1
|
Borzutzky A, Cabalín C. From Thin to Thick: Weight Gain in Children Feeds the Risk of Atopic Dermatitis. J Invest Dermatol 2024; 144:1909-1911. [PMID: 38752941 DOI: 10.1016/j.jid.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 08/25/2024]
Affiliation(s)
- Arturo Borzutzky
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Carolina Cabalín
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Guo L, Xiao D, Xing H, Yang G, Yang X. Engineered exosomes as a prospective therapy for diabetic foot ulcers. BURNS & TRAUMA 2024; 12:tkae023. [PMID: 39026930 PMCID: PMC11255484 DOI: 10.1093/burnst/tkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Indexed: 07/20/2024]
Abstract
Diabetic foot ulcer (DFU), characterized by high recurrence rate, amputations and mortality, poses a significant challenge in diabetes management. The complex pathology involves dysregulated glucose homeostasis leading to systemic and local microenvironmental complications, including peripheral neuropathy, micro- and macro-angiopathy, recurrent infection, persistent inflammation and dysregulated re-epithelialization. Novel approaches to accelerate DFU healing are actively pursued, with a focus on utilizing exosomes. Exosomes are natural nanovesicles mediating cellular communication and containing diverse functional molecular cargos, including DNA, mRNA, microRNA (miRNA), lncRNA, proteins, lipids and metabolites. While some exosomes show promise in modulating cellular function and promoting ulcer healing, their efficacy is limited by low yield, impurities, low loading content and inadequate targeting. Engineering exosomes to enhance their curative activity represents a potentially more efficient approach for DFUs. This could facilitate focused repair and regeneration of nerves, blood vessels and soft tissue after ulcer development. This review provides an overview of DFU pathogenesis, strategies for exosome engineering and the targeted therapeutic application of engineered exosomes in addressing critical pathological changes associated with DFUs.
Collapse
Affiliation(s)
- Lifei Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Tiantanxili Street #4, Dongcheng District, Beijing 100050, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| |
Collapse
|
3
|
Rhoiney ML, Alvizo CR, Jameson JM. Skin Homeostasis and Repair: A T Lymphocyte Perspective. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1266-1275. [PMID: 37844280 DOI: 10.4049/jimmunol.2300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 10/18/2023]
Abstract
Chronic, nonhealing wounds remain a clinical challenge and a significant burden for the healthcare system. Skin-resident and infiltrating T cells that recognize pathogens, microbiota, or self-antigens participate in wound healing. A precise balance between proinflammatory T cells and regulatory T cells is required for the stages of wound repair to proceed efficiently. When diseases such as diabetes disrupt the skin microenvironment, T cell activation and function are altered, and wound repair is hindered. Recent studies have used cutting-edge technology to further define the cellular makeup of the skin prior to and during tissue repair. In this review, we discuss key advances that highlight mechanisms used by T cell subsets to populate the epidermis and dermis, maintain skin homeostasis, and regulate wound repair. Advances in our understanding of how skin cells communicate in the skin pave the way for therapeutics that modulate regulatory versus effector functions to improve nonhealing wound treatment.
Collapse
Affiliation(s)
- Mikaela L Rhoiney
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Cristian R Alvizo
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Julie M Jameson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| |
Collapse
|
4
|
Yew YW, Mina T, Ng HK, Lam BCC, Riboli E, Lee ES, Lee J, Ngeow J, Elliott P, Thng STG, Chambers JC, Loh M. Investigating causal relationships between obesity and skin barrier function in a multi-ethnic Asian general population cohort. Int J Obes (Lond) 2023; 47:963-969. [PMID: 37479793 PMCID: PMC10511308 DOI: 10.1038/s41366-023-01343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Skin diseases impact significantly on the quality of life and psychology of patients. Obesity has been observed as a risk factor for skin diseases. Skin epidermal barrier dysfunctions are typical manifestations across several dermatological disturbances. OBJECTIVES We aim to establish the association between obesity and skin physiology measurements and investigate whether obesity may play a possible causal role on skin barrier dysfunction. METHODS We investigated the relationship of obesity with skin physiology measurements, namely transepidermal water loss (TEWL), skin surface moisture and skin pH in an Asian population cohort (n = 9990). To assess for a possible causal association between body mass index (BMI) and skin physiology measurements, we performed Mendelian Randomization (MR), along with subsequent additional analyses to assess the potential causal impact of known socioeconomic and comorbidities of obesity on TEWL. RESULTS Every 1 kg/m2 increase in BMI was associated with a 0.221% (95%CI: 0.144-0.298) increase in TEWL (P = 2.82E-08), a 0.336% (95%CI: 0.148-0.524) decrease in skin moisture (P = 4.66E-04) and a 0.184% (95%CI: 0.144-0.224) decrease in pH (P = 1.36E-19), adjusting for age, gender, and ethnicity. Relationships for both TEWL and pH with BMI remained strong (Beta 0.354; 95%CI: 0.189-0.520 and Beta -0.170; 95%CI: -0.253 to -0.087, respectively) even after adjusting for known confounders, with MR experiments further supporting BMI's possible causal relationship with TEWL. Based on additional MR performed, none of the socioeconomic and comorbidities of obesity investigated are likely to have possible causal relationships with TEWL. CONCLUSION We establish strong association of BMI with TEWL and skin pH, with MR results suggestive of a possible causal relationship of obesity with TEWL. It emphasizes the potential impact of obesity on skin barrier function and therefore opportunity for primary prevention.
