1
|
Sun S, Paniagua K, Ding L, Wang X, Huang Y, Flores MA, Gao SJ. KSHV Reprograms Host RNA Splicing via FAM50A to Activate STAT3 and Drive Oncogenic Cellular Transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643747. [PMID: 40166334 PMCID: PMC11957025 DOI: 10.1101/2025.03.17.643747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
RNA alternative splicing is a fundamental cellular process implicated in cancer development. Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of multiple human malignancies, including Kaposi's sarcoma (KS), remains a significant concern, particularly in AIDS patients. A CRISPR-Cas9 screening of matched primary rat mesenchymal stem cells (MM) and KSHV-transformed MM cells (KMM) identified key splicing factors involved in KSHV-induced cellular transformation. To elucidate the mechanisms by which KSHV-driven splicing reprogramming mediates cellular transformation, we performed transcriptomic sequencing, identifying 131 differential alternative splicing transcripts, with exon skipping as the predominant event. Notably, these transcripts were enriched in vascular permeability, multiple metabolic pathways and ERK1/2 signaling cascades, which play key roles in KSHV-induced oncogenesis. Further analyses of cells infected with KSHV mutants lacking latent genes including vFLIP, vCyclin and viral miRNAs, as well as cells overexpressing LANA, revealed their involvement in alternative splicing regulation. Among the identified splicing factors, FAM50A, a component of the spliceosome complex C, was found to be crucial for KSHV-mediated transformation. FAM50A knockout resulted in distinct splicing profiles in both MM and KMM cells, and significantly inhibited KSHV-driven proliferation, cellular transformation and tumorigenesis. Mechanistically, FAM50A knockout altered SHP2 splicing, promoting an isoform with enhanced enzymatic activity that led to reduced STAT3 Y705 phosphorylation in KMM cells. These findings reveal a novel paradigm in which KSHV hijacks host splicing machinery, specifically FAM50A-mediated SHP2 splicing, to sustain STAT3 activation and drive oncogenic transformation. Importance Kaposi's sarcoma-associated herpesvirus (KSHV) causes cancers such as Kaposi's sarcoma, particularly in AIDS patients. This study uncovers how KSHV hijacks a fundamental cellular process called RNA splicing to promote cancer development. We identified key splicing events that alter critical pathways involved in vascular permeability, metabolism, and oncogenic signaling, particularly ERK1/2 and STAT3. A specific protein, FAM50A, was found to be essential for KSHV-driven cancerous transformation. Removing FAM50A disrupted splicing, weakening cancer-promoting signals. These findings provide new insights into how viruses manipulate host cells to drive cancer and highlight RNA splicing as a potential target for future therapies.
Collapse
Affiliation(s)
- Shenyu Sun
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Integrative System Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Karla Paniagua
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mario A Flores
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Integrative System Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. mBio 2024; 15:e0301123. [PMID: 38117084 PMCID: PMC10790708 DOI: 10.1128/mbio.03011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma (KS) is the most common cancer in HIV-infected patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Hyperinflammation is the hallmark of KS. In this study, we have shown that KSHV mediates hyperinflammation by inducing IL-1α and suppressing IL-1Ra. Mechanistically, KSHV miRNAs and vFLIP induce hyperinflammation by activating the NF-κB pathway. A common anti-inflammatory agent dexamethasone blocks KSHV-induced hyperinflammation and tumorigenesis by activating glucocorticoid receptor signaling to suppress IL-1α and induce IL-1Ra. This work has identified IL-1-mediated inflammation as a potential therapeutic target and dexamethasone as a potential therapeutic agent for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566578. [PMID: 38014281 PMCID: PMC10680621 DOI: 10.1101/2023.11.10.566578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hyperinflammation is the hallmark of Kaposi's sarcoma (KS), the most common cancer in AIDS patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. However, the role and mechanism of induction of inflammation in KS remain unclear. In a screening for inhibitors of KSHV-induced oncogenesis, over half of the identified candidates were anti-inflammatory agents including dexamethasone functions by activating glucocorticoid receptor (GR) signaling. Here, we examined the mechanism mediating KSHV-induced inflammation. We found that numerous inflammatory pathways were activated in KSHV-transformed cells. Particularly, interleukin-1 alpha (IL-1α) and IL-1 receptor antagonist (IL-1Ra) from the IL-1 family were the most induced and suppressed cytokines, respectively. We found that KSHV miRNAs mediated IL-1α induction while both miRNAs and vFLIP mediated IL-1Ra suppression. Furthermore, GR signaling was inhibited in KSHV-transformed cells, which was mediated by vFLIP and vCyclin. Dexamethasone treatment activated GR signaling, and inhibited cell proliferation and colony formation in soft agar of KSHV-transformed cells but had a minimal effect on matched primary cells. Consequently, dexamethasone suppressed the initiation and growth of KSHV-induced tumors in mice. Mechanistically, dexamethasone suppressed IL-1α but induced IL-1Ra expression. Treatment with recombinant IL-1α protein rescued the inhibitory effect of dexamethasone while overexpression of IL-1Ra caused a weak growth inhibition of KSHV-transformed cells. Furthermore, dexamethasone induced IκBα expression resulting in inhibition of NF-κB pathway and IL-1α expression. These results reveal an important role of IL-1 pathway in KSHV-induced inflammation and oncogenesis, which can be inhibited by dexamethasone-activated GR signaling, and identify IL-1-mediated inflammation as a potential therapeutic target for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Diggins NL, Hancock MH. Viral miRNA regulation of host gene expression. Semin Cell Dev Biol 2023; 146:2-19. [PMID: 36463091 PMCID: PMC10101914 DOI: 10.1016/j.semcdb.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Viruses have evolved a multitude of mechanisms to combat barriers to productive infection in the host cell. Virally-encoded miRNAs are one such means to regulate host gene expression in ways that benefit the virus lifecycle. miRNAs are small non-coding RNAs that regulate protein expression but do not trigger the adaptive immune response, making them powerful tools encoded by viruses to regulate cellular processes. Diverse viruses encode for miRNAs but little sequence homology exists between miRNAs of different viral species. Despite this, common cellular pathways are targeted for regulation, including apoptosis, immune evasion, cell growth and differentiation. Herein we will highlight the viruses that encode miRNAs and provide mechanistic insight into how viral miRNAs aid in lytic and latent infection by targeting common cellular processes. We also highlight how viral miRNAs can mimic host cell miRNAs as well as how viral miRNAs have evolved to regulate host miRNA expression. These studies dispel the myth that viral miRNAs are subtle regulators of gene expression, and highlight the critical importance of viral miRNAs to the virus lifecycle.
Collapse
Affiliation(s)
- Nicole L Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Gorbea C, Elhakiem A, Cazalla D. Shaping the host cell environment with viral noncoding RNAs. Semin Cell Dev Biol 2023; 146:20-30. [PMID: 36581481 PMCID: PMC10101873 DOI: 10.1016/j.semcdb.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Just like the cells they infect viruses express different classes of noncoding RNAs (ncRNAs). Viral ncRNAs come in all shapes and forms, and they usually associate with cellular proteins that are important for their functions. Viral ncRNAs have diverse functions, but they all contribute to the viral control of the cellular environment. Viruses utilize ncRNAs to regulate viral replication, to decide whether they should remain latent or reactivate, to evade the host immune responses, or to promote cellular transformation. In this review we describe the diverse functions played by different classes of ncRNAs expressed by adenoviruses and herpesviruses, how they contribute to the viral infection, and how their study led to insights into RNA-based mechanisms at play in host cells.
Collapse
Affiliation(s)
- Carlos Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Abdalla Elhakiem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Demián Cazalla
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Oswald J, Constantine M, Adegbuyi A, Omorogbe E, Dellomo AJ, Ehrlich ES. E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation. Viruses 2023; 15:1935. [PMID: 37766341 PMCID: PMC10535929 DOI: 10.3390/v15091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin-proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
7
|
Li T, Gao SJ. KSHV hijacks FoxO1 to promote cell proliferation and cellular transformation by antagonizing oxidative stress. J Med Virol 2023; 95:e28676. [PMID: 36929740 PMCID: PMC10285692 DOI: 10.1002/jmv.28676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Reactive oxygen species (ROS) are a group of a highly short-lived molecules that control diverse behaviors of cells. Normal cells maintain ROS balance to ensure their functions. Because of oncogenic stress, cancer cells often have excessive ROS, also known as oxidative stress, which are often counteracted by enhanced antioxidant systems to maintain redox homeostasis. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus associated with Kaposi's sarcoma (KS), which manifests hyper inflammation and oxidative stress as the hallmarks. We have previously shown that excessive ROS can disrupt KSHV latency by inducing viral lytic replication, leading to cell death. Paradoxically, most KS tumor cells are latently infected by KSHV in a highly inflammatory and oxidative stress tumor microenvironment, which is in part due to the activation of alternative complement and TLR4 pathways, indicating the existence of an enhanced antioxidant defense system in KS tumor cells. In this study, we show that KSHV upregulates antioxidant genes, including SOD2 and CAT by hijacking the forkhead box protein O1 (FoxO1), to maintain intracellular ROS level. Moreover, the fine-tuned balance of ROS level in KSHV-transformed cells is essential for cell survival. Consequently, KSHV-transformed cells are extremely sensitive to exogenous ROS insult such as treatment with a low level of hydrogen peroxide (H2 O2 ). Either chemical inhibition or knockdown of FoxO1 by short interfering RNAs decreases the expression of antioxidant genes and subsequently increases the intracellular ROS level in KSHV-transformed cells, resulting in the inhibition of cell proliferation and colony formation in soft agar. Mechanistically, KSHV-encoded microRNAs and vFLIP upregulate FoxO1 by activating the NF-κB pathway. These results reveal a novel mechanism by which an oncogenic virus counteracts oxidative stress by upregulating FoxO1, which is essential for KSHV-induced cell proliferation and cellular transformation. Therefore, FoxO1 might be a potential therapeutic target for KSHV-related malignancies.
Collapse
Affiliation(s)
- Tingting Li
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Current address: Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
MicroRNA Regulation of Human Herpesvirus Latency. Viruses 2022; 14:v14061215. [PMID: 35746686 PMCID: PMC9231095 DOI: 10.3390/v14061215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Herpesviruses are ubiquitous human pathogens. After productive (lytic) infection, all human herpesviruses are able to establish life-long latent infection and reactivate from it. Latent infection entails suppression of viral replication, maintenance of the viral genome in infected cells, and the ability to reactivate. Most human herpesviruses encode microRNAs (miRNAs) that regulate these processes during latency. Meanwhile, cellular miRNAs are hijacked by herpesviruses to participate in these processes. The viral or cellular miRNAs either directly target viral transcripts or indirectly affect viral infection through host pathways. These findings shed light on the molecular determinants that control the lytic-latent switch and may lead to novel therapeutics targeting latent infection. We discuss the multiple mechanisms by which miRNAs regulate herpesvirus latency, focusing on the patterns in these mechanisms.
