1
|
Loitongbam A, Samal NK, Kumar NR, Kumar S, Annamalai M, Kundu A, Subramanian S, Bhattacharya R. Differential regulation of glucosinolate-myrosinase mediated defense determines host-aphid interaction in Indian mustard Brassica juncea L. Mol Biol Rep 2024; 51:1079. [PMID: 39432209 DOI: 10.1007/s11033-024-10002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND India's oilseed economy falls short of self-sufficiency and is supplemented by huge imports every year. Increasing national productivity of the major oilseeds is confronted with yield losses due to diverse biotic and abiotic stresses. The productivity of Indian mustard (Brassica juncea Linnaeus), belonging to the family Brassicaceae, is significantly reduced due to damage caused by mustard aphids (Lipaphis erysimi Kaltenbach, Hemiptera: Aphididae). Rapid colonization by the nymphs makes it difficult to protect the crop through agrochemicals. Aphids release effector molecules to modulate the host-defence responses. Glucosinolates (GSLs) extensively found in Brassicaceae family, are hydrolysed by myrosinase into toxic compounds that deter herbivore insects. METHODS Here, we investigated the differential activation of the glucosinolate-myrosinase pathway in mustard manifesting susceptibility and resistance to different aphid species. Mustard plants were challenged by two different aphid species mustard aphid and cowpea aphid (Aphis craccivora Koch, Hemiptera: Aphididae) leading to complete host-susceptibility in one case and resistance in the other, respectively. Differential regulation of the GSL biosynthetic pathway and myrosinase activity was assessed by gene expression study and ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC- QToF-ESL-MS). RESULTS Gene expression study identified selective transcriptional attenuation of the key GSL biosynthetic and myrosinase gene in mustard when challenged with mustard aphid. In contrary, the activation of GSL biosynthetic genes in conjunction with myrosinase at the transcriptional level was profound in mustard, when challenged with cowpea aphid. UPLC-MS analysis showed higher turnover in the hydrolysis of glucosinolates by myrosinase which led to concomitant generation of glucose as byproduct in response to cowpea aphid in mustard plants. CONCLUSION GSL-myrosinase pathway is specifically attenuated by the successful aphid species in mustard and thus plays a pivotal role in determining the outcome of the B. juncea-aphid interaction. The results open up a new genetic modification strategy for developing resistance against aphids.
Collapse
Affiliation(s)
- Ashakiran Loitongbam
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Naresh Kumar Samal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nikhil Ram Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Satish Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | | | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sabtharishi Subramanian
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | |
Collapse
|
2
|
Chongtham R, Sharma M, Shukla RN, Joshi G, Kumar A, Goel S, Agarwal M, Jagannath A. De Novo Transcriptome Profiling of Mustard Aphid ( Lipaphis erysimi) and Differential Expression of Transcripts Associated with Feeding and Non-Feeding Conditions and Developmental Stages. INSECTS 2024; 15:682. [PMID: 39336650 PMCID: PMC11432475 DOI: 10.3390/insects15090682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024]
Abstract
Lipaphis erysimi is a specialist aphid of the Indian subcontinent that causes significant yield losses in oilseed Brassicas. Several aphid genes have been used as preferred targets in RNAi-based transgenic plants for aphid resistance. In order to enhance the repertoire of potential target genes for aphid control and to identify the genes associated with aphid feeding and development, we performed a two-way comparative study of differential gene expression profiles between (i) feeding and non-feeding adults and (ii) adult and nymph developmental stages of L. erysimi. De novo RNA-seq of aphids using Illumina technology generated a final transcriptome comprising 52,652 transcripts. Potential transcripts for host selection, detoxification, salivary proteins and effectors, molecular chaperones and developmental genes were identified. Differential gene expression studies identified variations in the expression of 1502 transcripts between feeding and non-feeding adults and 906 transcripts between nymphs and adults. These data were used to identify novel target genes for RNAi-based aphid control and facilitate further studies on the molecular basis of aphid feeding and development.
