1
|
Du F, Deng Y, Deng L, Du B, Xing A, Tao H, Li H, Xie L, Zhang X, Sun T, Li H. T-cell receptor and B-cell receptor repertoires profiling in pleural tuberculosis. Front Immunol 2024; 15:1473486. [PMID: 39664375 PMCID: PMC11632106 DOI: 10.3389/fimmu.2024.1473486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Background Tuberculosis (TB) is a leading cause of death worldwide from a single infectious agent. In China the most common extra-pulmonary TB (EPTB) is pleural tuberculosis (PLTB). An important clinical feature of PLTB is that the lymphocytes associated with TB will accumulate in the pleural fluid. The adaptive immune repertoires play important roles in Mycobacterium tuberculosis (Mtb) infection. Methods In this study, 10 PLTB patients were enrolled, and their Peripheral Blood Mononuclear Cells(PBMCs) and Pleural Effusion Mononuclear Cells(PEMCs) were collected. After T cells were purified from PBMCs and PEMCs, high-throughput immunosequencing of the TCRβ chain (TRB), TCRγ chain(TRG), and B cell receptor(BCR) immunoglobulin heavy chain (IGH) were conducted on these samples. Results The TRB, TRG, and BCR IGH repertoires were characterized between the pleural effusion and blood in PLTB patients, and the shared clones were analyzed and collected. The binding activity of antibodies in plasma and pleural effusion to Mtb antigens was tested which indicates that different antibodies responses to Mtb antigens in plasma and pleural effusion in PLTB patients. Moreover, GLIPH2 was used to identify the specificity groups of TRB clusters and Mtb-specific TRB sequences were analyzed and collected by VJ mapping. Conclusion We characterize the adaptive immune repertoires and identify the shared clones and Mtb-specific clones in pleural effusion and blood in PLTB patients which can give important clues for TB diagnosis, treatment, and vaccine development.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Tuberculosis, Pleural/immunology
- Tuberculosis, Pleural/diagnosis
- Male
- Female
- Middle Aged
- Mycobacterium tuberculosis/immunology
- Adult
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Aged
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Fengjiao Du
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yunyun Deng
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
| | - Ling Deng
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
| | - Boping Du
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Aiying Xing
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hong Tao
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hua Li
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Li Xie
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xinyong Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tao Sun
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
- Institute of Wenzhou, Zhejiang University, Wenzhou, China
| | - Hao Li
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Shekarkar Azgomi M, Badami GD, Di Caro M, Tamburini B, Fallo M, Dieli C, Ebrahimi K, Dieli F, La Manna MP, Caccamo N. Deep Immunoprofiling of Large-Scale Tuberculosis Dataset at Single Cell Resolution Reveals a CD81 bright γδ T Cell Population Associated with Latency. Cells 2024; 13:1529. [PMID: 39329713 PMCID: PMC11430301 DOI: 10.3390/cells13181529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Tuberculosis (TB) remains one of the leading causes of death among infectious diseases, with 10.6 million new cases and 1.3 million deaths reported in 2022, according to the most recent WHO report. Early studies have shown an expansion of γδ T cells following TB infection in both experimental models and humans, indicating their abundance among lung lymphocytes and suggesting a role in protective immune responses against Mycobacterium tuberculosis (M. tuberculosis) infection. In this study, we hypothesized that distinct subsets of γδ T cells are associated with either protection against or disease progression in TB. To explore this, we applied large-scale scRNA-seq and bulk RNA-seq data integration to define the phenotypic and molecular characteristics of peripheral blood γδ T cells. Our analysis identified five unique γδ T subclusters, each with distinct functional profiles. Notably, we identified a unique cluster significantly enriched in the TCR signaling pathway, with high CD81 expression as a conserved marker. This distinct molecular signature suggests a specialized role for this cluster in immune signaling and regulation of immune response against M. tuberculosis. Flow cytometry confirmed our in silico results, showing that the mean fluorescence intensity (MFI) values of CD81 expression on γδ T cells were significantly increased in individuals with latent TB infection (TBI) compared to those with active TB (ATB). This finding underscores the importance of CD81 and its associated signaling mechanisms in modulating the activity and function of γδ T cells under TBI conditions, providing insights into potential therapeutic targets for TB management.
Collapse
Affiliation(s)
- Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Miriam Di Caro
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy
| | - Miriana Fallo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
| | - Costanza Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
| | - Kiana Ebrahimi
- Faculté d'Ingénierie et Management de la Santé (ILIS), Université de Lille, 59120 Loos, France
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (B.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
3
|
Xu Q, Sharif M, James E, Dismorr JO, Tucker JHR, Willcox BE, Mehellou Y. Phosphonodiamidate prodrugs of phosphoantigens (ProPAgens) exhibit potent Vγ9/Vδ2 T cell activation and eradication of cancer cells. RSC Med Chem 2024; 15:2462-2473. [PMID: 39026632 PMCID: PMC11253855 DOI: 10.1039/d4md00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
The phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) is an established activator of Vγ9/Vδ2 T cells and stimulates downstream effector functions including cytotoxicity and cytokine production. In order to improve its drug-like properties, we herein report the design, synthesis, serum stability, in vitro metabolism, and biological evaluation of a new class of symmetrical phosphonodiamidate prodrugs of methylene and difluoromethylene monophosphonate derivatives of HMBPP. These prodrugs, termed phosphonodiamidate ProPAgens, were synthesized in good yields, exhibited excellent serum stability (>7 h), and their in vitro metabolism was shown to be initiated by carboxypeptidase Y. These phosphonodiamidate ProPAgens triggered potent activation of Vγ9/Vδ2 T cells, which translated into efficient Vγ9/Vδ2 T cell-mediated eradication of bladder cancer cells in vitro. Together, these findings showcase the potential of these phosphonodiamidate ProPAgens as Vγ9/Vδ2 T cell modulators that could be further developed as novel cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Qin Xu
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Cardiff CF10 3NB UK
| | - Maria Sharif
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham B15 2TT UK
- Cancer Immunology and Immunotherapy Centre, University of Birmingham Birmingham B15 2TT UK
| | - Edward James
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Cardiff CF10 3NB UK
| | - Jack O Dismorr
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| | - James H R Tucker
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| | - Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham B15 2TT UK
- Cancer Immunology and Immunotherapy Centre, University of Birmingham Birmingham B15 2TT UK
| | - Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Cardiff CF10 3NB UK
- Medicines Discovery Institute, Cardiff University Cardiff CF10 3AT UK
| |
Collapse
|
4
|
Nanda N, Alphonse MP. From Host Defense to Metabolic Signatures: Unveiling the Role of γδ T Cells in Bacterial Infections. Biomolecules 2024; 14:225. [PMID: 38397462 PMCID: PMC10886488 DOI: 10.3390/biom14020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The growth of antibiotic-resistant bacterial infections necessitates focusing on host-derived immunotherapies. γδ T cells are an unconventional T cell subset, making up a relatively small portion of healthy circulating lymphocytes but a substantially increased proportion in mucosal and epithelial tissues. γδ T cells are activated and expanded in response to bacterial infection, having the capability to produce proinflammatory cytokines to recruit neutrophils and clear infection. They also play a significant role in dampening immune response to control inflammation and protecting the host against secondary challenge, making them promising targets when developing immunotherapy. Importantly, γδ T cells have differential metabolic states influencing their cytokine profile and subsequent inflammatory capacity. Though these differential metabolic states have not been well studied or reviewed in the context of bacterial infection, they are critical in understanding the mechanistic underpinnings of the host's innate immune response. Therefore, this review will focus on the context-specific host defense conferred by γδ T cells during infection with Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
5
|
Parihar N, Bhatt LK. The emerging paradigm of Unconventional T cells as a novel therapeutic target for celiac disease. Int Immunopharmacol 2023; 122:110666. [PMID: 37473709 DOI: 10.1016/j.intimp.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Celiac disease (CD) is an organ-specific autoimmune disorder that occurs in genetically predisposed individuals when exposed to exogenous dietary gluten. This exposure to wheat gluten and related proteins from rye and barley triggers an immune response which leads to the development of enteropathy associated with symptoms of bloating, diarrhea, or malabsorption. The sole current treatment is to follow a gluten-free diet for the rest of one's life. Intestinal barriers are enriched with Unconventional T cells such as iNKT, MAIT, and γδ T cells, which lack or express only a limited range of rearranged antigen receptors. Unconventional T cells play a crucial role in regulating mucosal barrier function and microbial colonization. Unconventional T cell populations are widely represented in diseased conditions, where changes in disease activity related to iNKT and MAIT cell reduction, as well as γδ T cell expansion, are demonstrated. In this review, we discuss the role and potential employment of Unconventional T cells as a therapeutic target in the pathophysiology of celiac disease.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
6
|
Firth J, Sun J, George V, Huang JD, Bajaj-Elliott M, Gustafsson K. Bacterial outer-membrane vesicles promote Vγ9Vδ2 T cell oncolytic activity. Front Immunol 2023; 14:1198996. [PMID: 37529036 PMCID: PMC10388717 DOI: 10.3389/fimmu.2023.1198996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
Background Increasing evidence suggests the immune activation elicited by bacterial outer-membrane vesicles (OMVs) can initiate a potent anti-tumor immunity, facilitating the recognition and destruction of malignant cells. At present the pathways underlying this response remain poorly understood, though a role for innate-like cells such as γδ T cells has been suggested. Methods Peripheral blood mononuclear cells (PBMCs) from healthy donors were co-cultured with E. coli MG1655 Δpal ΔlpxM OMVs and corresponding immune activation studied by cell marker expression and cytokine production. OMV-activated γδ T cells were co-cultured with cancer cell lines to determine cytotoxicity. Results The vesicles induced a broad inflammatory response with γδ T cells observed as the predominant cell type to proliferate post-OMV challenge. Notably, the majority of γδ T cells were of the Vγ9Vδ2 type, known to respond to both bacterial metabolites and stress markers present on tumor cells. We observed robust cytolytic activity of Vγ9Vδ2 T cells against both breast and leukaemia cell lines (SkBr3 and Nalm6 respectively) after OMV-mediated expansion. Conclusions Our findings identify for the first time, that OMV-challenge stimulates the expansion of Vγ9Vδ2 T cells which subsequently present anti-tumor capabilities. We propose that OMV-mediated immune activation leverages the anti-microbial/anti-tumor capacity of Vγ9Vδ2 T cells, an axis amenable for improved future therapeutics.
Collapse
Affiliation(s)
- Jack Firth
- Department of Biochemical Engineering University College London, London, United Kingdom
| | - Jingjing Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Vaques George
- Department of Biochemical Engineering University College London, London, United Kingdom
| | - Jian-Dong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mona Bajaj-Elliott
- Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom
| | - Kenth Gustafsson
- Department of Biochemical Engineering University College London, London, United Kingdom
| |
Collapse
|
7
|
Sanz M, Mann BT, Chitrakar A, Soriano-Sarabia N. Defying convention in the time of COVID-19: Insights into the role of γδ T cells. Front Immunol 2022; 13:819574. [PMID: 36032159 PMCID: PMC9403327 DOI: 10.3389/fimmu.2022.819574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is a complex disease which immune response can be more or less potent. In severe cases, patients might experience a cytokine storm that compromises their vital functions and impedes clearance of the infection. Gamma delta (γδ) T lymphocytes have a critical role initiating innate immunity and shaping adaptive immune responses, and they are recognized for their contribution to tumor surveillance, fighting infectious diseases, and autoimmunity. γδ T cells exist as both circulating T lymphocytes and as resident cells in different mucosal tissues, including the lungs and their critical role in other respiratory viral infections has been demonstrated. In the context of SARS-CoV-2 infection, γδ T cell responses are understudied. This review summarizes the findings on the antiviral role of γδ T cells in COVID-19, providing insight into how they may contribute to the control of infection in the mild/moderate clinical outcome.