Collapse
Affiliation(s)
- Yik Weng Yew
- National Skin Centre, Singapore, 308205, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, 308232, Singapore
| | - Theresia Mina
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, 308232, Singapore
| | - Hong Kiat Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, 308232, Singapore
| | - Benjamin Chih Chiang Lam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, 308232, Singapore
- Khoo Teck Puat Hospital, Integrated Care for Obesity & Diabetes, Singapore, 768828, Singapore
| | - Elio Riboli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, 308232, Singapore
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1NY, United Kingdom
| | - Eng Sing Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, 308232, Singapore
- Clinical Research Unit, National Healthcare Group Polyclinic, Nexus@one-north, Singapore, 138543, Singapore
| | - Jimmy Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, 308232, Singapore
- Research Division, Institute of Mental Health, Singapore, 539747, Singapore
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, 308232, Singapore
- Division of Medical Oncology, National Cancer Centre, Singapore, 169610, Singapore
| | - Paul Elliott
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, 308232, Singapore
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1NY, United Kingdom
| | | | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, 308232, Singapore
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1NY, United Kingdom
| | - Marie Loh
- National Skin Centre, Singapore, 308205, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, 308232, Singapore.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1NY, United Kingdom.
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore.
| |
Collapse
|
5
|
Aldamarany WAS, Taocui H, Liling D, Mei H, Yi Z, Zhong G. Perilla, sunflower, and tea seed oils as potential dietary supplements with anti-obesity effects by modulating the gut microbiota composition in mice fed a high-fat diet. Eur J Nutr 2023; 62:2509-2525. [PMID: 37160801 DOI: 10.1007/s00394-023-03155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/13/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE Obesity has become a serious public health problem with its alarmingly increasing prevalence worldwide, prompting researchers to create and develop several anti-obesity drugs. Here, we aimed to investigate the protective effects of perilla seed oil (PSO), sunflower oil (SFO), and tea seed oil (TSO) against obesity through the modulation of the gut microbiota composition and related metabolic changes in mice fed a high-fat diet (HFD). METHODS Mice were divided into six equal groups: ND (normal diet); HFD; ORL (HFD supplemented with 20 mg/kg body weight of orlistat); PSO, SFO, and TSO (HFD supplemented with 2 g/kg body weight of PSO, SFO, and TSO, respectively). RESULTS Our findings showed that PSO, SFO, and TSO supplementation significantly reduced body weight, organ weight, blood glucose, lipopolysaccharides (LPS), insulin resistance, and improved serum lipid levels (TG, TC, LDL-C, and HDL-C). Meanwhile, the three treatments alleviated oxidative stress and hepatic steatosis and reduced liver lipid accumulation. Relative mRNA expression levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, and MCP-1) and lipid synthesis-related genes (PPAR-γ, FAS, and SREBP-1) were down-regulated, while β-oxidation-related genes (PPAR-α, CPT1a, and CPT1b) were up-regulated in the liver tissue of treated mice. Besides, dietary oil supplementation alleviated HFD-induced gut microbiota dysbiosis by promoting gut microbiota richness and diversity, decreasing the Firmicutes-to-Bacteroidetes ratio, and boosting the abundance of some healthy bacteria, like Akkermansia. CONCLUSIONS PSO, SFO, and TSO supplementation could alleviate inflammation, oxidative stress, and hepatic steatosis, likely by modulating the gut microbiota composition in HFD-fed mice.
Collapse
Affiliation(s)
- Waleed A S Aldamarany
- College of Food Science, Southwest University, Beibei District, Chongqing, 400715, People's Republic of China
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Huang Taocui
- Chongqing Academy of Agricultural Science, Chongqing, 400060, China
| | - Deng Liling
- Science and Technology Department, Chongqing Medical and Pharmaceutical College, Chongqing, 401334, China
| | - Han Mei
- Chongqing Academy of Agricultural Science, Chongqing, 400060, China
| | - Zhao Yi
- College of Food Science, Southwest University, Beibei District, Chongqing, 400715, People's Republic of China
| | - Geng Zhong
- College of Food Science, Southwest University, Beibei District, Chongqing, 400715, People's Republic of China.
