1
|
Yang Z, Zhang L, Ottavi S, Geri JB, Perkowski A, Jiang X, Pfau D, Bryk R, Aubé J, Zimmerman M, Dartois V, Nathan C. ACOD1-mediated lysosomal membrane permeabilization contributes to Mycobacterium tuberculosis-induced macrophage death. Proc Natl Acad Sci U S A 2025; 122:e2425309122. [PMID: 40100622 PMCID: PMC11962489 DOI: 10.1073/pnas.2425309122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Mycobacterium tuberculosis (Mtb) primarily infects macrophages. In vitro without antibiotics, wild-type Mtb hastens death of the macrophages, but the processes leading to rapid cell death are not well understood. Our earlier work indicated that the death of Mtb-infected mouse macrophages in vitro is markedly exacerbated by induction of interferon-β (IFN-β) [L. Zhang et al., J. Exp. Med. 18, e20200887 (2021)]. Here, we identified a key downstream response to IFN-β in the context of Mtb infection as the massive induction of cis-aconitate decarboxylase (ACOD1), not only in its canonical subcellular localization in mitochondria but also in the cytosol, where it bound to the lysosome-stabilizing protein HSP70. ACOD1's product, itaconate, protected Mtb-infected macrophages. However, the contrasting and predominant effect of high-level ACOD1 expression was to act in a noncatalytic manner to promote HSP70's degradation, leading to lysosomal membrane permeabilization (LMP). Mtb-induced macrophage death was markedly diminished by inhibitors of cysteine proteases, consistent with lysosome-mediated cell death. Neither ACOD1 inhibitors nor cysteine protease inhibitors are suitable for potential host-directed therapy (HDT) of tuberculosis. Instead, this work directs attention to how ACOD1 acts nonenzymatically to promote the degradation of HSP70.
Collapse
Affiliation(s)
- Ziwei Yang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Li Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Samantha Ottavi
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jacob B. Geri
- Department of Pharmacology, Weill Cornell Medicine, New York, NY10065
| | - Andrew Perkowski
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Daniel Pfau
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Ruslana Bryk
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| |
Collapse
|
2
|
Henn D, Yang X, Li M. Lysosomal quality control Review. Autophagy 2025:1-20. [PMID: 39968899 DOI: 10.1080/15548627.2025.2469206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025] Open
Abstract
Healthy cells need functional lysosomes to degrade cargo delivered by autophagy and endocytosis. Defective lysosomes can lead to severe conditions such as lysosomal storage diseases (LSDs) and neurodegeneration. To maintain lysosome integrity and functionality, cells have evolved multiple quality control pathways corresponding to different types of stress and damage. These can be divided into five levels: regulation, reformation, repair, removal, and replacement. The different levels of lysosome quality control often work together to maintain the integrity of the lysosomal network. This review summarizes the different quality control pathways and discusses the less-studied area of lysosome membrane protein regulation and degradation, highlighting key unanswered questions in the field.Abbreviation: ALR: autophagic lysosome reformation; CASM: conjugation of ATG8 to single membranes: ER: endoplasmic reticulum; ESCRT: endosomal sorting complexes required for transport; ILF: intralumenal fragment; LSD: lysosomal storage disease; LYTL: lysosomal tubulation/sorting driven by LRRK2; PITT: phosphoinositide-initiated membrane tethering and lipid transport; PE: phosphatidylethanolamine; PLR: phagocytic lysosome reformation; PS: phosphatidylserine; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; PtdIns(4,5)P2: phosphatidylinositol-4,5-bisphosphate; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Danielle Henn
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xi Yang
- Department of Biological Sciences, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Munke K, Wulff L, Lienard J, Carlsson F, Agace WW. In vivo regulation of the monocyte phenotype by Mycobacterium marinum and the ESX-1 type VII secretion system. Sci Rep 2025; 15:4545. [PMID: 39915532 PMCID: PMC11802795 DOI: 10.1038/s41598-025-88212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/25/2025] [Indexed: 02/09/2025] Open
Abstract
Pathogenic mycobacteria require the conserved ESX-1 type VII secretion system to cause disease. In a murine Mycobacterium marinum infection model we previously demonstrated that infiltrating monocytes and neutrophils represent the major bacteria-harbouring cell populations in infected tissue. In the current study we use this model, in combination with scRNA sequencing, to assess the impact of M. marinum infection on the transcriptional profile of infiltrating Ly6C⁺MHCII⁺ monocytes in vivo. Our findings demonstrate that infection of infiltrating monocytes with M. marinum alters their cytokine expression profile, induces glycolytic metabolism, hypoxia-mediated signaling, nitric oxide synthesis, tissue remodeling, and suppresses responsiveness to IFNγ. We further show that the transcriptional response of bystander monocytes is influenced by ESX-1-dependent mechanisms, including a reduced responsiveness to IFNγ. These findings suggest that mycobacterial infection has pleiotropic effects on monocyte phenotype, with potential implications in bacterial growth restriction and granuloma formation.
Collapse
Affiliation(s)
- Kristina Munke
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Line Wulff
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Julia Lienard
- Department of Biology, Lund University, Lund, Sweden
| | | | - William W Agace
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Augenstreich J, Phan AT, Allen CNS, Poddar A, Chen H, Srinivasan L, Briken V. Dynamic interplay of autophagy and membrane repair during Mycobacterium tuberculosis Infection. PLoS Pathog 2025; 21:e1012830. [PMID: 39746091 PMCID: PMC11731705 DOI: 10.1371/journal.ppat.1012830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/14/2025] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Autophagy plays a crucial role in the host response to Mycobacterium tuberculosis (Mtb) infection, yet the dynamics and regulation of autophagy induction on Mtb-containing vacuoles (MCVs) remain only partially understood. We employed time-lapse confocal microscopy to investigate the recruitment of LC3B (LC3), a key autophagy marker, to MCVs at the single cell level with our newly developed workflow for single cell and single MCV tracking and fluorescence quantification. We show that approximately 70% of MCVs exhibited LC3 recruitment but that was lost in about 40% of those MCVs. The LC3 recruitment to MCVs displayed a high variability in timing that was independent of the size of the MCV or the bacterial burden. Most notably, the LC3-positive MCVs did not acidify, indicating that LC3 recruitment does not necessarily lead to the formation of mature autophagolysosomes. Interferon-gamma pre-treatment did not affect LC3 recruitment frequency or autophagosome acidification but increased the susceptibility of the macrophage to Mtb-induced cell death. LC3 recruitment and lysotracker staining were mutually exclusive events, alternating on some MCVs multiple times thus demonstrating a reversible aspect of the autophagy response. The LC3 recruitment was associated with galectin-3 and oxysterol-binding protein 1 staining, indicating a correlation with membrane damage and repair mechanisms. ATG7 knock-down did not impact membrane repair, suggesting that autophagy is not directly involved in this process but is coregulated by the membrane damage of MCVs. In summary, our findings provide novel insights into the dynamic and variable nature of LC3 recruitment to the MCVs over time during Mtb infection. Our data does not support a role for autophagy in either cell-autonomous defense against Mtb or membrane repair of the MCV in human macrophages. In addition, the combined dynamics of LC3 recruitment and Lysoview staining emerged as promising markers for investigating the damage and repair processes of phagosomal membranes.
Collapse
Affiliation(s)
- Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America
| | - Anna T. Phan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America
| | - Charles N. S. Allen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America
| | - Anushka Poddar
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America
| | - Hanzhang Chen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America
| | - Lalitha Srinivasan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America
| |
Collapse
|
5
|
Olmo-Fontánez AM, Allué-Guardia A, Garcia-Vilanova A, Glenn J, Wang SH, Merritt RE, Schlesinger LS, Turner J, Wang Y, Torrelles JB. Impact of the elderly lung mucosa on Mycobacterium tuberculosis transcriptional adaptation during infection of alveolar epithelial cells. Microbiol Spectr 2024; 12:e0179024. [PMID: 39513699 PMCID: PMC11619525 DOI: 10.1128/spectrum.01790-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Tuberculosis is one of the leading causes of death due to a single infectious agent. Upon infection, Mycobacterium tuberculosis (M.tb) is deposited in the alveoli and encounters the lung mucosa or alveolar lining fluid (ALF). We previously showed that, as we age, ALF presents a higher degree of oxidation and inflammatory mediators, which favors M.tb replication in human macrophages and alveolar epithelial cells (ATs). Here, we define the transcriptional profile of M.tb when exposed to healthy ALF from adult (A-ALF) or elderly (E-ALF) humans before and during infection of ATs. Prior to infection, M.tb exposure to E-ALF upregulated genes essential for bacterial host adaptation directly involved in M.tb pathogenesis. During infection of ATs, E-ALF exposed M.tb further upregulated genes involved in its ability to escape into the AT cytosol bypassing critical host defense mechanisms, as well as genes associated with defense against oxidative stress. These findings demonstrate how alterations in human ALF during the aging process can impact the metabolic status of M.tb, potentially enabling a greater adaptation and survival within host cells. Importantly, we present the first transcriptomic analysis on the impact of the elderly lung mucosa on M.tb pathogenesis during intracellular replication in ATs.IMPORTANCETuberculosis is one of the leading causes of death due to a single infectious agent. Upon infection, Mycobacterium tuberculosis (M.tb) is deposited in the alveoli and comes in contact with the alveolar lining fluid (ALF). We previously showed that elderly ALF favors M.tb replication in human macrophages and alveolar epithelial cells (ATs). Here we define the transcriptional profile of when exposed to healthy ALF from adult (A-ALF) or elderly (E-ALF) humans before and during infection of ATs. Prior to infection, exposure to E-ALF upregulates genes essential for bacterial host adaptation and pathogenesis. During infection of ATs, E-ALF further upregulates M.tb genes involved in its ability to escape into the AT cytosol, as well as genes for defense against oxidative stress. These findings demonstrate how alterations in human ALF during the aging process can impact the metabolic status of M.tb, potentially enabling a greater adaptation and survival within host cells.
