1
|
Vatzia E, Paudyal B, Dema B, Carr BV, Sedaghat-Rostami E, Gubbins S, Sharma B, Moorhouse E, Morris S, Ulaszewska M, MacLoughlin R, Salguero FJ, Gilbert SC, Tchilian E. Aerosol immunization with influenza matrix, nucleoprotein, or both prevents lung disease in pig. NPJ Vaccines 2024; 9:188. [PMID: 39397062 PMCID: PMC11471855 DOI: 10.1038/s41541-024-00989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Current influenza vaccines are strain-specific and require frequent updates to combat new strains, making a broadly protective influenza vaccine (BPIV) highly desirable. A promising strategy is to induce T-cell responses against internal proteins conserved across influenza strains. In this study, pH1N1 pre-exposed pigs were immunized by aerosol using viral vectored vaccines (ChAdOx2 and MVA) expressing matrix (M1) and nucleoprotein (NP). Following H3N2 challenge, all immunizations (M1, NP or NPM1) reduced lung pathology, but M1 alone offered the greatest protection. NP or NPM1 immunization induced both T-cell and antibody responses. M1 immunization generated no detectable antibodies but elicited M1-specific T-cell responses, suggesting T cell-mediated protection. Additionally, a single aerosol immunization with the ChAdOx vaccine encoding M1, NP and neuraminidase reduced lung pathology. These findings provide insights into BPIV development using a relevant large natural host, the pig.
Collapse
Affiliation(s)
| | | | - Barbara Dema
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Susan Morris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah C Gilbert
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
2
|
Bettin L, Darbellay J, van Kessel J, Dhar N, Gerdts V. Porcine γδ T cells express cytotoxic cell-associated markers and display killing activity but are not selectively cytotoxic against PRRSV- or swIAV-infected macrophages. Front Immunol 2024; 15:1434011. [PMID: 39144143 PMCID: PMC11321972 DOI: 10.3389/fimmu.2024.1434011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Background Gamma-delta (γδ) T cells are a major immune cell subset in pigs. Approximately 50% of circulating T cells are γδ T cells in young pigs and up to 30% in adult sows. Despite this abundance, the functions of porcine γδ T cells are mostly unidentified. In humans and mice, activated γδ T cells exhibit broad innate cytotoxic activity against a wide variety of stressed, infected, and cancerous cells through death receptor/ligand-dependent and perforin/granzyme-dependent pathways. However, so far, it is unknown whether porcine γδ T cells have the ability to perform cytotoxic functions. Methods In this study, we conducted a comprehensive phenotypic characterization of porcine γδ T cells isolated from blood, lung, and nasal mucosa. To further analyze the cytolytic potential of γδ T cells, in vitro cytotoxicity assays were performed using purified γδ T cells as effector cells and virus-exposed or mock-treated primary porcine alveolar macrophages as target cells. Results Our results show that only CD2+ γδ T cells express cytotoxic markers (CD16, NKp46, perforin) with higher perforin and NKp46 expression in γδ T cells isolated from lung and nasal mucosa. Moreover, we found that γδ T cells can exhibit cytotoxic functions in a cell-cell contact and degranulation-dependent manner. However, porcine γδ T cells did not seem to specifically target Porcine Reproductive and Respiratory Syndrome Virus or swine Influenza A Virus-infected macrophages, which may be due to viral escape mechanisms. Conclusion Porcine γδ T cells express cytotoxic markers and can exhibit cytotoxic activity in vitro. The specific mechanisms by which porcine γδ T cells recognize target cells are not fully understood but may involve the detection of cellular stress signals.
Collapse
MESH Headings
- Animals
- Swine
- Porcine respiratory and reproductive syndrome virus/immunology
- Porcine respiratory and reproductive syndrome virus/physiology
- Cytotoxicity, Immunologic
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/virology
- Porcine Reproductive and Respiratory Syndrome/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Biomarkers
- Orthomyxoviridae Infections/immunology
- Perforin/metabolism
- Perforin/immunology
- Intraepithelial Lymphocytes/immunology
- Cells, Cultured
Collapse
Affiliation(s)
- Leonie Bettin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Graaf-Rau A, Schmies K, Breithaupt A, Ciminski K, Zimmer G, Summerfield A, Sehl-Ewert J, Lillie-Jaschniski K, Helmer C, Bielenberg W, Grosse Beilage E, Schwemmle M, Beer M, Harder T. Reassortment incompetent live attenuated and replicon influenza vaccines provide improved protection against influenza in piglets. NPJ Vaccines 2024; 9:127. [PMID: 39003272 PMCID: PMC11246437 DOI: 10.1038/s41541-024-00916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024] Open
Abstract
Swine influenza A viruses (swIAV) cause an economically important respiratory disease in modern pig production. Continuous virus transmission and antigenic drift are difficult to control in enzootically infected pig herds. Here, antibody-positive piglets from a herd enzootically infected with swIAV H1N2 (clade 1 A.3.3.2) were immunized using a homologous prime-boost vaccination strategy with novel live attenuated influenza virus (LAIV) based on a reassortment-incompetent bat influenza-swIAV chimera or a vesicular stomatitis virus-based replicon vaccine. Challenge infection of vaccinated piglets by exposure to H1N2 swIAV-infected unvaccinated seeder pigs showed that both LAIV and replicon vaccine markedly reduced virus replication in the upper and lower respiratory tract, respectively, compared to piglets immunized with commercial heterologous or autologous adjuvanted whole-inactivated virus vaccines. Our novel vaccines may aid in interrupting continuous IAV transmission chains in large enzootically infected pig herds, improve the health status of the animals, and reduce the risk of zoonotic swIAV transmission.