Collapse
Affiliation(s)
- Rubina Chongtham
- Department of Botany, University of Delhi, Delhi 110007, India
- Department of Botany, Deshbandhu College, University of Delhi, Delhi 110019, India
| | - Manvi Sharma
- Department of Botany, University of Delhi, Delhi 110007, India
| | | | - Gopal Joshi
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Amar Kumar
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Arun Jagannath
- Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
3
|
Calia G, Cestaro A, Schuler H, Janik K, Donati C, Moser M, Bottini S. Definition of the effector landscape across 13 phytoplasma proteomes with LEAPH and EffectorComb. NAR Genom Bioinform 2024; 6:lqae087. [PMID: 39081684 PMCID: PMC11287381 DOI: 10.1093/nargab/lqae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
'Candidatus Phytoplasma' genus, a group of fastidious phloem-restricted bacteria, can infect a wide variety of both ornamental and agro-economically important plants. Phytoplasmas secrete effector proteins responsible for the symptoms associated with the disease. Identifying and characterizing these proteins is of prime importance for expanding our knowledge of the molecular bases of the disease. We faced the challenge of identifying phytoplasma's effectors by developing LEAPH, a machine learning ensemble predictor composed of four models. LEAPH was trained on 479 proteins from 53 phytoplasma species, described by 30 features. LEAPH achieved 97.49% accuracy, 95.26% precision and 98.37% recall, ensuring a low false-positive rate and outperforming available state-of-the-art methods. The application of LEAPH to 13 phytoplasma proteomes yields a comprehensive landscape of 2089 putative pathogenicity proteins. We identified three classes according to different secretion models: 'classical', 'classical-like' and 'non-classical'. Importantly, LEAPH identified 15 out of 17 known experimentally validated effectors belonging to the three classes. Furthermore, to help the selection of novel candidates for biological validation, we applied the Self-Organizing Maps algorithm and developed a Shiny app called EffectorComb. LEAPH and the EffectorComb app can be used to boost the characterization of putative effectors at both computational and experimental levels, and can be employed in other phytopathological models.
Collapse
Affiliation(s)
- Giulia Calia
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, 39100 Bolzano, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
- INRAE, Institut Sophia Agrobiotech, Université Côte d’Azur, CNRS, 06903 Sophia-Antipolis, France
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy
| | - Hannes Schuler
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, 39100 Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bolzano, 39100 Bolzano, Italy
| | - Katrin Janik
- Institute for Plant Health, Molecular Biology and Microbiology, Laimburg Research Centre, 47141 Pfatten-Vadena, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Mirko Moser
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Silvia Bottini
- INRAE, Institut Sophia Agrobiotech, Université Côte d’Azur, CNRS, 06903 Sophia-Antipolis, France
| |
Collapse
|
4
|
Đurić M, Jevremović S, Trifunović-Momčilov M, Milošević S, Subotić A, Jerinić-Prodanović D. Physiological and oxidative stress response of carrot (Daucus carota L.) to jumping plant-louse Bactericera trigonica Hodkinson (Hemiptera: Psylloidea) infestation. BMC PLANT BIOLOGY 2024; 24:243. [PMID: 38575896 PMCID: PMC10993497 DOI: 10.1186/s12870-024-04946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Carrot is an important vegetable crop grown worldwide. The major economic problem in carrot cultivation is yellow disease caused by Bactericera trigonica, which induces biotic stress and has the greatest impact on crop productivity. Comprehensive studies on the mechanism of carrot defense response to biotic stress caused by B. trigonica infestation have yet to be conducted. METHODS The changes in photosynthetic pigments, proline, TPC, H2O2 and MDA content, DPPH radical scavenging ability, and antioxidant enzyme activity of SOD, CAT, and POX in carrot leaves in response to insect sex (female and male), rapid response (during the first six hours), and long-term response to B. trigonica infestation were evaluated. RESULTS The results of our study strongly suggest that B. trigonica infestation causes significant changes in primary and secondary metabolism and oxidative status of carrot leaves. Photosynthetic pigment content, TPC, and DPPH and CAT activities were significantly reduced in carrot leaves in response to insect infestation. On the other hand, proline, H2O2 content, and the activity of the antioxidant enzymes superoxide dismutase and peroxidase were increased in carrot leaves after B. trigonica infestation. The results indicate that B. trigonica attenuates and delays the oxidative stress responses of carrot, allowing long-term feeding without visible changes in the plant. Carrot responded to long-term B. trigonica infestation with an increase in SOD and POX activity, suggesting that these enzymes may play a key role in plant defense mechanisms. CONCLUSIONS This is the first comprehensive study strongly suggesting that B. trigonica infestation causes significant changes in primary and secondary metabolism and an attenuated ROS defense response in carrot leaves that enables long-term insect feeding. The information provides new insights into the mechanisms of carrot protection against B. trigonica infestation.