Collapse
Affiliation(s)
- Angélica M. Olmo-Fontánez
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Anna Allué-Guardia
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
- International Center for the Advancement of Research & Education (I • CARE), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Andreu Garcia-Vilanova
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jeremy Glenn
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Shu-Hua Wang
- Department of Internal Medicine, Infectious Disease Division, The Ohio State University, Columbus, Ohio, USA
| | - Robert E. Merritt
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Larry S. Schlesinger
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
- International Center for the Advancement of Research & Education (I • CARE), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Joanne Turner
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
- International Center for the Advancement of Research & Education (I • CARE), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Jordi B. Torrelles
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
- International Center for the Advancement of Research & Education (I • CARE), Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
6
|
Xander C, Rajagopalan S, Jacobs WR, Braunstein M. The SapM phosphatase can arrest phagosome maturation in an ESX-1 independent manner in Mycobacterium tuberculosis and BCG. Infect Immun 2024; 92:e0021724. [PMID: 38884474 PMCID: PMC11238552 DOI: 10.1128/iai.00217-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that survives and grows in macrophages. A mechanism used by Mtb to achieve intracellular survival is to secrete effector molecules that arrest the normal process of phagosome maturation. Through phagosome maturation arrest (PMA), Mtb remains in an early phagosome and avoids delivery to degradative phagolysosomes. One PMA effector of Mtb is the secreted SapM phosphatase. Because the host target of SapM, phosphatidylinositol-3-phosphate (PI3P), is located on the cytosolic face of the phagosome, SapM needs to not only be released by the mycobacteria but also travel out of the phagosome to carry out its function. To date, the only mechanism known for Mtb molecules to leave the phagosome is phagosome permeabilization by the ESX-1 secretion system. To understand this step of SapM function in PMA, we generated identical in-frame sapM mutants in both the attenuated Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine strain, which lacks the ESX-1 system, and Mtb. Characterization of these mutants demonstrated that SapM is required for PMA in BCG and Mtb. Further, by establishing a role for SapM in PMA in BCG, and subsequently in a Mtb mutant lacking the ESX-1 system, we demonstrated that the role of SapM does not require ESX-1. We further determined that ESX-2 or ESX-4 is also not required for SapM to function in PMA. These results indicate that SapM is a secreted effector of PMA in both BCG and Mtb, and that it can function independent of the known mechanism for Mtb molecules to leave the phagosome.
Collapse
Affiliation(s)
- Christian Xander
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Saranathan Rajagopalan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
7
|
Zheng J, Dong C, Xiong S. Mycobacterial Rv1804c binds to the PEST domain of IκBα and activates macrophage-mediated proinflammatory responses. iScience 2024; 27:109101. [PMID: 38384838 PMCID: PMC10879709 DOI: 10.1016/j.isci.2024.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Recognition of the components of Mycobacterium tuberculosis (Mtb) by macrophages is vital for initiating a cascade of host immune responses. However, the recognition of Mtb-secretory proteins by the receptor-independent pathways of the host remains unclear. Rv1804c is a highly conserved secretory protein in Mtb. However, its exact function and underlying mechanism in Mtb infection remain poorly understood. In the present study, we observed that Rv1804c activates macrophage-mediated proinflammatory responses in an IKKα-independent manner. Furthermore, we noted that Rv1804c inhibits mycobacterial survival. By elucidating the underlying mechanisms, we observed that Rv1804c activates IκBα by directly interacting with its PEST domain. Moreover, Rv1804c was enriched in attenuated but not in virulent mycobacteria and associated with the disease process of tuberculosis. Our findings provide an alternative pathway via which a mycobacterial secretory protein activates macrophage-mediated proinflammatory responses. Our study findings may shed light on the prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Jianjian Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Chen Y, Jiang Y, Xue T, Cheng J. Strategies for the eradication of intracellular bacterial pathogens. Biomater Sci 2024; 12:1115-1130. [PMID: 38284808 DOI: 10.1039/d3bm01498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Intracellular pathogens affect a significant portion of world population and cause millions of deaths each year. They can invade host cells and survive inside them and are extremely resistant to immune systems and antibiotics. Current treatments have limitations, and therefore, new effective therapies are needed to combat this ongoing health challenge. Active research efforts have been made to develop many new strategies to eradicate these intracellular pathogens. In this review, we focus on the intracellular bacterial pathogens and first introduce several representative intracellular bacteria and the diseases they cause. We then discuss the challenges in eradicating these bacteria and summarize the current therapeutics for intracellular bacteria. Finally, recent advances in intracellular bacteria eradication are highlighted.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Yunjiang Jiang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518071, China
| | - Tianrui Xue
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Biomaterials and Drug Delivery Laboratory, School of Engineering, Westlake University, Hangzhou 310024, China
| |
Collapse
|
9
|
Zhao L, Fan K, Sun X, Li W, Qin F, Shi L, Gao F, Zheng C. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front Immunol 2024; 14:1305325. [PMID: 38259491 PMCID: PMC10800548 DOI: 10.3389/fimmu.2023.1305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) is caused by the bacterial pathogen Mycobacterium tuberculosis (MTB) and is one of the principal reasons for mortality and morbidity worldwide. Currently, recommended anti-tuberculosis drugs include isoniazid, rifampicin, ethambutol, and pyrazinamide. TB treatment is lengthy and inflicted with severe side-effects, including reduced patient compliance with treatment and promotion of drug-resistant strains. TB is also prone to other concomitant diseases such as diabetes and HIV. These drug-resistant and complex co-morbid characteristics increase the complexity of treating MTB. Host-directed therapy (HDT), which effectively eliminates MTB and minimizes inflammatory tissue damage, primarily by targeting the immune system, is currently an attractive complementary approach. The drugs used for HDT are repositioned drugs in actual clinical practice with relative safety and efficacy assurance. HDT is a potentially effective therapeutic intervention for the treatment of MTB and diabetic MTB, and can compensate for the shortcomings of current TB therapies, including the reduction of drug resistance and modulation of immune response. Here, we summarize the state-of-the-art roles and mechanisms of HDT in immune modulation and treatment of MTB, with a special focus on the role of HDT in diabetic MTB, to emphasize the potential of HDT in controlling MTB infection.
Collapse
Affiliation(s)
- Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
10
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Famelis N, Geibel S, van Tol D. Mycobacterial type VII secretion systems. Biol Chem 2023; 0:hsz-2022-0350. [PMID: 37276364 DOI: 10.1515/hsz-2022-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Mycobacteria, such as the pathogen M. tuberculosis, utilize up to five paralogous type VII secretion systems to transport proteins across their cell envelope. Since these proteins associate in pairs that depend on each other for transport to a different extent, the secretion pathway to the bacterial surface remained challenging to address. Structural characterization of the inner-membrane embedded secretion machineries along with recent advances on the substrates' co-dependencies for transport allow for the first time more detailed and testable models for secretion.
Collapse
Affiliation(s)
- Nikolaos Famelis
- Institute for Molecular Infection Biology, Julius Maximilian University of Würzburg, D-97080 Würzburg, Germany
| | - Sebastian Geibel
- Leiden Institute of Chemistry, Leiden University, NL-2333 CC Leiden, Netherlands
| | - Daan van Tol
- Leiden Institute of Chemistry, Leiden University, NL-2333 CC Leiden, Netherlands
| |
Collapse
|
12
|
Muñoz-Sánchez S, Varela M, van der Vaart M, Meijer AH. Using Zebrafish to Dissect the Interaction of Mycobacteria with the Autophagic Machinery in Macrophages. BIOLOGY 2023; 12:817. [PMID: 37372102 DOI: 10.3390/biology12060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Existing drug treatment against tuberculosis is no match against the increasing number of multi-drug resistant strains of its causative agent, Mycobacterium tuberculosis (Mtb). A better understanding of how mycobacteria subvert the host immune defenses is crucial for developing novel therapeutic strategies. A potential approach is enhancing the activity of the autophagy machinery, which can direct bacteria to autophagolysosomal degradation. However, the interplay specifics between mycobacteria and the autophagy machinery must be better understood. Here, we analyzed live imaging data from the zebrafish model of tuberculosis to characterize mycobacteria-autophagy interactions during the early stages of infection in vivo. For high-resolution imaging, we microinjected fluorescent Mycobacterium marinum (Mm) into the tail fin tissue of zebrafish larvae carrying the GFP-LC3 autophagy reporter. We detected phagocytosed Mm clusters and LC3-positive Mm-containing vesicles within the first hour of infection. LC3 associations with these vesicles were transient and heterogeneous, ranging from simple vesicles to complex compound structures, dynamically changing shape by fusions between Mm-containing and empty vesicles. LC3-Mm-vesicles could adopt elongated shapes during cell migration or alternate between spacious and compact morphologies. LC3-Mm-vesicles were also observed in cells reverse migrating from the infection site, indicating that the autophagy machinery fails to control infection before tissue dissemination.
Collapse
Affiliation(s)
- Salomé Muñoz-Sánchez
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mónica Varela
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Michiel van der Vaart
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
13
|
Belhaouane I, Pochet A, Chatagnon J, Hoffmann E, Queval CJ, Deboosère N, Boidin-Wichlacz C, Majlessi L, Sencio V, Heumel S, Vandeputte A, Werkmeister E, Fievez L, Bureau F, Rouillé Y, Trottein F, Chamaillard M, Brodin P, Machelart A. Tirap controls Mycobacterium tuberculosis phagosomal acidification. PLoS Pathog 2023; 19:e1011192. [PMID: 36888688 PMCID: PMC9994722 DOI: 10.1371/journal.ppat.1011192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023] Open
Abstract
Progression of tuberculosis is tightly linked to a disordered immune balance, resulting in inability of the host to restrict intracellular bacterial replication and its subsequent dissemination. The immune response is mainly characterized by an orchestrated recruitment of inflammatory cells secreting cytokines. This response results from the activation of innate immunity receptors that trigger downstream intracellular signaling pathways involving adaptor proteins such as the TIR-containing adaptor protein (Tirap). In humans, resistance to tuberculosis is associated with a loss-of-function in Tirap. Here, we explore how genetic deficiency in Tirap impacts resistance to Mycobacterium tuberculosis (Mtb) infection in a mouse model and ex vivo. Interestingly, compared to wild type littermates, Tirap heterozygous mice were more resistant to Mtb infection. Upon investigation at the cellular level, we observed that mycobacteria were not able to replicate in Tirap-deficient macrophages compared to wild type counterparts. We next showed that Mtb infection induced Tirap expression which prevented phagosomal acidification and rupture. We further demonstrate that the Tirap-mediated anti-tuberculosis effect occurs through a Cish-dependent signaling pathway. Our findings provide new molecular evidence about how Mtb manipulates innate immune signaling to enable intracellular replication and survival of the pathogen, thus paving the way for host-directed approaches to treat tuberculosis.