Collapse
|
9
|
GRWD1-WDR5-MLL2 Epigenetic Complex Mediates H3K4me3 Mark and Is Essential for Kaposi's Sarcoma-Associated Herpesvirus-Induced Cellular Transformation. mBio 2021; 12:e0343121. [PMID: 34933446 PMCID: PMC8689518 DOI: 10.1128/mbio.03431-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is causally associated with numerous cancers. The mechanism of KSHV-induced oncogenesis remains unclear. By performing a CRISPR-Cas9 screening in a model of KSHV-induced cellular transformation of primary cells, we identified epigenetic regulators that were essential for KSHV-induced cellular transformation. Examination of TCGA data sets of the top 9 genes, including glutamate-rich WD repeat containing 1 (GRWD1), a WD40 family protein upregulated by KSHV, that had positive effects on cell proliferation and survival of KSHV-transformed cells (KMM) but not the matched primary cells (MM), uncovered the predictive values of their expressions for patient survival in numerous types of cancer. We revealed global epigenetic remodeling including H3K4me3 epigenetic active mark in KMM cells compared to MM cells. Knockdown of GRWD1 inhibited cell proliferation, cellular transformation, and tumor formation and caused downregulation of global H3K4me3 mark in KMM cells. GRWD1 interacted with WD repeat domain 5 (WDR5), the core protein of H3K4 methyltransferase complex, and several H3K4me3 methyltransferases, including myeloid leukemia 2 (MLL2). Knockdown of WDR5 and MLL2 phenocopied GRWD1 knockdown, caused global reduction of H3K4me3 mark, and altered the expression of similar sets of genes. Transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses further identified common and distinct cellular genes and pathways that were regulated by GRWD1, WDR5, and MLL2. These results indicate that KSHV hijacks the GRWD1-WDR5-MLL2 epigenetic complex to regulate H3K4me3 methylation of specific genes, which is essential for KSHV-induced cellular transformation. Our work has identified an epigenetic complex as a novel therapeutic target for KSHV-induced cancers. IMPORTANCE By performing a genome-wide CRISPR-Cas9 screening, we have identified cellular epigenetic regulators that are essential for KSHV-induced cellular transformation. Among them, GRWD1 regulates epigenetic active mark H3K4me3 by interacting with WDR5 and MLL2 and recruiting them to chromatin loci of specific genes in KSHV-transformed cells. Hence, KSHV hijacks the GRWD1-WDR5-MLL2 complex to remodel cellular epigenome and induce cellular transformation. Since the dysregulation of GRWD1 is associated with poor prognosis in several types of cancer, GRWD1 might also be a critical driver in other viral or nonviral cancers.
Collapse
|
10
|
Vilimova M, Contrant M, Randrianjafy R, Dumas P, Elbasani E, Ojala P, Pfeffer S, Fender A. Cis regulation within a cluster of viral microRNAs. Nucleic Acids Res 2021; 49:10018-10033. [PMID: 34417603 PMCID: PMC8464075 DOI: 10.1093/nar/gkab731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs involved in virtually all biological processes. Although many of them are co-expressed from clusters, little is known regarding the impact of this organization on the regulation of their accumulation. In this study, we set to decipher a regulatory mechanism controlling the expression of the ten clustered pre-miRNAs from Kaposi's sarcoma associated herpesvirus (KSHV). We measured in vitro the efficiency of cleavage of each individual pre-miRNA by the Microprocessor and found that pre-miR-K1 and -K3 were the most efficiently cleaved pre-miRNAs. A mutational analysis showed that, in addition to producing mature miRNAs, they are also important for the optimal expression of the whole set of miRNAs. We showed that this feature depends on the presence of a canonical pre-miRNA at this location since we could functionally replace pre-miR-K1 by a heterologous pre-miRNA. Further in vitro processing analysis suggests that the two stem-loops act in cis and that the cluster is cleaved in a sequential manner. Finally, we exploited this characteristic of the cluster to inhibit the expression of the whole set of miRNAs by targeting the pre-miR-K1 with LNA-based antisense oligonucleotides in cells either expressing a synthetic construct or latently infected with KSHV.
Collapse
Affiliation(s)
- Monika Vilimova
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Maud Contrant
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Ramy Randrianjafy
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Philippe Dumas
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Department of Integrated structural Biology, 1 rue Laurent Fries, BP10142, 67404 Illkirch-Graffenstaden, France
| | - Endrit Elbasani
- Translational Cancer Medicine Research Program, P.O. Box 63 (Haartmaninkatu 8), FIN-00014 University of Helsinki, Finland
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, P.O. Box 63 (Haartmaninkatu 8), FIN-00014 University of Helsinki, Finland
| | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Aurélie Fender
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| |
Collapse
|
11
|
Naipauer J, García Solá ME, Salyakina D, Rosario S, Williams S, Coso O, Abba MC, Mesri EA, Lacunza E. A Non-Coding RNA Network Involved in KSHV Tumorigenesis. Front Oncol 2021; 11:687629. [PMID: 34222014 PMCID: PMC8242244 DOI: 10.3389/fonc.2021.687629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Regulatory pathways involving non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNA), have gained great relevance due to their role in the control of gene expression modulation. Using RNA sequencing of KSHV Bac36 transfected mouse endothelial cells (mECK36) and tumors, we have analyzed the host and viral transcriptome to uncover the role lncRNA-miRNA-mRNA driven networks in KSHV tumorigenesis. The integration of the differentially expressed ncRNAs, with an exhaustive computational analysis of their experimentally supported targets, led us to dissect complex networks integrated by the cancer-related lncRNAs Malat1, Neat1, H19, Meg3, and their associated miRNA-target pairs. These networks would modulate pathways related to KSHV pathogenesis, such as viral carcinogenesis, p53 signaling, RNA surveillance, and cell cycle control. Finally, the ncRNA-mRNA analysis allowed us to develop signatures that can be used to an appropriate identification of druggable gene or networks defining relevant AIDS-KS therapeutic targets.
Collapse
Affiliation(s)
- Julián Naipauer
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Martín E. García Solá
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Departamento de Fisiología y Biología Molecular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daria Salyakina
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Santas Rosario
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sion Williams
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Neurology Basic Science Division, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Omar Coso
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Departamento de Fisiología y Biología Molecular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín C. Abba
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Enrique A. Mesri
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ezequiel Lacunza
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
12
|
Macveigh-Fierro D, Rodriguez W, Miles J, Muller M. Stealing the Show: KSHV Hijacks Host RNA Regulatory Pathways to Promote Infection. Viruses 2020; 12:E1024. [PMID: 32937781 PMCID: PMC7551087 DOI: 10.3390/v12091024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) induces life-long infections and has evolved many ways to exert extensive control over its host's transcriptional and post-transcriptional machinery to gain better access to resources and dampened immune sensing. The hallmark of this takeover is how KSHV reshapes RNA fate both to control expression of its own gene but also that of its host. From the nucleus to the cytoplasm, control of RNA expression, localization, and decay is a process that is carefully tuned by a multitude of factors and that can adapt or react to rapid changes in the environment. Intriguingly, it appears that KSHV has found ways to co-opt each of these pathways for its own benefit. Here we provide a comprehensive review of recent work in this area and in particular recent advances on the post-transcriptional modifications front. Overall, this review highlights the myriad of ways KSHV uses to control RNA fate and gathers novel insights gained from the past decade of research at the interface of RNA biology and the field of KSHV research.
Collapse
Affiliation(s)
| | | | | | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (D.M.-F.); (W.R.); (J.M.)
| |
Collapse
|
13
|
Gallo A, Bulati M, Miceli V, Amodio N, Conaldi PG. Non-Coding RNAs: Strategy for Viruses' Offensive. Noncoding RNA 2020; 6:ncrna6030038. [PMID: 32927786 PMCID: PMC7549346 DOI: 10.3390/ncrna6030038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The awareness of viruses as a constant threat for human public health is a matter of fact and in this resides the need of understanding the mechanisms they use to trick the host. Viral non-coding RNAs are gaining much value and interest for the potential impact played in host gene regulation, acting as fine tuners of host cellular defense mechanisms. The implicit importance of v-ncRNAs resides first in the limited genomes size of viruses carrying only strictly necessary genomic sequences. The other crucial and appealing characteristic of v-ncRNAs is the non-immunogenicity, making them the perfect expedient to be used in the never-ending virus-host war. In this review, we wish to examine how DNA and RNA viruses have evolved a common strategy and which the crucial host pathways are targeted through v-ncRNAs in order to grant and facilitate their life cycle.
Collapse
Affiliation(s)
- Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; (M.B.); (V.M.); (P.G.C.)
- Correspondence: ; Tel.: +39-91-21-92-649
| | - Matteo Bulati
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; (M.B.); (V.M.); (P.G.C.)
| | - Vitale Miceli
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; (M.B.); (V.M.); (P.G.C.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; (M.B.); (V.M.); (P.G.C.)
- UPMC Italy (University of Pittsburgh Medical Center Italy), Discesa dei Giudici 4, 90133 Palermo, Italy
| |
Collapse
|
14
|
Tagawa T, Serquiña A, Kook I, Ziegelbauer J. Viral non-coding RNAs: Stealth strategies in the tug-of-war between humans and herpesviruses. Semin Cell Dev Biol 2020; 111:135-147. [PMID: 32631785 DOI: 10.1016/j.semcdb.2020.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Abstract
Oncogenic DNA viruses establish lifelong infections in humans, and they cause cancers, often in immunocompromised patients, despite anti-viral immune surveillance targeted against viral antigens. High-throughput sequencing techniques allowed the field to identify novel viral non-coding RNAs (ncRNAs). ncRNAs are ideal factors for DNA viruses to exploit; they are non-immunogenic to T cells, thus viral ncRNAs can manipulate host cells without evoking adaptive immune responses. Viral ncRNAs may still trigger the host innate immune response, but many viruses encode decoys/inhibitors to counter-act and evade recognition. In addition, ncRNAs can be secreted to the extracellular space and influence adjacent cells to create a pro-viral microenvironment. In this review, we present recent progress in understanding interactions between oncoviruses and ncRNAs including small and long ncRNAs, microRNAs, and recently identified viral circular RNAs. In addition, potential clinical applications for ncRNA will be discussed. Extracellular ncRNAs are suggested to be diagnostic and prognostic biomarkers and, with the realization of the importance of viral ncRNAs in tumorigenesis, approaches to target critical viral ncRNAs are emerging. Further understanding of viral utilization of ncRNAs will advance anti-viral therapeutics beyond conventional medication and vaccination.