Collapse
Affiliation(s)
- Marija Đurić
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| | - Slađana Jevremović
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia.
| | - Milana Trifunović-Momčilov
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| | - Snežana Milošević
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| | - Angelina Subotić
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| | - Dušanka Jerinić-Prodanović
- Department of Entomology and Agricultural Zoology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, 11080, Serbia
| |
Collapse
|
5
|
Archer L, Mondal HA, Behera S, Twayana M, Patel M, Louis J, Nalam VJ, Keereetaweep J, Chowdhury Z, Shah J. Interplay between MYZUS PERSICAE-INDUCED LIPASE 1 and OPDA signaling in limiting green peach aphid infestation on Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6860-6873. [PMID: 37696760 DOI: 10.1093/jxb/erad355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/09/2023] [Indexed: 09/13/2023]
Abstract
MYZUS PERSICAE-INDUCED LIPASE1 (MPL1) encodes a lipase in Arabidopsis thaliana that is required for limiting infestation by the green peach aphid (GPA; Myzus persicae), an important phloem sap-consuming insect pest. Previously, we demonstrated that MPL1 expression was up-regulated in response to GPA infestation, and GPA fecundity was higher on the mpl1 mutant, compared with the wild-type (WT), and lower on 35S:MPL1 plants that constitutively expressed MPL1 from the 35S promoter. Here, we show that the MPL1 promoter is active in the phloem and expression of the MPL1 coding sequence from the phloem-specific SUC2 promoter in mpl1 is sufficient to restore resistance to GPA. The GPA infestation-associated up-regulation of MPL1 requires CYCLOPHILIN 20-3 (CYP20-3), which encodes a 12-oxo-phytodienoic acid (OPDA)-binding protein that is involved in OPDA signaling, and is required for limiting GPA infestation. OPDA promotes MPL1 expression to limit GPA fecundity, a process that requires CYP20-3 function. These results along with our observation that constitutive expression of MPL1 from the 35S promoter restores resistance to GPA in the cyp20-3 mutant, and MPL1 acts in a feedback loop to limit OPDA levels in GPA-infested plants, suggest that an interplay between MPL1, OPDA, and CYP20-3 contributes to resistance to GPA.