- Chongqing Key Laboratory of Specialty Food Co-Built By Sichuan and Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Zhu T, Yang S, Mauro TM, Man MQ. Association of Epidermal Biophysical Properties with Obesity and Its Implications. Skin Pharmacol Physiol 2023; 36:165-173. [PMID: 37640014 DOI: 10.1159/000533587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Obesity is a condition defined by an excess amount of body fat, with body mass index (BMI) of 30 and higher. It is associated with a number of other medical conditions, including insulin resistance, diabetes mellitus, and cardiovascular diseases, as well as dyslipidemia, and it is also associated with several cutaneous disorders such as atopic dermatitis, psoriasis, intertriginous dermatitis, acanthosis nigricans and skin infections. SUMMARY Evidence suggests a link between obesity and epidermal dysfunction. Generally, individuals with obesity display higher transepidermal water loss rate and lower stratum corneum hydration levels, although no association of obesity with epidermal dysfunction has been documented. Results of skin surface pH are controversial. But study demonstrated a positive correlation of BMI with skin surface pH on both the forearm and the shin in males, suggesting that the changes in epidermal function vary with gender in individuals with obesity. KEY MESSAGES This review summarizes the association between obesity and epidermal function, and discusses possible underlying mechanisms. Individuals with obesity exhibit poor epidermal permeability barrier and lower stratum corneum hydration levels. Because of the pathogenic role of compromised epidermal function in inflammation, which is also linked to obesity, improvement in epidermal function could benefit individuals with obesity, particularly those with abnormalities in epidermal function.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuyun Yang
- Department of Dermatology, The People's Hospital of Baoshan, Baoshan, China
| | - Theodora M Mauro
- Department of Dermatology, Veterans Affairs Medical Center San Francisco, University of California San Francisco, San Francisco, California, USA
| | - Mao-Qiang Man
- Department of Dermatology, Veterans Affairs Medical Center San Francisco, University of California San Francisco, San Francisco, California, USA
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Gao JF, Tang L, Luo F, Chen L, Zhang YY, Ding H. Myricetin treatment has ameliorative effects in DNFB-induced atopic dermatitis mice under high-fat conditions. Toxicol Sci 2023; 191:308-320. [PMID: 36575998 DOI: 10.1093/toxsci/kfac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory cutaneous disorder. Obesity is associated with increased prevalence and severity of AD for reasons that remain poorly understood. Myricetin, a dietary flavonoid found in fruits and vegetables, is known to have anti-inflammatory effects, but its role in AD is unclear. Thus, we investigated the effects of obesity on exacerbation AD lesions and evaluated the effects of myricetin on obese AD. Mice were fed normal diet (ND) or high-fat diet, and then 2,4-dinitrofluorobenzene was used to induce AD-like lesions. We found that obesity exacerbated AD lesions, and myricetin topical administration ameliorated symptoms and skin lesions of obsess AD mice, such as dermatitis scores, scratching behavior, epidermal thickness, and mast cell infiltration. In addition, myricetin reduced the levels of immunoglobulin E and histamine, inhibited the infiltration of CD4+T cells, and modulated the expression of Th1, Th2, Th17, and Th22 cytokines and pro-inflammatory factors (CCL17, CCL22, IL-1β, and TGF-β). Moreover, myricetin restored impaired barrier function by reducing transepidermal water loss, increasing lamellar body secretion, as well as upregulating the mRNA and protein expression of filaggrin. Western blot results showed that significantly increased levels of phosphorylated IκB and NF-κB p65 was observed in the obese AD mice compared with the AD mice fed ND, whereas the myricetin could downregulated the phosphorylations of IκB and NF-κB, and inhibited mRNA expression of iNOS and COX2. Taken together, our results suggest that myricetin treatment exhibits potentially protective effects against the obeseassociated AD by inhibiting inflammatory response and restoring skin barrier function.