Collapse
|
8
|
Gay L, Mezouar S, Cano C, Frohna P, Madakamutil L, Mège JL, Olive D. Role of Vγ9vδ2 T lymphocytes in infectious diseases. Front Immunol 2022; 13:928441. [PMID: 35924233 PMCID: PMC9340263 DOI: 10.3389/fimmu.2022.928441] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
The T cell receptor Vγ9Vδ2 T cells bridge innate and adaptive antimicrobial immunity in primates. These Vγ9Vδ2 T cells respond to phosphoantigens (pAgs) present in microbial or eukaryotic cells in a butyrophilin 3A1 (BTN3) and butyrophilin 2A1 (BTN2A1) dependent manner. In humans, the rapid expansion of circulating Vγ9Vδ2 T lymphocytes during several infections as well as their localization at the site of active disease demonstrates their important role in the immune response to infection. However, Vγ9Vδ2 T cell deficiencies have been observed in some infectious diseases such as active tuberculosis and chronic viral infections. In this review, we are providing an overview of the mechanisms of Vγ9Vδ2 T cell-mediated antimicrobial immunity. These cells kill infected cells mainly by releasing lytic mediators and pro-inflammatory cytokines and inducing target cell apoptosis. In addition, the release of chemokines and cytokines allows the recruitment and activation of immune cells, promoting the initiation of the adaptive immune response. Finaly, we also describe potential new therapeutic tools of Vγ9Vδ2 T cell-based immunotherapy that could be applied to emerging infections.
Collapse
Affiliation(s)
- Laetitia Gay
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
- ImCheck Therapeutics, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
| | | | | | | | - Jean-Louis Mège
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, APHM, Hôpital de la Conception, Laboratoire d’Immunologie, Marseille, France
| | - Daniel Olive
- Centre pour la Recherche sur le Cancer de Marseille (CRCM), Inserm UMR1068, Centre national de la recherche scientifique (CNRS) UMR7258, Institut Paoli Calmettes, Marseille, France
| |
Collapse
|
9
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Rampoldi F, Prinz I. Three Layers of Intestinal γδ T Cells Talk Different Languages With the Microbiota. Front Immunol 2022; 13:849954. [PMID: 35422795 PMCID: PMC9004464 DOI: 10.3389/fimmu.2022.849954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
The mucosal surfaces of our body are the main contact site where the immune system encounters non-self molecules from food-derived antigens, pathogens, and symbiotic bacteria. γδ T cells are one of the most abundant populations in the gut. Firstly, they include intestinal intraepithelial lymphocytes, which screen and maintain the intestinal barrier integrity in close contact with the epithelium. A second layer of intestinal γδ T cells is found among lamina propria lymphocytes (LPL)s. These γδ LPLs are able to produce IL-17 and likely have functional overlap with local Th17 cells and innate lymphoid cells. In addition, a third population of γδ T cells resides within the Peyer´s patches, where it is probably involved in antigen presentation and supports the mucosal humoral immunity. Current obstacles in understanding γδ T cells in the gut include the lack of information on cognate ligands of the γδ TCR and an incomplete understanding of their physiological role. In this review, we summarize and discuss what is known about different subpopulations of γδ T cells in the murine and human gut and we discuss their interactions with the gut microbiota in the context of homeostasis and pathogenic infections.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center, University of Mainz, Mainz, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Rha MS, Han JW, Koh JY, Lee HS, Kim JH, Cho K, Kim SI, Kim MS, Lee JG, Park SH, Joo DJ, Park JY, Shin EC. Impaired antibacterial response of liver sinusoidal Vγ9 +Vδ2 + T cells in patients with chronic liver disease. Gut 2022; 71:605-615. [PMID: 33472894 DOI: 10.1136/gutjnl-2020-322182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The liver acts as a frontline barrier against diverse gut-derived pathogens, and the sinusoid is the primary site of liver immune surveillance. However, little is known about liver sinusoidal immune cells in the context of chronic liver disease (CLD). Here, we investigated the antibacterial capacity of liver sinusoidal γδ T cells in patients with various CLDs. DESIGN We analysed the frequency, phenotype and functions of human liver sinusoidal γδ T cells from healthy donors and recipients with CLD, including HBV-related CLD (liver cirrhosis (LC) and/or hepatocellular carcinoma (HCC)), alcoholic LC and LC or HCC of other aetiologies, by flow cytometry and RNA-sequencing using liver perfusates obtained during living donor liver transplantation. We also measured the plasma levels of D-lactate and bacterial endotoxin to evaluate bacterial translocation. RESULTS The frequency of liver sinusoidal Vγ9+Vδ2+ T cells was reduced in patients with CLD. Immunophenotypic and transcriptomic analyses revealed that liver sinusoidal Vγ9+Vδ2+ T cells from patients with CLD were persistently activated and pro-apoptotic. In addition, liver sinusoidal Vγ9+Vδ2+ T cells from patients with CLD showed significantly decreased interferon (IFN)-γ production following stimulation with bacterial metabolites and Escherichia coli. The antibacterial IFN-γ response of liver sinusoidal Vγ9+Vδ2+ T cells significantly correlated with liver function, and inversely correlated with the plasma level of D-lactate in patients with CLD. Repetitive in vitro stimulation with E. coli induced activation, apoptosis and functional impairment of liver sinusoidal Vγ9+Vδ2+ T cells. CONCLUSION Liver sinusoidal Vγ9+Vδ2+ T cells are functionally impaired in patients with CLD. Bacterial translocation and decreasing liver functions are associated with functional impairment of liver sinusoidal Vγ9+Vδ2+ T cells.
Collapse
Affiliation(s)
- Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ji Won Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Division of Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ha Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong Hoon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyungjoo Cho
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soon Il Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Soo Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Geun Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dong Jin Joo
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Yong Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Abstract
Unconventional T cells are a diverse and underappreciated group of relatively rare lymphocytes that are distinct from conventional CD4+ and CD8+ T cells, and that mainly recognize antigens in the absence of classical restriction through the major histocompatibility complex (MHC). These non-MHC-restricted T cells include mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, γδ T cells and other, often poorly defined, subsets. Depending on the physiological context, unconventional T cells may assume either protective or pathogenic roles in a range of inflammatory and autoimmune responses in the kidney. Accordingly, experimental models and clinical studies have revealed that certain unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic biomarkers. The responsiveness of human Vγ9Vδ2 T cells and MAIT cells to many microbial pathogens, for example, has implications for early diagnosis, risk stratification and targeted treatment of peritoneal dialysis-related peritonitis. The expansion of non-Vγ9Vδ2 γδ T cells during cytomegalovirus infection and their contribution to viral clearance suggest that these cells can be harnessed for immune monitoring and adoptive immunotherapy in kidney transplant recipients. In addition, populations of NKT, MAIT or γδ T cells are involved in the immunopathology of IgA nephropathy and in models of glomerulonephritis, ischaemia-reperfusion injury and kidney transplantation.
Collapse
|
13
|
Degli Esposti L, Perrone V, Sangiorgi D, Andretta M, Bartolini F, Cavaliere A, Ciaccia A, Dell'orco S, Grego S, Salzano S, Ubertazzo L, Vercellone A, Gatti D, Fassio A, Viapiana O, Rossini M, Adami G. The Use of Oral Amino-Bisphosphonates and Coronavirus Disease 2019 (COVID-19) Outcomes. J Bone Miner Res 2021; 36:2177-2183. [PMID: 34405441 PMCID: PMC8420492 DOI: 10.1002/jbmr.4419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 01/06/2023]
Abstract
The determinants of the susceptibility to severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection and severe coronavirus disease 2019 (COVID-19) manifestations are yet not fully understood. Amino-bisphosphonates (N-BPs) have anti-inflammatory properties and have been shown to reduce the incidence of lower respiratory infections, cardiovascular events, and cancer. We conducted a population-based retrospective observational cohort study with the primary objective of determining if oral N-BPs treatment can play a role in the susceptibility to development of severe COVID-19. Administrative International Classification of Diseases, Ninth Revision, Clinical ModificationI (ICD-9-CM) and anatomical-therapeutic chemical (ATC) code data, representative of Italian population (9% sample of the overall population), were analyzed. Oral N-BPs (mainly alendronate and risedronate) were included in the analysis, zoledronic acid was excluded because of the low number of patients at risk. Incidence of COVID-19 hospitalization was 12.32 (95% confidence interval [CI], 9.61-15.04) and 11.55 (95% CI, 8.91-14.20), of intensive care unit (ICU) utilization because of COVID-19 was 1.25 (95% CI, 0.38-2.11) and 1.42 (95% CI, 0.49-2.36), and of all-cause death was 4.06 (95% CI, 2.50-5.61) and 3.96 (95% CI, 2.41-5.51) for oral N-BPs users and nonusers, respectively. Sensitivity analyses that excluded patients with prevalent vertebral or hip fragility fractures and without concomitant glucocorticoid treatment yielded similar results. In conclusion, we found that the incidence of COVID-19 hospitalization, intensive care unit (ICU) utilization, and COVID-19 potentially related mortality were similar in N-BPs-treated and nontreated subjects. Similar results were found in N-BPs versus other anti-osteoporotic drugs. We provide real-life data on the safety of oral N-BPs in terms of severe COVID-19 risk on a population-based cohort. Our results do not support the hypothesis that oral N-BPs can prevent COVID-19 infection and/or severe COVID-19; however, they do not seem to increase the risk. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | | | - Diego Sangiorgi
- CliCon S.r.l. Health, Economics & Outcomes Research, Bologna, Italy
| | - Margherita Andretta
- UOC Assistenza Farmaceutica Territoriale, Azienda ULSS 8 Berica, Vicenza, Italy
| | | | | | | | | | - Stefano Grego
- Dipartimento Tecnico-Amministrativo, ASL 3 Genovese, Genova, Italy
| | - Sara Salzano
- UOC Farmacia Territoriale, ASL Roma 4, Rome, Italy
| | | | | | - Davide Gatti
- Rheumatology Unit, University of Verona, Verona, Italy
| | - Angelo Fassio
- Rheumatology Unit, University of Verona, Verona, Italy
| | | | | | | |
Collapse
|
14
|
Alice AF, Kramer G, Bambina S, Bahjat KS, Gough MJ, Crittenden MR. Listeria monocytogenes-infected human monocytic derived dendritic cells activate Vγ9Vδ2 T cells independently of HMBPP production. Sci Rep 2021; 11:16347. [PMID: 34381163 PMCID: PMC8358051 DOI: 10.1038/s41598-021-95908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Gamma-delta (γδ) T cells express T cell receptors (TCR) that are preconfigured to recognize signs of pathogen infection. In primates, γδ T cells expressing the Vγ9Vδ2 TCR innately recognize (E)-4-hydroxy-3-methyl-but- 2-enyl pyrophosphate (HMBPP), a product of the 2-C-methyl-D-erythritol 4- phosphate (MEP) pathway in bacteria that is presented in infected cells via interaction with members of the B7 family of costimulatory molecules butyrophilin (BTN) 3A1 and BTN2A1. In humans, Listeria monocytogenes (Lm) vaccine platforms have the potential to generate potent Vγ9Vδ2 T cell recognition. To evaluate the activation of Vγ9Vδ2 T cells by Lm-infected human monocyte-derived dendritic cells (Mo-DC) we engineered Lm strains that lack components of the MEP pathway. Direct infection of Mo-DC with these bacteria were unchanged in their ability to activate CD107a expression in Vγ9Vδ2 T cells despite an inability to synthesize HMBPP. Importantly, functional BTN3A1 was essential for this activation. Unexpectedly, we found that cytoplasmic entry of Lm into human dendritic cells resulted in upregulation of cholesterol metabolism in these cells, and the effect of pathway regulatory drugs suggest this occurs via increased synthesis of the alternative endogenous Vγ9Vδ2 ligand isoprenyl pyrophosphate (IPP) and/or its isomer dimethylallyl pyrophosphate (DMAPP). Thus, following direct infection, host pathways regulated by cytoplasmic entry of Lm can trigger Vγ9Vδ2 T cell recognition of infected cells without production of the unique bacterial ligand HMBPP.