Collapse
Affiliation(s)
- Lani Archer
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Hossain A Mondal
- College of Post Graduate Studies in Agricultural Sciences (CPGS-AS, under Central Agricultural University, Imphal, Manipur), Meghalaya 793103, India
| | - Sumita Behera
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Moon Twayana
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Monika Patel
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Joe Louis
- Department of Entomology and Department of Biochemistry, University of Nebraska, Lincoln, NE 68583, USA
| | - Vamsi J Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Zulkarnain Chowdhury
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
6
|
Krieger C, Halter D, Baltenweck R, Cognat V, Boissinot S, Maia-Grondard A, Erdinger M, Bogaert F, Pichon E, Hugueney P, Brault V, Ziegler-Graff V. An Aphid-Transmitted Virus Reduces the Host Plant Response to Its Vector to Promote Its Transmission. PHYTOPATHOLOGY 2023; 113:1745-1760. [PMID: 37885045 DOI: 10.1094/phyto-12-22-0454-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The success of virus transmission by vectors relies on intricate trophic interactions between three partners, the host plant, the virus, and the vector. Despite numerous studies that showed the capacity of plant viruses to manipulate their host plant to their benefit, and potentially of their transmission, the molecular mechanisms sustaining this phenomenon has not yet been extensively analyzed at the molecular level. In this study, we focused on the deregulations induced in Arabidopsis thaliana by an aphid vector that were alleviated when the plants were infected with turnip yellows virus (TuYV), a polerovirus strictly transmitted by aphids in a circulative and nonpropagative mode. By setting up an experimental design mimicking the natural conditions of virus transmission, we analyzed the deregulations in plants infected with TuYV and infested with aphids by a dual transcriptomic and metabolomic approach. We observed that the virus infection alleviated most of the gene deregulations induced by the aphids in a noninfected plant at both time points analyzed (6 and 72 h) with a more pronounced effect at the later time point of infestation. The metabolic composition of the infected and infested plants was altered in a way that could be beneficial for the vector and the virus transmission. Importantly, these substantial modifications observed in infected and infested plants correlated with a higher TuYV transmission efficiency. This study revealed the capacity of TuYV to alter the plant nutritive content and the defense reaction against the aphid vector to promote the viral transmission.
Collapse
Affiliation(s)
- Célia Krieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - David Halter
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | | | - Valérie Cognat
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | | | | | - Monique Erdinger
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Florent Bogaert
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Elodie Pichon
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | | | - Véronique Brault
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
7
|
Wang Y, Li Y, Duan T. Arbuscular mycorrhizal fungus changes alfalfa response to pathogen infection activated by pea aphid infestation. Front Microbiol 2023; 13:1074592. [PMID: 36845970 PMCID: PMC9945236 DOI: 10.3389/fmicb.2022.1074592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023] Open
Abstract
Introduction Arbuscular mycorrhizal (AM) fungi are important for the resistance of plants to insect infestation and diseases. However, the effect of AM fungal colonization of plants response to pathogen infection activated by pea aphid infestation is unknown. Pea aphid (Acyrthosiphon pisum) and the fungal pathogen Phoma medicaginis severely limit alfalfa production worldwide. Methods This study established an alfalfa (Medicago sativa)-AM fungus (Rhizophagus intraradices)-pea aphid-P. medicaginis experimental system to clarify the effects of an AM fungus on the host plant response to insect infestation and subsequent fungal pathogen infection. Results Pea aphid increased the disease incidence of P. medicaginis by 24.94%. The AM fungus decreased the disease index by 22.37% and enhanced alfalfa growth by increasing the uptake of total nitrogen and total phosphorus. The aphid induced polyphenol oxidase activity of alfalfa, and the AM fungus enhanced plant-defense enzyme activity against aphid infestation and subsequent P. medicaginis infection. In addition, the AM fungus increased the contents of jasmonic acid and abscisic acid in plants exposed to aphid infestation or pathogen infection. Abscisic acid and genes associated with the gene ontology term "hormone binding" were upregulated in aphid-infested or pathogen-infected alfalfa. Discussion The results demonstrate that an AM fungus enhances plant defense and signaling components induced by aphid infestation, which may contribute to improved defense against subsequent pathogen infection.