Collapse
Affiliation(s)
- Annika Graaf-Rau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany.
| | - Kathrin Schmies
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald, Insel Riems, Germany
| | - Kevin Ciminski
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern & Mittelhaeusern, Switzerland, and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern & Mittelhaeusern, Switzerland, and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald, Insel Riems, Germany
| | | | - Carina Helmer
- SAN Group Biotech Germany GmbH, Hoeltinghausen, Germany
| | | | - Elisabeth Grosse Beilage
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| |
Collapse
|
4
|
Kontowicz E, Moreno-Madriñan M, Clarke Z, Ragland D, Beauvais W. Risk assessment of influenza transmission between workers and pigs on US indoor hog growing units. Prev Vet Med 2024; 230:106232. [PMID: 39053175 DOI: 10.1016/j.prevetmed.2024.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 07/27/2024]
Abstract
On pig farms ample opportunity exists for pig-to-human and human-to-pig (cross-species) influenza transmission. The purpose of this study was to assess the risks of cross-species influenza transmission within an indoor pig grower unit in the United States and to prioritize data gaps. Using the World Organization for Animal Health risk assessment framework we evaluated influenza transmission across two risk pathways: 1. What is the likelihood that based on current conditions on a single typical hog grower-finisher facility in the Midwest (US), during a single production cycle, at least one hog becomes infected with an influenza virus associated with swine (either H1N1, H3N2, or H1N2) [step 1a] and that at least one worker becomes infected as a result [step 1b] and that the worker develops symptoms [step 1c]? And 2. What is the likelihood that, based on current conditions on a single typical hog grower-finisher facility in the Midwest (US), during a single production cycle, at least one worker becomes infected with an influenza virus associated with people (either H1N1, H3N2, or H1N2) [step 2a] and that at least one pig becomes infected as a result [step 2b] and that the pig(s) develop(s) symptoms [step 2c]? Semi-quantitative probability and uncertainty assessments were based on literature review including passive and active influenza surveillance data. We assumed a typical pig-grower farm has capacity for 4,000 pigs, two workers, and minimal influenza control measures. Probability and uncertainty categories were assessed for each risk step and the combined risk pathway. The combined risk assessment for risk pathway one was estimated to be Very Low for H1N1 and H1N2 with an overall High level of uncertainty. The combined risk assessment for risk pathway two was estimated to be Extremely Low for H1N1 and H3N2 with a High degree of uncertainty. Scenario analyses in which influenza control measures were assumed to be implemented separately (implementing vaccinating sows, mass vaccinating incoming pigs or improved personal protective equipment adherence) showed no reduction in the combined risk category. When implementing three influenza control methods altogether, the combined risk could be reduced to Extremely Low for risk pathway one and remained Extremely Low for risk pathway two. This work highlights that multiple influenza control methods are needed to reduce the risks of inter-species influenza transmission on swine farms.
Collapse
Affiliation(s)
- Eric Kontowicz
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette 47907, Indiana
| | - Max Moreno-Madriñan
- Global Health Program, DePauw University, Greencastle 46135, Indiana; Department of Global Health, Indiana University, Indianapolis 46202, Indiana
| | - Zenobya Clarke
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette 47907, Indiana
| | - Darryl Ragland
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette 47907, Indiana
| | - Wendy Beauvais
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette 47907, Indiana.
| |
Collapse
|
5
|
Kristensen C, Laybourn HA, Crumpton JC, Martiny K, Webb A, Ryt-Hansen P, Trebbien R, Jensen HE, Nissen JN, Skovgaard K, Webby RJ, Larsen LE. Experimental infection of pigs and ferrets with "pre-pandemic," human-adapted, and swine-adapted variants of the H1N1pdm09 influenza A virus reveals significant differences in viral dynamics and pathological manifestations. PLoS Pathog 2023; 19:e1011838. [PMID: 38048355 PMCID: PMC10721187 DOI: 10.1371/journal.ppat.1011838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/14/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
Influenza A viruses are RNA viruses that cause epidemics in humans and are enzootic in the pig population globally. In 2009, pig-to-human transmission of a reassortant H1N1 virus (H1N1pdm09) caused the first influenza pandemic of the 21st century. This study investigated the infection dynamics, pathogenesis, and lesions in pigs and ferrets inoculated with natural isolates of swine-adapted, human-adapted, and "pre-pandemic" H1N1pdm09 viruses. Additionally, the direct-contact and aerosol transmission properties of the three H1N1pdm09 isolates were assessed in ferrets. In pigs, inoculated ferrets, and ferrets infected by direct contact with inoculated ferrets, the pre-pandemic H1N1pdm09 virus induced an intermediary viral load, caused the most severe lesions, and had the highest clinical impact. The swine-adapted H1N1pdm09 virus induced the highest viral load, caused intermediary lesions, and had the least clinical impact in pigs. The human-adapted H1N1pdm09 virus induced the highest viral load, caused the mildest lesions, and had the least clinical impact in ferrets infected by direct contact. The discrepancy between viral load and clinical impact presumably reflects the importance of viral host adaptation. Interestingly, the swine-adapted H1N1pdm09 virus was transmitted by aerosols to two-thirds of the ferrets. Further work is needed to assess the risk of human-to-human aerosol transmission of swine-adapted H1N1pdm09 viruses.
Collapse
Affiliation(s)
- Charlotte Kristensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Helena A. Laybourn
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jeri-Carol Crumpton
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Karen Martiny
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ashley Webb
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Pia Ryt-Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ramona Trebbien
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Henrik E. Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jakob N. Nissen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Lars E. Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
6
|
Ma W, Loving CL, Driver JP. From Snoot to Tail: A Brief Review of Influenza Virus Infection and Immunity in Pigs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1187-1194. [PMID: 37782856 PMCID: PMC10824604 DOI: 10.4049/jimmunol.2300385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 10/04/2023]
Abstract
Pigs play an important role in influenza A virus (IAV) epidemiology because they support replication of human, avian, and swine origin viruses and act as an IAV reservoir for pigs and other species, including humans. Moreover, novel IAVs with human pandemic potential may be generated in pigs. To minimize the threat of IAVs to human and swine health, it is crucial to understand host defense mechanisms that restrict viral replication and pathology in pigs. In this article, we review IAV strains circulating in the North American swine population, as well as porcine innate and acquired immune responses to IAV, including recent advances achieved through immunological tools developed specifically for swine. Furthermore, we highlight unique aspects of the porcine pulmonary immune system, which warrant consideration when developing vaccines and therapeutics to limit IAV in swine or when using pigs to model human IAV infections.