Collapse
Affiliation(s)
- Imène Belhaouane
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Amine Pochet
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Jonathan Chatagnon
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Eik Hoffmann
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Christophe J. Queval
- High Throughput Screening Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nathalie Deboosère
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Laleh Majlessi
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Paris, France
| | - Valentin Sencio
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Séverine Heumel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Alexandre Vandeputte
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Elisabeth Werkmeister
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UMS 2014—PLBS, Lille, France
| | - Laurence Fievez
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, Liège, Belgium
| | - Yves Rouillé
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - François Trottein
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Mathias Chamaillard
- Laboratory of Cell Physiology, INSERM U1003, University of Lille, Lille, France
| | - Priscille Brodin
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
- * E-mail: (PB); (AM)
| | - Arnaud Machelart
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
- * E-mail: (PB); (AM)
| |
Collapse
|
14
|
Nanosized Drug Delivery Systems to Fight Tuberculosis. Pharmaceutics 2023; 15:pharmaceutics15020393. [PMID: 36839715 PMCID: PMC9964171 DOI: 10.3390/pharmaceutics15020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Tuberculosis (TB) is currently the second deadliest infectious disease. Existing antitubercular therapies are long, complex, and have severe side effects that result in low patient compliance. In this context, nanosized drug delivery systems (DDSs) have the potential to optimize the treatment's efficiency while reducing its toxicity. Hundreds of publications illustrate the growing interest in this field. In this review, the main challenges related to the use of drug nanocarriers to fight TB are overviewed. Relevant publications regarding DDSs for the treatment of TB are classified according to the encapsulated drugs, from first-line to second-line drugs. The physicochemical and biological properties of the investigated formulations are listed. DDSs could simultaneously (i) optimize the therapy's antibacterial effects; (ii) reduce the doses; (iii) reduce the posology; (iv) diminish the toxicity; and as a global result, (v) mitigate the emergence of resistant strains. Moreover, we highlight that host-directed therapy using nanoparticles (NPs) is a recent promising trend. Although the research on nanosized DDSs for TB treatment is expanding, clinical applications have yet to be developed. Most studies are only dedicated to the development of new formulations, without the in vivo proof of concept. In the near future, it is expected that NPs prepared by "green" scalable methods, with intrinsic antibacterial properties and capable of co-encapsulating synergistic drugs, may find applications to fight TB.
Collapse
|
15
|
Okugbeni N, du Toit A, Cole-Holman V, Johnson G, Loos B, Kinnear C. Measurement of Autophagy Activity Reveals Time-Dependent, Bacteria-Specific Turnover during Mycobacterium tuberculosis Infection. Pathogens 2022; 12:pathogens12010024. [PMID: 36678372 PMCID: PMC9864524 DOI: 10.3390/pathogens12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The intracellular pathogen, Mycobacterium tuberculosis (M. tb) uses various mechanisms to evade its killing. One of such is phagosomal damage and cytosolic translocation which is then targeted by the host's bactericidal autophagy pathway. It is suggested that cytosolic translocation of M. tb is time-dependent, occurring at later time points of 48 to 72 h post-infection. It is, however, not known whether increased autophagic targeting correlates with these time points of infection. We investigated the time-dependent profile of autophagy activity through the course of M. tb infection in mammalian macrophages. Autophagy activity was inferred by the turnover measurement of autophagy markers and M. tb bacilli in THP-1 and RAW 264.7 macrophages. Over a period of 4 to 72 h, we observed highest autophagy turnover at 48 h of infection in M. tb-containing cells. This was evident by the highest turnover levels of p62 and intracellular M. tb. This supports observations of phagosomal damage mostly occurring at this time point and reveal the correlation of increased autophagy activity. The findings support the preservation of autophagy activity despite M. tb infection while also highlighting time-dependent differences in M. tb-infected macrophages. Future studies may explore time-dependent exogenous autophagy targeting towards host-directed anti-tuberculosis therapy.
Collapse
Affiliation(s)
- Naomi Okugbeni
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, US/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
- South African Medical Research Council Genomics Centre, Tygerberg 7505, South Africa
| | - André du Toit
- Neuro Research Group, Department of Physiological Sciences, Faculty of Sciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Victoria Cole-Holman
- South African Medical Research Council Genomics Centre, Tygerberg 7505, South Africa
| | - Glynis Johnson
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, US/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Ben Loos
- Neuro Research Group, Department of Physiological Sciences, Faculty of Sciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Craig Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, US/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
- South African Medical Research Council Genomics Centre, Tygerberg 7505, South Africa
- Correspondence:
| |
Collapse
|
16
|
Rawat BS, Kumar D, Soni V, Rosenn EH. Therapeutic Potentials of Immunometabolomic Modulations Induced by Tuberculosis Vaccination. Vaccines (Basel) 2022; 10:vaccines10122127. [PMID: 36560537 PMCID: PMC9781011 DOI: 10.3390/vaccines10122127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is emerging as a promising tool to understand the effect of immunometabolism for the development of novel host-directed alternative therapies. Immunometabolism can modulate both innate and adaptive immunity in response to pathogens and vaccinations. For instance, infections can affect lipid and amino acid metabolism while vaccines can trigger bile acid and carbohydrate pathways. Metabolomics as a vaccinomics tool, can provide a broader picture of vaccine-induced biochemical changes and pave a path to potentiate the vaccine efficacy. Its integration with other systems biology tools or treatment modes can enhance the cure, response rate, and control over the emergence of drug-resistant strains. Mycobacterium tuberculosis (Mtb) infection can remodel the host metabolism for its survival, while there are many biochemical pathways that the host adjusts to combat the infection. Similarly, the anti-TB vaccine, Bacillus Calmette-Guerin (BCG), was also found to affect the host metabolic pathways thus modulating immune responses. In this review, we highlight the metabolomic schema of the anti-TB vaccine and its therapeutic applications. Rewiring of immune metabolism upon BCG vaccination induces different signaling pathways which lead to epigenetic modifications underlying trained immunity. Metabolic pathways such as glycolysis, central carbon metabolism, and cholesterol synthesis play an important role in these aspects of immunity. Trained immunity and its applications are increasing day by day and it can be used to develop the next generation of vaccines to treat various other infections and orphan diseases. Our goal is to provide fresh insight into this direction and connect various dots to develop a conceptual framework.
Collapse
Affiliation(s)
- Bhupendra Singh Rawat
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Deepak Kumar
- Department of Zoology, University of Rajasthan, Jaipur 302004, Rajasthan, India
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence:
| | - Eric H. Rosenn
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
17
|
Parbhoo T, Schurz H, Mouton JM, Sampson SL. Persistence of Mycobacterium tuberculosis in response to infection burden and host-induced stressors. Front Cell Infect Microbiol 2022; 12:981827. [PMID: 36530432 PMCID: PMC9755487 DOI: 10.3389/fcimb.2022.981827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction As infection with Mycobacterium tuberculosis progresses, the bacilli experience various degrees of host stressors in the macrophage phagosome such as low pH, nutrient deprivation, or exposure to toxic agents, which promotes cell-to-cell phenotypic variation. This includes a physiologically viable but non- or slowly replicating persister subpopulation, which is characterised by a loss of growth on solid media, while remaining metabolically active. Persisters additionally evade the host immune response and macrophage antimicrobial processes by adapting their metabolic pathways to maintain survival and persistence in the host. Methods A flow cytometry-based dual-fluorescent replication reporter assay, termed fluorescence dilution, provided a culture-independent method to characterize the single-cell replication dynamics of M. tuberculosis persisters following macrophage infection. Fluorescence dilution in combination with reference counting beads and a metabolic esterase reactive probe, calcein violet AM, provided an effective approach to enumerate and characterize the phenotypic heterogeneity within M. tuberculosis following macrophage infection. Results Persister formation appeared dependent on the initial infection burden and intracellular bacterial burden. However, inhibition of phagocytosis by cytochalasin D treatment resulted in a significantly higher median percentage of persisters compared to inhibition of phagosome acidification by bafilomycin A1 treatment. Discussion Our results suggest that different host factors differentially impact the intracellular bacterial burden, adaptive mechanisms and entry into persistence in macrophages.
Collapse
|
18
|
Parbhoo T, Mouton JM, Sampson SL. Phenotypic adaptation of Mycobacterium tuberculosis to host-associated stressors that induce persister formation. Front Cell Infect Microbiol 2022; 12:956607. [PMID: 36237425 PMCID: PMC9551238 DOI: 10.3389/fcimb.2022.956607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis exhibits a remarkable ability to interfere with the host antimicrobial response. The pathogen exploits elaborate strategies to cope with diverse host-induced stressors by modulating its metabolism and physiological state to prolong survival and promote persistence in host tissues. Elucidating the adaptive strategies that M. tuberculosis employs during infection to enhance persistence is crucial to understanding how varying physiological states may differentially drive disease progression for effective management of these populations. To improve our understanding of the phenotypic adaptation of M. tuberculosis, we review the adaptive strategies employed by M. tuberculosis to sense and coordinate a physiological response following exposure to various host-associated stressors. We further highlight the use of animal models that can be exploited to replicate and investigate different aspects of the human response to infection, to elucidate the impact of the host environment and bacterial adaptive strategies contributing to the recalcitrance of infection.
Collapse
|
19
|
Lagune M, Le Moigne V, Johansen MD, Vásquez Sotomayor F, Daher W, Petit C, Cosentino G, Paulowski L, Gutsmann T, Wilmanns M, Maurer FP, Herrmann JL, Girard-Misguich F, Kremer L. The ESX-4 substrates, EsxU and EsxT, modulate Mycobacterium abscessus fitness. PLoS Pathog 2022; 18:e1010771. [PMID: 35960766 PMCID: PMC9401124 DOI: 10.1371/journal.ppat.1010771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/24/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
ESX type VII secretion systems are complex secretion machineries spanning across the mycobacterial membrane and play an important role in pathogenicity, nutrient uptake and conjugation. We previously reported the role of ESX-4 in modulating Mycobacterium abscessus intracellular survival. The loss of EccB4 was associated with limited secretion of two effector proteins belonging to the WXG-100 family, EsxU and EsxT, and encoded by the esx-4 locus. This prompted us to investigate the function of M. abscessus EsxU and EsxT in vitro and in vivo. Herein, we show that EsxU and EsxT are substrates of ESX-4 and form a stable 1:1 heterodimer that permeabilizes artificial membranes. While expression of esxU and esxT was up-regulated in M. abscessus-infected macrophages, their absence in an esxUT deletion mutant prevented phagosomal membrane disruption while maintaining M. abscessus in an unacidified phagosome. Unexpectedly, the esxUT deletion was associated with a hyper-virulent phenotype, characterised by increased bacterial loads and mortality in mouse and zebrafish infection models. Collectively, these results demonstrate that the presence of EsxU and EsxT dampens survival and persistence of M. abscessus during infection.