Collapse
Affiliation(s)
- Jie-Fang Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430060, PR China
| | - Liu Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430060, PR China.,Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Fei Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430060, PR China
| | - Lu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430060, PR China
| | - Yi-Yuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430060, PR China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|
8
|
Acute cytokine treatment stimulates glucose uptake and glycolysis in human keratinocytes. Cytokine 2023; 161:156057. [PMID: 36208532 DOI: 10.1016/j.cyto.2022.156057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
During inflammation, cellular glucose uptake and glycolysis are upregulated to meet an increased energy demand. For example, keratinocyte glycolysis is essential for progression of psoriasis. Therefore, understanding the regulation of glucose metabolism in keratinocytes is of importance. Here, we show that the pro-inflammatory cytokines IFNγ and TNF together rapidly induce glucose uptake, glycolysis, and glycolytic capacity in cultured keratinocytes. Furthermore, we found that acute IFNγ and TNF stimulation induces glucose transporter 4 (GLUT4) translocation to the plasma membrane and engages AMPK-dependent intracellular signaling. Together, these findings suggest acute cytokine-induced glucose metabolism in keratinocytes could contribute to inflammation in psoriatic disease, and that GLUT4 is involved in these processes.
Collapse
|
9
|
Schmidt V, Hogan AE, Fallon PG, Schwartz C. Obesity-Mediated Immune Modulation: One Step Forward, (Th)2 Steps Back. Front Immunol 2022; 13:932893. [PMID: 35844529 PMCID: PMC9279727 DOI: 10.3389/fimmu.2022.932893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, the relationship between the immune system and metabolism has become a major research focus. In this arena of immunometabolism the capacity of adipose tissue to secrete immunomodulatory molecules, including adipokines, within the underlying low-grade inflammation during obesity brought attention to the impact obesity has on the immune system. Adipokines, such as leptin and adiponectin, influence T cell differentiation into different T helper subsets and their activation during immune responses. Furthermore, within the cellular milieu of adipose tissue nutrient availability regulates differentiation and activation of T cells and changes in cellular metabolic pathways. Upon activation, T cells shift from oxidative phosphorylation to oxidative glycolysis, while the differential signaling of the kinase mammalian target of rapamycin (mTOR) and the nuclear receptor PPARγ, amongst others, drive the subsequent T cell differentiation. While the mechanisms leading to a shift from the typical type 2-dominated milieu in lean people to a Th1-biased pro-inflammatory environment during obesity are the subject of extensive research, insights on its impact on peripheral Th2-dominated immune responses become more evident. In this review, we will summarize recent findings of how Th2 cells are metabolically regulated during obesity and malnutrition, and how these states affect local and systemic Th2-biased immune responses.
Collapse
Affiliation(s)
- Viviane Schmidt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andrew E. Hogan
- Kathleen Lonsdale Human Health Institute, Maynooth University, Maynooth, Ireland
- Obesity Immunology Research, St. Vincent’s University Hospital and University College Dublin, Dublin, Ireland
| | - Padraic G. Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christian Schwartz
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Schwartz,
| |
Collapse
|
10
|
Hwang J, Seo Y, Jeong D, Ning X, Wiraja C, Yang L, Tan CT, Lee J, Kim Y, Kim JW, Kim DH, Choi J, Lim CY, Pu K, Jang WY, Xu C. Monitoring Wound Healing with Topically Applied Optical NanoFlare mRNA Nanosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104835. [PMID: 35460189 PMCID: PMC9218655 DOI: 10.1002/advs.202104835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/28/2022] [Indexed: 06/14/2023]
Abstract
An effective wound management strategy needs accurate assessment of wound status throughout the whole healing process. This can be achieved by examining molecular biomarkers including proteins, DNAs, and RNAs. However, existing methods for quantifying these biomarkers such as immunohistochemistry and quantitative polymerase chain reaction are usually laborious, resource-intensive, and disruptive. This article reports the development and utilization of mRNA nanosensors (i.e., NanoFlare) that are topically applied on cutaneous wounds to reveal the healing status through targeted and semi-quantitative examination of the mRNA biomarkers in skin cells. In 2D and 3D in vitro models, the efficacy and efficiency of these nanosensors are demonstrated in revealing the dynamic changes of mRNA biomarkers for different stages of wound development. In mouse models, this platform permits the tracking and identification of wound healing stages and a normal and diabetic wound healing process by wound healing index in real time.