Collapse
Affiliation(s)
- Yajie Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yingde Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tingyu Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China,*Correspondence: Tingyu Duan,
| |
Collapse
|
8
|
Le Boulch P, Poëssel JL, Roux D, Lugan R. Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. FRONTIERS IN PLANT SCIENCE 2022; 13:992544. [PMID: 36275570 PMCID: PMC9581297 DOI: 10.3389/fpls.2022.992544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The transcriptomic and metabolomic responses of peach to Myzus persicae infestation were studied in Rubira, an accession carrying the major resistance gene Rm2 causing antixenosis, and GF305, a susceptible accession. Transcriptome and metabolome showed both a massive reconfiguration in Rubira 48 hours after infestation while GF305 displayed very limited changes. The Rubira immune system was massively stimulated, with simultaneous activation of genes encoding cell surface receptors involved in pattern-triggered immunity and cytoplasmic NLRs (nucleotide-binding domain, leucine-rich repeat containing proteins) involved in effector-triggered immunity. Hypersensitive reaction featured by necrotic lesions surrounding stylet punctures was supported by the induction of cell death stimulating NLRs/helpers couples, as well as the activation of H2O2-generating metabolic pathways: photorespiratory glyoxylate synthesis and activation of the futile P5C/proline cycle. The triggering of systemic acquired resistance was suggested by the activation of pipecolate pathway and accumulation of this defense hormone together with salicylate. Important reduction in carbon, nitrogen and sulphur metabolic pools and the repression of many genes related to cell division and growth, consistent with reduced apices elongation, suggested a decline in the nutritional value of apices. Finally, the accumulation of caffeic acid conjugates pointed toward their contribution as deterrent and/or toxic compounds in the mechanisms of resistance.
Collapse
Affiliation(s)
| | | | - David Roux
- UMR Qualisud, Avignon Université, Avignon, France
| | | |
Collapse
|
9
|
Chesnais Q, Golyaev V, Velt A, Rustenholz C, Brault V, Pooggin MM, Drucker M. Comparative Plant Transcriptome Profiling of Arabidopsis thaliana Col-0 and Camelina sativa var. Celine Infested with Myzus persicae Aphids Acquiring Circulative and Noncirculative Viruses Reveals Virus- and Plant-Specific Alterations Relevant to Aphid Feeding Behavior and Transmission. Microbiol Spectr 2022; 10:e0013622. [PMID: 35856906 PMCID: PMC9430646 DOI: 10.1128/spectrum.00136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Evidence is accumulating that plant viruses alter host plant traits in ways that modify their insect vectors' behavior. These alterations often enhance virus transmission, which has led to the hypothesis that these effects are manipulations caused by viral adaptation. However, we lack a mechanistic understanding of the genetic basis of these indirect, plant-mediated effects on vectors, their dependence on the plant host, and their relation to the mode of virus transmission. Transcriptome profiling of Arabidopsis thaliana and Camelina sativa plants infected with turnip yellows virus (TuYV) or cauliflower mosaic virus (CaMV) and infested with the common aphid vector Myzus persicae revealed strong virus- and host-specific differences in gene expression patterns. CaMV infection caused more severe effects on the phenotype of both plant hosts than did TuYV infection, and the severity of symptoms correlated strongly with the proportion of differentially expressed genes, especially photosynthesis genes. Accordingly, CaMV infection modified aphid behavior and fecundity more strongly than did infection with TuYV. Overall, infection with CaMV, relying on the noncirculative transmission mode, tends to have effects on metabolic pathways, with strong potential implications for insect vector-plant host interactions (e.g., photosynthesis, jasmonic acid, ethylene, and glucosinolate biosynthetic processes), while TuYV, using the circulative transmission mode, alters these pathways only weakly. These virus-induced deregulations of genes that are related to plant physiology and defense responses might impact both aphid probing and feeding behavior on infected host plants, with potentially distinct effects on virus transmission. IMPORTANCE Plant viruses change the phenotype of their plant hosts. Some of the changes impact interactions of the plant with insects that feed on the plants and transmit these viruses. These modifications may result in better virus transmission. We examine here the transcriptomes of two plant species infected with two viruses with different transmission modes to work out whether there are plant species-specific and transmission mode-specific transcriptome changes. Our results show that both are the case.