Collapse
Affiliation(s)
- Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Anna Serquiña
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Insun Kook
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States.
| |
Collapse
|
15
|
Lidenge SJ, Kossenkov AV, Tso FY, Wickramasinghe J, Privatt SR, Ngalamika O, Ngowi JR, Mwaiselage J, Lieberman PM, West JT, Wood C. Comparative transcriptome analysis of endemic and epidemic Kaposi's sarcoma (KS) lesions and the secondary role of HIV-1 in KS pathogenesis. PLoS Pathog 2020; 16:e1008681. [PMID: 32706839 PMCID: PMC7406108 DOI: 10.1371/journal.ppat.1008681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/05/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023] Open
Abstract
In sub-Saharan Africa, endemic Kaposi's sarcoma (EnKS) is still prevalent despite high incidence of epidemic Kaposi's sarcoma (EpKS) resulting from the on-going HIV-1 epidemic. While KSHV is clearly the etiologic agent of KS, the mechanisms underlying KS development are not fully understood. For example, HIV-1 co-infection and concomitant immune dysfunction have been associated with EpKS development. However, the direct or indirect role(s) of HIV-1, and therefore of immune suppression, in EpKS remains unclear. How, or whether, EpKS is mechanistically distinct from EnKS is unknown. Thus, the absence of HIV-1 co-infection in EnKS provides a unique control for investigating and deciphering whether HIV-1 plays a direct or indirect role in the EpKS tumor microenvironment. We hypothesized that HIV-1 co-infection would induce transcriptome changes that differentiate EpKS from EnKS, thereby defining the direct intra-tumor role of HIV-1 in KS. Comparison of ART-treated and -naïve patients would further define the impact of ART on the KS transcriptome. We utilized RNA-seq followed by multiparameter bioinformatics analysis to compare transcriptomes from KS lesions to uninvolved control skin. We provide the first transcriptomic comparison of EpKS versus EnKS, ART-treated vs-naïve EpKS and male vs female EpKS to define the roles of HIV-1 co-infection, the impact of ART, and gender on KS gene expression profiles. Our findings suggest that ART-use and gender have minimal impact on transcriptome profiles of KS lesions. Gene expression profiles strongly correlated between EpKS and EnKS patients (Spearman r = 0.83, p<10-10). A subset of genes involved in tumorigenesis and inflammation/immune responses showed higher magnitude, but not unique dysregulation in EnKS compared to EpKS. While gender and ART had no detectable contribution, the trend toward higher magnitude of gene dysregulation in EnKS coupled with the absence of HIV-1 transcripts in EpKS may suggest an indirect or systemic effect of HIV-1 to promote KS tumorigenesis.
Collapse
Affiliation(s)
- Salum J. Lidenge
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - For Yue Tso
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | | | - Sara R. Privatt
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Owen Ngalamika
- Dermatology and Venereology section, University Teaching Hospitals, University of Zambia School of Medicine, Lusaka, Zambia
| | - John R. Ngowi
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Julius Mwaiselage
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Paul M. Lieberman
- Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - John T. West
- Nebraska Center for Virology and the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology and the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of America
| |
Collapse
|
16
|
Li W, Wang Q, Qi X, Guo Y, Lu H, Chen Y, Lu Z, Yan Q, Zhu X, Jung JU, Tosato G, Gao SJ, Lu C. Viral interleukin-6 encoded by an oncogenic virus promotes angiogenesis and cellular transformation by enhancing STAT3-mediated epigenetic silencing of caveolin 1. Oncogene 2020; 39:4603-4618. [PMID: 32393833 PMCID: PMC7970339 DOI: 10.1038/s41388-020-1317-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022]
Abstract
Kaposi's sarcoma (KS) caused by oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) is a highly angiogenic and invasive vascular tumor and the most common AIDS-associated cancer. KSHV-encoded viral interleukin-6 (vIL-6) is implicated in the development of KSHV-induced malignancies; however, the mechanisms underlying vIL-6-induced angiogenesis and tumorigenesis remain undefined. Here, we show that vIL-6 promotes angiogenesis, cell proliferation, and invasion by downregulating caveolin 1 (CAV1) that plays a pivotal and versatile role in multiple cancer-associated processes. Mechanistically, vIL-6 signaling led to the phosphorylation and acetylation of STAT3 that targeted DNA methyltransferase 1 (DNMT1) in a sequential manner. Specifically, the vIL-6-induced phosphorylated form of STAT3 transcriptionally activated DNMT1 expression. Furthermore, vIL-6-induced acetylated form of STAT3 interacted with DNMT1 to form a transcription factor complex that bound to and methylated the CAV1 promoter, leading to CAV1 expression silencing. In fact, downregulation of CAV1 expression resulted in the activation of AKT signaling, promoting cell invasion, and growth transformation induced by KSHV. Finally, genetic deletion of vIL-6 from the KSHV genome abolished KSHV-induced cellular transformation and impaired angiogenesis. Our results reveal that vIL-6 epigenetically silences CAV1 expression to promote angiogenesis and tumorigenesis by regulating the formation of STAT3-DNMT1 complex. These novel findings define a mechanism by which KSHV inhibits the CAV1 pathway and establish the scientific basis for targeting this pathway to treat KSHV-associated cancers.
Collapse
Affiliation(s)
- Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210029, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Qingxia Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xiaoyu Qi
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yuanyuan Guo
- The College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Hongmei Lu
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210036, PR China
| | - Yuheng Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Zhongmou Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xiaofei Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China.
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giovanna Tosato
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-1906, USA
| | - Shou-Jiang Gao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China.
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210029, PR China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
17
|
Ju E, Li T, Liu Z, da Silva SR, Wei S, Zhang X, Wang X, Gao SJ. Specific Inhibition of Viral MicroRNAs by Carbon Dots-Mediated Delivery of Locked Nucleic Acids for Therapy of Virus-Induced Cancer. ACS NANO 2020; 14:476-487. [PMID: 31895530 PMCID: PMC7119180 DOI: 10.1021/acsnano.9b06333] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Viruses are associated with up to 15% of human cancer. MicroRNAs (miRNAs) encoded by numerous oncogenic viruses including Kaposi's sarcoma-associated herpesvirus (KSHV) play significant roles in regulating the proliferation and survival of virus-induced cancer cells, hence representing attractive therapeutic targets. Here, we report that specific inhibition of viral miRNAs by carbon dots (Cdots)-mediated delivery of locked nucleic acid (LNA)-based suppressors inhibit the proliferation of KSHV-associated primary effusion lymphoma (PEL) cells. Specifically, a combination of Cdots-LNAs to knock down the levels of KSHV miR-K12-1, miR-K12-4, and miR-K12-11 induces apoptosis and inhibits proliferation of PEL cells. Significantly, these Cdots-LNAs effectively inhibit the initiation of PEL and regress established PEL in a xenograft mouse model. These results demonstrate the feasibility of using Cdots to deliver miRNA suppressors for targeting viral cancers. Our study with viral miRNAs as targets may provide the scientific basis for using antisense drugs for human cancers associated with oncogenic viruses.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Carbon/chemistry
- Cell Proliferation/drug effects
- Cells, Cultured
- Drug Screening Assays, Antitumor
- Female
- Herpesvirus 8, Human/chemistry
- Lymphoma/drug therapy
- Lymphoma/pathology
- Lymphoma/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, SCID
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/virology
- Oligonucleotides/chemistry
- Oligonucleotides/pharmacology
- Particle Size
- Quantum Dots/chemistry
- RNA, Viral/antagonists & inhibitors
- Rats
- Surface Properties
Collapse
Affiliation(s)
- Enguo Ju
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| | - Tingting Li
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| | - Zhen Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , People's Republic of China
| | - Suzane Ramos da Silva
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| | - Shan Wei
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| | - Xinquan Zhang
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| | - Xian Wang
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , Pennsylvania 15232 , United States
| |
Collapse
|
18
|
Mishra R, Kumar A, Ingle H, Kumar H. The Interplay Between Viral-Derived miRNAs and Host Immunity During Infection. Front Immunol 2020; 10:3079. [PMID: 32038626 PMCID: PMC6989438 DOI: 10.3389/fimmu.2019.03079] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs are short non-coding RNAs that play a crucial role in the regulation of gene expression during cellular processes. The host-encoded miRNAs are known to modulate the antiviral defense during viral infection. In the last decade, multiple DNA and RNA viruses have been shown to produce miRNAs known as viral miRNAs (v-miRNAs) so as to evade the host immune response. In this review, we highlight the origin and biogenesis of viral miRNAs during the viral lifecycle. We also explore the role of viral miRNAs in immune evasion and hence in maintaining chronic infection and disease. Finally, we offer insights into the underexplored role of viral miRNAs as potential targets for developing therapeutics for treating complex viral diseases.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Harshad Ingle
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
19
|
Naqvi AR. Immunomodulatory roles of human herpesvirus-encoded microRNA in host-virus interaction. Rev Med Virol 2020; 30:e2081. [PMID: 31432608 PMCID: PMC7398577 DOI: 10.1002/rmv.2081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
Abstract
Human herpesviruses (HHV) are large, double stranded, DNA viruses with high seroprevalence across the globe. Clinical manifestation of primary HHV infection resolve shortly, however, this period is prolonged in immunocompromised patients or individuals with suppressed immunity. Examining molecular mechanisms of HHV-encoded virulence factors can provide finer details of HHV-host interaction. A unique genetic feature of most members of HHV is that they encode multiple microRNAs (miR). In this review, I will provide mechanistic insights into the immunomodulatory functions of herpesvirus-encoded viral miR (v-miR) that favor viral persistence and spread by ingenious immune evasion schemes. Similar to host miR, v-miR can simultaneously regulate expression of multiple transcripts including host- and virus-derived. V-miRs, by virtue of their direct interaction with various transcripts, can regulate expression of critical components of host innate and adaptive immune system. V-miRs are also exported through exosomal route and gain entry into various cells even at distant sites, thereby allowing HHV to manipulate cellular and tissue immunity. Targeting v-miR may serve as a novel and promising therapeutic candidate to mitigate HHV-mediated clinical manifestations.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
Yao L, Zhou Y, Sui Z, Zhang Y, Liu Y, Xie H, Gao H, Fan H, Zhang Y, Liu M, Li S, Tang H. HBV-encoded miR-2 functions as an oncogene by downregulating TRIM35 but upregulating RAN in liver cancer cells. EBioMedicine 2019; 48:117-129. [PMID: 31530503 PMCID: PMC6838411 DOI: 10.1016/j.ebiom.2019.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection has been well established as a high-risk factor for the carcinogenesis of hepatocellular carcinoma (HCC). Cellular microRNA (miRNA) is involved in tumorigenesis by accelerating the malignant phenotype in HCC. However, whether HBV can encode miRNAs that contribute to HCC is not entirely clear. METHODS In this study, an miRNA encoded by HBV (HBV-miR-2) was identified by Solexa sequencing in HBV-positive HCC specimens and further verified in serum samples from HCC patients with HBV infection and in HBV-positive HCC cell lines. To evaluate the roles of HBV-miR-2 in liver cancer cells, we determined cell viability and migration/invasion ability by gain-of-function experiment in HBV(-) liver cancer cells (HepG2 and Huh7) and loss-of-function experiments in Huh7 cells stably expressing HBV-miR-2 (Huh7/HBV-miR-2 cells) and HepG2.2.15 cells. Furthermore, to elucidate the mechanism by which HBV-miR-2 work on cell malignancy, we identified and studied the effect of two target genes (TRIM35 and RAN) of HBV-miR-2 in liver cancer cells. FINDINGS We revealed that HBV-miR-2 promoted HCC cell growth ability by suppressing apoptosis and promoting migration and invasion by enhancing the epithelial-mesenchymal transition (EMT), functioning as an oncogene in the development of HBV-related HCC. Furthermore, we demonstrated that HBV-miR-2 suppresses the expression of TRIM35 but enhances RAN expression by targeting their 3'-untranslated regions (3'UTR) and that the ectopic expression of TRIM35 or knockdown of RAN counteracted the malignant phenotypes induced by HBV-miR-2. INTERPRETATION Our findings indicate that an HBV-encoded miRNA, HBV-miR-2, promotes oncogenic activity by downregulating TRIM35 expression and upregulating RAN expression in liver cancer cells, likely providing insight into tumorigenesis in HBV-related liver cancer. FUND: This work was supported in part by the National Natural Science Foundation of China (No: 81830094; 91629302; 31270818) and the Natural Science Foundation of Tianjin (No: 12JCZDJC25100).