Collapse
Affiliation(s)
- Alejandro F Alice
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Gwen Kramer
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Shelly Bambina
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Keith S Bahjat
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA.,Astellas Pharma US, 100 Kimball Way, South San Francisco, CA, 94080, USA
| | - Michael J Gough
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA. .,The Oregon Clinic, Portland, OR, 97213, USA.
| |
Collapse
|
15
|
Otaibi AA, Sherwani S, Alshammari EM, Al-Zahrani SA, Khan WA, Dhahi Alsukaibi AK, Dwivedi S, Khan SN, Khan MWA. Combinational therapeutics to combat cancer. Bioinformation 2021; 17:673-679. [PMID: 35283582 PMCID: PMC8882074 DOI: 10.6026/97320630017673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
Mono-therapeutics is rarely effective as a treatment option, which limits the survival of patients in advanced grade aggressive cancers. Combinational therapeutics (multiple drugs for multiple targets) to combat cancer is gaining momentum in recent years. Hence, it is of interest to document known data for combinational therapeutics in cancer treatment. An amalgamation of therapeutic agents enhances the efficacy and potency of the therapy. Combinational therapy can potentially target multiple pathways that are necessary for the cancer cells to proliferate, and/or target molecules, which may help cancer to become more aggressive and metastasize. In this review, we discuss combinational therapeutics, which include human γδ T cells in combinations with biologically active anti-cancer molecules, which synergistically may produce promising combinational therapeutics.
Collapse
Affiliation(s)
- Ahmed Al Otaibi
- Department of Chemistry, College of Sciences, University of Hail, Hail-2440, Saudi Arabia
| | - Subuhi Sherwani
- Department of Biology, College of Sciences, University of Hail, Hail-2440, Saudi Arabia
| | | | - Salma Ahmed Al-Zahrani
- Department of Chemistry, College of Sciences, University of Hail, Hail-2440, Saudi Arabia
| | - Wahid Ali Khan
- Department of Clinical Biochemistry,College of Medicine, King Khalid University, Abha-62529, Saudi Arabia
| | | | - Sourabh Dwivedi
- Department of Applied Physics, Aligarh Muslim University, Aligarh-202002, U.P., India
| | - Shahper Nazeer Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh-202002, U.P, India
| | - Mohd Wajid Ali Khan
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Hail, Hail-2440, Saudi Arabia
| |
Collapse
|
16
|
Otaibi AA, Sherwani S, Al-Zahrani SA, Alshammari EM, Khan WA, Alsukaibi AKD, Khan SN, Khan MWA. Biologically Active α-Amino Amide Analogs and γδ T Cells-A Unique Anticancer Approach for Leukemia. Front Oncol 2021; 11:706586. [PMID: 34322393 PMCID: PMC8311656 DOI: 10.3389/fonc.2021.706586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022] Open
Abstract
Advanced stage cancers are aggressive and difficult to treat with mono-therapeutics, substantially decreasing patient survival rates. Hence, there is an urgent need to develop unique therapeutic approaches to treat cancer with superior potency and efficacy. This study investigates a new approach to develop a potent combinational therapy to treat advanced stage leukemia. Biologically active α-amino amide analogs (RS)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenylpropiolamide (α-AAA-A) and (RS)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenylbut2-enamide (α-AAA-B) were synthesized using linear Ugi multicomponent reaction. Cytotoxicities and IC50 values of α-AAA-A and α-AAA-B against leukemia cancer cell lines (HL-60 and K562) were analyzed though MTT assay. Cytotoxic assay analyzed percent killing of leukemia cell lines due to the effect of γδ T cells alone or in combination with α-AAA-A or α-AAA-B. Synthesized biologically active molecule α-AAA-A exhibited increased cytotoxicity of HL-60 (54%) and K562 (44%) compared with α-AAA-B (44% and 36% respectively). Similarly, α-AAA-A showed low IC50 values for HL-60 (1.61 ± 0.11 μM) and K562 (3.01 ± 0.14 μM) compared to α-AAA-B (3.12 ± 0.15 μM and 6.21 ± 0.17 μM respectively). Additive effect of amide analogs and γδ T cells showed significantly high leukemia cancer cell killing as compared to γδ T cells alone. A unique combinational therapy with γδ T cells and biologically active anti-cancer molecules (α-AAA-A/B), concomitantly may be a promising cancer therapy.
Collapse
Affiliation(s)
- Ahmed Al Otaibi
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Subuhi Sherwani
- Department of Biology, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | | | | | - Wahid Ali Khan
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Shahper Nazeer Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, India
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
17
|
Xu Q, Taher TE, Ashby E, Sharif M, Willcox BE, Mehellou Y. Generation of Stable Isopentenyl Monophosphate Aryloxy Triester Phosphoramidates as Activators of Vγ9Vδ2 T Cells. ChemMedChem 2021; 16:2375-2380. [PMID: 33899332 PMCID: PMC8453817 DOI: 10.1002/cmdc.202100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 11/08/2022]
Abstract
Aryloxy triester phosphoramidate prodrugs of the monophosphate derivatives of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) were synthesized as lipophilic derivatives that can improve cell uptake. Despite the structural similarity of IPP and DMAPP, it was noted that their phosphoramidate prodrugs exhibited distinct stability profiles in aqueous environments, which we show is due to the position of the allyl bond in the backbones of the IPP and DMAPP monophosphates. As the IPP monophosphate aryloxy triester phosphoramidates showed favorable stability, they were subsequently investigated for their ability to activate Vγ9/Vδ2 T cells and they showed promising activation of this subset of T cells. Together, these findings represent the first report of IPP and DMAPP monophosphate prodrugs and the ability of IPP aryloxy triester phosphoramidate prodrugs to activate Vγ9/Vδ2 T cells highlighting their potential as possible immunotherapeutics.
Collapse
Affiliation(s)
- Qin Xu
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Taher E Taher
- Cancer Immunology and Immunotherapy Centre, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.,Institute of Immunology and Immunotherapy, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Elizabeth Ashby
- Cancer Immunology and Immunotherapy Centre, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.,Institute of Immunology and Immunotherapy, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Maria Sharif
- Cancer Immunology and Immunotherapy Centre, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.,Institute of Immunology and Immunotherapy, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.,Institute of Immunology and Immunotherapy, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| |
Collapse
|
18
|
Ravichandran S, Banerjee U, Dr GD, Kandukuru R, Thakur C, Chakravortty D, Balaji KN, Singh A, Chandra N. VB 10, a new blood biomarker for differential diagnosis and recovery monitoring of acute viral and bacterial infections. EBioMedicine 2021; 67:103352. [PMID: 33906069 PMCID: PMC8099739 DOI: 10.1016/j.ebiom.2021.103352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Precise differential diagnosis between acute viral and bacterial infections is important to enable appropriate therapy, avoid unnecessary antibiotic prescriptions and optimize the use of hospital resources. A systems view of host response to infections provides opportunities for discovering sensitive and robust molecular diagnostics. METHODS We combine blood transcriptomes from six independent datasets (n = 756) with a knowledge-based human protein-protein interaction network, identifies subnetworks capturing host response to each infection class, and derives common response cores separately for viral and bacterial infections. We subject the subnetworks to a series of computational filters to identify a parsimonious gene panel and a standalone diagnostic score that can be applied to individual samples. We rigorously validate the panel and the diagnostic score in a wide range of publicly available datasets and in a newly developed Bangalore-Viral Bacterial (BL-VB) cohort. FINDING We discover a 10-gene blood-based biomarker panel (Panel-VB) that demonstrates high predictive performance to distinguish viral from bacterial infections, with a weighted mean AUROC of 0.97 (95% CI: 0.96-0.99) in eleven independent datasets (n = 898). We devise a new stand-alone patient-wise score (VB10) based on the panel, which shows high diagnostic accuracy with a weighted mean AUROC of 0.94 (95% CI 0.91-0.98) in 2996 patient samples from 56 public datasets from 19 different countries. Further, we evaluate VB10 in a newly generated South Indian (BL-VB, n = 56) cohort and find 97% accuracy in the confirmed cases of viral and bacterial infections. We find that VB10 is (a) capable of accurately identifying the infection class in culture-negative indeterminate cases, (b) reflects recovery status, and (c) is applicable across different age groups, covering a wide spectrum of acute bacterial and viral infections, including uncharacterized pathogens. We tested our VB10 score on publicly available COVID-19 data and find that our score detected viral infection in patient samples. INTERPRETATION Our results point to the promise of VB10 as a diagnostic test for precise diagnosis of acute infections and monitoring recovery status. We expect that it will provide clinical decision support for antibiotic prescriptions and thereby aid in antibiotic stewardship efforts. FUNDING Grand Challenges India, Biotechnology Industry Research Assistance Council (BIRAC), Department of Biotechnology, Govt. of India.
Collapse
Affiliation(s)
| | - Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Gayathri Devi Dr
- Department of Microbiology, M S Ramaiah Medical College, Bangalore 560054, Karnataka, India
| | - Rooparani Kandukuru
- Department of Microbiology, M S Ramaiah Medical College, Bangalore 560054, Karnataka, India
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Dipshikha Chakravortty
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India; Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
19
|
Eberl M, Oldfield E, Herrmann T. Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells. IMMUNOTHERAPY ADVANCES 2021; 1:ltab005. [PMID: 35919736 PMCID: PMC9327107 DOI: 10.1093/immadv/ltab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Human Vγ9/Vδ2 T cells, mucosal-associated invariant T (MAIT) cells, and other unconventional T cells are specialised in detecting microbial metabolic pathway intermediates that are absent in humans. The recognition by such semi-invariant innate-like T cells of compounds like (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), the penultimate metabolite in the MEP isoprenoid biosynthesis pathway, and intermediates of the riboflavin biosynthesis pathway and their metabolites allows the immune system to rapidly sense pathogen-associated molecular patterns that are shared by a wide range of micro-organisms. Given the essential nature of these metabolic pathways for microbial viability, they have emerged as promising targets for the development of novel antibiotics. Here, we review recent findings that link enzymatic inhibition of microbial metabolism with alterations in the levels of unconventional T cell ligands produced by treated micro-organisms that have given rise to the concept of 'immuno-antibiotics': combining direct antimicrobial activity with an immunotherapeutic effect via modulation of unconventional T cell responses.
Collapse
Affiliation(s)
- Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK,Systems Immunity Research Institute, Cardiff University, Cardiff, UK,Correspondence: Matthias Eberl, Division of Infection and Immunity, Henry Wellcome Building, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK. Tel: +44-29206-87011;
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
McCarthy NE, Stagg AJ, Price CL, Mann ER, Gellatly NL, Al-Hassi HO, Knight SC, Panoskaltsis N. Patients with gastrointestinal irritability after TGN1412-induced cytokine storm displayed selective expansion of gut-homing αβ and γδT cells. Cancer Immunol Immunother 2021; 70:1143-1153. [PMID: 33048222 PMCID: PMC7552579 DOI: 10.1007/s00262-020-02723-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
Following infusion of the anti-CD28 superagonist monoclonal antibody TGN1412, three of six previously healthy, young male recipients developed gastrointestinal irritability associated with increased expression of 'gut-homing' integrin β7 on peripheral blood αβT cells. This subset of patients with intestinal symptoms also displayed a striking and persistent expansion of putative Vδ2+ γδT cells in the circulation which declined over a 2-year period following drug infusion, concordant with subsiding gut symptoms. These data demonstrate that TGN1412-induced gastrointestinal symptoms were associated with dysregulation of the 'gut-homing' pool of blood αβ and γδT cells, induced directly by the antibody and/or arising from the subsequent cytokine storm.
Collapse
Affiliation(s)
- Neil E McCarthy
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, London, UK.
- Centre for Immunobiology, The Blizard Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Andrew J Stagg
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, London, UK
- Centre for Immunobiology, The Blizard Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Claire L Price
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, London, UK
- Lucid Group Communications, Buckinghamshire, UK
| | - Elizabeth R Mann
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, London, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Nichola L Gellatly
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, London, UK
| | - Hafid O Al-Hassi
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, London, UK
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, London, UK
| | - Nicki Panoskaltsis
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, London, UK.