Collapse
Affiliation(s)
- Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO
| |
Collapse
|
7
|
Meene A, Gierse L, Schwaiger T, Karte C, Schröder C, Höper D, Wang H, Groß V, Wünsche C, Mücke P, Kreikemeyer B, Beer M, Becher D, Mettenleiter TC, Riedel K, Urich T. Archaeome structure and function of the intestinal tract in healthy and H1N1 infected swine. Front Microbiol 2023; 14:1250140. [PMID: 37779690 PMCID: PMC10534045 DOI: 10.3389/fmicb.2023.1250140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background Methanogenic archaea represent a less investigated and likely underestimated part of the intestinal tract microbiome in swine. Aims/Methods This study aims to elucidate the archaeome structure and function in the porcine intestinal tract of healthy and H1N1 infected swine. We performed multi-omics analysis consisting of 16S rRNA gene profiling, metatranscriptomics and metaproteomics. Results and discussion We observed a significant increase from 0.48 to 4.50% of archaea in the intestinal tract microbiome along the ileum and colon, dominated by genera Methanobrevibacter and Methanosphaera. Furthermore, in feces of naïve and H1N1 infected swine, we observed significant but minor differences in the occurrence of archaeal phylotypes over the course of an infection experiment. Metatranscriptomic analysis of archaeal mRNAs revealed the major methanogenesis pathways of Methanobrevibacter and Methanosphaera to be hydrogenotrophic and methyl-reducing, respectively. Metaproteomics of archaeal peptides indicated some effects of the H1N1 infection on central metabolism of the gut archaea. Conclusions/Take home message Finally, this study provides the first multi-omics analysis and high-resolution insights into the structure and function of the porcine intestinal tract archaeome during a non-lethal Influenza A virus infection of the respiratory tract, demonstrating significant alterations in archaeal community composition and central metabolic functions.
Collapse
Affiliation(s)
- Alexander Meene
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Laurin Gierse
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | | | | | - Dirk Höper
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Verena Groß
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christine Wünsche
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Pierre Mücke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Centre, Rostock, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Soni S, Mebratu YA. B-cell lymphoma-2 family proteins-activated proteases as potential therapeutic targets for influenza A virus and severe acute respiratory syndrome coronavirus-2: Killing two birds with one stone? Rev Med Virol 2023; 33:e2411. [PMID: 36451345 PMCID: PMC9877712 DOI: 10.1002/rmv.2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to a global health emergency. There are many similarities between SARS-CoV-2 and influenza A virus (IAV); both are single-stranded RNA viruses infecting airway epithelial cells and have similar modes of replication and transmission. Like IAVs, SARS-CoV-2 infections poses serious challenges due to the lack of effective therapeutic interventions, frequent appearances of new strains of the virus, and development of drug resistance. New approaches to control these infectious agents may stem from cellular factors or pathways that directly or indirectly interact with viral proteins to enhance or inhibit virus replication. One of the emerging concepts is that host cellular factors and pathways are required for maintaining viral genome integrity, which is essential for viral replication. Although IAVs have been studied for several years and many cellular proteins involved in their replication and pathogenesis have been identified, very little is known about how SARS-CoV-2 hijacks host cellular proteins to promote their replication. IAV induces apoptotic cell death, mediated by the B-cell lymphoma-2 (Bcl-2) family proteins in infected epithelia, and the pro-apoptotic members of this family promotes viral replication by activating host cell proteases. This review compares the life cycle and mode of replication of IAV and SARS-CoV-2 and examines the potential roles of host cellular proteins, belonging to the Bcl-2 family, in SARS-CoV-2 replication to provide future research directions.
Collapse
Affiliation(s)
- Sourabh Soni
- Division of Pulmonary, Critical Care, and Sleep MedicineDepartment of Internal MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Yohannes A. Mebratu
- Division of Pulmonary, Critical Care, and Sleep MedicineDepartment of Internal MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
9
|
Aleith J, Brendel M, Weipert E, Müller M, Schultz D, Müller-Hilke B. Influenza A Virus Exacerbates Group A Streptococcus Infection and Thwarts Anti-Bacterial Inflammatory Responses in Murine Macrophages. Pathogens 2022; 11:1320. [PMID: 36365071 PMCID: PMC9699311 DOI: 10.3390/pathogens11111320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 09/30/2023] Open
Abstract
Seasonal influenza epidemics pose a considerable hazard for global health. In the past decades, accumulating evidence revealed that influenza A virus (IAV) renders the host vulnerable to bacterial superinfections which in turn are a major cause for morbidity and mortality. However, whether the impact of influenza on anti-bacterial innate immunity is restricted to the vicinity of the lung or systemically extends to remote sites is underexplored. We therefore sought to investigate intranasal infection of adult C57BL/6J mice with IAV H1N1 in combination with bacteremia elicited by intravenous application of Group A Streptococcus (GAS). Co-infection in vivo was supplemented in vitro by challenging murine bone marrow derived macrophages and exploring gene expression and cytokine secretion. Our results show that viral infection of mice caused mild disease and induced the depletion of CCL2 in the periphery. Influenza preceding GAS infection promoted the occurrence of paw edemas and was accompanied by exacerbated disease scores. In vitro co-infection of macrophages led to significantly elevated expression of TLR2 and CD80 compared to bacterial mono-infection, whereas CD163 and CD206 were downregulated. The GAS-inducible upregulation of inflammatory genes, such as Nos2, as well as the secretion of TNFα and IL-1β were notably reduced or even abrogated following co-infection. Our results indicate that IAV primes an innate immune layout that is inadequately equipped for bacterial clearance.