Collapse
Affiliation(s)
- Lili Yao
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Yadi Zhou
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Zhenhua Sui
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Yanling Zhang
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Yankun Liu
- The Cancer Institute, Tangshan People's Hospital, Tangshan 063001, China
| | - Hong Xie
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China.
| | - Huijie Gao
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Hongxia Fan
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Yi Zhang
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Min Liu
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Shengping Li
- State Key Laboratory of Oncology in Southern China, Department of Hepatobiliary Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Hua Tang
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
21
|
Li T, Ju E, Gao SJ. Kaposi sarcoma-associated herpesvirus miRNAs suppress CASTOR1-mediated mTORC1 inhibition to promote tumorigenesis. J Clin Invest 2019; 129:3310-3323. [PMID: 31305263 PMCID: PMC6668677 DOI: 10.1172/jci127166] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022] Open
Abstract
Cytosolic arginine sensor for mTORC1 subunits 1 and 2 (CASTOR1 and CASTOR2) inhibit the mammalian target of rapamycin complex 1 (mTORC1) upon arginine deprivation. mTORC1 regulates cell proliferation, survival, and metabolism and is often dysregulated in cancers, indicating that cancer cells may regulate CASTOR1 and CASTOR2 to control mTORC1 signaling and promote tumorigenesis. mTORC1 is the most effective therapeutic target of Kaposi sarcoma, which is caused by infection with the Kaposi sarcoma-associated herpesvirus (KSHV). Hence, KSHV-induced cellular transformation is a suitable model for investigating mTORC1 regulation in cancer cells. Currently, the mechanism of KSHV activation of mTORC1 in KSHV-induced cancers remains unclear. We showed that KSHV suppressed CASTOR1 and CASTOR2 expression to activate the mTORC1 pathway. CASTOR1 or CASTOR2 overexpression and mTOR inhibitors abolished cell proliferation and colony formation in soft agar of KSHV-transformed cells by attenuating mTORC1 activation. Furthermore, the KSHV-encoded miRNA miR-K4-5p, and probably miR-K1-5p, directly targeted CASTOR1 to inhibit its expression. Knockdown of miR-K1-5p and -K4-5p restored CASTOR1 expression and thereby attenuated mTORC1 activation. Overexpression of CASTOR1 or CASTOR2 and mTOR inhibitors abolished the activation of mTORC1 and growth transformation induced by pre-miR-K1 and -K4. Our results define the mechanism of KSHV activation of the mTORC1 pathway and establish the scientific basis for targeting this pathway to treat KSHV-associated cancers.
Collapse
Affiliation(s)
- Tingting Li
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Enguo Ju
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Abstract
Kaposi sarcoma (KS) is an endothelial tumor etiologically related to Kaposi sarcoma herpesvirus (KSHV) infection. The aim of our study was to screen out candidate genes of KSHV infected endothelial cells and to elucidate the underlying molecular mechanisms by bioinformatics methods. Microarray datasets GSE16354 and GSE22522 were downloaded from Gene Expression Omnibus (GEO) database. the differentially expressed genes (DEGs) between endothelial cells and KSHV infected endothelial cells were identified. And then, functional enrichment analyses of gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed. After that, Search Tool for the Retrieval of Interacting Genes (STRING) was used to investigate the potential protein-protein interaction (PPI) network between DEGs, Cytoscape software was used to visualize the interaction network of DEGs and to screen out the hub genes. A total of 113 DEGs and 11 hub genes were identified from the 2 datasets. GO enrichment analysis revealed that most of the DEGs were enrichen in regulation of cell proliferation, extracellular region part and sequence-specific DNA binding; KEGG pathway enrichments analysis displayed that DEGs were mostly enrichen in cell cycle, Jak-STAT signaling pathway, pathways in cancer, and Insulin signaling pathway. In conclusion, the present study identified a host of DEGs and hub genes in KSHV infected endothelial cells which may serve as potential key biomarkers and therapeutic targets, helping us to have a better understanding of the molecular mechanism of KS.
Collapse
Affiliation(s)
- Hai-Bo Gong
- Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region
| | - Xiu-Juan Wu
- Department of Dermatology, Central Hospital of Shanghai Xuhui District, Shanghai
| | - Xiong-Ming Pu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiao-Jing Kang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
23
|
He M, Cheng F, da Silva SR, Tan B, Sorel O, Gruffaz M, Li T, Gao SJ. Molecular Biology of KSHV in Relation to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019; 177:23-62. [PMID: 30523620 DOI: 10.1007/978-3-030-03502-0_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discovered in 1994, Kaposi's sarcoma-associated herpesvirus (KSHV) has been associated with four human malignancies including Kaposi's sarcoma, primary effusion lymphoma, a subset of multicentric Castleman's disease, and KSHV inflammatory cytokine syndrome. These malignancies mostly occur in immunocompromised patients including patients with acquired immunodeficiency syndrome and often cause significant mortality because of the lack of effective therapies. Significant progresses have been made to understand the molecular basis of KSHV infection and KSHV-induced oncogenesis in the last two decades. This chapter provides an update on the recent advancements focusing on the molecular events of KSHV primary infection, the mechanisms regulating KSHV life cycle, innate and adaptive immunity, mechanism of KSHV-induced tumorigenesis and inflammation, and metabolic reprogramming in KSHV infection and KSHV-transformed cells.
Collapse
Affiliation(s)
- Meilan He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fan Cheng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Océane Sorel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Marion Gruffaz
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Tingting Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
24
|
Gruffaz M, Yuan H, Meng W, Liu H, Bae S, Kim JS, Lu C, Huang Y, Gao SJ. CRISPR-Cas9 Screening of Kaposi's Sarcoma-Associated Herpesvirus-Transformed Cells Identifies XPO1 as a Vulnerable Target of Cancer Cells. mBio 2019; 10:e00866-19. [PMID: 31088931 PMCID: PMC6520457 DOI: 10.1128/mbio.00866-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 02/05/2023] Open
Abstract
The abnormal proliferation of cancer cells is driven by deregulated oncogenes or tumor suppressors, among which the cancer-vulnerable genes are attractive therapeutic targets. Targeting mislocalization of oncogenes and tumor suppressors resulting from aberrant nuclear export is effective for inhibiting growth transformation of cancer cells. We performed a clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) screening in a unique model of matched primary and oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-transformed cells and identified genes that were growth promoting and growth suppressive for both types of cells, among which exportin XPO1 was demonstrated to be critical for the survival of transformed cells. Using XPO1 inhibitor KPT-8602 and by small interfering RNA (siRNA) knockdown, we confirmed the essential role of XPO1 in cell proliferation and growth transformation of KSHV-transformed cells and in cell lines of other cancers, including gastric cancer and liver cancer. XPO1 inhibition induced cell cycle arrest through p53 activation, but the mechanisms of p53 activation differed among the different types of cancer cells. p53 activation depended on the formation of promyelocytic leukemia (PML) nuclear bodies in gastric cancer and liver cancer cells. Mechanistically, XPO1 inhibition induced relocalization of autophagy adaptor protein p62 (SQSTM1), recruiting p53 for activation in PML nuclear bodies. Taken the data together, we have identified novel growth-promoting and growth-suppressive genes of primary and cancer cells and have demonstrated that XPO1 is a vulnerable target of cancer cells. XPO1 inhibition induces cell arrest through a novel PML- and p62-dependent mechanism of p53 activation in some types of cancer cells.IMPORTANCE Using a model of oncogenic virus KSHV-driven cellular transformation of primary cells, we have performed a genome-wide CRISPR-Cas9 screening to identify vulnerable genes of cancer cells. This screening is unique in that this virus-induced oncogenesis model does not depend on any cellular genetic alterations and has matched primary and KSHV-transformed cells, which are not available for similar screenings in other types of cancer. We have identified genes that are both growth promoting and growth suppressive in primary and transformed cells, some of which could represent novel proto-oncogenes and tumor suppressors. In particular, we have demonstrated that the exportin XPO1 is a critical factor for the survival of transformed cells. Using a XPO1 inhibitor (KPT-8602) and siRNA-mediated knockdown, we have confirmed the essential role of XPO1 in cell proliferation and in growth transformation of KSHV-transformed cells, as well as of gastric and liver cancer cells. XPO1 inhibition induces cell cycle arrest by activating p53, but the mechanisms of p53 activation differed among different types of cancer cells. p53 activation is dependent on the formation of PML nuclear bodies in gastric and liver cancer cells. Mechanistically, XPO1 inhibition induces relocalization of autophagy adaptor protein p62 (SQSTM1), recruiting p53 for activation in PML nuclear bodies. These results illustrate that XPO1 is a vulnerable target of cancer cells and reveal a novel mechanism for blocking cancer cell proliferation by XPO1 inhibition as well as a novel PML- and p62-mediated mechanism of p53 activation in some types of cancer cells.
Collapse
Affiliation(s)
- Marion Gruffaz
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hongfeng Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wen Meng
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hui Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul, South Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Daejon, South Korea
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Chun Lu
- Nanjing Medical University, Nanjing, China
| | - Yufei Huang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Nanjing Medical University, Nanjing, China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| |
Collapse
|
25
|
Yan L, Majerciak V, Zheng ZM, Lan K. Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis. Virol Sin 2019; 34:135-161. [PMID: 31025296 PMCID: PMC6513836 DOI: 10.1007/s12250-019-00114-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8 (HHV-8), is etiologically linked to the development of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. These malignancies often occur in immunosuppressed individuals, making KSHV infection-associated diseases an increasing global health concern with persistence of the AIDS epidemic. KSHV exhibits biphasic life cycles between latent and lytic infection and extensive transcriptional and posttranscriptional regulation of gene expression. As a member of the herpesvirus family, KSHV has evolved many strategies to evade the host immune response, which help the virus establish a successful lifelong infection. In this review, we summarize the current research status on the biology of latent and lytic viral infection, the regulation of viral life cycles and the related pathogenesis.