Collapse
Affiliation(s)
- Marion Lagune
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Vincent Le Moigne
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Matt D. Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Flor Vásquez Sotomayor
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Cécile Petit
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Gina Cosentino
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Laura Paulowski
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas Gutsmann
- Research Center Borstel, Leibniz Lung Center, Division of Biophysics, Borstel, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
- * E-mail: (MW); (FPM); (J-LH); (FG-M); (LK)
| | - Florian P. Maurer
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Institute of Medical Microbiology, Virology and Hospital Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (MW); (FPM); (J-LH); (FG-M); (LK)
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
- APHP, GHU Paris-Saclay, Hôpital Raymond Poincaré, Service de Microbiologie, Garches, France
- * E-mail: (MW); (FPM); (J-LH); (FG-M); (LK)
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
- * E-mail: (MW); (FPM); (J-LH); (FG-M); (LK)
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
- * E-mail: (MW); (FPM); (J-LH); (FG-M); (LK)
| |
Collapse
|
20
|
Pepperell CS. Evolution of Tuberculosis Pathogenesis. Annu Rev Microbiol 2022; 76:661-680. [PMID: 35709500 DOI: 10.1146/annurev-micro-121321-093031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis is a globally distributed, lethal pathogen of humans. The virulence armamentarium of M. tuberculosis appears to have been developed on a scaffold of antiphagocytic defenses found among diverse, mostly free-living species of Mycobacterium. Pathoadaptation was further aided by the modularity, flexibility, and interactivity characterizing mycobacterial effectors and their regulators. During emergence of M. tuberculosis, novel genetic material was acquired, created, and integrated with existing tools. The major mutational mechanisms underlying these adaptations are discussed in this review, with examples. During its evolution, M. tuberculosis lost the ability and/or opportunity to engage in lateral gene transfer, but despite this it has retained the adaptability that characterizes mycobacteria. M. tuberculosis exemplifies the evolutionary genomic mechanisms underlying adoption of the pathogenic niche, and studies of its evolution have uncovered a rich array of discoveries about how new pathogens are made. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Caitlin S Pepperell
- Division of Infectious Diseases, Department of Medicine, and Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
21
|
Osman MM, Shanahan JK, Chu F, Takaki KK, Pinckert ML, Pagán AJ, Brosch R, Conrad WH, Ramakrishnan L. The C terminus of the mycobacterium ESX-1 secretion system substrate ESAT-6 is required for phagosomal membrane damage and virulence. Proc Natl Acad Sci U S A 2022; 119:e2122161119. [PMID: 35271388 PMCID: PMC8931374 DOI: 10.1073/pnas.2122161119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/15/2022] [Indexed: 12/21/2022] Open
Abstract
SignificanceTuberculosis (TB), an ancient disease of humanity, continues to be a major cause of worldwide death. The causative agent of TB, Mycobacterium tuberculosis, and its close pathogenic relative Mycobacterium marinum, initially infect, evade, and exploit macrophages, a major host defense against invading pathogens. Within macrophages, mycobacteria reside within host membrane-bound compartments called phagosomes. Mycobacterium-induced damage of the phagosomal membranes is integral to pathogenesis, and this activity has been attributed to the specialized mycobacterial secretion system ESX-1, and particularly to ESAT-6, its major secreted protein. Here, we show that the integrity of the unstructured ESAT-6 C terminus is required for macrophage phagosomal damage, granuloma formation, and virulence.
Collapse
Affiliation(s)
- Morwan M. Osman
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 OQH Cambridge, United Kingdom
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom
| | - Jonathan K. Shanahan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 OQH Cambridge, United Kingdom
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom
| | - Frances Chu
- Department of Microbiology, University of Washington, Seattle, WA 98105
| | - Kevin K. Takaki
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 OQH Cambridge, United Kingdom
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom
| | - Malte L. Pinckert
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 OQH Cambridge, United Kingdom
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom
| | - Antonio J. Pagán
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 OQH Cambridge, United Kingdom
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom
| | - Roland Brosch
- Institut Pasteur, Université de Paris, CNRS UMR 3525, Unit for Integrated Mycobacterial Pathogenomics, 75724 Paris Cedex 15, France
| | - William H. Conrad
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 OQH Cambridge, United Kingdom
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 OQH Cambridge, United Kingdom
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom
- Department of Microbiology, University of Washington, Seattle, WA 98105
| |
Collapse
|
22
|
Iakobachvili N, Leon‐Icaza SA, Knoops K, Sachs N, Mazères S, Simeone R, Peixoto A, Bernard C, Murris‐Espin M, Mazières J, Cam K, Chalut C, Guilhot C, López‐Iglesias C, Ravelli RBG, Neyrolles O, Meunier E, Lugo‐Villarino G, Clevers H, Cougoule C, Peters P. Mycobacteria-host interactions in human bronchiolar airway organoids. Mol Microbiol 2022; 117:682-692. [PMID: 34605588 PMCID: PMC9298242 DOI: 10.1111/mmi.14824] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023]
Abstract
Respiratory infections remain a major global health concern. Tuberculosis is one of the top 10 causes of death worldwide, while infections with Non-Tuberculous Mycobacteria are rising globally. Recent advances in human tissue modeling offer a unique opportunity to grow different human "organs" in vitro, including the human airway, that faithfully recapitulates lung architecture and function. Here, we have explored the potential of human airway organoids (AOs) as a novel system in which to assess the very early steps of mycobacterial infection. We reveal that Mycobacterium tuberculosis (Mtb) and Mycobacterium abscessus (Mabs) mainly reside as extracellular bacteria and infect epithelial cells with very low efficiency. While the AO microenvironment was able to control, but not eliminate Mtb, Mabs thrives. We demonstrate that AOs responded to infection by modulating cytokine, antimicrobial peptide, and mucin gene expression. Given the importance of myeloid cells in mycobacterial infection, we co-cultured infected AOs with human monocyte-derived macrophages and found that these cells interact with the organoid epithelium. We conclude that adult stem cell (ASC)-derived AOs can be used to decipher very early events of mycobacteria infection in human settings thus offering new avenues for fundamental and therapeutic research.
Collapse
Affiliation(s)
- Nino Iakobachvili
- M4i Nanoscopy DivisionMaastricht UniversityMaastrichtThe Netherlands
| | - Stephen Adonai Leon‐Icaza
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | - Kèvin Knoops
- M4i Nanoscopy DivisionMaastricht UniversityMaastrichtThe Netherlands
| | - Norman Sachs
- Oncode Institute, Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences and University Medical CenterUtrechtThe Netherlands
| | - Serge Mazères
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | - Roxane Simeone
- Institut Pasteur, Unit for Integrated Mycobacterial PathogenomicsCNRS UMR3525ParisFrance
| | - Antonio Peixoto
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | - Célia Bernard
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | | | - Julien Mazières
- Service de PneumologieHôpital Larrey, CHU de ToulouseToulouseFrance
| | - Kaymeuang Cam
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | - Christian Chalut
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | - Christophe Guilhot
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | | | | | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
- International Associated Laboratory (LIA) CNRS “IM‐TB/HIV” (1167)ToulouseFrance
- International Associated Laboratory (LIA) CNRS “IM‐TB/HIV” (1167)Buenos AiresArgentina
| | - Etienne Meunier
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | - Geanncarlo Lugo‐Villarino
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
- International Associated Laboratory (LIA) CNRS “IM‐TB/HIV” (1167)ToulouseFrance
- International Associated Laboratory (LIA) CNRS “IM‐TB/HIV” (1167)Buenos AiresArgentina
| | - Hans Clevers
- Oncode Institute, Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences and University Medical CenterUtrechtThe Netherlands
| | - Céline Cougoule
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
- International Associated Laboratory (LIA) CNRS “IM‐TB/HIV” (1167)ToulouseFrance
- International Associated Laboratory (LIA) CNRS “IM‐TB/HIV” (1167)Buenos AiresArgentina
| | - Peter J. Peters
- M4i Nanoscopy DivisionMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
23
|
AutoCellANLS: An Automated Analysis System for Mycobacteria-Infected Cells Based on Unstained Micrograph. Biomolecules 2022; 12:biom12020240. [PMID: 35204741 PMCID: PMC8961542 DOI: 10.3390/biom12020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
The detection of Mycobacterium tuberculosis (Mtb) infection plays an important role in the control of tuberculosis (TB), one of the leading infectious diseases in the world. Recent advances in artificial intelligence-aided cellular image processing and analytical techniques have shown great promises in automated Mtb detection. However, current cell imaging protocols often involve costly and time-consuming fluorescence staining, which has become a major bottleneck for procedural automation. To solve this problem, we have developed a novel automated system (AutoCellANLS) for cell detection and the recognition of morphological features in the phase-contrast micrographs by using unsupervised machine learning (UML) approaches and deep convolutional neural networks (CNNs). The detection algorithm can adaptively and automatically detect single cells in the cell population by the improved level set segmentation model with the circular Hough transform (CHT). Besides, we have designed a Cell-net by using the transfer learning strategies (TLS) to classify the virulence-specific cellular morphological changes that would otherwise be indistinguishable to the naked eye. The novel system can simultaneously classify and segment microscopic images of the cell populations and achieve an average accuracy of 95.13% for cell detection, 95.94% for morphological classification, 94.87% for sensitivity, and 96.61% for specificity. AutoCellANLS is able to detect significant morphological differences between the infected and uninfected mammalian cells throughout the infection period (2 hpi/12 hpi/24 hpi). Besides, it has overcome the drawback of manual intervention and increased the accuracy by more than 11% compared to our previous work, which used AI-aided imaging analysis to detect mycobacterial infection in macrophages. AutoCellANLS is also efficient and versatile when tailored to different cell lines datasets (RAW264.7 and THP-1 cell). This proof-of concept study provides a novel venue to investigate bacterial pathogenesis at a macroscopic level and offers great promise in the diagnosis of bacterial infections.
Collapse
|
24
|
Bao Y, Wang L, Sun J. Post-translational knockdown and post-secretional modification of EsxA determine contribution of EsxA membrane permeabilizing activity for mycobacterial intracellular survival. Virulence 2021; 12:312-328. [PMID: 33356823 PMCID: PMC7808419 DOI: 10.1080/21505594.2020.1867438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Current genetic studies (e.g. gene knockout) have suggested that EsxA and EsxB function as secreted virulence factors that are essential for Mycobaterium tuberculosis (Mtb) intracellular survival, specifically in mediating phagosome rupture and translocation of Mtb to the cytosol of host cells, which further facilitates Mtb intracellular replicating and cell-to-cell spreading. The EsxA-mediated intracellular survival is presumably achieved by its pH-dependent membrane-permeabilizing activity (MPA). However, the data from other studies have generated a discrepancy regarding the role of EsxA MPA in mycobacterial intracellular survival, which has raised a concern that genetic manipulations, such as deletion of esxB-esxA operon or RD-1 locus, may affect other codependently secreted factors that could be also directly involved cytosolic translocation, or stimulate extended disturbance on other genes' expression. To avoid the drawbacks of gene knockout, we first engineered a Mycobacterium marinum (Mm) strain, in which a DAS4+ tag was fused to the C-terminus of EsxB to allow inducible knockdown of EsxB (also EsxA) at the post-translational level. We also engineered an Mm strain by fusing a SpyTag (ST) to the C-terminus of EsxA, which allowed inhibition of EsxA-ST MPA at the post-secretional level through a covalent linkage to SpyCatcher-GFP. Both post-translational knockdown and functional inhibition of EsxA resulted in attenuation of Mm intracellular survival in lung epithelial cells or macrophages, which unambiguously confirms the direct role of EsxA MPA in mycobacterial intracellular survival.