Collapse
Affiliation(s)
- Johann Aleith
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Maria Brendel
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Erik Weipert
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Daniel Schultz
- Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany
| | - Ko-Infekt Study Group
- Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
10
|
Bhar A, Gierse LC, Meene A, Wang H, Karte C, Schwaiger T, Schröder C, Mettenleiter TC, Urich T, Riedel K, Kaderali L. Application of a maximal-clique based community detection algorithm to gut microbiome data reveals driver microbes during influenza A virus infection. Front Microbiol 2022; 13:979320. [PMID: 36338082 PMCID: PMC9630851 DOI: 10.3389/fmicb.2022.979320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Influenza A Virus (IAV) infection followed by bacterial pneumonia often leads to hospitalization and death in individuals from high risk groups. Following infection, IAV triggers the process of viral RNA replication which in turn disrupts healthy gut microbial community, while the gut microbiota plays an instrumental role in protecting the host by evolving colonization resistance. Although the underlying mechanisms of IAV infection have been unraveled, the underlying complex mechanisms evolved by gut microbiota in order to induce host immune response following IAV infection remain evasive. In this work, we developed a novel Maximal-Clique based Community Detection algorithm for Weighted undirected Networks (MCCD-WN) and compared its performance with other existing algorithms using three sets of benchmark networks. Moreover, we applied our algorithm to gut microbiome data derived from fecal samples of both healthy and IAV-infected pigs over a sequence of time-points. The results we obtained from the real-life IAV dataset unveil the role of the microbial families Ruminococcaceae, Lachnospiraceae, Spirochaetaceae and Prevotellaceae in the gut microbiome of the IAV-infected cohort. Furthermore, the additional integration of metaproteomic data enabled not only the identification of microbial biomarkers, but also the elucidation of their functional roles in protecting the host following IAV infection. Our network analysis reveals a fast recovery of the infected cohort after the second IAV infection and provides insights into crucial roles of Desulfovibrionaceae and Lactobacillaceae families in combating Influenza A Virus infection. Source code of the community detection algorithm can be downloaded from https://github.com/AniBhar84/MCCD-WN.
Collapse
Affiliation(s)
- Anirban Bhar
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | | | - Alexander Meene
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Claudia Karte
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Theresa Schwaiger
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Charlotte Schröder
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | | | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Graaf A, Petric PP, Sehl-Ewert J, Henritzi D, Breithaupt A, King J, Pohlmann A, Deutskens F, Beer M, Schwemmle M, Harder T. Cold-passaged isolates and bat-swine influenza a chimeric viruses as modified live-attenuated vaccines against influenza a viruses in pigs. Vaccine 2022; 40:6255-6270. [PMID: 36137904 DOI: 10.1016/j.vaccine.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Swine influenza A virus (swIAV) infections in pig populations cause considerable morbidity and economic losses. Frequent reverse zoonotic incursions of human IAV boost reassortment opportunities with authentic porcine and avian-like IAV in swine herds potentially enhancing zoonotic and even pre-pandemic potential. Vaccination using adjuvanted inactivated full virus vaccines is frequently used in attempting control of swIAV infections. Accelerated antigenic drift of swIAV in large swine holdings and interference of maternal antibodies with vaccine in piglets can compromise these efforts. Potentially more efficacious modified live-attenuated vaccines (MLVs) bear the risk of reversion of MLV to virulence. Here we evaluated new MLV candidates based on cold-passaged swIAV or on reassortment-incompetent bat-IAV-swIAV chimeric viruses. Serial cold-passaging of various swIAV subtypes did not yield unambiguously temperature-sensitive mutants although safety studies in mice and pigs suggested some degree of attenuation. Chimeric bat-swIAV expressing the hemagglutinin and neuraminidase of an avian-like H1N1, in contrast, proved to be safe in mice and pigs, and a single nasal inoculation induced protective immunity against homologous challenge in pigs. Reassortant-incompetent chimeric bat-swIAV vaccines could aid in reducing the amount of swIAV circulating in pig populations, thereby increasing animal welfare, limiting economic losses and lowering the risk of zoonotic swIAV transmission.
Collapse
Affiliation(s)
- Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Philipp P Petric
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Dinah Henritzi
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
12
|
Cervantes O, Talavera IC, Every E, Coler B, Li M, Li A, Li H, Adams Waldorf K. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses. Immunol Rev 2022; 308:123-148. [PMID: 35373371 PMCID: PMC9189035 DOI: 10.1111/imr.13078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/13/2023]
Abstract
Pregnant women infected with pathogenic respiratory viruses, such as influenza A viruses (IAV) and coronaviruses, are at higher risk for mortality, hospitalization, preterm birth, and stillbirth. Several factors are likely to contribute to the susceptibility of pregnant individuals to severe lung disease including changes in pulmonary physiology, immune defenses, and effector functions of some immune cells. Pregnancy is also a physiologic state characterized by higher levels of multiple hormones that may impact the effector functions of immune cells, such as progesterone, estrogen, human chorionic gonadotropin, prolactin, and relaxin. Each of these hormones acts to support a tolerogenic immune state of pregnancy, which helps prevent fetal rejection, but may also contribute to an impaired antiviral response. In this review, we address the unique role of adaptive and innate immune cells in the control of pathogenic respiratory viruses and how pregnancy and specific hormones can impact their effector actions. We highlight viruses with sex-specific differences in infection outcomes and why pregnancy hormones may contribute to fetal protection but aid the virus at the expense of the mother's health.