Collapse
Affiliation(s)
- Jangsun Hwang
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637457Singapore
- Department of Orthopedic SurgeryCollege of MedicineKorea University73 Korea‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Youngmin Seo
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
- Department of Research & DevelopmentOID Ltd249‐2, 123 Osongsaengmyeong‐ro, Osong‐eup, Heungdeok‐gu, Cheongju‐siChungcheongbuk‐do28160Republic of Korea
| | - Daun Jeong
- Department of Orthopedic SurgeryCollege of MedicineKorea University73 Korea‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Xiaoyu Ning
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637457Singapore
- NTU Institute for Health TechnologiesInterdisciplinary Graduate SchoolNanyang Technological University61 Nanyang DriveSingapore637335Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637457Singapore
| | - Lixia Yang
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637457Singapore
| | - Chew Teng Tan
- A*STAR Skin Research LabsAgency for ScienceTechnology and Research8A Biomedical GroveSingapore138648Singapore
| | - Jinhyuck Lee
- Department of Orthopedic SurgeryCollege of MedicineKorea University73 Korea‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Yesol Kim
- School of Integrative EngineeringChung‐Ang University84, Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Ji Won Kim
- School of Integrative EngineeringChung‐Ang University84, Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Dai Hyun Kim
- Department of DermatologyCollege of MedicineKorea University73 Korea‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Jonghoon Choi
- School of Integrative EngineeringChung‐Ang University84, Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Chin Yan Lim
- A*STAR Skin Research LabsAgency for ScienceTechnology and Research8A Biomedical GroveSingapore138648Singapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeMD 7, 8 Medical DriveSingapore117596Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637457Singapore
| | - Woo Young Jang
- Department of Orthopedic SurgeryCollege of MedicineKorea University73 Korea‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Chenjie Xu
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
| |
Collapse
|
11
|
Pils V, Ring N, Valdivieso K, Lämmermann I, Gruber F, Schosserer M, Grillari J, Ogrodnik M. Promises and challenges of senolytics in skin regeneration, pathology and ageing. Mech Ageing Dev 2021; 200:111588. [PMID: 34678388 DOI: 10.1016/j.mad.2021.111588] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
The research of the last two decades has defined a crucial role of cellular senescence in both the physiology and pathology of skin, and senescent cells have been detected in conditions including development, regeneration, aging, and disease. The pathophysiology of cellular senescence in skin is complex as the phenotype of senescence pertains to several different cell types including fibroblasts, keratinocytes and melanocytes, among others. Paradoxically, the transient presence of senescent cells is believed to be beneficial in the context of development and wound healing, while the chronic presence of senescent cells is detrimental in the context of aging, diseases, and chronic wounds, which afflict predominantly the elderly. Identifying strategies to prevent senescence induction or reduce senescent burden in the skin could broadly benefit the aging population. Senolytics, drugs known to specifically eliminate senescent cells while preserving non-senescent cells, are being intensively studied for use in the clinical setting. Here, we review recent research on skin senescence, on the methods for the detection of senescent cells and describe promises and challenges related to the application of senolytic drugs. This article is part of the Special Issue - Senolytics - Edited by Joao Passos and Diana Jurk.
Collapse
Affiliation(s)
- Vera Pils
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nadja Ring
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Karla Valdivieso
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ingo Lämmermann
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Florian Gruber
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannnes Grillari
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
12
|
Hoang AC, Yu H, Röszer T. Transcriptional Landscaping Identifies a Beige Adipocyte Depot in the Newborn Mouse. Cells 2021; 10:2368. [PMID: 34572017 PMCID: PMC8470180 DOI: 10.3390/cells10092368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
The present study sought to identify gene networks that are hallmarks of the developing inguinal subcutaneous adipose tissue (iWAT) and the interscapular brown adipose tissue (BAT) in the mouse. RNA profiling revealed that the iWAT of postnatal (P) day 6 mice expressed thermogenic and lipid catabolism transcripts, along with the abundance of transcripts associated with the beige adipogenesis program. This was an unexpected finding, as thermogenic BAT was believed to be the only site of nonshivering thermogenesis in the young mouse. However, the transcriptional landscape of BAT in P6 mice suggests that it is still undergoing differentiation and maturation, and that the iWAT temporally adopts thermogenic and lipolytic potential. Moreover, P6 iWAT and adult (P56) BAT were similar in their expression of immune gene networks, but P6 iWAT was unique in the abundant expression of antimicrobial proteins and virus entry factors, including a possible receptor for SARS-CoV-2. In summary, postnatal iWAT development is associated with a metabolic shift from thermogenesis and lipolysis towards fat storage. However, transcripts of beige-inducing signal pathways including β-adrenergic receptors and interleukin-4 signaling were underrepresented in young iWAT, suggesting that the signals for thermogenic fat differentiation may be different in early postnatal life and in adulthood.
Collapse
MESH Headings
- Adipocytes, Beige/metabolism
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/metabolism
- Animals
- Animals, Newborn
- Biomarkers/metabolism
- Cell Cycle/genetics
- Gene Expression Regulation, Developmental
- Gene Ontology
- Gene Regulatory Networks
- Male
- Mice, Inbred C57BL
- Models, Biological
- Muscle Development/genetics
- Neuropeptides/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
| | | | - Tamás Röszer
- Institute of Neurobiology, Ulm University, 89081 Ulm, Germany; (A.C.H.); (H.Y.)