Collapse
Affiliation(s)
- Yanqing Bao
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Lin Wang
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Jianjun Sun
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
25
|
Pajuelo D, Tak U, Zhang L, Danilchanka O, Tischler AD, Niederweis M. Toxin secretion and trafficking by Mycobacterium tuberculosis. Nat Commun 2021; 12:6592. [PMID: 34782620 PMCID: PMC8593097 DOI: 10.1038/s41467-021-26925-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of Mycobacterium tuberculosis (Mtb) in macrophages. TNT is the C-terminal domain of the outer membrane protein CpnT and gains access to the cytosol to kill macrophages infected with Mtb. However, molecular mechanisms of TNT secretion and trafficking are largely unknown. A comprehensive analysis of the five type VII secretion systems of Mtb revealed that the ESX-4 system is required for export of CpnT and surface accessibility of TNT. Furthermore, the ESX-2 and ESX-4 systems are required for permeabilization of the phagosomal membrane in addition to the ESX-1 system. Thus, these three ESX systems need to act in concert to enable trafficking of TNT into the cytosol of Mtb-infected macrophages. These discoveries establish new molecular roles for the two previously uncharacterized type VII secretion systems ESX-2 and ESX-4 and reveal an intricate link between toxin secretion and phagosomal permeabilization by Mtb. The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of M. tuberculosis (Mtb). Mtb possesses five type VII secretion systems (ESX). Pajuelo et al. show that the ESX-4 system is required for TNT secretion and that ESX-2 and ESX-4 systems work in concert with ESX-1 to permeabilize the phagosomal membrane and enable trafficking of TNT into the cytoplasm of macrophages infected with Mtb.
Collapse
Affiliation(s)
- David Pajuelo
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Uday Tak
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.,University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building B255, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Olga Danilchanka
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.,Merck & Co., Inc., Cambridge, MA, 02141, USA
| | - Anna D Tischler
- Department of Microbiology and Immunology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.
| |
Collapse
|
26
|
Ragland SA, Kagan JC. Cytosolic detection of phagosomal bacteria-Mechanisms underlying PAMP exodus from the phagosome into the cytosol. Mol Microbiol 2021; 116:1420-1432. [PMID: 34738270 DOI: 10.1111/mmi.14841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane-oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations.
Collapse
Affiliation(s)
- Stephanie A Ragland
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol 2021; 19:567-584. [PMID: 34040228 DOI: 10.1038/s41579-021-00560-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Type VII secretion systems (T7SSs) have a key role in the secretion of effector proteins in non-pathogenic mycobacteria and pathogenic mycobacteria such as Mycobacterium tuberculosis, the main causative agent of tuberculosis. Tuberculosis-causing mycobacteria, still accounting for 1.4 million deaths annually, rely on paralogous T7SSs to survive in the host and efficiently evade its immune response. Although it is still unknown how effector proteins of T7SSs cross the outer membrane of the diderm mycobacterial cell envelope, recent advances in the structural characterization of these secretion systems have revealed the intricate network of interactions of conserved components in the plasma membrane. This structural information, added to recent advances in the molecular biology and regulation of mycobacterial T7SSs as well as progress in our understanding of their secreted effector proteins, is shedding light on the inner working of the T7SS machinery. In this Review, we highlight the implications of these studies and the derived transport models, which provide new scenarios for targeting the deathly human pathogen M. tuberculosis.
Collapse
Affiliation(s)
- Angel Rivera-Calzada
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Nikolaos Famelis
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany.,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sebastian Geibel
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany. .,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany.
| |
Collapse
|
28
|
Heijmenberg I, Husain A, Sathkumara HD, Muruganandah V, Seifert J, Miranda-Hernandez S, Kashyap RS, Field MA, Krishnamoorthy G, Kupz A. ESX-5-targeted export of ESAT-6 in BCG combines enhanced immunogenicity & efficacy against murine tuberculosis with low virulence and reduced persistence. Vaccine 2021; 39:7265-7276. [PMID: 34420788 DOI: 10.1016/j.vaccine.2021.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022]
Abstract
Tuberculosis (TB) is the leading infectious cause of death globally. The only licensed TB vaccine, Bacille Calmette-Guérin (BCG), has low efficacy against TB in adults and is not recommended in people with impaired immunity. The incorporation of the Mycobacterium tuberculosis (Mtb) secretion system ESX-1 into BCG improves immunogenicity and protection against TB in animal models, which is associated with the secretion of the ESX-1-dependent protein ESAT-6. However, the resulting strain, BCG::ESX1Mtb, has been deemed unsafe as a human vaccine, due to prolonged persistence and increased virulence in immunocompromised mice. In this study, we describe a new recombinant BCG strain that uncouples the beneficial aspects of ESAT-6 secretion from the detrimental ESX-1effects on virulence and persistence. The strain was constructed by fusing the ESAT-6-encoding gene esxA to the general secretion signal for the mycobacterial type VII secretion pathway protein PE25. This new strain, BCG::ESAT6-PE25SS, secretes full-length ESAT-6 via the ESX-5 secretion system, which in contrast to ESX-1 is also present in BCG. In vivo testing revealed that ESX-5-targeted ESAT-6 export, induces cytosolic contact, generates ESAT-6-specific T cells and enhances the protective efficacy against TB disease, but is associated with low virulence and reduced persistence in immunocompetent and immunocompromised mice. Additionally, compared to BCG::ESX1Mtb and parental BCG, mucosal administration of BCG::ESAT6-PE25SS is associated with more rapid clearance from the lung. These results warrant further studies to evaluate BCG::ESAT6-PE25SS as a potential live attenuated vaccine candidate for TB.
Collapse
Affiliation(s)
- Isis Heijmenberg
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia; Leiden University, Leiden 2311, the Netherlands
| | - Aliabbas Husain
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia; Central India Institute of Medical Sciences, 88/2, Bajaj Nagar, Nagpur 10, India
| | - Harindra D Sathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Julia Seifert
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Socorro Miranda-Hernandez
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Rajpal Singh Kashyap
- Central India Institute of Medical Sciences, 88/2, Bajaj Nagar, Nagpur 10, India
| | - Matt A Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns 4878, Queensland, Australia; John Curtin School of Medical Research, Australian National University, Canberra 2601, ACT, Australia
| | | | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia.
| |
Collapse
|
29
|
Wu X, Wu Y, Zheng R, Tang F, Qin L, Lai D, Zhang L, Chen L, Yan B, Yang H, Wang Y, Li F, Zhang J, Wang F, Wang L, Cao Y, Ma M, Liu Z, Chen J, Huang X, Wang J, Jin R, Wang P, Sun Q, Sha W, Lyu L, Moura‐Alves P, Dorhoi A, Pei G, Zhang P, Chen J, Gao S, Randow F, Zeng G, Chen C, Ye X, Kaufmann SHE, Liu H, Ge B. Sensing of mycobacterial arabinogalactan by galectin-9 exacerbates mycobacterial infection. EMBO Rep 2021; 22:e51678. [PMID: 33987949 PMCID: PMC8256295 DOI: 10.15252/embr.202051678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb-infected mice or Mycobacterium marinum-infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin-9 with high affinity, and galectin-9 associates with transforming growth factor β-activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal-regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin-9 or inhibition of MMPs blocks AG-induced pathological impairments in the lung, and the AG-galectin-9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin-9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.
Collapse
|
30
|
Simeone R, Sayes F, Lawarée E, Brosch R. Breaching the phagosome, the case of the tuberculosis agent. Cell Microbiol 2021; 23:e13344. [PMID: 33860624 DOI: 10.1111/cmi.13344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
The interactions between microbes and their hosts are among the most complex biological phenomena known today. The interaction may reach from overall beneficial interaction, as observed for most microbiome/microbiota related interactions to interaction with virulent pathogens, against which host cells have evolved sophisticated defence strategies. Among the latter, the confinement of invading pathogens in a phagosome plays a key role, which often results in the destruction of the invader, whereas some pathogens may counteract phagosomal arrest and survive by gaining access to the cytosol of the host cell. In the current review, we will discuss recent insights into this dynamic process of host-pathogen interaction, using Mycobacterium tuberculosis and related pathogenic mycobacteria as main examples.
Collapse
Affiliation(s)
- Roxane Simeone
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Fadel Sayes
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Emeline Lawarée
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| |
Collapse
|
31
|
Abstract
Mycobacterium tuberculosis infections claim more than a million lives each year, and better treatments or vaccines are required. A crucial pathogenicity factor is translocation from phagolysosomes to the cytosol upon phagocytosis by macrophages. Translocation from the phagolysosome to the cytosol is an ESX-1-dependent process, as previously shown in vitro Here, we show that in vivo, mycobacteria also translocate to the cytosol but mainly when host immunity is compromised. We observed only low numbers of cytosolic bacilli in mice, armadillos, zebrafish, and patient material infected with M. tuberculosis, M. marinum, or M. leprae In contrast, when innate or adaptive immunity was compromised, as in severe combined immunodeficiency (SCID) or interleukin-1 receptor 1 (IL-1R1)-deficient mice, significant numbers of cytosolic M. tuberculosis bacilli were detected in the lungs of infected mice. Taken together, in vivo, translocation to the cytosol of M. tuberculosis is controlled by adaptive immune responses as well as IL-1R1-mediated signals.IMPORTANCE For decades, Mycobacterium tuberculosis has been one of the deadliest pathogens known. Despite infecting approximately one-third of the human population, no effective treatment or vaccine is available. A crucial pathogenicity factor is subcellular localization, as M. tuberculosis can translocate from phagolysosome to the cytosol in macrophages. The situation in vivo is more complicated. In this study, we establish that high-level cytosolic escape of mycobacteria can indeed occur in vivo but mainly when host resistance is compromised. The IL-1 pathway is crucial for the control of the number of cytosolic mycobacteria. The establishment that immune signals result in the clearance of cells containing cytosolic mycobacteria connects two important fields, cell biology and immunology, which is vital for the understanding of the pathology of M. tuberculosis.