- Department of Haematology, Imperial College London, Northwick Park and St. Mark's Campus, London, UK.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
21
|
Khan MWA, Otaibi AA, Sherwani S, Alshammari EM, Al-Zahrani SA, Khan WA, Alsukaibi AKD, Alouffi S, Khan SN. Optimization of methods for peripheral blood mononuclear cells isolation and expansion of human gamma delta T cells. Bioinformation 2021; 17:460-469. [PMID: 34092966 PMCID: PMC8131572 DOI: 10.6026/97320630017460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/09/2022] Open
Abstract
Human Vg9/Vδ2 T cells (γδ T cells) are immune surveillance cells both in innate and adaptive immunity and are a possible target for anticancer therapies, which can induce immune responses in a variety of cancers. Small non-peptide antigens such as zoledronate can do activation and expansion of T cells in vitro. It is evident that for adoptive cancer therapies, large numbers of functional cells are needed into cancer patients. Hence, optimization of methods needs to be carried out for the efficient expansion of these T cells. Standardization of peripheral blood mononuclear cells (PBMCs) isolation was devised. Cytokines (interleukin 2 (IL-2) and interleukin 15 (IL-15)) and zoledronate were also standardized for different concentrations. It was found that an increased number of PBMCs were recovered when washing was done at 1100 revolution per minute (rpm). Significantly high expansion fold was (2524 ± 787 expansion fold) achieved when stimulation of PBMCs was done with 1 µM of zoledronate and both cytokines IL-2 and IL-15 supported the expansion and survival of cells at the concentrations of 100 IU/ml and 10 ng/ml respectively. 14-day cultures showed highly pure (91.6 ± 5.1%) and live (96.5 ± 2.5%) expanded γδ T cells. This study aimed to standardize an easy to manipulate technique for the expansion of γδ T cells, giving a higher yield.
Collapse
Affiliation(s)
- Mohd Wajid Ali Khan
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il-2440, Saudi Arabia
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha'il, Ha'il-2440, Saudi Arabia
| | - Ahmed Al Otaibi
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il-2440, Saudi Arabia
| | - Subuhi Sherwani
- Department of Biology, College of Sciences, University of Ha'il, Ha'il-2440, Saudi Arabia
| | | | - Salma Ahmed Al-Zahrani
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il-2440, Saudi Arabia
| | - Wahid Ali Khan
- Department of Clinical Biochemistry,College of Medicine, King Khalid University, Abha-62529, Saudi Arabia
| | | | - Sultan Alouffi
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha'il, Ha'il-2440, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha'il, Ha'il-2440, Saudi Arabia
| | - Shahper Nazeer Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh-202002, U.P,India
| |
Collapse
|
22
|
Barragué H, Fontaine J, Abravanel F, Mauré E, Péron JM, Alric L, Dubois M, Izopet J, Champagne E. Mobilization of γδ T Cells and IL-10 Production at the Acute Phase of Hepatitis E Virus Infection in Cytomegalovirus Carriers. THE JOURNAL OF IMMUNOLOGY 2021; 206:1027-1038. [PMID: 33483348 DOI: 10.4049/jimmunol.2000187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022]
Abstract
Alterations in the γδ T cell compartment have been reported in immunocompromised individuals infected with hepatitis E virus (HEV)-g3. We now report the analysis of blood γδ T cells from acutely HEV-infected individuals in the absence of immunosuppression. In these patients, non-Vδ2 (ND2) γδ T cells outnumbered otherwise predominant Vδ2 cells selectively in human CMV (HCMV)-seropositive patients and were higher than in HCMVpos controls, mimicking HCMV reactivation, whereas their serum was PCR-negative for HCMV. Stimulation of their lymphocytes with HEV-infected hepatocarcinoma cells led to an HEV-specific response in γδ subsets of HCMVpos individuals. HEV infection was associated with a lowered expression of TIGIT, LAG-3, and CD160 immune checkpoint markers on ND2 effector memory cells in HCMVneg but not in HCMVpos HEV patients. γδ cell lines, predominantly ND2, were generated from patients after coculture with hepatocarcinoma cells permissive to HEV and IL-2/12/18. Upon restimulation with HEV-infected or uninfected cells and selected cytokines, these cell lines produced IFN-γ and IL-10, the latter being induced by IL-12 in IFN-γ-producing cells and upregulated by HEV and IL-18. They were also capable of suppressing the proliferation of CD3/CD28-activated CD4 cells in transwell experiments. Importantly, IL-10 was detected in the plasma of 10 of 10 HCMVpos HEV patients but rarely in controls or HCMVneg HEV patients, implying that γδ cells are probably involved in IL-10 production at the acute phase of infection. Our data indicate that HEV mobilizes a pool of ND2 memory cells in HCMV carriers, promoting the development of an immunoregulatory environment.
Collapse
Affiliation(s)
- Hugo Barragué
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| | - Jessica Fontaine
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| | - Florence Abravanel
- Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France.,CHU Toulouse, Hôspital Purpan, Laboratoire de Virologie, Centre National de Référence Hépatite E, F-31059 Toulouse, France; and
| | - Emilie Mauré
- Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| | - Jean-Marie Péron
- Pôle Hospitalo-Universitaire des Maladies de l'Appareil Digestif, Hôspital Rangueil, F-31059 Toulouse, France
| | - Laurent Alric
- Pôle Hospitalo-Universitaire des Maladies de l'Appareil Digestif, Hôspital Rangueil, F-31059 Toulouse, France
| | - Martine Dubois
- CHU Toulouse, Hôspital Purpan, Laboratoire de Virologie, Centre National de Référence Hépatite E, F-31059 Toulouse, France; and
| | - Jacques Izopet
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France.,CHU Toulouse, Hôspital Purpan, Laboratoire de Virologie, Centre National de Référence Hépatite E, F-31059 Toulouse, France; and
| | - Eric Champagne
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France; .,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| |
Collapse
|
23
|
Piselli C, Benz R. Fosmidomycin transport through the phosphate-specific porins OprO and OprP of Pseudomonas aeruginosa. Mol Microbiol 2021; 116:97-108. [PMID: 33561903 DOI: 10.1111/mmi.14693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 01/08/2023]
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen, responsible for many hospital-acquired infections. The bacterium is quite resistant toward many antibiotics, in particular because of the fine-tuned permeability of its outer membrane (OM). General diffusion outer membrane pores are quite rare in this organism. Instead, its OM contains many substrate-specific porins. Their expression is varying according to growth conditions and virulence. Phosphate limitations, as well as pathogenicity factors, result in the induction of the two mono- and polyphosphate-specific porins, OprP and OprO, respectively, together with an inner membrane uptake mechanism and a periplasmic binding protein. These outer membrane channels could serve as outer membrane pathways for the uptake of phosphonates. Among them are not only herbicides, but also potent antibiotics, such as fosfomycin and fosmidomycin. In this study, we investigated the interaction between OprP and OprO and fosmidomycin in detail. We could demonstrate that fosmidomycin is able to bind to the phosphate-specific binding site inside the two porins. The inhibition of chloride conductance of OprP and OprO by fosmidomycin is considerably less than that of phosphate or diphosphate, but it can be measured in titration experiments of chloride conductance and also in single-channel experiments. The results suggest that fosmidomycin transport across the OM of P. aeruginosa occurs through OprP and OprO. Our data with the ones already known in the literature show that phosphonic acid-containing antibiotics are in general good candidates to treat the infections of P. aeruginosa at the very beginning through a favorable OM transport system.
Collapse
Affiliation(s)
- Claudio Piselli
- Department of Life Sciences and Chemistry, Focus Health, Jacobs University Bremen, Bremen, Germany
| | - Roland Benz
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Aberrant serum parathyroid hormone, calcium, and phosphorus as risk factors for peritonitis in peritoneal dialysis patients. Sci Rep 2021; 11:1171. [PMID: 33441921 PMCID: PMC7806837 DOI: 10.1038/s41598-020-80938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/28/2020] [Indexed: 11/08/2022] Open
Abstract
Identifying modifiable risk factors of peritoneal dialysis (PD)-related peritonitis is of clinical importance in patient care. Mineral bone disease (MBD) has been associated with mortality and morbidity in end-stage kidney disease (ESKD) patients. However, its influence on PD related peritonitis due to altered host immunity remains elusive. This study investigated whether abnormal biomarkers of MBD are associated with the development of peritonitis in patients undergoing maintenance PD. We conducted a retrospective observational cohort study, analysing data derived from a nationwide dialysis registry database in Taiwan, from 2005 to 2012. A total of 5750 ESKD patients commencing PD therapy during this period were enrolled and followed up to 60 months or by the end of the study period. The patients were stratified based on their baseline serum parathyroid hormone (PTH) levels, calcium (Ca) levels or phosphorus (P) levels, respectively or in combinations. The primary outcome was the occurrence of first episode of peritonitis, and patient outcomes such as deaths, transfer to haemodialysis or receiving renal transplantation were censored. Peritonitis-free survival and the influence of PTH, Ca, P (individual or in combination) on the peritonitis occurrence were analysed. A total of 5750 PD patients was enrolled. Of them, 1611 patients experienced their first episode of peritonitis during the study period. Patients with low PTH, high Ca or low P levels, respectively or in combination, had the lowest peritonitis-free survival. After adjusting for age, sex and serum albumin levels, we found that the combinations of low PTH levels with either high Ca levels or low/normal P levels were significant risk factors of developing peritonitis. Abnormal mineral bone metabolism in maintenance PD patients with low serum PTH levels, in combination with either high Ca levels or low/normal P levels, could be novel risk factors of PD-related peritonitis.
Collapse
|
25
|
Suzuki T, Hayman L, Kilbey A, Edwards J, Coffelt SB. Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev 2020; 298:198-217. [PMID: 32840001 DOI: 10.1111/imr.12916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 08/17/2023]
Abstract
Colorectal cancer is the third most common cancer worldwide with nearly 2 million cases per year. Immune cells and inflammation are a critical component of colorectal cancer progression, and they are used as reliable prognostic indicators of patient outcome. With the growing appreciation for immunology in colorectal cancer, interest is growing on the role γδ T cells have to play, as they represent one of the most prominent immune cell populations in gut tissue. This group of cells consists of both resident populations-γδ intraepithelial lymphocytes (γδ IELs)-and transient populations that each has unique functions. The homeostatic role of these γδ T cell subsets is to maintain barrier integrity and prevent microorganisms from breaching the mucosal layer, which is accomplished through crosstalk with enterocytes and other immune cells. Recent years have seen a surge in discoveries regarding the regulation of γδ IELs in the intestine and the colon with particular new insights into the butyrophilin family. In this review, we discuss the development, specialities, and functions of γδ T cell subsets during cancer progression. We discuss how these cells may be used to predict patient outcome, as well as how to exploit their behavior for cancer immunotherapy.
Collapse
Affiliation(s)
- Toshiyasu Suzuki
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Liam Hayman
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| |
Collapse
|
26
|
Carissimo G, Xu W, Kwok I, Abdad MY, Chan YH, Fong SW, Puan KJ, Lee CYP, Yeo NKW, Amrun SN, Chee RSL, How W, Chan S, Fan BE, Andiappan AK, Lee B, Rötzschke O, Young BE, Leo YS, Lye DC, Renia L, Ng LG, Larbi A, Ng LF. Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nat Commun 2020; 11:5243. [PMID: 33067472 PMCID: PMC7568554 DOI: 10.1038/s41467-020-19080-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is the novel coronavirus responsible for the current COVID-19 pandemic. Severe complications are observed only in a small proportion of infected patients but the cellular mechanisms underlying this progression are still unknown. Comprehensive flow cytometry of whole blood samples from 54 COVID-19 patients reveals a dramatic increase in the number of immature neutrophils. This increase strongly correlates with disease severity and is associated with elevated IL-6 and IP-10 levels, two key players in the cytokine storm. The most pronounced decrease in cell counts is observed for CD8 T-cells and VD2 γδ T-cells, which both exhibit increased differentiation and activation. ROC analysis reveals that the count ratio of immature neutrophils to VD2 (or CD8) T-cells predicts pneumonia onset (0.9071) as well as hypoxia onset (0.8908) with high sensitivity and specificity. It would thus be a useful prognostic marker for preventive patient management and improved healthcare resource management.