Collapse
Affiliation(s)
- Lijun Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Vladimir Majerciak
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Zhi-Ming Zheng
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
26
|
Li T, Zhu Y, Cheng F, Lu C, Jung JU, Gao SJ. Oncogenic Kaposi's Sarcoma-Associated Herpesvirus Upregulates Argininosuccinate Synthase 1, a Rate-Limiting Enzyme of the Citrulline-Nitric Oxide Cycle, To Activate the STAT3 Pathway and Promote Growth Transformation. J Virol 2019; 93:JVI.01599-18. [PMID: 30463977 PMCID: PMC6364034 DOI: 10.1128/jvi.01599-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/13/2018] [Indexed: 02/05/2023] Open
Abstract
Cancer cells are required to rewire existing metabolic pathways to support their abnormal proliferation. We have previously shown that, unlike glucose-addicted cancers, Kaposi's sarcoma-associated herpesvirus (KSHV)-transformed cells depend on glutamine rather than glucose for energy production and amino acid and nucleotide syntheses. High-level consumption of glutamine is tightly regulated and often coupled with the citrulline-nitric oxide (NO) cycle. We have found that KSHV infection accelerates nitrogen efflux by upregulating the expression of argininosuccinate synthase 1 (ASS1), a key enzyme in the citrulline-NO cycle. KSHV utilizes multiple microRNAs to upregulate ASS1 expression. Depletion of either ASS1 or inducible nitric oxide synthase (iNOS) in KSHV-transformed cells suppresses growth proliferation, abolishes colony formation in soft agar, and decreases NO generation. Furthermore, by maintaining intracellular NO levels, ASS1 expression facilitates KSHV-mediated activation of the STAT3 pathway, which is critical for virus-induced transformation. These results illustrate a novel mechanism by which an oncogenic virus hijacks a key metabolic pathway to promote growth transformation and reveal a potential novel therapeutic target for KSHV-induced malignancies.IMPORTANCE We have previously shown that Kaposi's sarcoma-associated herpesvirus (KSHV)-transformed cells depend on glutamine rather than glucose for energy production and amino acid and nucleotide syntheses. In this study, we have further examined how the KSHV-reprogramed metabolic pathways are regulated and discovered that KSHV hijacks the citrulline-nitric oxide (NO) cycle to promote growth proliferation and transformation. Multiple KSHV-encoded microRNAs upregulate argininosuccinate synthase 1 (ASS1), a key enzyme in the citrulline-NO cycle. ASS1 is required for KSHV-induced proliferation, colony formation in soft agar, and NO generation of KSHV-transformed cells, which also depends on inducible nitric oxide synthase. By maintaining intracellular NO levels, ASS1 mediates KSHV activation of the STAT3 pathway, which is essential for KSHV-induced abnormal cell proliferation and transformation. These results illustrate a novel mechanism by which an oncogenic virus hijacks a key metabolic pathway to promote growth transformation and reveal a potential novel therapeutic target for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Tingting Li
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ying Zhu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fan Cheng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiansu, China
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shou-Jiang Gao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiansu, China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
27
|
Abstract
RNA modifications have generated much interest in the virology field, as recent works have shown that many viruses harbor these marks and modify cellular marks. The most abundant mRNA modification in eukaryotic cells, N6-methyladenosine (m6A), has been examined extensively at the genome-wide scale in both cellular and viral contexts. This Gem discusses the role of m6A in gene regulation and describes recent advancements in Kaposi's sarcoma-associated herpesvirus (KSHV) and simian virus 40 (SV40) research. We provide insights into future research related to m6A in DNA viruses.
Collapse
Affiliation(s)
- Brandon Tan
- Department of Systems Biology, City of Hope, Monrovia, California, USA
| | - Shou-Jiang Gao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
28
|
Tan B, Gao SJ. RNA epitranscriptomics: Regulation of infection of RNA and DNA viruses by N 6 -methyladenosine (m 6 A). Rev Med Virol 2018; 28:e1983. [PMID: 29698584 PMCID: PMC6339815 DOI: 10.1002/rmv.1983] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/24/2018] [Accepted: 03/29/2018] [Indexed: 02/05/2023]
Abstract
N6 -methyladenosine (m6 A) was discovered 4 decades ago. However, the functions of m6 A and the cellular machinery that regulates its changes have just been revealed in the last few years. m6 A is an abundant internal mRNA modification on cellular RNA and is implicated in diverse cellular functions. Recent works have demonstrated the presence of m6 A in the genomes of RNA viruses and transcripts of a DNA virus with either a proviral or antiviral role. Here, we first summarize what is known about the m6 A "writers," "erasers," "readers," and "antireaders" as well as the role of m6 A in mRNA metabolism. We then review how the replications of numerous viruses are enhanced and restricted by m6 A with emphasis on the oncogenic DNA virus, Kaposi sarcoma-associated herpesvirus (KSHV), whose m6 A epitranscriptome was recently mapped. In the context of KSHV, m6 A and the reader protein YTHDF2 acts as an antiviral mechanism during viral lytic replication. During viral latency, KSHV alters m6 A on genes that are implicated in cellular transformation and viral latency. Lastly, we discuss future studies that are important to further delineate the functions of m6 A in KSHV latent and lytic replication and KSHV-induced oncogenesis.
Collapse
Affiliation(s)
- Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
29
|
Mariggiò G, Koch S, Schulz TF. Kaposi sarcoma herpesvirus pathogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0275. [PMID: 28893942 PMCID: PMC5597742 DOI: 10.1098/rstb.2016.0275] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV), taxonomical name human gammaherpesvirus 8, is a phylogenetically old human virus that co-evolved with human populations, but is now only common (seroprevalence greater than 10%) in sub-Saharan Africa, around the Mediterranean Sea, parts of South America and in a few ethnic communities. KSHV causes three human malignancies, Kaposi sarcoma, primary effusion lymphoma, and many cases of the plasmablastic form of multicentric Castleman's disease (MCD) as well as occasional cases of plasmablastic lymphoma arising from MCD; it has also been linked to rare cases of bone marrow failure and hepatitis. As it has colonized humans physiologically for many thousand years, cofactors are needed to allow it to unfold its pathogenic potential. In most cases, these include immune defects of genetic, iatrogenic or infectious origin, and inflammation appears to play an important role in disease development. Our much improved understanding of its life cycle and its role in pathogenesis should now allow us to develop new therapeutic strategies directed against key viral proteins or intracellular pathways that are crucial for virus replication or persistence. Likewise, its limited (for a herpesvirus) distribution and transmission should offer an opportunity for the development and use of a vaccine to prevent transmission. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- Giuseppe Mariggiò
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Sandra Koch
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany .,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| |
Collapse
|
30
|
He M, Yuan H, Tan B, Bai R, Kim HS, Bae S, Che L, Kim JS, Gao SJ. SIRT1-mediated downregulation of p27Kip1 is essential for overcoming contact inhibition of Kaposi's sarcoma-associated herpesvirus transformed cells. Oncotarget 2018; 7:75698-75711. [PMID: 27708228 PMCID: PMC5342771 DOI: 10.18632/oncotarget.12359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/21/2016] [Indexed: 11/25/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus associated with Kaposi's sarcoma (KS), a malignancy commonly found in AIDS patients. Despite intensive studies in the last two decades, the mechanism of KSHV-induced cellular transformation and tumorigenesis remains unclear. In this study, we found that the expression of SIRT1, a metabolic sensor, was upregulated in a variety of KSHV-infected cells. In a model of KSHV-induced cellular transformation, SIRT1 knockdown with shRNAs or knockout by CRISPR/Cas9 gene editing dramatically suppressed cell proliferation and colony formation in soft agar of KSHV-transformed cells by inducing cell cycle arrest and contact inhibition. SIRT1 knockdown or knockout induced the expression of cyclin-dependent kinase inhibitor 1B (p27Kip1). Consequently, p27 knockdown rescued the inhibitory effect of SIRT1 knockdown or knockout on cell proliferation and colony formation. Furthermore, treatment of KSHV-transformed cells with a SIRT1 inhibitor, nicotinamide (NAM), had the same effect as SIRT1 knockdown and knockout. NAM significantly inhibited cell proliferation in culture and colony formation in soft agar, and induced cell cycle arrest. Significantly, NAM inhibited the progression of tumors and extended the survival of mice in a KSHV-induced tumor model. Collectively, these results demonstrate that SIRT1 suppression of p27 is required for KSHV-induced tumorigenesis and identify a potential therapeutic target for KS.
Collapse
Affiliation(s)
- Meilan He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California Los Angeles, Los Angeles, CA, USA
| | - Hongfeng Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California Los Angeles, Los Angeles, CA, USA
| | - Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California Los Angeles, Los Angeles, CA, USA
| | - Rosemary Bai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California Los Angeles, Los Angeles, CA, USA
| | - Heon Seok Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul, South Korea.,Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Sangsu Bae
- Center for Genome Engineering, Institute for Basic Science, Seoul, South Korea.,Present address: Department of Chemistry, Hanyang University, Seoul, South Korea
| | - Lu Che
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California Los Angeles, Los Angeles, CA, USA
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul, South Korea.,Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
31
|
Tso FY, Kossenkov AV, Lidenge SJ, Ngalamika O, Ngowi JR, Mwaiselage J, Wickramasinghe J, Kwon EH, West JT, Lieberman PM, Wood C. RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism. PLoS Pathog 2018; 14:e1006844. [PMID: 29352292 PMCID: PMC5792027 DOI: 10.1371/journal.ppat.1006844] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/31/2018] [Accepted: 12/27/2017] [Indexed: 12/31/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi’s sarcoma (KS). It is endemic in a number of sub-Saharan African countries with infection rate of >50%. The high prevalence of HIV-1 coupled with late presentation of advanced cancer staging make KS the leading cancer in the region with poor prognosis and high mortality. Disease markers and cellular functions associated with KS tumorigenesis remain ill-defined. Several studies have attempted to investigate changes of the gene profile with in vitro infection of monoculture models, which are not likely to reflect the cellular complexity of the in vivo lesion environment. Our approach is to characterize and compare the gene expression profile in KS lesions versus non-cancer tissues from the same individual. Such comparisons could identify pathways critical for KS formation and maintenance. This is the first study that utilized high throughput RNA-seq to characterize the viral and cellular transcriptome in tumor and non-cancer biopsies of African epidemic KS patients. These patients were treated anti-retroviral therapy with undetectable HIV-1 plasma viral load. We found remarkable variability in the viral transcriptome among these patients, with viral latency and immune modulation genes most abundantly expressed. The presence of KSHV also significantly affected the cellular transcriptome profile. Specifically, genes involved in lipid and glucose metabolism disorder pathways were substantially affected. Moreover, infiltration of immune cells into the tumor did not prevent KS formation, suggesting some functional deficits of these cells. Lastly, we found only minimal overlaps between our in vivo cellular transcriptome dataset with those from in vitro studies, reflecting the limitation of in vitro models in representing tumor lesions. These findings could lead to the identification of diagnostic and therapeutic markers for KS, and will provide bases for further mechanistic studies on the functions of both viral and cellular genes that are involved. Kaposi’s sarcoma-associated herpesvirus (KSHV) is endemic in sub-Saharan Africa and cause Kaposi’s sarcoma (KS). KS is one of the most common cancer among HIV-1 patients in this region. Despite anti-retroviral treatment, prognosis for KS is poor with high mortality often due to presentation of late cancer stage. In order to identify biomarkers or therapeutic targets against KS, a better understanding of the viral and cellular genes expression/transcriptome in the tumor will be necessary. We used RNA-seq, a highly efficient method to sequence transcriptome, to characterize and compare the viral and cellular transcriptome in tumor and non-cancer tissues from KS patients. We found that viral genes involved in latency and immune modulation are most commonly expressed among KS patients. Additionally, cellular genes involved in lipid and glucose metabolism disorder pathways are significantly affected by the presence of KSHV. Despite the detection of immune cells in the tumor, it did not prevent the tumor progression, suggesting some level of immune cell dysfunctions in KS patients. Lastly, we found limited overlap of our data, derived from actual KS biopsy, with other cell culture models, suggesting that the complexity of tumor is difficult to be reflected in cell line models.