| |
Collapse
|
13
|
Xiao TL, Duan GY, Stein SL. Retrospective review of confluent and reticulated papillomatosis in pediatric patients. Pediatr Dermatol 2021; 38:1202-1209. [PMID: 34561886 DOI: 10.1111/pde.14806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND/OBJECTIVES Confluent and reticulated papillomatosis is a skin condition with unclear etiology and limited understanding of risk factors, comorbidities, and treatment strategies in the pediatric population. This study aims to describe the varied presentations and outcomes of confluent and reticulated papillomatosis and report associated comorbidities in pediatric patients. METHODS In this retrospective single-institution case-control study, pediatric patients with a diagnosis of confluent and reticulated papillomatosis seen between 2012 and 2020 were matched approximately 1:5 with an acne vulgaris cohort based on diagnosis, setting, and time period when seen. The primary measures were the clinical features, demographics, comorbidities, treatment, and outcomes of patients with confluent and reticulated papillomatosis. Univariate and multivariable analyses were conducted to describe the association of confluent and reticulated papillomatosis with several potential risk factors and comorbidities. RESULTS Patients with confluent and reticulated papillomatosis typically presented in adolescence with a median age of 14 years and female predominance. In a multivariable analysis, patients with confluent and reticulated papillomatosis were significantly more likely to identify as Black, be overweight or obese, and have concurrent acanthosis nigricans compared to control patients. Most of the confluent and reticulated papillomatosis patients were treated with oral minocycline or doxycycline. Although all patients who received antibiotics responded to treatment, approximately half presented with recurrence, typically within 1-2 years of first treatment. CONCLUSIONS Confluent and reticulated papillomatosis is a disorder that presents in adolescence and appears to be more frequent in patients who are Black, obese, or overweight, and also have acanthosis nigricans. Clinicians should assess patients with confluent and reticulated papillomatosis for comorbidities, particularly those associated with insulin resistance, which may help reduce long-term disease burden.
Collapse
Affiliation(s)
- Teresa L Xiao
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Grace Y Duan
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Sarah L Stein
- Section of Dermatology, Department of Medicine and Pediatrics, University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
14
|
Chen L, Zheng J. Does sensitive skin represent a skin condition or manifestations of other disorders? J Cosmet Dermatol 2020; 20:2058-2061. [PMID: 33159415 PMCID: PMC8359429 DOI: 10.1111/jocd.13829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022]
Abstract
Sensitive skin or cutaneous sensory syndrome is defined as a skin condition that is hypersensitive to stimuli, presented with itching, irritant, erythema, and dryness. However, is it associated with more than impairment of epidermal functions, psychological stress and topical medication or products? We think that it can be a skin condition or manifestation of other cutaneous or extracutaneous disorders. In this paper, we brief relation of sensitive skin syndrome with cutaneous and extracutaneous disorders, clinically, and pathophysiologically.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zheng
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Bojanowski K, Swindell WR, Cantor S, Chaudhuri RK. Isosorbide Di-(Linoleate/Oleate) Stimulates Prodifferentiation Gene Expression to Restore the Epidermal Barrier and Improve Skin Hydration. J Invest Dermatol 2020; 141:1416-1427.e12. [PMID: 33181142 DOI: 10.1016/j.jid.2020.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 11/15/2022]
Abstract
The breakdown of the epidermal barrier and consequent loss of skin hydration is a feature of skin aging and eczematous dermatitis. Few treatments, however, resolve these underlying processes to provide full symptomatic relief. In this study, we evaluated isosorbide di-(linoleate/oleate) (IDL), which was generated by esterifying isosorbide with sunflower fatty acids. Topical effects of IDL in skin were compared with those of ethyl linoleate/oleate, which has previously been shown to improve skin barrier function. Both IDL and ethyl linoleate/oleate downregulated inflammatory gene expression, but IDL more effectively upregulated the expression of genes associated with keratinocyte differentiation (e.g., KRT1, GRHL2, SPRR4). Consistent with this, IDL increased the abundance of epidermal barrier proteins (FLG and involucrin) and prevented cytokine-mediated stratum corneum degradation. IDL also downregulated the expression of unhealthy skin signature genes linked to the loss of epidermal homeostasis and uniquely repressed an IFN-inducible coexpression module activated in multiple skin diseases, including psoriasis. In a double-blind, placebo-controlled trial enrolling females with dry skin, 2% IDL lotion applied over 2 weeks significantly improved skin hydration and decreased transepidermal water loss (NCT04253704). These results demonstrate mechanisms by which IDL improves skin hydration and epidermal barrier function, supporting IDL as an effective intervention for the treatment of xerotic pruritic skin.