Collapse
Affiliation(s)
- Quentin Chesnais
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Victor Golyaev
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Amandine Velt
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Camille Rustenholz
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Véronique Brault
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Martin Drucker
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Rivero RM, Mittler R, Blumwald E, Zandalinas SI. Developing climate-resilient crops: improving plant tolerance to stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:373-389. [PMID: 34482588 DOI: 10.1111/tpj.15483] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 05/21/2023]
Abstract
Global warming and climate change are driving an alarming increase in the frequency and intensity of different abiotic stresses, such as droughts, heat waves, cold snaps, and flooding, negatively affecting crop yields and causing food shortages. Climate change is also altering the composition and behavior of different insect and pathogen populations adding to yield losses worldwide. Additional constraints to agriculture are caused by the increasing amounts of human-generated pollutants, as well as the negative impact of climate change on soil microbiomes. Although in the laboratory, we are trained to study the impact of individual stress conditions on plants, in the field many stresses, pollutants, and pests could simultaneously or sequentially affect plants, causing conditions of stress combination. Because climate change is expected to increase the frequency and intensity of such stress combination events (e.g., heat waves combined with drought, flooding, or other abiotic stresses, pollutants, and/or pathogens), a concentrated effort is needed to study how stress combination is affecting crops. This need is particularly critical, as many studies have shown that the response of plants to stress combination is unique and cannot be predicted from simply studying each of the different stresses that are part of the stress combination. Strategies to enhance crop tolerance to a particular stress may therefore fail to enhance tolerance to this specific stress, when combined with other factors. Here we review recent studies of stress combinations in different plants and propose new approaches and avenues for the development of stress combination- and climate change-resilient crops.
Collapse
Affiliation(s)
- Rosa M Rivero
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, Murcia, 30100, Spain
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| |
Collapse
|
11
|
Host Acceptance and Plant Resistance: A Comparative Behavioral Study of Myzus persicae and Acyrthosiphon pisum. INSECTS 2021; 12:insects12110975. [PMID: 34821776 PMCID: PMC8622697 DOI: 10.3390/insects12110975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Aphids are one of the most destructive insect pests worldwide. The green peach aphid (Myzus persicae) feeds on a broad range of plants, whereas the pea aphid (Acyrthosiphon pisum) only feeds on legumes. In this study, these two aphid species were used to investigate host acceptance and plant resistance to aphid feeding. Experiments on host plant preference and aphid performance (with regard to survival, development, and fecundity) confirmed that rape (Brassica rapa) is a suitable host and that faba bean (Vicia faba) is a poor host for the green peach aphid; for the pea aphid, faba bean is a suitable host, whereas rape is a nonhost. The probing and feeding behavior of these two aphid species on rape and faba bean was examined, and the results demonstrated the feeding preferences of these two aphid species. The green peach aphid had difficulty ingesting the phloem sap of faba bean. For the nonhost, the pea aphid spent relatively little time on mesophyll probing and did not achieve phloem sap ingestion. Furthermore, the effects of the probing and feeding behavior of specialist and generalist aphids on the spread of plant diseases caused by viruses were discussed. Abstract Aphids are prominent phloem-feeding insect pests. Myzus persicae and Acyrthosiphon pisum are generalist and specialist species, respectively. In this study, these two aphid species were used to investigate host acceptance and plant resistance to aphid feeding. M.persicae survived and reproduced on rape (Brassica rapa), but few individuals (9%) survived on faba bean (Vicia faba). A.pisum survived and reproduced on faba bean, but no A.pisum survived on rape. The probing and feeding behavior of M. persicae and A. pisum on rape and faba bean was examined using an electrical penetration graph (EPG) technique. The results demonstrated the feeding preferences of these two aphid species. The EPG results suggest that the resistance of faba bean to M. persicae and that of rape to A. pisum are likely residing in the phloem and mesophyll tissues, respectively. Due to the distinct probing and feeding behaviors, specialist and generalist aphids would have different impacts on the epidemiology of plant viral diseases. The findings can be applied to the management of viral diseases transmitted by specialist or generalist aphids in crop production.