Collapse
|
32
|
De novo histidine biosynthesis protects Mycobacterium tuberculosis from host IFN-γ mediated histidine starvation. Commun Biol 2021; 4:410. [PMID: 33767335 PMCID: PMC7994828 DOI: 10.1038/s42003-021-01926-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Intracellular pathogens including Mycobacterium tuberculosis (Mtb) have evolved with strategies to uptake amino acids from host cells to fulfil their metabolic requirements. However, Mtb also possesses de novo biosynthesis pathways for all the amino acids. This raises a pertinent question- how does Mtb meet its histidine requirements within an in vivo infection setting? Here, we present a mechanism in which the host, by up-regulating its histidine catabolizing enzymes through interferon gamma (IFN-γ) mediated signalling, exerts an immune response directed at starving the bacillus of intracellular free histidine. However, the wild-type Mtb evades this host immune response by biosynthesizing histidine de novo, whereas a histidine auxotroph fails to multiply. Notably, in an IFN-γ-/- mouse model, the auxotroph exhibits a similar extent of virulence as that of the wild-type. The results augment the current understanding of host-Mtb interactions and highlight the essentiality of Mtb histidine biosynthesis for its pathogenesis.
Collapse
|
33
|
Fevereiro J, Fraga AG, Pedrosa J. Genetics in the Host-Mycobacterium ulcerans interaction. Immunol Rev 2021; 301:222-241. [PMID: 33682158 DOI: 10.1111/imr.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
34
|
Hosseini R, Lamers GEM, Bos E, Hogendoorn PCW, Koster AJ, Meijer AH, Spaink HP, Schaaf MJM. The adapter protein Myd88 plays an important role in limiting mycobacterial growth in a zebrafish model for tuberculosis. Virchows Arch 2021; 479:265-275. [PMID: 33559740 PMCID: PMC8364548 DOI: 10.1007/s00428-021-03043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/27/2022]
Abstract
Tuberculosis (TB) is the most prevalent bacterial infectious disease in the world, caused by the pathogen Mycobacterium tuberculosis (Mtb). In this study, we have used Mycobacterium marinum (Mm) infection in zebrafish larvae as an animal model for this disease to study the role of the myeloid differentiation factor 88 (Myd88), the key adapter protein of Toll-like receptors. Previously, Myd88 has been shown to enhance innate immune responses against bacterial infections, and in the present study, we have investigated the effect of Myd88 deficiency on the granuloma morphology and the intracellular distribution of bacteria during Mm infection. Our results show that granulomas formed in the tail fin from myd88 mutant larvae have a more compact structure and contain a reduced number of leukocytes compared to the granulomas observed in wild-type larvae. These morphological differences were associated with an increased bacterial burden in the myd88 mutant. Electron microscopy analysis showed that the majority of Mm in the myd88 mutant are located extracellularly, whereas in the wild type, most bacteria were intracellular. In the myd88 mutant, intracellular bacteria were mainly present in compartments that were not electron-dense, suggesting that these compartments had not undergone fusion with a lysosome. In contrast, approximately half of the intracellular bacteria in wild-type larvae were found in electron-dense compartments. These observations in a zebrafish model for tuberculosis suggest a role for Myd88-dependent signalling in two important phenomena that limit mycobacterial growth in the infected tissue. It reduces the number of leukocytes at the site of infection and the acidification of bacteria-containing compartments inside these cells.
Collapse
Affiliation(s)
- Rohola Hosseini
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Gerda E M Lamers
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Erik Bos
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Pancras C W Hogendoorn
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, Netherlands.
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
35
|
Tran HKR, Grebenc DW, Klein TA, Whitney JC. Bacterial type VII secretion: An important player in host-microbe and microbe-microbe interactions. Mol Microbiol 2021; 115:478-489. [PMID: 33410158 DOI: 10.1111/mmi.14680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Type VII secretion systems (T7SSs) are poorly understood protein export apparatuses found in mycobacteria and many species of Gram-positive bacteria. To date, this pathway has predominantly been studied in Mycobacterium tuberculosis, where it has been shown to play an essential role in virulence; however, much less studied is an evolutionarily divergent subfamily of T7SSs referred to as the T7SSb. The T7SSb is found in the major Gram-positive phylum Firmicutes where it was recently shown to target both eukaryotic and prokaryotic cells, suggesting a dual role for this pathway in host-microbe and microbe-microbe interactions. In this review, we compare the current understanding of the molecular architectures and substrate repertoires of the well-studied mycobacterial T7SSa systems to that of recently characterized T7SSb pathways and highlight how these differences may explain the observed biological functions of this understudied protein export machine.
Collapse
Affiliation(s)
- Hiu-Ki R Tran
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dirk W Grebenc
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Timothy A Klein
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
36
|
Ma J, Zhao S, Gao X, Wang R, Liu J, Zhou X, Zhou Y. The Roles of Inflammasomes in Host Defense against Mycobacterium tuberculosis. Pathogens 2021; 10:pathogens10020120. [PMID: 33503864 PMCID: PMC7911501 DOI: 10.3390/pathogens10020120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) infection is characterized by granulomatous lung lesions and systemic inflammatory responses during active disease. Inflammasome activation is involved in regulation of inflammation. Inflammasomes are multiprotein complexes serving a platform for activation of caspase-1, which cleaves the proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18 into their active forms. These cytokines play an essential role in MTB control. MTB infection triggers activation of the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes in vitro, but only AIM2 and apoptosis-associated speck-like protein containing a caspase-activation recruitment domain (ASC), rather than NLRP3 or caspase-1, favor host survival and restriction of mycobacterial replication in vivo. Interferons (IFNs) inhibits MTB-induced inflammasome activation and IL-1 signaling. In this review, we focus on activation and regulation of the NLRP3 and AIM2 inflammasomes after exposure to MTB, as well as the effect of inflammasome activation on host defense against the infection.
Collapse
Affiliation(s)
- Jialu Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
| | - Shasha Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
| | - Xiao Gao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
| | - Rui Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Yang Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence:
| |
Collapse
|
37
|
Deboosere N, Belhaouane I, Machelart A, Hoffmann E, Vandeputte A, Brodin P. High-Content Analysis Monitoring Intracellular Trafficking and Replication of Mycobacterium tuberculosis Inside Host Cells. Methods Mol Biol 2021; 2314:649-702. [PMID: 34235675 DOI: 10.1007/978-1-0716-1460-0_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mycobacterium tuberculosis is able to colonize, persist, and massively replicate in host cells, such as phagocytes and epithelial cells. The intracellular stage of the bacteria is critical to the development of tuberculosis pathogenesis. The detailed mechanisms of intracellular trafficking of the bacillus are not fully understood and require further investigations. Therefore, increasing the knowledge of this process will help to develop therapeutic tools that will lower the burden of tuberculosis. M. tuberculosis is genetically tractable and tolerates the expression of heterologous fluorescent proteins. Thus, the intracellular distribution of the bacteria expressing fluorescent tracers can be easily defined using confocal microscopy. Advances in imaging techniques and images-based analysis allow the rapid quantification of biological objects in complex environments. In this chapter, we detailed high-content / high-throughput imaging methods to track the bacillus within host cell settings.
Collapse
Affiliation(s)
- Nathalie Deboosere
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille (CIIL), Lille Cedex, France.
| | - Imène Belhaouane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille (CIIL), Lille Cedex, France
| | - Arnaud Machelart
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille (CIIL), Lille Cedex, France
| | - Eik Hoffmann
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille (CIIL), Lille Cedex, France
| | - Alexandre Vandeputte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille (CIIL), Lille Cedex, France
| | - Priscille Brodin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille (CIIL), Lille Cedex, France.
| |
Collapse
|
38
|
Bakkum T, Heemskerk MT, Bos E, Groenewold M, Oikonomeas-Koppasis N, Walburg KV, van Veen S, van der Lienden MJC, van Leeuwen T, Haks MC, Ottenhoff THM, Koster AJ, van Kasteren SI. Bioorthogonal Correlative Light-Electron Microscopy of Mycobacterium tuberculosis in Macrophages Reveals the Effect of Antituberculosis Drugs on Subcellular Bacterial Distribution. ACS CENTRAL SCIENCE 2020; 6:1997-2007. [PMID: 33274277 PMCID: PMC7706097 DOI: 10.1021/acscentsci.0c00539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 05/07/2023]
Abstract
Bioorthogonal correlative light-electron microscopy (B-CLEM) can give a detailed overview of multicomponent biological systems. It can provide information on the ultrastructural context of bioorthogonal handles and other fluorescent signals, as well as information about subcellular organization. We have here applied B-CLEM to the study of the intracellular pathogen Mycobacterium tuberculosis (Mtb) by generating a triply labeled Mtb through combined metabolic labeling of the cell wall and the proteome of a DsRed-expressing Mtb strain. Study of this pathogen in a B-CLEM setting was used to provide information about the intracellular distribution of the pathogen, as well as its in situ response to various clinical antibiotics, supported by flow cytometric analysis of the bacteria, after recovery from the host cell (ex cellula). The RNA polymerase-targeting drug rifampicin displayed the most prominent effect on subcellular distribution, suggesting the most direct effect on pathogenicity and/or viability, while the cell wall synthesis-targeting drugs isoniazid and ethambutol effectively rescued bacterial division-induced loss of metabolic labels. The three drugs combined did not give a more pronounced effect but rather an intermediate response, whereas gentamicin displayed a surprisingly strong additive effect on subcellular distribution.