Collapse
Affiliation(s)
- Krzysztof Bojanowski
- Sunny BioDiscovery, Santa Paula, California, USA; Symbionyx Pharmaceuticals, Boonton, New Jersey, USA
| | - William R Swindell
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, Ohio, USA.
| | - Shyla Cantor
- Cantor Research Laboratories, Blauvelt, New York, USA
| | - Ratan K Chaudhuri
- Symbionyx Pharmaceuticals, Boonton, New Jersey, USA; Sytheon, Boonton, New Jersey, USA
| |
Collapse
|
16
|
Walker JM, Garcet S, Aleman JO, Mason CE, Danko D, Butler D, Zuffa S, Swann JR, Krueger J, Breslow JL, Holt PR. Obesity and ethnicity alter gene expression in skin. Sci Rep 2020; 10:14079. [PMID: 32826922 PMCID: PMC7442822 DOI: 10.1038/s41598-020-70244-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
Obesity is accompanied by dysfunction of many organs, but effects on the skin have received little attention. We studied differences in epithelial thickness by histology and gene expression by Affymetrix gene arrays and PCR in the skin of 10 obese (BMI 35-50) and 10 normal weight (BMI 18.5-26.9) postmenopausal women paired by age and ethnicity. Epidermal thickness did not differ with obesity but the expression of genes encoding proteins associated with skin blood supply and wound healing were altered. In the obese, many gene expression pathways were broadly downregulated and subdermal fat showed pronounced inflammation. There were no changes in skin microbiota or metabolites. African American subjects differed from European Americans with a trend to increased epidermal thickening. In obese African Americans, compared to obese European Americans, we observed altered gene expression that may explain known differences in water content and stress response. African Americans showed markedly lower expression of the gene encoding the cystic fibrosis transmembrane regulator characteristic of the disease cystic fibrosis. The results from this preliminary study may explain the functional changes found in the skin of obese subjects and African Americans.
Collapse
Affiliation(s)
- Jeanne M Walker
- The Rockefeller University Hospital, New York, NY, 10065, USA.
| | - Sandra Garcet
- Laboratory of Investigational Dermatology, The Rockefeller University, New York, NY, 10065, USA
| | - Jose O Aleman
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Translational Obesity Research, New York University Langone Health, New York, NY, 10016, USA
| | | | - David Danko
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Daniel Butler
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Simone Zuffa
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Jonathan R Swann
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James Krueger
- Laboratory of Investigational Dermatology, The Rockefeller University, New York, NY, 10065, USA
| | - Jan L Breslow
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA
| | - Peter R Holt
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Crizón-Díaz DP, Morales-Cardona CA. Manifestaciones dermatológicas de la diabetes: clasificación y diagnóstico. IATREIA 2020. [DOI: 10.17533/udea.iatreia.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Se estima que en Colombia hay 2.836.500 adultos con diabetes, una enfermedad con una prevalencia del 8,4 %. La exposición a niveles elevados de glucosa afecta los procesos de proliferación y diferenciación en las células de todos los órganos y tejidos, así mismo en los queratinocitos, fibroblastos y demás células presentes en la piel, alteraciones que ocurren en más de un tercio de los diabéticos y que pueden ser la manifestación inicial de la enfermedad. La frecuencia y presentación de estas dermatosis varía según la población estudiada. La dermopatía diabética, la acantosis nigricans, los fibromas laxos, el prurito y la xerosis son las formas más comunes y se consideran marcadores cutáneos de la diabetes. La presente revisión se enfoca en las manifestaciones dermatológicas específicas y no específicas de la diabetes, así como en las relacionadas con su tratamiento. Estas pueden ser un reflejo del estado metabólico actual o previo del paciente diabético y su oportuna identificación permite orientar el diagnóstico primario, sospechar un estado rediabético u optimizar el tratamiento de la enfermedad en los individuos ya diagnosticados.
Collapse
|
18
|
Affiliation(s)
- Zachary Bloomgarden
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
19
|
Ji M, Xu K, Zhang D, Chen T, Shen L, Wu W, Zhang J. Adipose-Tissue-Specific Expression of Pig ApoR Protects Mice from Diet-Induced Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2256-2262. [PMID: 31927923 DOI: 10.1021/acs.jafc.9b06995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fat deposition is one of the most important economic traits of pigs. Decreasing the subcutaneous fat and increasing the intramuscular fat are believed to be an effective way to improve pork quality, which is one of the main goals of pig breeding. Identifying key genes that control porcine lipid metabolism is essential for achieving this goal. Apolipoprotein R (apoR) was identified as the crucial molecule in the process of pig adipose reduction by clenbuterol. In this study, transgenic mice with adipose-tissue-specific overexpression of pig apoR (apoR mice) were constructed. The apoR mice gained less weight than wild-type (WT) mice after 18 weeks of feeding a high-fat diet. A comparison of organs between the two genotypes revealed that the weight of white adipose tissue, including inguinal and epididymal fat tissue, was significantly decreased and the weight of liver tissue was increased in apoR mice compared with WT mice. Glucose and insulin intolerance tests showed that the glucose metabolism of apoR mice was similar to that of WT mice. Histological staining proved that the adipocytes of apoR mice had a reduced average size, and gene expression analysis indicated that lipolysis in the adipose tissue of apoR mice was enhanced. Finally, the primary culture of inguinal adipocytes revealed that apoR promotes lipolysis via the Erk1/2 pathway. Taken together, the results indicate that adipose-tissue-specific expression of pig apoR protects mice from diet-induced obesity by enhancing lipolysis.