Collapse
|
12
|
Enders L, Begcy K. Unconventional routes to developing insect-resistant crops. MOLECULAR PLANT 2021; 14:1439-1453. [PMID: 34217871 DOI: 10.1016/j.molp.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Concerns over widespread use of insecticides and heightened insect pest virulence under climate change continue to fuel the need for environmentally safe and sustainable control strategies. However, to develop such strategies, a better understanding of the molecular basis of plant-pest interactions is still needed. Despite decades of research investigating plant-insect interactions, few examples exist where underlying molecular mechanisms are well characterized, and even rarer are cases where this knowledge has been successfully applied to manage harmful agricultural pests. Consequently, the field appears to be static, urgently needing shifts in approaches to identify novel mechanisms by which insects colonize plants and plants avoid insect pressure. In this perspective, we outline necessary steps for advancing holistic methodologies that capture complex plant-insect molecular interactions. We highlight novel and underexploited approaches in plant-insect interaction research as essential routes to translate knowledge of underlying molecular mechanisms into durable pest control strategies, including embracing microbial partnerships, identifying what makes a plant an unsuitable host, capitalizing on tolerance of insect damage, and learning from cases where crop domestication and agronomic practices enhance pest virulence.
Collapse
Affiliation(s)
- Laramy Enders
- Purdue University, Department of Entomology, West Lafayette, IN 47907, USA.
| | - Kevin Begcy
- University of Florida, Environmental Horticulture Department, Gainesville, FL 32611, USA.
| |
Collapse
|
13
|
Garcia A, Santamaria ME, Diaz I, Martinez M. Disentangling transcriptional responses in plant defense against arthropod herbivores. Sci Rep 2021; 11:12996. [PMID: 34155286 PMCID: PMC8217245 DOI: 10.1038/s41598-021-92468-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/03/2021] [Indexed: 01/21/2023] Open
Abstract
The success in the response of a plant to a pest depends on the regulatory networks that connect plant perception and plant response. Meta-analyses of transcriptomic responses are valuable tools to discover novel mechanisms in the plant/herbivore interplay. Considering the quantity and quality of available transcriptomic analyses, Arabidopsis thaliana was selected to test the ability of comprehensive meta-analyses to disentangle plant responses. The analysis of the transcriptomic data showed a general induction of biological processes commonly associated with the response to herbivory, like jasmonate signaling or glucosinolate biosynthesis. However, an uneven induction of many genes belonging to these biological categories was found, which was likely associated with the particularities of each specific Arabidopsis-herbivore interaction. A thorough analysis of the responses to the lepidopteran Pieris rapae and the spider mite Tetranychus urticae highlighted specificities in the perception and signaling pathways associated with the expression of receptors and transcription factors. This information was translated to a variable alteration of secondary metabolic pathways. In conclusion, transcriptomic meta-analysis has been revealed as a potent way to sort out relevant physiological processes in the plant response to herbivores. Translation of these transcriptomic-based analyses to crop species will permit a more appropriate design of biotechnological programs.
Collapse
Affiliation(s)
- Alejandro Garcia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
14
|
Xu J, Padilla CS, Li J, Wickramanayake J, Fischer HD, Goggin FL. Redox responses of Arabidopsis thaliana to the green peach aphid, Myzus persicae. MOLECULAR PLANT PATHOLOGY 2021; 22:727-736. [PMID: 33829627 PMCID: PMC8126190 DOI: 10.1111/mpp.13054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 05/29/2023]
Abstract
The green peach aphid (Myzus persicae) is a phloem-feeding insect that causes economic damage on a wide array of crops. Using a luminol-based assay, a superoxide-responsive reporter gene (Zat12::luciferase), and a probe specific to hydrogen peroxide (HyPer), we demonstrated that this aphid induces accumulation of reactive oxygen species (ROS) in Arabidopsis thaliana. Similar to the apoplastic oxidative burst induced by pathogens, this response to aphids was rapid and transient, with two peaks occurring within 1 and 4 hr after infestation. Aphid infestation also induced an oxidative response in the cytosol and peroxisomes, as measured using a redox-sensitive variant of green fluorescent protein (roGFP2). This intracellular response began within minutes of infestation but persisted 20 hr or more after inoculation, and the response of the peroxisomes appeared stronger than the response in the cytosol. Our results suggest that the oxidative response to aphids involves both apoplastic and intracellular sources of ROS, including ROS generation in the peroxisomes, and these different sources of ROS may potentially differ in their impacts on host suitability for aphids.