Collapse
Affiliation(s)
- Guillaume Carissimo
- Infectious Disease Horizontal Technology Center, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore.
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore.
| | - Weili Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Immanuel Kwok
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Mohammad Yazid Abdad
- National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, 308442, Singapore, Singapore
| | - Yi-Hao Chan
- Infectious Disease Horizontal Technology Center, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Siew-Wai Fong
- Infectious Disease Horizontal Technology Center, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore, 117543
| | - Kia Joo Puan
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Cheryl Yi-Pin Lee
- Infectious Disease Horizontal Technology Center, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Nicholas Kim-Wah Yeo
- Infectious Disease Horizontal Technology Center, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Siti Naqiah Amrun
- Infectious Disease Horizontal Technology Center, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Rhonda Sin-Ling Chee
- Infectious Disease Horizontal Technology Center, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Wilson How
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Stephrene Chan
- Department of Haematology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Singapore, Singapore
- Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Singapore, Singapore
- Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Bingwen Eugene Fan
- Department of Haematology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Singapore, Singapore
- Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Singapore, Singapore
- Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Olaf Rötzschke
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Barnaby Edward Young
- National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, 308442, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, 308442, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, 10 Medical Drive, 117597, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University Singapore, 12 Science Drive 2, 117549, Singapore, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, 308442, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, 10 Medical Drive, 117597, Singapore, Singapore
| | - Laurent Renia
- Infectious Disease Horizontal Technology Center, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Anis Larbi
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore
| | - Lisa Fp Ng
- Infectious Disease Horizontal Technology Center, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore.
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis, 138648, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117596, Singapore, Singapore.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, 8 West Derby Street, Liverpool, L7 3EA, UK.
| |
Collapse
|
27
|
Shen L, Huang D, Qaqish A, Frencher J, Yang R, Shen H, Chen ZW. Fast-acting γδ T-cell subpopulation and protective immunity against infections. Immunol Rev 2020; 298:254-263. [PMID: 33037700 DOI: 10.1111/imr.12927] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Unique Vγ2Vδ2 (Vγ9Vδ2) T cells existing only in human and non-human primates, account for the majority of circulating γδ T cells in human adults. Vγ2Vδ2 T cells are the sole γδ T-cell subpopulation capable of recognizing the microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) produced by selected pathogens during infections. Recent seminal studies in non-human primate models have demonstrated that the unique HMBPP-specific Vγ2Vδ2 T cells are fast-acting, multi-functional, and protective during infections. This article reviews the recent seminal observations of Vγ2Vδ2 T cells in protective mechanisms against tuberculosis and other infections.
Collapse
Affiliation(s)
- Ling Shen
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| | - Dan Huang
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| | - Arwa Qaqish
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| | - James Frencher
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| | - Rui Yang
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Tongji University Shanghai Pulmonary Hospital, Shanghai, China
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Tongji University Shanghai Pulmonary Hospital, Shanghai, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| |
Collapse
|
28
|
Kadri H, Taher TE, Xu Q, Sharif M, Ashby E, Bryan RT, Willcox BE, Mehellou Y. Aryloxy Diester Phosphonamidate Prodrugs of Phosphoantigens (ProPAgens) as Potent Activators of Vγ9/Vδ2 T-Cell Immune Responses. J Med Chem 2020; 63:11258-11270. [PMID: 32930595 PMCID: PMC7549095 DOI: 10.1021/acs.jmedchem.0c01232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vγ9/Vδ2 T-cells are activated by pyrophosphate-containing small molecules known as phosphoantigens (PAgs). The presence of the pyrophosphate group in these PAgs has limited their drug-like properties because of its instability and polar nature. In this work, we report a novel and short Grubbs olefin metathesis-mediated synthesis of methylene and difluoromethylene monophosphonate derivatives of the PAg (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBP) as well as their aryloxy diester phosphonamidate prodrugs, termed ProPAgens. These prodrugs showed excellent stability in human serum (t1/2 > 12 h) and potent activation of Vγ9/Vδ2 T-cells (EC50 ranging from 5 fM to 73 nM), which translated into sub-nanomolar γδ T-cell-mediated eradication of bladder cancer cells in vitro. Additionally, a combination of in silico and in vitro enzymatic assays demonstrated the metabolism of these phosphonamidates to release the unmasked PAg monophosphonate species. Collectively, this work establishes HMBP monophosphonate ProPAgens as ideal candidates for further investigation as novel cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Hachemi Kadri
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Taher E Taher
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.,Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Qin Xu
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Maria Sharif
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.,Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Elizabeth Ashby
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.,Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Richard T Bryan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.,Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| |
Collapse
|
29
|
Ma L, Phalke S, Stévigny C, Souard F, Vermijlen D. Mistletoe-Extract Drugs Stimulate Anti-Cancer Vγ9Vδ2 T Cells. Cells 2020; 9:cells9061560. [PMID: 32604868 PMCID: PMC7349316 DOI: 10.3390/cells9061560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022] Open
Abstract
Human phosphoantigen-reactive Vγ9Vδ2 T cells possess several characteristics, including MHC-independent recognition of tumor cells and potent killing potential, that make them attractive candidates for cancer immunotherapeutic approaches. Injectable preparations from the hemi-parasite plant Viscum album L. (European mistletoe) are commonly prescribed as complementary cancer therapy in European countries such as Germany, but their mechanism of action remains poorly understood. Here, we investigated in-depth the in vitro response of human T cells towards mistletoe-extract drugs by analyzing their functional and T-cell-receptor (TCR) response using flow cytometry and high-throughput sequencing respectively. Non-fermented mistletoe-extract drugs (AbnobaViscum), but not their fermented counterparts (Iscador), induced specific expansion of Vγ9Vδ2 T cells among T cells. Furthermore, AbnobaViscum rapidly induced the release of cytotoxic granules and the production of the cytokines IFNγ and TNFα in Vγ9Vδ2 T cells. This stimulation of anti-cancer Vγ9Vδ2 T cells was mediated by the butyrophilin BTN3A, did not depend on the accumulation of endogenous phosphoantigens and involved the same Vγ9Vδ2 TCR repertoire as those of phosphoantigen-reactive Vγ9Vδ2 T cells. These insights highlight Vγ9Vδ2 T cells as a potential target for mistletoe-extract drugs and their role in cancer patients receiving these herbal drugs needs to be investigated.
Collapse
Affiliation(s)
- Ling Ma
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium; (L.M.); (S.P.); (F.S.)
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Swati Phalke
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium; (L.M.); (S.P.); (F.S.)
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Caroline Stévigny
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium;
| | - Florence Souard
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium; (L.M.); (S.P.); (F.S.)
- DPM UMR 5063, CNRS, Université Grenoble Alpes, 38041 Grenoble, France
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium; (L.M.); (S.P.); (F.S.)
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
- Correspondence:
| |
Collapse
|
30
|
Hayday AC. γδ T Cell Update: Adaptate Orchestrators of Immune Surveillance. THE JOURNAL OF IMMUNOLOGY 2020; 203:311-320. [PMID: 31285310 DOI: 10.4049/jimmunol.1800934] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
Abstract
As interest in γδ T cells grows rapidly, what key points are emerging, and where is caution warranted? γδ T cells fulfill critical functions, as reflected in associations with vaccine responsiveness and cancer survival in humans and ever more phenotypes of γδ T cell-deficient mice, including basic physiological deficiencies. Such phenotypes reflect activities of distinct γδ T cell subsets, whose origins offer interesting insights into lymphocyte development but whose variable evolutionary conservation can obfuscate translation of knowledge from mice to humans. By contrast, an emerging and conserved feature of γδ T cells is their "adaptate" biology: an integration of adaptive clonally-restricted specificities, innate tissue-sensing, and unconventional recall responses that collectively strengthen host resistance to myriad challenges. Central to adaptate biology are butyrophilins and other γδ cell regulators, the study of which should greatly enhance our understanding of tissue immunogenicity and immunosurveillance and guide intensifying clinical interest in γδ cells and other unconventional lymphocytes.
Collapse
Affiliation(s)
- Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom; and Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
31
|
Raffray L, Burton RJ, Baker SE, Morgan MP, Eberl M. Zoledronate rescues immunosuppressed monocytes in sepsis patients. Immunology 2019; 159:88-95. [PMID: 31606902 PMCID: PMC6904622 DOI: 10.1111/imm.13132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Severe sepsis is often accompanied by a transient immune paralysis, which is associated with enhanced susceptibility to secondary infections and poor clinical outcomes. The functional impairment of antigen‐presenting cells is considered to be a major hallmark of this septic immunosuppression, with reduced HLA‐DR expression on circulating monocytes serving as predictor of mortality. Unconventional lymphocytes like γδ T‐cells have the potential to restore immune defects in a variety of pathologies including cancer, but their use to rescue sepsis‐induced immunosuppression has not been investigated. Our own previous work showed that Vγ9/Vδ2+ γδ T‐cells are potent activators of monocytes from healthy volunteers in vitro, and in individuals with osteoporosis after first‐time administration of the anti‐bone resorption drug zoledronate in vivo. We show here that zoledronate readily induces upregulation of HLA‐DR, CD40 and CD64 on monocytes from both healthy controls and sepsis patients, which could be abrogated by neutralising the pro‐inflammatory cytokines interferon (IFN)‐γ and tumour necrosis factor (TNF)‐α in the cultures. In healthy controls, the upregulation of HLA‐DR on monocytes was proportional to the baseline percentage of Vγ9/Vδ2 T‐cells in the peripheral blood mononuclear cell population. Of note, a proportion of sepsis patients studied here did not show a demonstrable response to zoledronate, predominantly patients with microbiologically confirmed bloodstream infections, compared with sepsis patients with more localised infections marked by negative blood cultures. Taken together, our results suggest that zoledronate can, at least in some individuals, rescue immunosuppressed monocytes during acute sepsis and thus may help improve clinical outcomes during severe infection.
Collapse
Affiliation(s)
- Loïc Raffray
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.,Department of Internal Medicine, Félix Guyon University Hospital of La Réunion, Saint Denis, France
| | - Ross J Burton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Sarah E Baker
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Matt P Morgan
- Directorate of Critical Care, Cardiff & Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.,Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
32
|
Nguyen CT, Maverakis E, Eberl M, Adamopoulos IE. γδ T cells in rheumatic diseases: from fundamental mechanisms to autoimmunity. Semin Immunopathol 2019; 41:595-605. [PMID: 31506867 PMCID: PMC6815259 DOI: 10.1007/s00281-019-00752-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
Abstract
The innate and adaptive arms of the immune system tightly regulate immune responses in order to maintain homeostasis and host defense. The interaction between those two systems is critical in the activation and suppression of immune responses which if unchecked may lead to chronic inflammation and autoimmunity. γδ T cells are non-conventional lymphocytes, which express T cell receptor (TCR) γδ chains on their surface and straddle between innate and adaptive immunity. Recent advances in of γδ T cell biology have allowed us to expand our understanding of γδ T cell in the dysregulation of immune responses and the development of autoimmune diseases. In this review, we summarize current knowledge on γδ T cells and their roles in skin and joint inflammation as commonly observed in rheumatic diseases.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, USA.