Collapse
Affiliation(s)
- Thomas Bakkum
- Leiden
Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - Matthias T. Heemskerk
- Department
of Infectious Diseases, Leiden University
Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Erik Bos
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Mirjam Groenewold
- Leiden
Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - Nikolaos Oikonomeas-Koppasis
- Leiden
Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - Kimberley V. Walburg
- Department
of Infectious Diseases, Leiden University
Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Suzanne van Veen
- Department
of Infectious Diseases, Leiden University
Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Martijn J. C. van der Lienden
- Leiden
Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - Tyrza van Leeuwen
- Leiden
Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - Marielle C. Haks
- Department
of Infectious Diseases, Leiden University
Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Tom H. M. Ottenhoff
- Department
of Infectious Diseases, Leiden University
Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Abraham J. Koster
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Sander I. van Kasteren
- Leiden
Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| |
Collapse
|
39
|
Augenstreich J, Briken V. Host Cell Targets of Released Lipid and Secreted Protein Effectors of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2020; 10:595029. [PMID: 33194845 PMCID: PMC7644814 DOI: 10.3389/fcimb.2020.595029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a very successful pathogen, strictly adapted to humans and the cause of tuberculosis. Its success is associated with its ability to inhibit host cell intrinsic immune responses by using an arsenal of virulence factors of different nature. It has evolved to synthesize a series of complex lipids which form an outer membrane and may also be released to enter host cell membranes. In addition, secreted protein effectors of Mtb are entering the host cell cytosol to interact with host cell proteins. We briefly discuss the current model, involving the ESX-1 type seven secretion system and the Mtb lipid phthiocerol dimycoserosate (PDIM), of how Mtb creates pores in the phagosomal membrane to allow Mtb proteins to access to the host cell cytosol. We provide an exhaustive list of Mtb secreted proteins that have effector functions. They modify (mostly inhibit but sometimes activate) host cell pathways such as: phagosome maturation, cell death, cytokine response, xenophagy, reactive oxygen species (ROS) response via NADPH oxidase 2 (NOX2), nitric oxide (NO) response via NO Synthase 2 (NOS2) and antigen presentation via MHC class I and class II molecules. We discuss the host cell targets for each lipid and protein effector and the importance of the Mtb effector for virulence of the bacterium.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
40
|
Zhou W, Sun J, Li X. Low-Cost Quantitative Photothermal Genetic Detection of Pathogens on a Paper Hybrid Device Using a Thermometer. Anal Chem 2020; 92:14830-14837. [PMID: 33059447 DOI: 10.1021/acs.analchem.0c03700] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB), one of the deadliest infectious diseases, is caused by Mycobacterium tuberculosis (MTB) and remains a public health problem nowadays. Conventional MTB DNA detection methods require sophisticated infrastructure and well-trained personnel, which leads to increasing complexity and high cost for diagnostics and limits their wide accessibility in low-resource settings. To address these issues, we have developed a low-cost photothermal biosensing method for the quantitative genetic detection of pathogens such as MTB DNA on a paper hybrid device using a thermometer. First, DNA capture probes were simply immobilized on paper through a one-step surface modification process. After DNA sandwich hybridization, oligonucleotide-functionalized gold nanoparticles (AuNPs) were introduced on paper and then catalyzed the oxidation reaction of 3,3',5,5'-tetramethylbenzidine (TMB). The produced oxidized TMB, acting as a strong photothermal agent, was used for the photothermal biosensing of MTB DNA under 808 nm laser irradiation. Under optimal conditions, the on-chip quantitative detection of the target DNA was readily achieved using an inexpensive thermometer as a signal recorder. This method does not require any expensive analytical instrumentation but can achieve higher sensitivity and there are no color interference issues, compared to conventional colorimetric methods. The method was further validated by detecting genomic DNA with high specificity. To the best of our knowledge, this is the first photothermal biosensing strategy for quantitative nucleic acid analysis on microfluidics using a thermometer, which brings fresh inspirations on the development of simple, low-cost, and miniaturized photothermal diagnostic platforms for quantitative detection of a variety of diseases at the point of care.
Collapse
Affiliation(s)
- Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Jianjun Sun
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.,Biomedical Engineering, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.,Environmental Science and Engineering, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
41
|
Bianchi F, van den Bogaart G. Vacuolar escape of foodborne bacterial pathogens. J Cell Sci 2020; 134:134/5/jcs247221. [PMID: 32873733 DOI: 10.1242/jcs.247221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The intracellular pathogens Listeria monocytogenes, Salmonella enterica, Shigella spp. and Staphylococcus aureus are major causes of foodborne illnesses. Following the ingestion of contaminated food or beverages, pathogens can invade epithelial cells, immune cells and other cell types. Pathogens survive and proliferate intracellularly via two main strategies. First, the pathogens can remain in membrane-bound vacuoles and tailor organellar trafficking to evade host-cell defenses and gain access to nutrients. Second, pathogens can rupture the vacuolar membrane and proliferate within the nutrient-rich cytosol of the host cell. Although this virulence strategy of vacuolar escape is well known for L. monocytogenes and Shigella spp., it has recently become clear that S. aureus and Salmonella spp. also gain access to the cytosol, and that this is important for their survival and growth. In this Review, we discuss the molecular mechanisms of how these intracellular pathogens rupture the vacuolar membrane by secreting a combination of proteins that lyse the membranes or that remodel the lipids of the vacuolar membrane, such as phospholipases. In addition, we also propose that oxidation of the vacuolar membrane also contributes to cytosolic pathogen escape. Understanding these escape mechanisms could aid in the identification of new therapeutic approaches to combat foodborne pathogens.
Collapse
Affiliation(s)
- Frans Bianchi
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands .,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 9625GA Nijmegen, The Netherlands
| |
Collapse
|
42
|
Chai Q, Wang L, Liu CH, Ge B. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol 2020; 17:901-913. [PMID: 32728204 PMCID: PMC7608469 DOI: 10.1038/s41423-020-0502-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an extremely successful intracellular pathogen that causes tuberculosis (TB), which remains the leading infectious cause of human death. The early interactions between Mtb and the host innate immune system largely determine the establishment of TB infection and disease development. Upon infection, host cells detect Mtb through a set of innate immune receptors and launch a range of cellular innate immune events. However, these innate defense mechanisms are extensively modulated by Mtb to avoid host immune clearance. In this review, we describe the emerging role of cytosolic nucleic acid-sensing pathways at the host-Mtb interface and summarize recently revealed mechanisms by which Mtb circumvents host cellular innate immune strategies such as membrane trafficking and integrity, cell death and autophagy. In addition, we discuss the newly elucidated strategies by which Mtb manipulates the host molecular regulatory machinery of innate immunity, including the intranuclear regulatory machinery, the ubiquitin system, and cellular intrinsic immune components. A better understanding of innate immune evasion mechanisms adopted by Mtb will provide new insights into TB pathogenesis and contribute to the development of more effective TB vaccines and therapies.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Lin Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China. .,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China.
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China.
| |
Collapse
|
43
|
Fenaroli F, Robertson JD, Scarpa E, Gouveia VM, Di Guglielmo C, De Pace C, Elks PM, Poma A, Evangelopoulos D, Canseco JO, Prajsnar TK, Marriott HM, Dockrell DH, Foster SJ, McHugh TD, Renshaw SA, Martí JS, Battaglia G, Rizzello L. Polymersomes Eradicating Intracellular Bacteria. ACS NANO 2020; 14:8287-8298. [PMID: 32515944 DOI: 10.1021/acsnano.0c01870] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mononuclear phagocytes such as monocytes, tissue-specific macrophages, and dendritic cells are primary actors in both innate and adaptive immunity. These professional phagocytes can be parasitized by intracellular bacteria, turning them from housekeepers to hiding places and favoring chronic and/or disseminated infection. One of the most infamous is the bacteria that cause tuberculosis (TB), which is the most pandemic and one of the deadliest diseases, with one-third of the world's population infected and an average of 1.8 million deaths/year worldwide. Here we demonstrate the effective targeting and intracellular delivery of antibiotics to infected macrophages both in vitro and in vivo, using pH-sensitive nanoscopic polymersomes made of PMPC-PDPA block copolymer. Polymersomes showed the ability to significantly enhance the efficacy of the antibiotics killing Mycobacterium bovis, Mycobacterium tuberculosis, and another established intracellular pathogen, Staphylococcus aureus. Moreover, they demonstrated to easily access TB-like granuloma tissues-one of the harshest environments to penetrate-in zebrafish models. We thus successfully exploited this targeting for the effective eradication of several intracellular bacteria, including M. tuberculosis, the etiological agent of human TB.
Collapse
Affiliation(s)
| | - James D Robertson
- Department of Biomedical Science, University of Sheffield, S10 2TN Sheffield, U.K
- The Bateson Centre, University of Sheffield, Firth Court, S10 2TN Sheffield, U.K
| | - Edoardo Scarpa
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
| | - Virginia M Gouveia
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
| | - Claudia Di Guglielmo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Cesare De Pace
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
- The EPSRC/Jeol Centre for Liquid Phase Electron Microscopy, University College London, WC1H 0AJ London, U.K
| | - Philip M Elks
- Department of Biomedical Science, University of Sheffield, S10 2TN Sheffield, U.K
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield Medical School, S10 2JF Sheffield, U.K
| | - Alessandro Poma
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, WC1X 8LD London, U.K
| | - Dimitrios Evangelopoulos
- Department of Clinical Microbiology, University College London, Royal Free Hospital, NW3 2PF London, U.K
| | - Julio Ortiz Canseco
- Department of Clinical Microbiology, University College London, Royal Free Hospital, NW3 2PF London, U.K
| | - Tomasz K Prajsnar
- The Florey Institute, University of Sheffield, S10 2TN Sheffield, U.K
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN Sheffield, U.K
| | - Helen M Marriott
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield Medical School, S10 2JF Sheffield, U.K
- The Florey Institute, University of Sheffield, S10 2TN Sheffield, U.K
| | - David H Dockrell
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield Medical School, S10 2JF Sheffield, U.K
| | - Simon J Foster
- The Florey Institute, University of Sheffield, S10 2TN Sheffield, U.K
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN Sheffield, U.K
| | - Timothy D McHugh
- Department of Clinical Microbiology, University College London, Royal Free Hospital, NW3 2PF London, U.K
| | - Stephen A Renshaw
- The Bateson Centre, University of Sheffield, Firth Court, S10 2TN Sheffield, U.K
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield Medical School, S10 2JF Sheffield, U.K
- The Florey Institute, University of Sheffield, S10 2TN Sheffield, U.K
| | - Josep Samitier Martí
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, 08028 Barcelona, Spain
- Networking Biomedical Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- The EPSRC/Jeol Centre for Liquid Phase Electron Microscopy, University College London, WC1H 0AJ London, U.K
- Institute for Physics of Living System, University College London, WC1E 6BT London, U.K
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Loris Rizzello
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy
| |
Collapse
|
44
|
Abreu R, Giri P, Quinn F. Host-Pathogen Interaction as a Novel Target for Host-Directed Therapies in Tuberculosis. Front Immunol 2020; 11:1553. [PMID: 32849525 PMCID: PMC7396704 DOI: 10.3389/fimmu.2020.01553] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) has been a transmittable human disease for many thousands of years, and M. tuberculosis is again the number one cause of death worldwide due to a single infectious agent. The intense 6- to 10-month process of multi-drug treatment, combined with the adverse side effects that can run the spectrum from gastrointestinal disturbances to liver toxicity or peripheral neuropathy are major obstacles to patient compliance and therapy completion. The consequent increase in multidrug resistant TB (MDR-TB) and extensively drug resistant TB (XDR-TB) cases requires that we increase our arsenal of effective drugs, particularly novel therapeutic approaches. Over the millennia, host and pathogen have evolved mechanisms and relationships that greatly influence the outcome of infection. Understanding these evolutionary interactions and their impact on bacterial clearance or host pathology will lead the way toward rational development of new therapeutics that favor enhancing a host protective response. These host-directed therapies have recently demonstrated promising results against M. tuberculosis, adding to the effectiveness of currently available anti-mycobacterial drugs that directly kill the organism or slow mycobacterial replication. Here we review the host-pathogen interactions during M. tuberculosis infection, describe how M. tuberculosis bacilli modulate and evade the host immune system, and discuss the currently available host-directed therapies that target these bacterial factors. Rather than provide an exhaustive description of M. tuberculosis virulence factors, which falls outside the scope of this review, we will instead focus on the host-pathogen interactions that lead to increased bacterial growth or host immune evasion, and that can be modulated by existing host-directed therapies.