Collapse
Affiliation(s)
- For Yue Tso
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | | | - Salum J. Lidenge
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Owen Ngalamika
- Dermatology and Venereology section, University Teaching Hospitals, University of Zambia School of Medicine, Lusaka, Zambia
| | - John R. Ngowi
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Julius Mwaiselage
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Eun Hee Kwon
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - John T. West
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Paul M. Lieberman
- Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
32
|
Tan B, Liu H, Zhang S, da Silva SR, Zhang L, Meng J, Cui X, Yuan H, Sorel O, Zhang SW, Huang Y, Gao SJ. Viral and cellular N 6-methyladenosine and N 6,2'-O-dimethyladenosine epitranscriptomes in the KSHV life cycle. Nat Microbiol 2018; 3:108-120. [PMID: 29109479 PMCID: PMC6138870 DOI: 10.1038/s41564-017-0056-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/09/2017] [Indexed: 02/05/2023]
Abstract
N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) modifications (m6A/m) of messenger RNA mediate diverse cellular functions. Oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) has latent and lytic replication phases that are essential for the development of KSHV-associated cancers. To date, the role of m6A/m in KSHV replication and tumorigenesis is unclear. Here, we provide mechanistic insights by examining the viral and cellular m6A/m epitranscriptomes during KSHV latent and lytic infection. KSHV transcripts contain abundant m6A/m modifications during latent and lytic replication, and these modifications are highly conserved among different cell types and infection systems. Knockdown of YTHDF2 enhanced lytic replication by impeding KSHV RNA degradation. YTHDF2 binds to viral transcripts and differentially mediates their stability. KSHV latent infection induces 5' untranslated region (UTR) hypomethylation and 3'UTR hypermethylation of the cellular epitranscriptome, regulating oncogenic and epithelial-mesenchymal transition pathways. KSHV lytic replication induces dynamic reprogramming of epitranscriptome, regulating pathways that control lytic replication. These results reveal a critical role of m6A/m modifications in KSHV lifecycle and provide rich resources for future investigations.
Collapse
Affiliation(s)
- Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hui Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Songyao Zhang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA
- School of Automation, Northwestern Polytechnic University, Xi'an, Shaanxi, China
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lin Zhang
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Xiaodong Cui
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Hongfeng Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Océane Sorel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shao-Wu Zhang
- School of Automation, Northwestern Polytechnic University, Xi'an, Shaanxi, China
| | - Yufei Huang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
33
|
Watanabe T, Sugimoto A, Hosokawa K, Fujimuro M. Signal Transduction Pathways Associated with KSHV-Related Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:321-355. [PMID: 29896674 DOI: 10.1007/978-981-10-7230-7_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signal transduction pathways play a key role in the regulation of cell growth, cell differentiation, cell survival, apoptosis, and immune responses. Bacterial and viral pathogens utilize the cell signal pathways by encoding their own proteins or noncoding RNAs to serve their survival and replication in infected cells. Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is classified as a rhadinovirus in the γ-herpesvirus subfamily and was the eighth human herpesvirus to be discovered from Kaposi's sarcoma specimens. KSHV is closely associated with an endothelial cell malignancy, Kaposi's sarcoma, and B-cell malignancies, primary effusion lymphoma, and multicentric Castleman's disease. Recent studies have revealed that KSHV manipulates the cellular signaling pathways to achieve persistent infection, viral replication, cell proliferation, anti-apoptosis, and evasion of immune surveillance in infected cells. This chapter summarizes recent developments in our understanding of the molecular mechanisms used by KSHV to interact with the cell signaling machinery.
Collapse
Affiliation(s)
- Tadashi Watanabe
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Atsuko Sugimoto
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kohei Hosokawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
| |
Collapse
|
34
|
Li W, Jia X, Shen C, Zhang M, Xu J, Shang Y, Zhu K, Hu M, Yan Q, Qin D, Lee MS, Zhu J, Lu H, Krueger BJ, Renne R, Gao SJ, Lu C. A KSHV microRNA enhances viral latency and induces angiogenesis by targeting GRK2 to activate the CXCR2/AKT pathway. Oncotarget 2017; 7:32286-305. [PMID: 27058419 PMCID: PMC5078013 DOI: 10.18632/oncotarget.8591] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/28/2016] [Indexed: 12/24/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). Most tumor cells in these malignancies are latently infected by KSHV. Thus, viral latency is critical for the development of tumor and induction of tumor-associated angiogenesis. KSHV encodes more than two dozens of miRNAs but their roles in KSHV-induced angiogenesis remains unknown. We have recently shown that miR-K12-3 (miR-K3) promoted cell migration and invasion by targeting GRK2/CXCR2/AKT signaling (PLoS Pathog, 2015;11(9):e1005171). Here, we further demonstrated a role of miR-K3 and its induced signal pathway in KSHV latency and KSHV-induced angiogenesis. We found that overexpression of miR-K3 not only promoted viral latency by inhibiting viral lytic replication, but also induced angiogenesis. Further, knockdown of GRK2 inhibited KSHV replication and enhanced KSHV-induced angiogenesis by enhancing the CXCR2/AKT signals. As a result, blockage of CXCR2 or AKT increased KSHV replication and decreased angiogenesis induced by PEL cells in vivo. Finally, deletion of miR-K3 from viral genome reduced KSHV-induced angiogenesis and increased KSHV replication. These findings indicate that the miR-K3/GRK2/CXCR2/AKT axis plays an essential role in KSHV-induced angiogenesis and promotes KSHV latency, and thus may be a potential therapeutic target of KSHV-associated malignancies.
Collapse
Affiliation(s)
- Wan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P. R. China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Xuemei Jia
- Department of Gynecology and Obstetrics, Nanjing Maternity and Child Health Hospital Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Chenyou Shen
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Mi Zhang
- Department of Gynecology and Obstetrics, Nanjing Maternity and Child Health Hospital Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, P. R. China
| | - Jingyun Xu
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Yuancui Shang
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Kaixiang Zhu
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Minmin Hu
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Di Qin
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Jianzhong Zhu
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hongmei Lu
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Brian J Krueger
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P. R. China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| |
Collapse
|
35
|
Chen M, Sun F, Han L, Qu Z. Kaposi's sarcoma herpesvirus (KSHV) microRNA K12-1 functions as an oncogene by activating NF-κB/IL-6/STAT3 signaling. Oncotarget 2017; 7:33363-73. [PMID: 27166260 PMCID: PMC5078101 DOI: 10.18632/oncotarget.9221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/10/2016] [Indexed: 01/01/2023] Open
Abstract
The human oncogenic virus Kaposi's sarcoma herpesvirus (KSHV) is the most common cause of malignancies among AIDS patients. KSHV possesses over hundred genes, including 25 microRNAs (miRNAs). The roles of these miRNAs and many other viral genes in KSHV biology and pathogenesis remain largely unknown. Accordingly, the molecular mechanisms by which KSHV induces tumorigenesis are still poorly defined. Here, we identify KSHV miRNA K12-1 (miR-K12-1) as a novel viral oncogene by activating two important transcription factors, nuclear factor-κb (NF-κB) and signal transducer and activator of transcription 3 (STAT3). Interestingly, miR-K12-1 activates STAT3 indirectly through inducing NF-κB activation and NF-κB-dependent expression of the cytokine interleukin-6 (IL-6) by repressing the expression of the NF-κB inhibitor IκBα. Accordingly, expression of ectopic IκBα or knockdown of NF-κB RelA, IL-6 or STAT3 prevents expression of cell growth genes and suppresses the oncogenicities of both miR-K12-1 and KSHV. These data identify miR-K12-1/NF-κB/IL-6/STAT3 as a novel oncogenic signaling underlying KSHV tumorigenesis. These data also provide the first evidence showing that IL-6/STAT3 signaling acts as an essential mediator of NF-κB oncogenic actions. These findings significantly improve our understanding of KSHV pathogenesis and oncogenic interaction between NF-κB and STAT3.
Collapse
Affiliation(s)
- Mingqing Chen
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Fan Sun
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lei Han
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhaoxia Qu
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Gruffaz M, Vasan K, Tan B, Ramos da Silva S, Gao SJ. TLR4-Mediated Inflammation Promotes KSHV-Induced Cellular Transformation and Tumorigenesis by Activating the STAT3 Pathway. Cancer Res 2017; 77:7094-7108. [PMID: 29051178 DOI: 10.1158/0008-5472.can-17-2321] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/18/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022]
Abstract
Toll-like receptors (TLR) are conserved immune sensors mediating antimicrobial and antitumoral responses, but recent evidence implicates them in promoting carcinogenesis in certain cancers. Kaposi sarcoma is caused by infection of Kaposi sarcoma-associated herpesvirus (KSHV) and is characterized by uncontrolled neoangiogenesis and inflammation. Here, we show that TLR4 is upregulated in KSHV-infected spindle tumor cells in human Kaposi sarcoma lesions. In a model of KSHV-induced cellular transformation, KSHV upregulated expression of TLR4, its adaptor MyD88, and coreceptors CD14 and MD2. KSHV induction of TLR4 was mediated by multiple viral miRNAs. Importantly, the TLR4 pathway was activated constitutively in KSHV-transformed cells, resulting in chronic induction of IL6, IL1β, and IL18. Accordingly, IL6 mediated constitutive activation of the STAT3 pathway, an essential event for uncontrolled cellular proliferation and transformation. TLR4 stimulation with lipopolysaccharides or live bacteria enhanced tumorigenesis while TLR4 antagonist CLI095 inhibited it. These results highlight an essential role of the TLR4 pathway and chronic inflammation in KSHV-induced tumorigenesis, which helps explain why HIV-infected patients, who frequently suffer from opportunistic bacterial infections and metabolic complications, frequently develop Kaposi sarcoma. Cancer Res; 77(24); 7094-108. ©2017 AACR.
Collapse
Affiliation(s)
- Marion Gruffaz
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Karthik Vasan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
37
|
An Epstein-Barr Virus MicroRNA Blocks Interleukin-1 (IL-1) Signaling by Targeting IL-1 Receptor 1. J Virol 2017; 91:JVI.00530-17. [PMID: 28794034 DOI: 10.1128/jvi.00530-17] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/04/2017] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) encodes >44 viral microRNAs (miRNAs) that are differentially expressed throughout infection, can be detected in Epstein-Barr virus (EBV)-positive tumors, and manipulate several biological processes, including cell proliferation, apoptosis, and immune responses. Here, we show that EBV BHRF1-2 miRNAs block NF-κB activation following treatment with proinflammatory cytokines, specifically interleukin-1β (IL-1β). Analysis of EBV PAR-CLIP miRNA targetome data sets combined with pathway analysis revealed multiple BHRF1-2 miRNA targets involved in interleukin signaling pathways. By further analyzing changes in cellular gene expression patterns, we identified the IL-1 receptor 1 (IL1R1) as a direct target of miR-BHRF1-2-5p. Targeting the IL1R1 3' untranslated region (UTR) by EBV miR-BHRF1-2-5p was confirmed using 3'-UTR luciferase reporter assays and Western blot assays. Manipulation of EBV BHRF1-2 miRNA activity in latently infected B cells altered steady-state cytokine levels and disrupted IL-1β responsiveness. These studies demonstrate functionally relevant BHRF1-2 miRNA interactions during EBV infection, which is an important step in understanding their roles in pathogenesis.IMPORTANCE IL-1 signaling plays an important role in inflammation and early activation of host innate immune responses following virus infection. Here, we demonstrate that a viral miRNA downregulates the IL-1 receptor 1 during EBV infection, which consequently alters the responsiveness of cells to IL-1 stimuli and changes the cytokine expression levels within infected cell populations. We postulate that this viral miRNA activity not only disrupts IL-1 autocrine and paracrine signaling loops that can alert effector cells to sites of infection but also provides a survival advantage by dampening excessive inflammation that may be detrimental to the infected cell.