| |
Collapse
|
33
|
Immunization of Vγ2Vδ2 T cells programs sustained effector memory responses that control tuberculosis in nonhuman primates. Proc Natl Acad Sci U S A 2019; 116:6371-6378. [PMID: 30850538 PMCID: PMC6442559 DOI: 10.1073/pnas.1811380116] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite the urgent need for a better tuberculosis (TB) vaccine, relevant protective mechanisms remain unknown. We previously defined protective phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP)–specific Vγ2Vδ2 T cells as a unique subset in primates, and, here, we immunized them selectively for protection against TB. A single respiratory vaccination of macaques with attenuated HMBPP-producing Listeria monocytogenes (Lm ΔactA prfA*), but not an HMBPP-lacking ΔgcpE Listeria strain, expanded Vγ2Vδ2 T cells, elicited Th1-like Vγ2Vδ2 T cell responses, and reduced TB infection/pathology after moderate-dose TB challenge. Such protection correlated with rapid memory-like, Th1-like Vγ2Vδ2 T cell responses, the presence of tissue-resident Vγ2Vδ2 T effectors coproducing IFN-γ/perforin and inhibiting intracellular Mycobacterium tuberculosis growth, and enhanced CD4+/CD8+ T cell responses. These findings establish a concept incorporating immunization of human Vγ2Vδ2 T cells for TB vaccine development. Tuberculosis (TB) remains a leading killer among infectious diseases, and a better TB vaccine is urgently needed. The critical components and mechanisms of vaccine-induced protection against Mycobacterium tuberculosis (Mtb) remain incompletely defined. Our previous studies demonstrate that Vγ2Vδ2 T cells specific for (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) phosphoantigen are unique in primates as multifunctional effectors of immune protection against TB infection. Here, we selectively immunized Vγ2Vδ2 T cells and assessed the effect on infection in a rhesus TB model. A single respiratory vaccination of macaques with an HMBPP-producing attenuated Listeria monocytogenes (Lm ΔactA prfA*) caused prolonged expansion of HMBPP-specific Vγ2Vδ2 T cells in circulating and pulmonary compartments. This did not occur in animals similarly immunized with an Lm ΔgcpE strain, which did not produce HMBPP. Lm ΔactA prfA* vaccination elicited increases in Th1-like Vγ2Vδ2 T cells in the airway, and induced containment of TB infection after pulmonary challenge. The selective immunization of Vγ2Vδ2 T cells reduced lung pathology and mycobacterial dissemination to extrapulmonary organs. Vaccine effects coincided with the fast-acting memory-like response of Th1-like Vγ2Vδ2 T cells and tissue-resident Vγ2Vδ2 effector T cells that produced both IFN-γ and perforin and inhibited intracellular Mtb growth. Furthermore, selective immunization of Vγ2Vδ2 T cells enabled CD4+ and CD8+ T cells to mount earlier pulmonary Th1 responses to TB challenge. Our findings show that selective immunization of Vγ2Vδ2 T cells can elicit fast-acting and durable memory-like responses that amplify responses of other T cell subsets, and provide an approach to creating more effective TB vaccines.
Collapse
|
34
|
Gu S, Borowska MT, Boughter CT, Adams EJ. Butyrophilin3A proteins and Vγ9Vδ2 T cell activation. Semin Cell Dev Biol 2018; 84:65-74. [PMID: 29471037 PMCID: PMC6129423 DOI: 10.1016/j.semcdb.2018.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/22/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023]
Abstract
Despite playing critical roles in the immune response and having significant potential in immunotherapy, γδ T cells have garnered little of the limelight. One major reason for this paradox is that their antigen recognition mechanisms are largely unknown, limiting our understanding of their biology and our potential to modulate their activity. One of the best-studied γδ subsets is the human Vγ9Vδ2T cell population, which predominates in peripheral blood and can combat both microbial infections and cancers. Although it has been known for decades that Vγ9Vδ2T cells respond to the presence of small pyrophosphate-based metabolites, collectively named phosphoantigens (pAgs), derived from microbial sources or malignant cells, the molecular basis for this response has been unclear. A major breakthrough in this area came with the identification of the Butyrophilin 3A (BTN3A) proteins, members of the Butyrophilin/Butyrophilin-like protein family, as mediators between pAgs and Vγ9Vδ2T cells. In this article, we review the most recent studies regarding pAg activation of human Vγ9Vδ2T cells, mainly focusing on the role of BTN3A as the pAg sensing molecule, as well as its potential impact on downstream events of the activation process.
Collapse
Affiliation(s)
- Siyi Gu
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA
| | - Marta T Borowska
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA
| | | | - Erin J Adams
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
35
|
Riganti C, Castella B, Massaia M. ABCA1, apoA-I, and BTN3A1: A Legitimate Ménage à Trois in Dendritic Cells. Front Immunol 2018; 9:1246. [PMID: 29937767 PMCID: PMC6002486 DOI: 10.3389/fimmu.2018.01246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Human Vγ9Vδ2 T cells have the capacity to detect supra-physiological concentrations of phosphoantigens (pAgs) generated by the mevalonate (Mev) pathway of mammalian cells under specific circumstances. Isopentenyl pyrophosphate (IPP) is the prototypic pAg recognized by Vγ9Vδ2 T cells. B-cell derived tumor cells (i.e., lymphoma and myeloma cells) and dendritic cells (DCs) are privileged targets of Vγ9Vδ2 T cells because they generate significant amounts of IPP which can be boosted with zoledronic acid (ZA). ZA is the most potent aminobisphosphonate (NBP) clinically available to inhibit osteoclast activation and a very potent inhibitor of farnesyl pyrophosphate synthase in the Mev pathway. ZA-treated DCs generate and release in the supernatants picomolar IPP concentrations which are sufficient to induce the activation of Vγ9Vδ2 T cells. We have recently shown that the ATP-binding cassette transporter A1 (ABCA1) plays a major role in the extracellular release of IPP from ZA-treated DCs. This novel ABCA1 function is fine-tuned by physical interactions with IPP, apolipoprotein A-I (apoA-I), and butyrophilin-3A1 (BTN3A1). The mechanisms by which soluble IPP induces Vγ9Vδ2 T-cell activation remain to be elucidated. It is possible that soluble IPP binds to BTN3A1, apoA-I, or other unknown molecules on the cell surface of bystander cells like monocytes, NK cells, Vγ9Vδ2 T cells, or any other cell locally present. Investigating this scenario may represent a unique opportunity to further characterize the role of BTN3A1 and other molecules in the recognition of soluble IPP by Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, Turin, Italy
| | - Barbara Castella
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Università degli Studi di Torino, Turin, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Università degli Studi di Torino, Turin, Italy.,SC Ematologia, AO S. Croce e Carle, Cuneo, Italy
| |
Collapse
|
36
|
McCarthy NE, Eberl M. Human γδ T-Cell Control of Mucosal Immunity and Inflammation. Front Immunol 2018; 9:985. [PMID: 29867962 PMCID: PMC5949325 DOI: 10.3389/fimmu.2018.00985] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 01/26/2023] Open
Abstract
Human γδ T-cells include some of the most common "antigen-specific" cell types in peripheral blood and are enriched yet further at mucosal barrier sites where microbial infection and tumors often originate. While the γδ T-cell compartment includes multiple subsets with highly flexible effector functions, human mucosal tissues are dominated by host stress-responsive Vδ1+ T-cells and microbe-responsive Vδ2+ T-cells. Widely recognized for their potent cytotoxicity, emerging data suggest that γδ T-cells also exert strong influences on downstream adaptive immunity to pathogens and tumors, in particular via activation of antigen-presenting cells and/or direct stimulation of other mucosal leukocytes. These unique functional attributes and lack of MHC restriction have prompted considerable interest in therapeutic targeting of γδ T-cells. Indeed, several drugs already in clinical use, including vedolizumab, infliximab, and azathioprine, likely owe their efficacy in part to modulation of γδ T-cell function. Recent clinical trials of Vδ2+ T-cell-selective treatments indicate a good safety profile in human patients, and efficacy is set to increase as more potent/targeted drugs continue to be developed. Key advances will include identifying methods of directing γδ T-cell recruitment to specific tissues to enhance host protection against invading pathogens, or alternatively, retaining these cells in the circulation to limit peripheral inflammation and/or improve responses to blood malignancies. Human γδ T-cell control of mucosal immunity is likely exerted via multiple mechanisms that induce diverse responses in other types of tissue-resident leukocytes. Understanding the microenvironmental signals that regulate these functions will be critical to the development of new γδ T-cell-based therapies.
Collapse
Affiliation(s)
- Neil E. McCarthy
- Centre for Immunobiology, Bart’s and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
37
|
Lee HC, Liao CC, Day YJ, Liou JT, Li AH, Liu FC. IL-17 deficiency attenuates acetaminophen-induced hepatotoxicity in mice. Toxicol Lett 2018; 292:20-30. [PMID: 29689376 DOI: 10.1016/j.toxlet.2018.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/01/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022]
Abstract
Acetaminophen (APAP) overdose results in the production of reactive oxygen species (ROS), hepatocyte necrosis, and cell death, and leads to acute liver failure. Interleukin-17 (IL-17), a pro-inflammatory cytokine, plays a key role in the recruitment of neutrophils into sites of inflammation and subsequent damage after liver ischemia-reperfusion injury. In this study, we employed IL-17 knockout (KO) mice to investigate the role of IL-17 in APAP-induced hepatotoxicity. IL-17 wide type (WT) and IL-17 KO mice received an intraperitoneal injection of APAP (300 mg/kg). After 16 h of treatment, the hepatic injury, inflammatory mediators, immune cell infiltration, and western blotting were examined and analyzed. The serum alanine transferase (ALT) enzyme levels and hepatic myeloperoxidase (MPO) activity were significantly elevated 16 h after APAP treatment in the WT mice. IL-17 deficiency significantly attenuates APAP-induced liver injury, MPO activity, pro-inflammatory cytokines (tumor necrosis factor-α, IL-6 and interferon-γ) levels and inflammatory cell (neutrophils, macrophage) infiltration in the liver. Moreover, phosphorylated extracellular signal-regulated kinase (ERK) was significantly decreased at 16 h after APAP treatment in the IL-17 KO mice compared with the IL-17 WT mice. Our data suggests that IL-17 plays a pivotal role in APAP-induced hepatotoxicity through modulation of inflammatory response, and perhaps in part through the ERK signaling pathway. Blockade of IL-17 could be a potential therapeutic target for APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC; College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC; College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Yuan-Ji Day
- Department of Anesthesiology, Hualien Tzu Chi Hospital & Tzu Chi University, Hualien, Taiwan, ROC
| | - Jiin-Tarng Liou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC; College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Allen H Li
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC; College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC; College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
| |
Collapse
|
38
|
Cheng C, Wang B, Gao L, Liu J, Chen X, Huang H, Zhao Z. Next generation sequencing reveals changes of the γδ T cell receptor repertoires in patients with pulmonary tuberculosis. Sci Rep 2018; 8:3956. [PMID: 29500378 PMCID: PMC5834497 DOI: 10.1038/s41598-018-22061-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/14/2018] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis (TB) is a severe global threat to human health. The immune protection initiated by γδ T cells play an important role in mycobacterial infection. Vaccines for Mycobacterium tuberculosis (Mtb) based on γδ T cells provide a novel approach for TB control. In our previous studies, we found a preponderant complementarity-determining region 3 (CDR3) sequence of the γδ T cell receptor (TCR) in TB patients, and successfully identified a tuberculosis antigen that can effectively activate γδ T cells with a reverse genetic strategy. However, due to the throughput limitation of the method we used, the information we obtained about the γδ TCR repertoire and preponderant CDR3 sequences was limited. In this study, we introduced next generation sequencing (NGS) to study the γδ TCR CDR3 repertoires in TB patients. We found that the CDR3δ tended to be more polyclonal and CDR3γ tended to be longer in TB patients; the γδ T cells expressing CDR3 sequences using a Vγ9-JγP rearrangement expanded significantly during Mtb infection. We also identified new preponderant CDR3 sequences during Mtb infection. This study comprehensively characterized the γδ T cell receptor repertoire changes, and provides useful information for the development of new vaccines and adjuvants against TB.
Collapse
Affiliation(s)
- Chaofei Cheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Bei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lei Gao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jianmin Liu
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450015, China
| | - Xinchun Chen
- Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, 518002, China.
| | - He Huang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China. .,CAMS-Oxford University International Center for Translational Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
39
|
Davey MS, Malde R, Mykura RC, Baker AT, Taher TE, Le Duff CS, Willcox BE, Mehellou Y. Synthesis and Biological Evaluation of ( E)-4-Hydroxy-3-methylbut-2-enyl Phosphate (HMBP) Aryloxy Triester Phosphoramidate Prodrugs as Activators of Vγ9/Vδ2 T-Cell Immune Responses. J Med Chem 2018; 61:2111-2117. [PMID: 29457898 PMCID: PMC6493972 DOI: 10.1021/acs.jmedchem.7b01824] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The aryloxy triester
phosphoramidate prodrug approach has been
used with success in drug discovery. Herein, we describe the first
application of this prodrug technology to the monophosphate derivative
of the phosphoantigen HMBPP and one of its analogues. Some of these
prodrugs exhibited specific and potent activation of Vγ9/Vδ2
T-cells, which were then able to lyse bladder cancer cells in vitro.