Collapse
Affiliation(s)
| | | | - Fred Quinn
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
45
|
The ESX-1 Virulence Factors Downregulate miR-147-3p in Mycobacterium marinum-Infected Macrophages. Infect Immun 2020; 88:IAI.00088-20. [PMID: 32253249 DOI: 10.1128/iai.00088-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
As important virulence factors of Mycobacterium tuberculosis, EsxA and EsxB not only play a role in phagosome rupture and M. tuberculosis cytosolic translocation but also function as modulators of host immune responses by modulating numerous microRNAs (miRNAs). Recently, we have found that mycobacterial infection downregulated miR-148a-3p (now termed miR-148) in macrophages in an ESX-1-dependent manner. The upregulation of miR-148 reduced mycobacterial intracellular survival. Here, we investigated miR-147-3p (now termed miR-147), a negative regulator of inflammatory cytokines (e.g., interleukin-6 [IL-6] and IL-10), in mycobacterial infection. We infected murine RAW264.7 macrophages with Mycobacterium marinum, a surrogate model organism for M. tuberculosis, and found that the esxBA-knockout strain (M. marinum ΔesxBA) upregulated miR-147 to a level that was significantly higher than that induced by the M. marinum wild-type (WT) strain or by the M. marinum ΔesxBA complemented strain, M. marinum ΔesxBA/pesxBA, suggesting that the ESX-1 system (potentially EsxBA and/or other codependently secreted factors) is the negative regulator of miR-147. miR-147 was also downregulated by directly incubating the macrophages with the purified recombinant EsxA or EsxB protein or the EsxBA heterodimer, which further confirms the role of the EsxBA proteins in the downregulation of miR-147. The upregulation of miR-147 inhibited the production of IL-6 and IL-10 and significantly reduced M. marinum intracellular survival. Interestingly, inhibitors of either miR-147 or miR-148 reciprocally compromised the effects of the mimics of their counterparts on M. marinum intracellular survival. This suggests that miR-147 and miR-148 share converged downstream pathways in response to mycobacterial infection, which was supported by data indicating that miR-147 upregulation inhibits the Toll-like receptor 4/NF-κB pathway.
Collapse
|
46
|
Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat Commun 2020; 11:2270. [PMID: 32385301 PMCID: PMC7210277 DOI: 10.1038/s41467-020-16143-6] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is a global health problem in part as a result of extensive cytotoxicity caused by the infection. Here, we show how M. tuberculosis causes caspase-1/NLRP3/gasdermin D-mediated pyroptosis of human monocytes and macrophages. A type VII secretion system (ESX-1) mediated, contact-induced plasma membrane damage response occurs during phagocytosis of bacteria. Alternatively, this can occur from the cytosolic side of the plasma membrane after phagosomal rupture in infected macrophages. This damage causes K+ efflux and activation of NLRP3-dependent IL-1β release and pyroptosis, facilitating the spread of bacteria to neighbouring cells. A dynamic interplay of pyroptosis with ESCRT-mediated plasma membrane repair also occurs. This dual plasma membrane damage seems to be a common mechanism for NLRP3 activators that function through lysosomal damage. Inflammasome activation is a response to bacterial infection but can cause damage and spread infection. Here, the authors use live single-cell imaging to show two mechanisms by which M. tuberculosis causes damage to human macrophage cell plasma membranes, resulting in activation of the NLRP3 inflammasome, pyroptosis and release of infectious particles.
Collapse
|
47
|
Karki C, Xian Y, Xie Y, Sun S, Lopez-Hernandez AE, Juarez B, Wang J, Sun J, Li L. A computational model of ESAT-6 complex in membrane. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020; 19:2040002. [PMID: 34211240 PMCID: PMC8245204 DOI: 10.1142/s0219633620400027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One quarter of the world's population are infected by Mycobacterium tuberculosis (Mtb), which is a leading death-causing bacterial pathogen. Recent evidence has demonstrated that two virulence factors, ESAT-6 and CFP-10, play crucial roles in Mtb's cytosolic translocation. Many efforts have been made to study the ESAT-6 and CFP-10 proteins. Some studies have shown that ESAT-6 has an essential role in rupturing phagosome. However, the mechanisms of how ESAT-6 interacts with the membrane have not yet been fully understood. Recent studies indicate that the ESAT-6 disassociates with CFP-10 upon their interaction with phagosome membrane, forming a membrane-spanning pore. Based on these observations, as well as the available structure of ESAT-6, ESAT-6 is hypothesized to form an oligomer for membrane insertion as well as rupturing. Such an ESAT-6 oligomer may play a significant role in the tuberculosis infection. Therefore, deeper understanding of the oligomerization of ESAT-6 will establish new directions for tuberculosis treatment. However, the structure of the oligomer of ESAT-6 is not known. Here, we proposed a comprehensive approach to model the complex structures of ESAT-6 oligomer inside a membrane. Several computational tools, including MD simulation, symmetrical docking, MM/PBSA, are used to obtain and characterize such a complex structure. Results from our studies lead to a well-supported hypothesis of the ESAT-6 oligomerization as well as the identification of essential residues in stabilizing the ESAT-6 oligomer which provide useful insights for future drug design targeting tuberculosis. The approach in this research can also be used to model and study other cross-membrane complex structures.
Collapse
Affiliation(s)
- Chitra Karki
- Department of Physics, University of Texas at El Paso, El Paso, Texas
- Computational Science Program, University of Texas at El Paso, El Paso, Texas
| | - Yuejiao Xian
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas
| | - Yixin Xie
- Computational Science Program, University of Texas at El Paso, El Paso, Texas
| | - Shengjie Sun
- Computational Science Program, University of Texas at El Paso, El Paso, Texas
| | | | - Brenda Juarez
- Department of Physics, University of Texas at El Paso, El Paso, Texas
| | - Jun Wang
- Department of Physics, University of Texas at El Paso, El Paso, Texas
| | - Jianjun Sun
- Department of Biology, University of Texas at El Paso, El Paso, Texas
| | - Lin Li
- Department of Physics, University of Texas at El Paso, El Paso, Texas
| |
Collapse
|
48
|
Crosskey TD, Beckham KS, Wilmanns M. The ATPases of the mycobacterial type VII secretion system: Structural and mechanistic insights into secretion. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 152:25-34. [DOI: 10.1016/j.pbiomolbio.2019.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
|
49
|
Chai Q, Lu Z, Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci 2020; 77:1859-1878. [PMID: 31720742 PMCID: PMC11104961 DOI: 10.1007/s00018-019-03353-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), remains the leading cause of death worldwide from a single infectious pathogen. Mtb is a paradigmatic intracellular pathogen that primarily invades the lungs after host inhalation of bacteria-containing droplets via the airway. However, the majority of Mtb-exposed individuals can spontaneously control the infection by virtue of a robust immune defense system. The mucosal barriers of the respiratory tract shape the first-line defense against Mtb through various mucosal immune responses. After arriving at the alveoli, the surviving mycobacteria further encounter a set of host innate immune cells that exert multiple cellular bactericidal functions. Adaptive immunity, predominantly mediated by a range of different T cell and B cell subsets, is subsequently activated and participates in host anti-mycobacterial defense. During Mtb infection, host bactericidal immune responses are exquisitely adjusted and balanced by multifaceted mechanisms, including genetic and epigenetic regulation, metabolic regulation and neuroendocrine regulation, which are indispensable for maintaining host immune efficiency and avoiding excessive tissue injury. A better understanding of the integrated and equilibrated host immune defense system against Mtb will contribute to the development of rational TB treatment regimens especially novel host-directed therapeutics.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
50
|
Aguilera J, Karki CB, Li L, Vazquez Reyes S, Estevao I, Grajeda BI, Zhang Q, Arico CD, Ouellet H, Sun J. Nα-Acetylation of the virulence factor EsxA is required for mycobacterial cytosolic translocation and virulence. J Biol Chem 2020; 295:5785-5794. [PMID: 32169899 PMCID: PMC7186180 DOI: 10.1074/jbc.ra119.012497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/11/2020] [Indexed: 12/23/2022] Open
Abstract
The Mycobacterium tuberculosis virulence factor EsxA and its chaperone EsxB are secreted as a heterodimer (EsxA:B) and are crucial for mycobacterial escape from phagosomes and cytosolic translocation. Current findings support the idea that for EsxA to interact with host membranes, EsxA must dissociate from EsxB at low pH. However, the molecular mechanism by which the EsxA:B heterodimer separates is not clear. In the present study, using liposome-leakage and cytotoxicity assays, LC-MS/MS-based proteomics, and CCF-4 FRET analysis, we obtained evidence that the Nα-acetylation of the Thr-2 residue on EsxA, a post-translational modification that is present in mycobacteria but absent in Escherichia coli, is required for the EsxA:B separation. Substitutions at Thr-2 that precluded Nα-acetylation inhibited the heterodimer separation and hence prevented EsxA from interacting with the host membrane, resulting in attenuated mycobacterial cytosolic translocation and virulence. Molecular dynamics simulations revealed that at low pH, the Nα-acetylated Thr-2 makes direct and frequent "bind-and-release" contacts with EsxB, which generates a force that pulls EsxB away from EsxA. In summary, our findings provide evidence that the Nα-acetylation at Thr-2 of EsxA facilitates dissociation of the EsxA:B heterodimer required for EsxA membrane permeabilization and mycobacterial cytosolic translocation and virulence.
Collapse
Affiliation(s)
- Javier Aguilera
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Chitra B Karki
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968
| | - Lin Li
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968
| | - Salvador Vazquez Reyes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Igor Estevao
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Brian I Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Qi Zhang
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Chenoa D Arico
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Hugues Ouellet
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Jianjun Sun
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968.
| |
Collapse
|