Collapse
Affiliation(s)
- Orlando Cervantes
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Irene Cruz Talavera
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Emma Every
- University of Washington School of Medicine, Spokane, Washington, United States of America
| | - Brahm Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Case Western Reserve, Cleveland, Ohio, United States of America
| | - Hanning Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
13
|
Staphylococcus aureus-induced immunosuppression mediated by IL-10 and IL-27 facilitates nasal colonisation. PLoS Pathog 2022; 18:e1010647. [PMID: 35776778 PMCID: PMC9282462 DOI: 10.1371/journal.ppat.1010647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/14/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus persistently colonises the anterior nares of a significant proportion of the healthy population, however the local immune response elicited during S. aureus nasal colonisation remains ill-defined. Local activation of IL-17/IL-22 producing T cells are critical for controlling bacterial clearance from the nasal cavity. However, recurrent and long-term colonisation is commonplace indicating efficient clearance does not invariably occur. Here we identify a central role for the regulatory cytokine IL-10 in facilitating bacterial persistence during S. aureus nasal colonisation in a murine model. IL-10 is produced rapidly within the nasal cavity following S. aureus colonisation, primarily by myeloid cells. Colonised IL-10-/- mice demonstrate enhanced IL-17+ and IL-22+ T cell responses and more rapidly clear bacteria from the nasal tissues as compared with wild-type mice. S. aureus also induces the regulatory cytokine IL-27 within the nasal tissue, which acts upstream of IL-10 promoting its production. IL-27 blockade reduces IL-10 production within the nasal cavity and improves bacterial clearance. TLR2 signalling was confirmed to be central to controlling the IL-10 response. Our findings conclude that during nasal colonisation S. aureus creates an immunosuppressive microenvironment through the local induction of IL-27 and IL-10, to dampen protective T cell responses and facilitate its persistence. Nasal colonisation by the bacterium Staphylococcus aureus is a very common occurrence in the human population. However there is a lack of knowledge on the immune response that controls nasal colonisation. It is known that a local pro-inflammatory immune response is important for bacterial clearance, however sustained colonisation is commonplace suggesting efficient clearance may not be occurring. Here we demonstrate for the first time that S. aureus is manipulating the host immune response by promoting immunosuppression in the nasal cavity which enables bacterial survival. We found that the regulatory proteins IL-10 and IL-27 are central to this suppressive response and result in reduced protective T cell responses. We also demonstrate that S. aureus is inducing IL-27 production to enhance IL-10 production in order to prolong bacterial colonisation. Our findings show that the host-pathogen interaction during nasal colonisation is more complex than previously described and that S. aureus is capable of manipulating the regulatory immune response of the host for its’ own benefit.
Collapse
|
14
|
Gierse LC, Meene A, Schultz D, Schwaiger T, Schröder C, Mücke P, Zühlke D, Hinzke T, Wang H, Methling K, Kreikemeyer B, Bernhardt J, Becher D, Mettenleiter TC, Lalk M, Urich T, Riedel K. Influenza A H1N1 Induced Disturbance of the Respiratory and Fecal Microbiome of German Landrace Pigs - a Multi-Omics Characterization. Microbiol Spectr 2021; 9:e0018221. [PMID: 34612695 PMCID: PMC8510242 DOI: 10.1128/spectrum.00182-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Seasonal influenza outbreaks represent a large burden for the health care system as well as the economy. While the role of the microbiome has been elucidated in the context of various diseases, the impact of respiratory viral infections on the human microbiome is largely unknown. In this study, swine was used as an animal model to characterize the temporal dynamics of the respiratory and gastrointestinal microbiome in response to an influenza A virus (IAV) infection. A multi-omics approach was applied on fecal samples to identify alterations in microbiome composition and function during IAV infection. We observed significantly altered microbial richness and diversity in the gastrointestinal microbiome after IAV infection. In particular, increased abundances of Prevotellaceae were detected, while Clostridiaceae and Lachnospiraceae decreased. Moreover, our metaproteomics data indicated that the functional composition of the microbiome was heavily affected by the influenza infection. For instance, we identified decreased amounts of flagellin, correlating with reduced abundances of Lachnospiraceae and Clostridiaceae, possibly indicating involvement of a direct immune response toward flagellated Clostridia during IAV infection. Furthermore, enzymes involved in short-chain fatty acid (SCFA) synthesis were identified in higher abundances, while metabolome analyses revealed rather stable concentrations of SCFAs. In addition, 16S rRNA gene sequencing was used to characterize effects on the composition and natural development of the upper respiratory tract microbiome. Our results showed that IAV infection resulted in significant changes in the abundance of Moraxellaceae and Pasteurellaceae in the upper respiratory tract. Surprisingly, temporal development of the respiratory microbiome structure was not affected. IMPORTANCE Here, we used swine as a biomedical model to elucidate the impact of influenza A H1N1 infection on structure and function of the respiratory and gastrointestinal tract microbiome by employing a multi-omics analytical approach. To our knowledge, this is the first study to investigate the temporal development of the porcine microbiome and to provide insights into the functional capacity of the gastrointestinal microbiome during influenza A virus infection.
Collapse
Affiliation(s)
| | - Alexander Meene
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniel Schultz
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Theresa Schwaiger
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Charlotte Schröder
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Pierre Mücke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tjorven Hinzke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology e.V., Greifswald, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Centre, Rostock, Germany
| | - Jörg Bernhardt
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Petersen B, Kammerer R, Frenzel A, Hassel P, Dau TH, Becker R, Breithaupt A, Ulrich RG, Lucas-Hahn A, Meyers G. Generation and first characterization of TRDC-knockout pigs lacking γδ T cells. Sci Rep 2021; 11:14965. [PMID: 34294758 PMCID: PMC8298467 DOI: 10.1038/s41598-021-94017-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
The TRDC-locus encodes the T cell receptor delta constant region, one component of the γδ T cell receptor which is essential for development of γδ T cells. In contrast to peptide recognition by αβ T cells, antigens activating γδ T cells are mostly MHC independent and not well characterized. Therefore, the function of γδ T cells and their contribution to protection against infections is still unclear. Higher numbers of circulating γδ T cells compared to mice, render the pig a suitable animal model to study γδ T cells. Knocking-out the porcine TRDC-locus by intracytoplasmic microinjection and somatic cell nuclear transfer resulted in healthy living γδ T cell deficient offspring. Flow cytometric analysis revealed that TRDC-KO pigs lack γδ T cells in peripheral blood mononuclear cells (PBMC) and spleen cells. The composition of the remaining leucocyte subpopulations was not affected by the depletion of γδ T cells. Genome-wide transcriptome analyses in PBMC revealed a pattern of changes reflecting the impairment of known or expected γδ T cell dependent pathways. Histopathology did not reveal developmental abnormalities of secondary lymphoid tissues. However, in a vaccination experiment the KO pigs stayed healthy but had a significantly lower neutralizing antibody titer as the syngenic controls.