This work highlights the promise of this prodrug technology in the
discovery of novel immunotherapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences , Redwood Building, Cardiff University , Cardiff CF10 3NB , U.K
| |
Collapse
|
40
|
Moulin M, Alguacil J, Gu S, Mehtougui A, Adams EJ, Peyrottes S, Champagne E. Vγ9Vδ2 T cell activation by strongly agonistic nucleotidic phosphoantigens. Cell Mol Life Sci 2017; 74:4353-4367. [PMID: 28669030 PMCID: PMC11107656 DOI: 10.1007/s00018-017-2583-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/14/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022]
Abstract
Human Vγ9Vδ2 T cells can sense through their TCR tumor cells producing the weak endogenous phosphorylated antigen isopentenyl pyrophosphate (IPP), or bacterially infected cells producing the strong agonist hydroxyl dimethylallyl pyrophosphate (HDMAPP). The recognition of the phosphoantigen is dependent on its binding to the intracellular B30.2 domain of butyrophilin BTN3A1. Most studies have focused on pyrophosphate phosphoantigens. As triphosphate nucleotide derivatives are naturally co-produced with IPP and HDMAPP, we analyzed their specific properties using synthetic nucleotides derived from HDMAPP. The adenylated, thymidylated and uridylated triphosphate derivatives were found to activate directly Vγ9Vδ2 cell lines as efficiently as HDMAPP in the absence of accessory cells. These antigens were inherently resistant to terminal phosphatases, but apyrase, when added during a direct stimulation of Vγ9Vδ2 cells, abrogated their stimulating activity, indicating that their activity required transformation into strong pyrophosphate agonists by a nucleotide pyrophosphatase activity which is present in serum. Tumor cells can be sensitized with nucleotide phosphoantigens in the presence of apyrase to become stimulatory, showing that this can occur before their hydrolysis into pyrophosphates. Whereas tumors sensitized with HDMAPP rapidly lost their stimulatory activity, sensitization with nucleotide derivatives, in particular with the thymidine derivative, induced long-lasting stimulating ability. Using isothermal titration calorimetry, binding of some nucleotide derivatives to BTN3A1 intracellular domain was found to occur with an affinity similar to that of IPP, but much lower than that of HDMAPP. Thus, nucleotide phosphoantigens are precursors of pyrophosphate antigens which can deliver strong agonists intracellularly resulting in prolonged and strengthened activity.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Antigens/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Butyrophilins/genetics
- Butyrophilins/immunology
- Dose-Response Relationship, Immunologic
- HeLa Cells
- Hemiterpenes/pharmacology
- Humans
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- K562 Cells
- Lymphocyte Activation/drug effects
- Lysosomal-Associated Membrane Protein 1/biosynthesis
- Lysosomal-Associated Membrane Protein 1/immunology
- Organophosphates/pharmacology
- Organophosphorus Compounds/pharmacology
- Primary Cell Culture
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Morgane Moulin
- Centre de Physiopathologie de Toulouse Purpan, CPTP, INSERM U1043/CNRS UMR5282, 31024, Toulouse, France
- CNRS, UMR5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Javier Alguacil
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier, ENSCR, Montpellier, France
| | - Siyi Gu
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Asmaa Mehtougui
- Centre de Physiopathologie de Toulouse Purpan, CPTP, INSERM U1043/CNRS UMR5282, 31024, Toulouse, France
- CNRS, UMR5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Erin J Adams
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier, ENSCR, Montpellier, France
| | - Eric Champagne
- Centre de Physiopathologie de Toulouse Purpan, CPTP, INSERM U1043/CNRS UMR5282, 31024, Toulouse, France.
- CNRS, UMR5282, Toulouse, France.
- Université Toulouse III Paul-Sabatier, Toulouse, France.
| |
Collapse
|
41
|
Salim M, Knowles TJ, Baker AT, Davey MS, Jeeves M, Sridhar P, Wilkie J, Willcox CR, Kadri H, Taher TE, Vantourout P, Hayday A, Mehellou Y, Mohammed F, Willcox BE. BTN3A1 Discriminates γδ T Cell Phosphoantigens from Nonantigenic Small Molecules via a Conformational Sensor in Its B30.2 Domain. ACS Chem Biol 2017; 12:2631-2643. [PMID: 28862425 DOI: 10.1021/acschembio.7b00694] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human Vγ9/Vδ2 T-cells detect tumor cells and microbial infections by recognizing small phosphorylated prenyl metabolites termed phosphoantigens (P-Ag). The type-1 transmembrane protein Butyrophilin 3A1 (BTN3A1) is critical to the P-Ag-mediated activation of Vγ9/Vδ2 T-cells; however, the molecular mechanisms involved in BTN3A1-mediated metabolite sensing are unclear, including how P-Ag's are discriminated from nonantigenic small molecules. Here, we utilized NMR and X-ray crystallography to probe P-Ag sensing by BTN3A1. Whereas the BTN3A1 immunoglobulin variable domain failed to bind P-Ag, the intracellular B30.2 domain bound a range of negatively charged small molecules, including P-Ag, in a positively charged surface pocket. However, NMR chemical shift perturbations indicated BTN3A1 discriminated P-Ag from nonantigenic small molecules by their ability to induce a specific conformational change in the B30.2 domain that propagated from the P-Ag binding site to distal parts of the domain. These results suggest BTN3A1 selectively detects P-Ag intracellularly via a conformational antigenic sensor in its B30.2 domain and have implications for rational design of antigens for Vγ9/Vδ2-based T-cell immunotherapies.
Collapse
Affiliation(s)
- Mahboob Salim
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Timothy J Knowles
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Alfie T. Baker
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Martin S. Davey
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Mark Jeeves
- Institute
of Cancer and Genomics, Henry Wellcome Building for Biomolecular NMR, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Pooja Sridhar
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - John Wilkie
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Carrie R. Willcox
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Hachemi Kadri
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Taher E. Taher
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Pierre Vantourout
- Peter
Gorer Department of Immunobiology, King’s College London, London SE1 9RT, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Adrian Hayday
- Peter
Gorer Department of Immunobiology, King’s College London, London SE1 9RT, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Youcef Mehellou
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Fiyaz Mohammed
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Benjamin E. Willcox
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| |
Collapse
|
42
|
Howard J, Loizon S, Tyler CJ, Duluc D, Moser B, Mechain M, Duvignaud A, Malvy D, Troye-Blomberg M, Moreau JF, Eberl M, Mercereau-Puijalon O, Déchanet-Merville J, Behr C, Mamani-Matsuda M. The Antigen-Presenting Potential of Vγ9Vδ2 T Cells During Plasmodium falciparum Blood-Stage Infection. J Infect Dis 2017; 215:1569-1579. [PMID: 28368498 DOI: 10.1093/infdis/jix149] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/24/2017] [Indexed: 11/14/2022] Open
Abstract
During Plasmodium falciparum infections, erythrocyte-stage parasites inhibit dendritic cell maturation and function, compromising effective antimalarial adaptive immunity. Human Vγ9Vδ2 T cells can act in vitro as antigen-presenting cells (APCs) and induce αβ T-cell activation. However, the relevance of this activity in vivo has remained elusive. Because Vγ9Vδ2 T cells are activated during the early immune response against P. falciparum infection, we investigated whether they could contribute to the instruction of adaptive immune responses toward malaria parasites. In P. falciparum-infected patients, Vγ9Vδ2 T cells presented increased surface expression of APC-associated markers HLA-DR and CD86. In response to infected red blood cells in vitro, Vγ9Vδ2 T cells upregulated surface expression of HLA-DR, HLA-ABC, CD40, CD80, CD83, and CD86, induced naive αβ T-cell responses, and cross- presented soluble prototypical protein to antigen-specific CD8+ T cells. Our findings qualify Vγ9Vδ2 T cells as alternative APCs, which could be harnessed for therapeutic interventions and vaccine design.
Collapse
Affiliation(s)
| | | | | | | | - Bernhard Moser
- Division of Infection and Immunity, School of Medicine, and
| | - Matthieu Mechain
- Interdepartmental Section Tropical Medicine and Clinical International Health, Division of Infectious and Tropical Diseases, Department of Medicine, University Hospital Centre, Bordeaux.,INSERM 897 & Centre René-Labusquière (Tropical Medicine Branch), Faculty of Medicine, University of Bordeaux
| | - Alexandre Duvignaud
- Interdepartmental Section Tropical Medicine and Clinical International Health, Division of Infectious and Tropical Diseases, Department of Medicine, University Hospital Centre, Bordeaux.,INSERM 897 & Centre René-Labusquière (Tropical Medicine Branch), Faculty of Medicine, University of Bordeaux
| | - Denis Malvy
- Interdepartmental Section Tropical Medicine and Clinical International Health, Division of Infectious and Tropical Diseases, Department of Medicine, University Hospital Centre, Bordeaux.,INSERM 897 & Centre René-Labusquière (Tropical Medicine Branch), Faculty of Medicine, University of Bordeaux
| | - Marita Troye-Blomberg
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Sweden
| | - Jean-Francois Moreau
- ImmunoConcEpt, CNRS UMR 5164, Bordeaux University.,CHU de Bordeaux, Immunology and Immunogenetic Laboratory, and
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, and.,Systems Immunity Research Institute, Cardiff University, United Kingdom ; and
| | | | | | | | | |
Collapse
|
43
|
Vincent WJB, Harvie EA, Sauer JD, Huttenlocher A. Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection. PLoS One 2017; 12:e0179574. [PMID: 28658259 PMCID: PMC5489177 DOI: 10.1371/journal.pone.0179574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/31/2017] [Indexed: 01/10/2023] Open
Abstract
Immune cells sense and react to a multitude of factors including both host and microbe-derived signals. Understanding how cells translate these cues into particular cellular behaviors is a complex yet critical area of study. We have previously shown that both neutrophils and macrophages are important for controlling the fish pathogen Streptococcus iniae. Here, we report both host and bacterial determinants leading to the formation of organized macrophage aggregates as part of the host inflammatory response in a subset of infected larvae. Streptococcal capsule was a required signal for aggregate formation. Macrophage aggregation coincided with NFκB activity, and the formation of these aggregates is mediated by leukotriene B4 (LTB4) produced by neutrophils. Depletion, inhibition, or genetic deletion of leukotriene A4 hydrolase (Lta4h), which catalyzes the last step in LTB4 synthesis, resulted in the absence of macrophage aggregation. Larvae with impaired neutrophil function also had impaired macrophage aggregation; however, aggregate formation was partially rescued with the addition of exogenous LTB4. Neutrophil-specific expression of lta4h was sufficient to rescue macrophage aggregation in Lta4h-deficient larvae and increased host survival following infection. In summary, our findings highlight a novel innate immune response to infection in which specific bacterial products drive neutrophils that modulate macrophage behavior through eicosanoid signaling.
Collapse
Affiliation(s)
- William J. B. Vincent
- Microbiology Doctoral Training Program, Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI; United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI; United States of America
| | - Elizabeth A. Harvie
- Microbiology Doctoral Training Program, Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI; United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI; United States of America
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI; United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI; United States of America
- Department of Pediatrics, University of Wisconsin-Madison; Madison, WI; United States of America
- * E-mail:
| |
Collapse
|
44
|
E. coli promotes human Vγ9Vδ2 T cell transition from cytokine-producing bactericidal effectors to professional phagocytic killers in a TCR-dependent manner. Sci Rep 2017; 7:2805. [PMID: 28584241 PMCID: PMC5459831 DOI: 10.1038/s41598-017-02886-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/19/2017] [Indexed: 01/18/2023] Open
Abstract
γδT cells provide immune-surveillance and host defense against infection and cancer. Surprisingly, functional details of γδT cell antimicrobial immunity to infection remain largely unexplored. Limited data suggests that γδT cells can phagocytose particles and act as professional antigen-presenting cells (pAPC). These potential functions, however, remain controversial. To better understand γδT cell-bacterial interactions, an ex vivo co-culture model of human peripheral blood mononuclear cell (PBMC) responses to Escherichia coli was employed. Vγ9Vδ2 cells underwent rapid T cell receptor (TCR)-dependent proliferation and functional transition from cytotoxic, inflammatory cytokine immunity, to cell expansion with diminished cytokine but increased costimulatory molecule expression, and capacity for professional phagocytosis. Phagocytosis was augmented by IgG opsonization, and inhibited by TCR-blockade, suggesting a licensing interaction involving the TCR and FcγR. Vγ9Vδ2 cells displayed potent cytotoxicity through TCR-dependent and independent mechanisms. We conclude that γδT cells transition from early inflammatory cytotoxic killers to myeloid-like APC in response to infectious stimuli.