Collapse
|
38
|
Abere B, Mamo TM, Hartmann S, Samarina N, Hage E, Rückert J, Hotop SK, Büsche G, Schulz TF. The Kaposi's sarcoma-associated herpesvirus (KSHV) non-structural membrane protein K15 is required for viral lytic replication and may represent a therapeutic target. PLoS Pathog 2017; 13:e1006639. [PMID: 28938025 PMCID: PMC5627962 DOI: 10.1371/journal.ppat.1006639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/04/2017] [Accepted: 09/09/2017] [Indexed: 12/18/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the infectious cause of the highly vascularized tumor Kaposi’s sarcoma (KS), which is characterized by proliferating spindle cells of endothelial origin, extensive neo-angiogenesis and inflammatory infiltrates. The KSHV K15 protein contributes to the angiogenic and invasive properties of KSHV-infected endothelial cells. Here, we asked whether K15 could also play a role in KSHV lytic replication. Deletion of the K15 gene from the viral genome or its depletion by siRNA lead to reduced virus reactivation, as evidenced by the decreased expression levels of KSHV lytic proteins RTA, K-bZIP, ORF 45 and K8.1 as well as reduced release of infectious virus. Similar results were found for a K1 deletion virus. Deleting either K15 or K1 from the viral genome also compromised the ability of KSHV to activate PLCγ1, Erk1/2 and Akt1. In infected primary lymphatic endothelial (LEC-rKSHV) cells, which have previously been shown to spontaneously display a viral lytic transcription pattern, transfection of siRNA against K15, but not K1, abolished viral lytic replication as well as KSHV-induced spindle cell formation. Using a newly generated monoclonal antibody to K15, we found an abundant K15 protein expression in KS tumor biopsies obtained from HIV positive patients, emphasizing the physiological relevance of our findings. Finally, we used a dominant negative inhibitor of the K15-PLCγ1 interaction to establish proof of principle that pharmacological intervention with K15-dependent pathways may represent a novel approach to block KSHV reactivation and thereby its pathogenesis. Both the latent and lytic replication phases of the KSHV life cycle are thought to contribute to its persistence and pathogenesis. The non-structural signaling membrane protein K15 is involved in the angiogenic and invasive properties of KSHV-infected endothelial cells. Here we show that the K15 protein is required for virus replication, early viral gene expression and virus production through its activation of the cellular signaling pathways PLCγ1 and Erk 1/2. K15 is abundantly expressed in KSHV-infected lymphatic endothelial cells (LECs) and contributes to KSHV-induced endothelial spindle cell formation. The abundant K15 protein expression observed in LECs is also observed in KS tumors. We also show that it may be possible to target K15 in order to intervene therapeutically with KSHV lytic replication and pathogenesis.
Collapse
Affiliation(s)
- Bizunesh Abere
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Tamrat M. Mamo
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Silke Hartmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Naira Samarina
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Elias Hage
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Sven-Kevin Hotop
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
- Department of Chemical Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
- * E-mail:
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This review discusses the pathogenesis and recent advances in the management of Kaposi sarcoma herpesvirus (KSHV)-associated diseases. RECENT FINDINGS KSHV, a gammaherpesvirus, causes several tumors and related diseases, including Kaposi sarcoma, a form of multicentric Castleman disease (KSHV-MCD), and primary effusion lymphoma. These most often develop in patients infected with human immunodeficiency virus (HIV). KSHV inflammatory cytokine syndrome (KICS) is a newly described syndrome with high mortality that has inflammatory symptoms-like MCD but not the pathologic lymph node findings. KSHV-associated diseases are often associated with dysregulated human interleukin-6, and KSHV encodes a viral interleukin-6, both of which contribute to disease pathogenesis. Treatment of HIV is important in HIV-infected patients. Strategies to prevent KSHV infection may reduce the incidence of these tumors. Pomalidomide, an immunomodulatory agent, has activity in Kaposi sarcoma. Rituximab is active in KSHV-MCD but can cause Kaposi sarcoma exacerbation; rituximab plus liposomal doxorubicin is useful to treat KSHV-MCD patients with concurrent Kaposi sarcoma. SUMMARY KSHV is the etiological agents of all forms of Kaposi sarcoma and several other diseases. Strategies employing immunomodulatory agents, cytokine inhibition, and targeting of KSHV-infected cells are areas of active research.
Collapse
|
40
|
KSHV and the Role of Notch Receptor Dysregulation in Disease Progression. Pathogens 2017; 6:pathogens6030034. [PMID: 28777778 PMCID: PMC5617991 DOI: 10.3390/pathogens6030034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of two human cancers, Kaposi's Sarcoma (KS) and primary effusion lymphoma (PEL), and a lymphoproliferation, Multicentric Castleman's Disease (MCD). Progression to tumor development in KS is dependent upon the reactivation of the virus from its latent state. We, and others, have shown that the Replication and transcriptional activator (Rta) protein is the only viral gene product that is necessary and sufficient for viral reactivation. To induce the reactivation and transcription of viral genes, Rta forms a complex with the cellular DNA binding component of the canonical Notch signaling pathway, recombination signal binding protein for Jk (RBP-Jk). Formation of this Rta:RBP-Jk complex is necessary for viral reactivation to occur. Expression of activated Notch has been shown to be dysregulated in KSHV infected cells and to be necessary for cell growth and disease progression. Studies into the involvement of activated Notch in viral reactivation have yielded varied results. In this paper, we review the current literature regarding Notch dysregulation by KSHV and its role in viral infection and cellular pathogenesis.
Collapse
|
41
|
Li W, Hu M, Wang C, Lu H, Chen F, Xu J, Shang Y, Wang F, Qin J, Yan Q, Krueger BJ, Renne R, Gao SJ, Lu C. A viral microRNA downregulates metastasis suppressor CD82 and induces cell invasion and angiogenesis by activating the c-Met signaling. Oncogene 2017; 36:5407-5420. [PMID: 28534512 PMCID: PMC5608636 DOI: 10.1038/onc.2017.139] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
Kaposi’s sarcoma (KS) is the most common AIDS-associated malignancy etiologically caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). KS is a highly disseminated and vascularized tumor comprised of poorly differentiated spindle-shaped endothelial cells. KSHV encodes 12 pre-microRNAs (pre-miRNAs) that yield 25 mature miRNAs, but their roles in KSHV-induced tumor dissemination and angiogenesis remain largely unknown. KSHV-encoded miR-K12-6 (miR-K6) can produce two mature miRNAs, miR-K6-3p and miR-K6-5p. Recently, we have shown that miR-K6-3p promoted cell migration and angiogenesis by directly targeting SH3 domain binding glutamate-rich protein (SH3BGR) (PLoS Pathog. 2016;12(4):e1005605). Here, by using mass spectrometry, bioinformatics analysis and luciferase reporter assay, we showed that miR-K6-5p directly targeted the coding sequence (CDS) of CD82 molecule (CD82), a metastasis suppressor. Ectopic expression of miR-K6-5p specifically inhibited the expression of endogenous CD82 and strongly promoted endothelial cells invasion in vitro and angiogenesis in vivo. Overexpression of CD82 significantly inhibited cell invasion and angiogenesis induced by miR-K6-5p. Mechanistically, CD82 directly interacted with c-Met to inhibit its activation. MiR-K6-5p directly repressed CD82, relieving its inhibition on c-Met activation and inducing cell invasion and angiogenesis. Deletion of miR-K6 from KSHV genome abrogated KSHV suppression of CD82 resulting in compromised KSHV activation of c-Met pathway, and KSHV-induced invasion and angiogenesis. In conclusion, these results show that by inhibiting CD82, KSHV miR-K6-5p promotes cell invasion and angiogenesis by activating the c-Met pathway. Our findings illustrate that KSHV miRNAs may play an essential role in the dissemination and angiogenesis of KSHV-induced malignancies.
Collapse
Affiliation(s)
- W Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - M Hu
- Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - C Wang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - H Lu
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - F Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - J Xu
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Y Shang
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - F Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - J Qin
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Q Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - B J Krueger
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - R Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - S-J Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - C Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Herpesvirus microRNAs for use in gene therapy immune-evasion strategies. Gene Ther 2017; 24:385-391. [PMID: 28485720 DOI: 10.1038/gt.2017.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 01/12/2023]
Abstract
Transplantation of allogeneic cells as well as of genetically corrected autologous cells are potent approaches to restore cellular functions in patients suffering from genetic diseases. The recipient's immune responses against non-self-antigens may compromise the survival of the grafted cells. Recipients of the graft may therefore require lifelong treatment with immunosuppressive drugs. An alternative approach to reduce graft rejection could involve the use of immune-evasion molecules. Expression of such molecules in cells of the graft may subvert recognition by the host's immune system. Viruses in particular are masters of exploitation and modulation of their hosts immune response. The Herpesviridae family provides a proof of concept for this as these viruses are capable to establish latency and a lifelong persistence in the infected hosts. While several viral proteins involved in immune evasion have been characterized, the Herpesviridae also encode a multitude of viral microRNA (miRNAs). Several of these miRNAs have been demonstrated to reduce the sensitivity of the infected cells to the destructive action of the host's immune cells. In this review, the miRNAs of some common herpesviruses that are associated with immune modulation will be discussed with a focus on their potential use in strategies aiming at generating non-immunogenic cells for transplantation.
Collapse
|
43
|
Qin J, Li W, Gao SJ, Lu C. KSHV microRNAs: Tricks of the Devil. Trends Microbiol 2017; 25:648-661. [PMID: 28259385 DOI: 10.1016/j.tim.2017.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 01/02/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), a vascular tumor frequently found in immunodeficient individuals. KSHV encodes 12 pre-microRNAs (pre-miRNAs), which are processed into 25 mature microRNAs (miRNAs). KSHV miRNAs maintain KSHV latency, enhance angiogenesis and dissemination of the infected cells, and interfere with the host immune system by regulating viral and cellular gene expression, ultimately contributing to KS development. In this review, we briefly introduce the biogenesis of miRNAs and then describe the recent advances in defining the roles and mechanisms of action of KSHV miRNAs in KS development.