Collapse
Affiliation(s)
- Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany.
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Insel Riems, 17493, Greifswald, Germany.
| | - Antje Frenzel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany
| | - Petra Hassel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany
| | - Tung Huy Dau
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Insel Riems, 17493, Greifswald, Germany
| | - Roswitha Becker
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Insel Riems, Greifswald, Germany
| | | | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Neustadt am Rbge./Mariensee, 31535, Neustadt, Germany
| | - Gregor Meyers
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Insel Riems, 17493, Greifswald, Germany
| |
Collapse
|
16
|
Peng JY, Shin DL, Li G, Wu NH, Herrler G. Time-dependent viral interference between influenza virus and coronavirus in the infection of differentiated porcine airway epithelial cells. Virulence 2021; 12:1111-1121. [PMID: 34034617 PMCID: PMC8162253 DOI: 10.1080/21505594.2021.1911148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses and influenza viruses are circulating in humans and animals all over the world. Co-infection with these two viruses may aggravate clinical signs. However, the molecular mechanisms of co-infections by these two viruses are incompletely understood. In this study, we applied air-liquid interface (ALI) cultures of well-differentiated porcine tracheal epithelial cells (PTECs) to analyze the co-infection by a swine influenza virus (SIV, H3N2 subtype) and porcine respiratory coronavirus (PRCoV) at different time intervals. Our results revealed that in short-term intervals, prior infection by influenza virus caused complete inhibition of coronavirus infection, while in long-term intervals, some coronavirus replication was detectable. The influenza virus infection resulted in (i) an upregulation of porcine aminopeptidase N, the cellular receptor for PRCoV and (ii) in the induction of an innate immune response which was responsible for the inhibition of PRCoV replication. By contrast, prior infection by coronavirus only caused a slight inhibition of influenza virus replication. Taken together, the timing and the order of virus infection are important determinants in co-infections. This study is the first to show the impact of SIV and PRCoV co- and super-infection on the cellular level. Our results have implications also for human viruses, including potential co-infections by SARS-CoV-2 and seasonal influenza viruses.
Collapse
Affiliation(s)
- Ju-Yi Peng
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dai-Lun Shin
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Nai-Huei Wu
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
17
|
Bertho N, Meurens F. The pig as a medical model for acquired respiratory diseases and dysfunctions: An immunological perspective. Mol Immunol 2021; 135:254-267. [PMID: 33933817 DOI: 10.1016/j.molimm.2021.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
By definition no model is perfect, and this also holds for biology and health sciences. In medicine, murine models are, and will be indispensable for long, thanks to their reasonable cost and huge choice of transgenic strains and molecular tools. On the other side, non-human primates remain the best animal models although their use is limited because of financial and obvious ethical reasons. In the field of respiratory diseases, specific clinical models such as sheep and cotton rat for bronchiolitis, or ferret and Syrian hamster for influenza and Covid-19, have been successfully developed, however, in these species, the toolbox for biological analysis remains scarce. In this view the porcine medical model is appearing as the third, intermediate, choice, between murine and primate. Herein we would like to present the pros and cons of pig as a model for acquired respiratory conditions, through an immunological point of view. Indeed, important progresses have been made in pig immunology during the last decade that allowed the precise description of immune molecules and cell phenotypes and functions. These progresses might allow the use of pig as clinical model of human respiratory diseases but also as a species of interest to perform basic research explorations.
Collapse
Affiliation(s)
| | - François Meurens
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon S7N5E3, Canada
| |
Collapse
|
18
|
Kähl S, Volke D, Fornefett J, Fingas F, Klose K, Benga L, Grunwald T, Ulrich R, Hoffmann R, Baums CG. Identification of a large repetitive RTX immunogen in a highly virulent Rodentibacter heylii strain. Microbes Infect 2021; 23:104771. [PMID: 33164813 DOI: 10.1016/j.micinf.2020.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/15/2020] [Accepted: 10/17/2020] [Indexed: 11/30/2022]
Abstract
Rodentibacter (R.) heylii is frequently detected in laboratory rodents. Repeats in toxin (RTX) toxins are considered important virulence factors of this major murine pathogen. We evaluated the virulence of a R.heylii strain negative for all known RTX toxin genes and Muribacter (M.) muris, a commensal in mice, in experimental infections of C57BL/6 and BALB/c mice. Experimental intranasal infection with 108 CFU of the pnxI-, pnxII- and pnxIII- R. heylii strain resulted in 75% and 100% mortality in C57BL/6 and BALB/c mice, respectively. In early losses, multiple internal organs were infected and purulent bronchopneumonia was the main pathology. Intranasal application of M. muris did not result in mortality or severe weight loss. Immunoproteomics led to the identification of a surface-associated and specific immunogen, which was designated as R. heylii immunogen A (RhiA) and which was exclusively recognised by sera obtained from mice infected with this R. heylii pathotype. RhiA is a 262.6 kDa large protein containing long imperfect tandem repeats and C-terminal RTX consensus sequences. Immunohistochemical analysis confirmed that this R.heylii pathotype expresses RhiA in the lower respiratory tract. In summary, this study describes a specific immunogen in a virulent R. heylii, strain which is an excellent antigen for pathotype-specific serological screenings and which might carry out RTX-related functions.