Collapse
|
45
|
Qaqish A, Huang D, Chen CY, Zhang Z, Wang R, Li S, Yang E, Lu Y, Larsen MH, Jacobs WR, Qian L, Frencher J, Shen L, Chen ZW. Adoptive Transfer of Phosphoantigen-Specific γδ T Cell Subset Attenuates Mycobacterium tuberculosis Infection in Nonhuman Primates. THE JOURNAL OF IMMUNOLOGY 2017; 198:4753-4763. [PMID: 28526681 DOI: 10.4049/jimmunol.1602019] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/12/2017] [Indexed: 12/17/2022]
Abstract
The dominant Vγ2Vδ2 T cell subset recognizes phosphoantigen and exists only in humans and nonhuman primates. Despite the discovery of γδ T cells >30 y ago, a proof-of-concept study has not been done to prove the principle that the Vγ2Vδ2 T cell subset is protective against Mycobacterium tuberculosis and other infections. In this study, we used an adoptive cell-transfer strategy to define the protective role of Vγ2Vδ2 T cells in a primate tuberculosis (TB) model. Vγ2Vδ2 T cells for adoptive transfer displayed central/effector memory and mounted effector functions, including the production of anti-M. tuberculosis cytokines and inhibition of intracellular mycobacteria. They also expressed CXCR3/CCR5/LFA-1 trafficking/tissue-resident phenotypes and consistently trafficked to the airway, where they remained detectable from 6 h through 7 d after adoptive transfer. Interestingly, the test group of macaques receiving transfer of Vγ2Vδ2 T cells at weeks 1 and 3 after high-dose (500 CFU) M. tuberculosis infection exhibited significantly lower levels of M. tuberculosis infection burdens in lung lobes and extrapulmonary organs than did the control groups receiving PBLs or saline. Consistently, adoptive transfer of Vγ2Vδ2 T cells attenuated TB pathology and contained lesions primarily in the infection site of the right caudal lung lobe, with no or reduced TB dissemination to other lobes, spleen, or liver/kidney; in contrast, the controls showed widespread TB dissemination. The proof-of-concept finding supports the view that the dominant Vγ2Vδ2 T cell subset may be included in the rational design of a TB vaccine or host-directed therapy.
Collapse
Affiliation(s)
- Arwa Qaqish
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Crystal Y Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Zhuoran Zhang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Richard Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Shengpu Li
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Enzhuoa Yang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Yang Lu
- Department of Radiology, University of Illinois College of Medicine Chicago, Chicago, IL 60612; and
| | - Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Lixia Qian
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - James Frencher
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612;
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612;
| |
Collapse
|
46
|
Zhang J, Friberg IM, Kift-Morgan A, Parekh G, Morgan MP, Liuzzi AR, Lin CY, Donovan KL, Colmont CS, Morgan PH, Davis P, Weeks I, Fraser DJ, Topley N, Eberl M. Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections. Kidney Int 2017; 92:179-191. [PMID: 28318629 PMCID: PMC5484022 DOI: 10.1016/j.kint.2017.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/04/2017] [Accepted: 01/12/2017] [Indexed: 12/01/2022]
Abstract
The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage–related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses.
Collapse
Affiliation(s)
- Jingjing Zhang
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Ida M Friberg
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Ann Kift-Morgan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Gita Parekh
- Mologic Ltd., Bedford Technology Park, Thurleigh, Bedford, UK
| | - Matt P Morgan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; Directorate of Critical Care, Cardiff and Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Anna Rita Liuzzi
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Chan-Yu Lin
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan City, Taiwan
| | - Kieron L Donovan
- Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK; Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff, UK
| | | | - Peter H Morgan
- Cardiff Business School, Cardiff University, Cardiff, UK
| | - Paul Davis
- Mologic Ltd., Bedford Technology Park, Thurleigh, Bedford, UK
| | - Ian Weeks
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Donald J Fraser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK; Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Nicholas Topley
- Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
47
|
Abstract
Despite intensive research efforts peritonitis leading to subsequent sepsis remains associated with a high mortality. The initial effector cells are the locally residing cells of the peritoneum, such as mesothelial cells, mast cells, macrophages and lymphocytes. Through the secretion of chemokines, an influx of neutrophils initially takes place followed by monocytes. The latter can differentiate into inflammatory macrophages. The non-directed activity of neutrophilic granulocytes is limited by the induction of apoptotic programs. Through the breaching of cytokines, bacteria and microbial products into the circulation, a systemic reaction in the sense of systemic inflammatory response syndrome (SIRS) or sepsis arises. This is viewed as a concomitant derailing of inflammatory as well as anti-inflammatory responses, which leads to extensive apoptosis of lymphocytes. The presentation of apoptotic cells leads to a strong immunosuppression. Due to the coexistence of hyperinflammation and immunosuppression, exact knowledge of the current immune status of the patient is a prerequisite in the development of immunotherapies for the treatment of sepsis.
Collapse
|
48
|
Bieber K, Witte M, Sun S, Hundt JE, Kalies K, Dräger S, Kasprick A, Twelkmeyer T, Manz RA, König P, Köhl J, Zillikens D, Ludwig RJ. T cells mediate autoantibody-induced cutaneous inflammation and blistering in epidermolysis bullosa acquisita. Sci Rep 2016; 6:38357. [PMID: 27917914 PMCID: PMC5137106 DOI: 10.1038/srep38357] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022] Open
Abstract
T cells are key players in autoimmune diseases by supporting the production of autoantibodies. However, their contribution to the effector phase of antibody-mediated autoimmune dermatoses, i.e., tissue injury and inflammation of the skin, has not been investigated. In this paper, we demonstrate that T cells amplify the development of autoantibody-induced tissue injury in a prototypical, organ-specific autoimmune disease, namely epidermolysis bullosa acquisita (EBA) – characterized and caused by autoantibodies targeting type VII collagen. Specifically, we show that immune complex (IC)-induced inflammation depends on the presence of T cells – a process facilitated by T cell receptor (TCR)γδ and NKT cells. Because tissue damage in IC-induced inflammation is neutrophil-dependent, we further analyze the interplay between T cells and neutrophils in an experimental model of EBA. We demonstrate that T cells not only enhance neutrophil recruitment into the site of inflammation but also interact with neutrophils in lymphatic organs. Collectively, this study shows that T cells amplify the effector phase of antibody-induced tissue inflammation.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Mareike Witte
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Shijie Sun
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.,Department of Immunology, Dalian Medical University, No9 West Section Lvshun S Rd, Liaoning Province, China
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Sören Dräger
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Trix Twelkmeyer
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.,Department of Dermatology, Johannes Gutenberg-University Mainz, Saarstraße 21, D-55122 Mainz, Germany
| | - Rudolf A Manz
- ISEF, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Jörg Köhl
- ISEF, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.,Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| |
Collapse
|
49
|
Liuzzi AR, Kift-Morgan A, Lopez-Anton M, Friberg IM, Zhang J, Brook AC, Roberts GW, Donovan KL, Colmont CS, Toleman MA, Bowen T, Johnson DW, Topley N, Moser B, Fraser DJ, Eberl M. Unconventional Human T Cells Accumulate at the Site of Infection in Response to Microbial Ligands and Induce Local Tissue Remodeling. THE JOURNAL OF IMMUNOLOGY 2016; 197:2195-207. [PMID: 27527598 PMCID: PMC5009878 DOI: 10.4049/jimmunol.1600990] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
The antimicrobial responsiveness and function of unconventional human T cells are poorly understood, with only limited access to relevant specimens from sites of infection. Peritonitis is a common and serious complication in individuals with end-stage kidney disease receiving peritoneal dialysis. By analyzing local and systemic immune responses in peritoneal dialysis patients presenting with acute bacterial peritonitis and monitoring individuals before and during defined infectious episodes, our data show that Vγ9/Vδ2+ γδ T cells and mucosal-associated invariant T cells accumulate at the site of infection with organisms producing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and vitamin B2, respectively. Such unconventional human T cells are major producers of IFN-γ and TNF-α in response to these ligands that are shared by many microbial pathogens and affect the cells lining the peritoneal cavity by triggering local inflammation and inducing tissue remodeling with consequences for peritoneal membrane integrity. Our data uncover a crucial role for Vγ9/Vδ2 T cells and mucosal-associated invariant T cells in bacterial infection and suggest that they represent a useful predictive marker for important clinical outcomes, which may inform future stratification and patient management. These findings are likely to be applicable to other acute infections where local activation of unconventional T cells contributes to the antimicrobial inflammatory response.
Collapse
Affiliation(s)
- Anna Rita Liuzzi
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Ann Kift-Morgan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Melisa Lopez-Anton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; Wales Kidney Research Unit, Heath Park Campus, Cardiff CF14 4XN, United Kingdom
| | - Ida M Friberg
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Jingjing Zhang
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Amy C Brook
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Gareth W Roberts
- Wales Kidney Research Unit, Heath Park Campus, Cardiff CF14 4XN, United Kingdom; Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff CF14 4XW, United Kingdom
| | - Kieron L Donovan
- Wales Kidney Research Unit, Heath Park Campus, Cardiff CF14 4XN, United Kingdom; Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff CF14 4XW, United Kingdom
| | - Chantal S Colmont
- Wales Kidney Research Unit, Heath Park Campus, Cardiff CF14 4XN, United Kingdom
| | - Mark A Toleman
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Timothy Bowen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; Wales Kidney Research Unit, Heath Park Campus, Cardiff CF14 4XN, United Kingdom
| | - David W Johnson
- Department of Renal Medicine, University of Queensland at Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia; Centre for Kidney Disease Research, Translational Research Institute, Brisbane, Queensland 4102, Australia; Australia and New Zealand Dialysis and Transplant Registry, Adelaide, South Australia 5001, Australia
| | - Nicholas Topley
- Centre for Medical Education, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Bernhard Moser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Donald J Fraser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; Wales Kidney Research Unit, Heath Park Campus, Cardiff CF14 4XN, United Kingdom; Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff CF14 4XW, United Kingdom; Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
50
|
Chen ZW. Protective immune responses of major Vγ2Vδ2 T-cell subset in M. tuberculosis infection. Curr Opin Immunol 2016; 42:105-112. [PMID: 27491008 DOI: 10.1016/j.coi.2016.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/03/2016] [Accepted: 06/12/2016] [Indexed: 01/09/2023]
Abstract
Recent observation that prenyl pyrophosphates bind the Ig superfamily protein butyrophilin 3A1 (BTN3A1) suggests that modifying BTN3A1 activates major γδ T-cell subset, Vγ2Vδ2 T cells. Studies also show that microbial phosphoantigen HMBPP is required for expansion, pulmonary response, effector functions and memory polarization of Vγ2Vδ2 T cells during infections. Broad repertoires of cytokines involve expansion, recall-like expansion and effector functions of Vγ2Vδ2 T cells after Mtb infection or vaccination. Finally, mechanistic studies in nonhuman primate TB model demonstrate early expansion and differentiation of Vγ2Vδ2 T cells during Mtb infection can increase immune resistance to TB in macaques, with a potential mechanism of early/sustained IFN-γ production and CTL killing.
Collapse
Affiliation(s)
- Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, 909 South Wolcott Avenue, MC790, E704, Chicago, IL 60612, United States.
| |
Collapse
|