Collapse
Affiliation(s)
- Jie Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P.R. China; Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China; Department of Microbiology, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Wan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P.R. China; Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China; Department of Microbiology, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P.R. China.
| |
Collapse
|
44
|
Sorel O, Dewals BG. MicroRNAs in large herpesvirus DNA genomes: recent advances. Biomol Concepts 2017; 7:229-39. [PMID: 27544723 DOI: 10.1515/bmc-2016-0017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/18/2016] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that regulate gene expression. They alter mRNA translation through base-pair complementarity, leading to regulation of genes during both physiological and pathological processes. Viruses have evolved mechanisms to take advantage of the host cells to multiply and/or persist over the lifetime of the host. Herpesviridae are a large family of double-stranded DNA viruses that are associated with a number of important diseases, including lymphoproliferative diseases. Herpesviruses establish lifelong latent infections through modulation of the interface between the virus and its host. A number of reports have identified miRNAs in a very large number of human and animal herpesviruses suggesting that these short non-coding transcripts could play essential roles in herpesvirus biology. This review will specifically focus on the recent advances on the functions of herpesvirus miRNAs in infection and pathogenesis.
Collapse
|
45
|
Qin J, Lu C. Infection of KSHV and Interaction with HIV: The Bad Romance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:237-251. [PMID: 29052142 DOI: 10.1007/978-981-10-5765-6_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), namely, human herpesvirus 8 (HHV-8), is considered as the pathogen of Kaposi's sarcoma (KS), the most frequent cancer in untreated HIV-infected individuals. Patients infected with HIV have a much higher possibility developing KS than average individual. Researchers have found that HIV, which functions as a cofactor of KS, contributes a lot to the development of KS. In this article, we will give a brief introduction of KS and KSHV and how the interaction between KSHV and HIV contributes to the development of KS. Also we will take a glance at the development of treatment in KS, especially AIDS-KS.
Collapse
Affiliation(s)
- Jie Qin
- Key Laboratory of Pathogen Biology (Jiangsu Province), Nanjing Medical University, Nanjing, People's Republic of China.,Department of Microbiology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Chun Lu
- Key Laboratory of Pathogen Biology (Jiangsu Province), Nanjing Medical University, Nanjing, People's Republic of China. .,Department of Microbiology, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
46
|
Krause CJ, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget 2016; 7:10414-32. [PMID: 26871287 PMCID: PMC4891129 DOI: 10.18632/oncotarget.7248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/17/2016] [Indexed: 12/18/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded chemokine receptor vGPCR acts as an oncogene in Kaposi's sarcomagenesis. Until now, the molecular mechanisms by which the vGPCR contributes to tumor development remain incompletely understood. Here, we show that the KSHV-vGPCR contributes to tumor progression through microRNA (miR)-34a-mediated induction of genomic instability. Large-scale analyses on the DNA, gene and protein level of cell lines derived from a mouse model of vGPCR-driven tumorigenesis revealed that a vGPCR–induced upregulation of miR-34a resulted in a broad suppression of genome maintenance genes. A knockdown of either the vGPCR or miR-34a largely restored the expression of these genes and confirmed miR-34a as a downstream effector of the KSHV-vGPCR that compromises genome maintenance mechanisms. This novel, protumorigenic role of miR-34a questions the use of miR-34a mimetics in cancer therapy as they could impair genome stability.
Collapse
Affiliation(s)
- Claudia J Krause
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Oliver Popp
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nanthakumar Thirunarayanan
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gunnar Dittmar
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Martin Lipp
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gerd Müller
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
47
|
Zhong S, Naqvi A, Bair E, Nares S, Khan AA. Viral MicroRNAs Identified in Human Dental Pulp. J Endod 2016; 43:84-89. [PMID: 27939730 DOI: 10.1016/j.joen.2016.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 02/08/2023]
Abstract
INTRODUCTION MicroRNAs (miRs) are a family of noncoding RNAs that regulate gene expression. They are ubiquitous among multicellular eukaryotes and are also encoded by some viruses. Upon infection, viral miRs (vmiRs) can potentially target gene expression in the host and alter the immune response. Although prior studies have reported viral infections in human pulp, the role of vmiRs in pulpal disease is yet to be explored. The purpose of this study was to examine the expression of vmiRs in normal and diseased pulps and to identify potential target genes. METHODS Total RNA was extracted and quantified from normal and inflamed human pulps (N = 28). Expression profiles of vmiRs were then interrogated using miRNA microarrays (V3) and the miRNA Complete Labeling and Hyb Kit (Agilent Technologies, Santa Clara, CA). To identify vmiRs that were differentially expressed, we applied a permutation test. RESULTS Of the 12 vmiRs detected in the pulp, 4 vmiRs (including those from herpesvirus and human cytomegalovirus) were differentially expressed in inflamed pulp compared with normal pulp (P < .05). Using bioinformatics, we identified potential target genes for the differentially expressed vmiRs. They included key mediators involved in the detection of microbial ligands, chemotaxis, proteolysis, cytokines, and signal transduction molecules. CONCLUSIONS These data suggest that miRs may play a role in interspecies regulation of pulpal health and disease. Further research is needed to elucidate the mechanisms by which vmiRs can potentially modulate the host response in pulpal disease.
Collapse
Affiliation(s)
- Sheng Zhong
- Endodontic Associates, Minneapolis, Minnesota; Department of Endodontics, University of North Carolina, Chapel Hill, North Carolina
| | - Afsar Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Eric Bair
- Department of Endodontics, University of North Carolina, Chapel Hill, North Carolina
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Asma A Khan
- Department of Endodontics, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
48
|
HIV-1 Vpr Inhibits Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication by Inducing MicroRNA miR-942-5p and Activating NF-κB Signaling. J Virol 2016; 90:8739-53. [PMID: 27440900 DOI: 10.1128/jvi.00797-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) infection is required for the development of several AIDS-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The high incidence of AIDS-KS has been ascribed to the interaction of KSHV and HIV-1. We have previously shown that HIV-1-secreted proteins Tat and Nef regulate the KSHV life cycle and synergize with KSHV oncogenes to promote angiogenesis and tumorigenesis. Here, we examined the regulation of KSHV latency by HIV-1 viral protein R (Vpr). We found that soluble Vpr inhibits the expression of KSHV lytic transcripts and proteins, as well as viral particle production by activating NF-κB signaling following internalization into PEL cells. By analyzing the expression profiles of microRNAs combined with target search by bioinformatics and luciferase reporter analyses, we identified a Vpr-upregulated cellular microRNA (miRNA), miR-942-5p, that directly targeted IκBα. Suppression of miR-942-5p relieved the expression of IκBα and reduced Vpr inhibition of KSHV lytic replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV lytic replication. Our findings collectively illustrate that, by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized HIV-1 Vpr inhibits KSHV lytic replication. These results have demonstrated an essential role of Vpr in the life cycle of KSHV. IMPORTANCE Coinfection by HIV-1 promotes the aggressive growth of Kaposi's sarcoma-associated herpesvirus (KSHV)-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). In this study, we have shown that soluble HIV-1 Vpr inhibits KSHV lytic replication by activating NF-κB signaling following internalization into PEL cells. Mechanistic studies revealed that a cellular microRNA upregulated by Vpr, miR-942-5p, directly targeted IκBα. Suppression of miR-942-5p relieved IκBα expression and reduced Vpr inhibition of KSHV replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV replication. These results indicate that by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized Vpr inhibits KSHV lytic replication. This work illustrates a molecular mechanism by which HIV-1-secreted regulatory protein Vpr regulates KSHV latency and the pathogenesis of AIDS-related malignancies.
Collapse
|
49
|
Piedade D, Azevedo-Pereira JM. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection. Viruses 2016; 8:v8060156. [PMID: 27271654 PMCID: PMC4926176 DOI: 10.3390/v8060156] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein–Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.
Collapse
Affiliation(s)
- Diogo Piedade
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
50
|
An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis. PLoS Pathog 2016; 12:e1005648. [PMID: 27187079 PMCID: PMC4871371 DOI: 10.1371/journal.ppat.1005648] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/29/2016] [Indexed: 11/19/2022] Open
Abstract
Aerobic glycolysis is essential for supporting the fast growth of a variety of cancers. However, its role in the survival of cancer cells under stress conditions is unclear. We have previously reported an efficient model of gammaherpesvirus Kaposi’s sarcoma-associated herpesvirus (KSHV)-induced cellular transformation of rat primary mesenchymal stem cells. KSHV-transformed cells efficiently induce tumors in nude mice with pathological features reminiscent of Kaposi’s sarcoma tumors. Here, we report that KSHV promotes cell survival and cellular transformation by suppressing aerobic glycolysis and oxidative phosphorylation under nutrient stress. Specifically, KSHV microRNAs and vFLIP suppress glycolysis by activating the NF-κB pathway to downregulate glucose transporters GLUT1 and GLUT3. While overexpression of the transporters rescues the glycolytic activity, it induces apoptosis and reduces colony formation efficiency in softagar under glucose deprivation. Mechanistically, GLUT1 and GLUT3 inhibit constitutive activation of the AKT and NF-κB pro-survival pathways. Strikingly, GLUT1 and GLUT3 are significantly downregulated in KSHV-infected cells in human KS tumors. Furthermore, we have detected reduced levels of aerobic glycolysis in several KSHV-infected primary effusion lymphoma cell lines compared to a Burkitt’s lymphoma cell line BJAB, and KSHV infection of BJAB cells reduced aerobic glycolysis. These results reveal a novel mechanism by which an oncogenic virus regulates a key metabolic pathway to adapt to stress in tumor microenvironment, and illustrate the importance of fine-tuning the metabolic pathways for sustaining the proliferation and survival of cancer cells, particularly under stress conditions. KSHV is causally associated with the development of Kaposi’s sarcoma and primary effusion lymphoma; however, the mechanism underlying KSHV-induced malignant transformation remains unclear. The recent development of an efficient KSHV-induced cellular transformation model of primary rat mesenchymal stem cells should facilitate the delineation of KSHV-induced oncogenesis. In this report, we have used this model to investigate the metabolic pathways mediating the proliferation and survival of KSHV-transformed cells. In contrast to most other cancers that depend on aerobic glycolysis for their fast growth, we demonstrate that KSHV suppresses aerobic glycolysis and oxidative phosphorylation in the transformed cells. Significantly, suppression of aerobic glycolysis enhances the survival of the KSHV-transformed cells under nutrient deprivation. Mechanistically, KSHV-encoded microRNAs and vFLIP suppress aerobic glycolysis by activating the NF-κB pathway to downregulate glucose transporters GLUT1 and GLUT3. We have further shown that GLUT1 and GLUT3 inhibit constitutive activation of the AKT and NF-κB pro-survival pathways. Strikingly, GLUT1 and GLUT3 are significantly downregulated in KSHV-infected cells in human KS tumors. Furthermore, we have detected reduced levels of aerobic glycolysis in several KSHV-infected primary effusion lymphoma cell lines and a KSHV-infected Burkitt’s lymphoma cell line BJAB. Our results reveal a novel mechanism by which an oncogenic virus regulates a key metabolic pathway to adapt to stress in tumor microenvironment, and illustrate the importance of fine-tuning the metabolic pathways for sustaining the proliferation and survival of cancer cells, particularly under nutrient stress microenvironment.
Collapse
|