Collapse
Affiliation(s)
- Sophie Kähl
- Institute of Bacteriology and Mycology, Faculty of Veterinary Medicine, University Leipzig, Leipzig, Germany
| | - Daniela Volke
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine, University Leipzig, 04103, Leipzig, Germany
| | - Juliane Fornefett
- Institute of Bacteriology and Mycology, Faculty of Veterinary Medicine, University Leipzig, Leipzig, Germany
| | | | - Kristin Klose
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, University Leipzig, Leipzig, Germany
| | - Laurentiu Benga
- Central Unit for Animal Research and Animal Welfare Affairs, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, University Leipzig, Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine, University Leipzig, 04103, Leipzig, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Faculty of Veterinary Medicine, University Leipzig, Leipzig, Germany.
| |
Collapse
|
19
|
Wyżewski Z, Świtlik W, Mielcarska MB, Gregorczyk-Zboroch KP. The Role of Bcl-xL Protein in Viral Infections. Int J Mol Sci 2021; 22:ijms22041956. [PMID: 33669408 PMCID: PMC7920434 DOI: 10.3390/ijms22041956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Bcl-xL represents a family of proteins responsible for the regulation of the intrinsic apoptosis pathway. Due to its anti-apoptotic activity, Bcl-xL co-determines the viability of various virally infected cells. Their survival may determine the effectiveness of viral replication and spread, dynamics of systemic infection, and viral pathogenesis. In this paper, we have reviewed the role of Bcl-xL in the context of host infection by eight different RNA and DNA viruses: hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), influenza A virus (IAV), Epstein-Barr virus (EBV), human T-lymphotropic virus type-1 (HTLV-1), Maraba virus (MRBV), Schmallenberg virus (SBV) and coronavirus (CoV). We have described an influence of viral infection on the intracellular level of Bcl-xL and discussed the impact of Bcl-xL-dependent cell survival control on infection-accompanying pathogenic events such as tissue damage or oncogenesis. We have also presented anti-viral treatment strategies based on the pharmacological regulation of Bcl-xL expression or activity.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-815 Warsaw, Poland
- Correspondence: ; Tel.: +48 728-208-338
| | - Weronika Świtlik
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (M.B.M.); (K.P.G.-Z.)
| | | |
Collapse
|
20
|
Edmans M, McNee A, Porter E, Vatzia E, Paudyal B, Martini V, Gubbins S, Francis O, Harley R, Thomas A, Burt R, Morgan S, Fuller A, Sewell A, Charleston B, Bailey M, Tchilian E. Magnitude and Kinetics of T Cell and Antibody Responses During H1N1pdm09 Infection in Inbred Babraham Pigs and Outbred Pigs. Front Immunol 2021; 11:604913. [PMID: 33603740 PMCID: PMC7884753 DOI: 10.3389/fimmu.2020.604913] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
We have used the pig, a large natural host animal for influenza with many physiological similarities to humans, to characterize αβ, γδ T cell and antibody (Ab) immune responses to the 2009 pandemic H1N1 virus infection. We evaluated the kinetic of virus infection and associated response in inbred Babraham pigs with identical MHC (Swine Leucocyte Antigen) and compared them to commercial outbred animals. High level of nasal virus shedding continued up to days 4 to 5 post infection followed by a steep decline and clearance of virus by day 9. Adaptive T cell and Ab responses were detectable from days 5 to 6 post infection reaching a peak at 9 to 14 days. γδ T cells produced cytokines ex vivo at day 2 post infection, while virus reactive IFNγ producing γδ T cells were detected from day 7 post infection. Analysis of NP tetramer specific and virus specific CD8 and CD4 T cells in blood, lung, lung draining lymph nodes, and broncho-alveolar lavage (BAL) showed clear differences in cytokine production between these tissues. BAL contained the most highly activated CD8, CD4, and γδ T cells producing large amounts of cytokines, which likely contribute to elimination of virus. The weak response in blood did not reflect the powerful local lung immune responses. The immune response in the Babraham pig following H1N1pdm09 influenza infection was comparable to that of outbred animals. The ability to utilize these two swine models together will provide unparalleled power to analyze immune responses to influenza.
Collapse
Affiliation(s)
- Matthew Edmans
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Adam McNee
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Emily Porter
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Eleni Vatzia
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Basu Paudyal
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Veronica Martini
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Simon Gubbins
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Ross Harley
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Amy Thomas
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Rachel Burt
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Sophie Morgan
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Bryan Charleston
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Elma Tchilian
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| |
Collapse
|
21
|
Gierse LC, Meene A, Schultz D, Schwaiger T, Karte C, Schröder C, Wang H, Wünsche C, Methling K, Kreikemeyer B, Fuchs S, Bernhardt J, Becher D, Lalk M, Study Group K, Urich T, Riedel K. A Multi-Omics Protocol for Swine Feces to Elucidate Longitudinal Dynamics in Microbiome Structure and Function. Microorganisms 2020; 8:microorganisms8121887. [PMID: 33260576 PMCID: PMC7760263 DOI: 10.3390/microorganisms8121887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/03/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Swine are regarded as promising biomedical models, but the dynamics of their gastrointestinal microbiome have been much less investigated than that of humans or mice. The aim of this study was to establish an integrated multi-omics protocol to investigate the fecal microbiome of healthy swine. To this end, a preparation and analysis protocol including integrated sample preparation for meta-omics analyses of deep-frozen feces was developed. Subsequent data integration linked microbiome composition with function, and metabolic activity with protein inventories, i.e., 16S rRNA data and expressed proteins, and identified proteins with corresponding metabolites. 16S rRNA gene amplicon and metaproteomics analyses revealed a fecal microbiome dominated by Prevotellaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae and Clostridiaceae. Similar microbiome compositions in feces and colon, but not ileum samples, were observed, showing that feces can serve as minimal-invasive proxy for porcine colon microbiomes. Longitudinal dynamics in composition, e.g., temporal decreased abundance of Lactobacillaceae and Streptococcaceae during the experiment, were not reflected in microbiome function. Instead, metaproteomics and metabolomics showed a rather stable functional state, as evident from short-chain fatty acids (SCFA) profiles and associated metaproteome functions, pointing towards functional redundancy among microbiome constituents. In conclusion, our pipeline generates congruent data from different omics approaches on the taxonomy and functionality of the intestinal microbiome of swine.