Collapse
Affiliation(s)
- Miao Ji
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing 314001 , China
- College of Agronomy and Biotechnology , Hebei Normal University of Science and Technology , Qinhuangdao 066000 , China
| | - Ke Xu
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing 314001 , China
- College of Agronomy and Biotechnology , Hebei Normal University of Science and Technology , Qinhuangdao 066000 , China
| | - Dawei Zhang
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing 314001 , China
| | - Tingting Chen
- Jiaxing Maternal and Child Health Care Hospital , Jiaxing 314001 , China
| | - Liangcai Shen
- College of Agronomy and Biotechnology , Hebei Normal University of Science and Technology , Qinhuangdao 066000 , China
| | - Wenjing Wu
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing 314001 , China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing 314001 , China
| |
Collapse
|
20
|
Hoch D, Bachbauer M, Pöchlauer C, Algaba-Chueca F, Tandl V, Novakovic B, Megia A, Gauster M, Saffery R, Glasner A, Desoye G, Majali-Martinez A. Maternal Obesity Alters Placental Cell Cycle Regulators in the First Trimester of Human Pregnancy: New Insights for BRCA1. Int J Mol Sci 2020; 21:E468. [PMID: 31940810 PMCID: PMC7014057 DOI: 10.3390/ijms21020468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
In the first trimester of pregnancy, placental development involves a wide range of cellular processes. These include trophoblast proliferation, fusion, and differentiation, which are dependent on tight cell cycle control. The intrauterine environment affects placental development, which also includes the trophoblast cell cycle. In this work, we focus on maternal obesity to assess whether an altered intrauterine milieu modulates expression and protein levels of placental cell cycle regulators in early human pregnancy. For this purpose, we use first trimester placental tissue from lean and obese women (gestational week 5+0-11+6, n = 58). Using a PCR panel, a cell cycle protein array, and STRING database analysis, we identify a network of cell cycle regulators increased by maternal obesity in which breast cancer 1 (BRCA1) is a central player. Immunostaining localizes BRCA1 predominantly to the villous and the extravillous cytotrophoblast. Obesity-driven BRCA1 upregulation is not able to be explained by DNA methylation (EPIC array) or by short-term treatment of chorionic villous explants at 2.5% oxygen with tumor necrosis factor α (TNF-α) (50 mg/mL), leptin (100 mg/mL), interleukin 6 (IL-6) (100 mg/mL), or high glucose (25 nM). Oxygen tension rises during the first trimester, but this change in vitro has no effect on BRCA1 (2.5% and 6.5% O2). We conclude that maternal obesity affects placental cell cycle regulation and speculate this may alter placental development.
Collapse
Affiliation(s)
- Denise Hoch
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (D.H.); (M.B.); (C.P.); (V.T.); (A.M.-M.)
| | - Martina Bachbauer
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (D.H.); (M.B.); (C.P.); (V.T.); (A.M.-M.)
| | - Caroline Pöchlauer
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (D.H.); (M.B.); (C.P.); (V.T.); (A.M.-M.)
| | - Francisco Algaba-Chueca
- Department of Endocrinology and Nutrition Research Unit, University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (F.A.-C.); (A.M.)
| | - Veronika Tandl
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (D.H.); (M.B.); (C.P.); (V.T.); (A.M.-M.)
| | - Boris Novakovic
- Murdoch Children’s Research Institute, Royal Children’s Hospital, 3052 Melbourne, Australia; (B.N.); (R.S.)
| | - Ana Megia
- Department of Endocrinology and Nutrition Research Unit, University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (F.A.-C.); (A.M.)
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8036 Graz, Austria;
| | - Richard Saffery
- Murdoch Children’s Research Institute, Royal Children’s Hospital, 3052 Melbourne, Australia; (B.N.); (R.S.)
| | | | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (D.H.); (M.B.); (C.P.); (V.T.); (A.M.-M.)
| | - Alejandro Majali-Martinez
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (D.H.); (M.B.); (C.P.); (V.T.); (A.M.-M.)
| |
Collapse
|