elements of chloroplast function. We have developed an in vitro activity assay to test chloroplast group IIA intron excision. Using this assay, we demonstrate self-excision of the group IIA intron of the second intron of rps12 and the group IIA intron of rpl2. We further show that the addition of heterologously expressed MatK protein increases efficiency of group IIA intron self-splicing for the second intron of rps12 but not the group IIA intron of rpl2. These data, to our knowledge, provide the first direct evidence of MatK's maturase activity.
Collapse
Affiliation(s)
| | - Christopher L. Pierpont
- Department of BiologyCoastal Carolina UniversityConwaySCUSA
- Division of Biological SciencesUniversity of MontanaMissoulaMTUSA
| | - Emilie‐Katherine Tavernier
- Department of BiologyCoastal Carolina UniversityConwaySCUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|