Collapse
Affiliation(s)
- Laurin Christopher Gierse
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Alexander Meene
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Daniel Schultz
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany; (D.S.); (K.M.); (M.L.)
| | - Theresa Schwaiger
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Südufer 10, 17493 Greifswald, Germany; (T.S.); (C.K.); (C.S.)
| | - Claudia Karte
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Südufer 10, 17493 Greifswald, Germany; (T.S.); (C.K.); (C.S.)
| | - Charlotte Schröder
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Südufer 10, 17493 Greifswald, Germany; (T.S.); (C.K.); (C.S.)
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Christine Wünsche
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany; (D.S.); (K.M.); (M.L.)
| | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18055 Rostock, Germany;
| | - Stephan Fuchs
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute Wernigerode, Burgstraße 37, 38855 Wernigerode, Germany;
| | - Jörg Bernhardt
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany; (D.S.); (K.M.); (M.L.)
| | | | - Tim Urich
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
- Correspondence: (T.U.); (K.R.); Tel.: +49-3834-420-5904 (T.U.); +49-3834-420-5900 (K.R.)
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
- Correspondence: (T.U.); (K.R.); Tel.: +49-3834-420-5904 (T.U.); +49-3834-420-5900 (K.R.)
| |
Collapse
|
22
|
Sabbaghi A, Miri SM, Keshavarz M, Mahooti M, Zebardast A, Ghaemi A. Role of γδ T cells in controlling viral infections with a focus on influenza virus: implications for designing novel therapeutic approaches. Virol J 2020; 17:174. [PMID: 33183352 PMCID: PMC7659406 DOI: 10.1186/s12985-020-01449-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Influenza virus infection is among the most detrimental threats to the health of humans and some animals, infecting millions of people annually all around the world and in many thousands of cases giving rise to pneumonia and death. All those health crises happen despite previous and recent developments in anti-influenza vaccination, suggesting the need for employing more sophisticated methods to control this malign infection. Main body The innate immunity modules are at the forefront of combating against influenza infection in the respiratory tract, among which, innate T cells, particularly gamma-delta (γδ) T cells, play a critical role in filling the gap needed for adaptive immune cells maturation, linking the innate and adaptive immunity together. Upon infection with influenza virus, production of cytokines and chemokines including CCL3, CCL4, and CCL5 from respiratory epithelium recruits γδ T cells at the site of infection in a CCR5 receptor-dependent fashion. Next, γδ T cells become activated in response to influenza virus infection and produce large amounts of proinflammatory cytokines, especially IL-17A. Regardless of γδ T cells' roles in triggering the adaptive arm of the immune system, they also protect the respiratory epithelium by cytolytic and non-cytolytic antiviral mechanisms, as well as by enhancing neutrophils and natural killer cells recruitment to the infection site. CONCLUSION In this review, we explored varied strategies of γδ T cells in defense to influenza virus infection and how they can potentially provide balanced protective immune responses against infected cells. The results may provide a potential window for the incorporation of intact or engineered γδ T cells for developing novel antiviral approaches or for immunotherapeutic purposes.
Collapse
Affiliation(s)
- Ailar Sabbaghi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehran Mahooti
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.
| |
Collapse
|
23
|
Mancera Gracia JC, Pearce DS, Masic A, Balasch M. Influenza A Virus in Swine: Epidemiology, Challenges and Vaccination Strategies. Front Vet Sci 2020; 7:647. [PMID: 33195504 PMCID: PMC7536279 DOI: 10.3389/fvets.2020.00647] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
Influenza A viruses cause acute respiratory infections in swine that result in significant economic losses for global pig production. Currently, three different subtypes of influenza A viruses of swine (IAV-S) co-circulate worldwide: H1N1, H3N2, and H1N2. However, the origin, genetic background and antigenic properties of those IAV-S vary considerably from region to region. Pigs could also have a role in the adaptation of avian influenza A viruses to humans and other mammalian hosts, either as intermediate hosts in which avian influenza viruses may adapt to humans, or as a “mixing vessel” in which influenza viruses from various origins may reassort, generating novel progeny viruses capable of replicating and spreading among humans. These potential roles highlight the importance of controlling influenza A viruses in pigs. Vaccination is currently the main tool to control IAV-S. Vaccines containing whole inactivated virus (WIV) with adjuvant have been traditionally used to generate highly specific antibodies against hemagglutinin (HA), the main antigenic protein. WIV vaccines are safe and protect against antigenically identical or very similar strains in the absence of maternally derived antibodies (MDAs). Yet, their efficacy is reduced against heterologous strains, or in presence of MDAs. Moreover, vaccine-associated enhanced respiratory disease (VAERD) has been described in pigs vaccinated with WIV vaccines and challenged with heterologous strains in the US. This, together with the increasingly complex epidemiology of SIVs, illustrates the need to explore new vaccination technologies and strategies. Currently, there are two different non-inactivated vaccines commercialized for swine in the US: an RNA vector vaccine expressing the HA of a H3N2 cluster IV, and a bivalent modified live vaccine (MLV) containing H1N2 γ-clade and H3N2 cluster IV. In addition, recombinant-protein vaccines, DNA vector vaccines and alternative attenuation technologies are being explored, but none of these new technologies has yet reached the market. The aim of this article is to provide a thorough review of the current epidemiological scenario of IAV-S, the challenges faced in the control of IAV-S infection and the tools being explored to overcome those challenges.
Collapse
Affiliation(s)
| | - Douglas S Pearce
- Zoetis Inc., Veterinary Medicine Research and Development, Kalamazoo, MI, United States
| | - Aleksandar Masic
- Zoetis Inc., Veterinary Medicine Research and Development, Kalamazoo, MI, United States
| | - Monica Balasch
- Zoetis Manufacturing & Research Spain S.L. Ctra., Girona, Spain
| |
Collapse
|