Collapse
Affiliation(s)
- Junhuan Xu
- Department of Entomology and Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleArkansasUSA
- Present address:
Department of Plant PathologyOhio State UniversityWoosterOhioUSA
| | - Carmen S. Padilla
- Department of Entomology and Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleArkansasUSA
- Present address:
Texas A&M AgriLife Research and Extension CenterWeslacoTexasUSA
| | - Jiamei Li
- Department of Entomology and Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleArkansasUSA
| | - Janithri Wickramanayake
- Department of Entomology and Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleArkansasUSA
| | - Hillary D. Fischer
- Department of Entomology and Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleArkansasUSA
| | - Fiona L. Goggin
- Department of Entomology and Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleArkansasUSA
| |
Collapse
|
15
|
Escudero-Martinez C, Leybourne DJ, Bos JIB. Plant resistance in different cell layers affects aphid probing and feeding behaviour during non-host and poor-host interactions. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:31-38. [PMID: 32539886 DOI: 10.1017/s0007485320000231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aphids are phloem-feeding insects that cause economic losses to crops globally. Whilst aphid interactions with susceptible plants and partially resistant genotypes have been well characterized, the interactions between aphids and non-host species are not well understood. Unravelling these non-host interactions can identify the mechanisms which contribute to plant resistance. Using contrasting aphid-host plant systems, including the broad host range pest Myzus persicae (host: Arabidopsis; poor-host: barley) and the cereal pest Rhopalosiphum padi (host: barley; non-host: Arabidopsis), we conducted a range of physiological experiments and compared aphid settling and probing behaviour on a host plant vs either a non-host or poor-host. In choice experiments, we observed that around 10% of aphids selected a non-host or poor-host plant species after 24 h. Using the Electrical Penetration Graph technique, we showed that feeding and probing behaviours differ during non-host and poor-host interactions when compared with a host interaction. In the Arabidopsis non-host interaction with the cereal pest R. padi aphids were unable to reach and feed on the phloem, with resistance likely residing in the mesophyll cell layer. In the barley poor-host interaction with M. persicae, resistance is likely phloem-based as phloem ingestion was reduced compared with the host interaction. Overall, our data suggest that plant resistance to aphids in non-host and poor-host interactions with these aphid species likely resides in different plant cell layers. Future work will take into account specific cell layers where resistances are based to dissect the underlying mechanisms and gain a better understanding of how we may improve crop resistance to aphids.
Collapse
Affiliation(s)
- Carmen Escudero-Martinez
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, Scotland
| | - Daniel J Leybourne
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, Scotland
| | - Jorunn I B Bos
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, Scotland
| |
Collapse
|
16
|
Goggin FL, Fischer HD. Reactive Oxygen Species in Plant Interactions With Aphids. FRONTIERS IN PLANT SCIENCE 2021; 12:811105. [PMID: 35251065 PMCID: PMC8888880 DOI: 10.3389/fpls.2021.811105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide are produced in plants in response to many biotic and abiotic stressors, and they can enhance stress adaptation in certain circumstances or mediate symptom development in others. The roles of ROS in plant-pathogen interactions have been extensively studied, but far less is known about their involvement in plant-insect interactions. A growing body of evidence, however, indicates that ROS accumulate in response to aphids, an economically damaging group of phloem-feeding insects. This review will cover the current state of knowledge about when, where, and how ROS accumulate in response to aphids, which salivary effectors modify ROS levels in plants, and how microbial associates influence ROS induction by aphids. We will also explore the potential adaptive significance of intra- and extracellular oxidative responses to aphid infestation in compatible and incompatible interactions and highlight knowledge gaps that deserve further exploration.
Collapse
|
17
|
Jacques S, Sperschneider J, Garg G, Thatcher LF, Gao LL, Kamphuis LG, Singh KB. A functional genomics approach to dissect spotted alfalfa aphid resistance in Medicago truncatula. Sci Rep 2020; 10:22159. [PMID: 33335168 PMCID: PMC7746763 DOI: 10.1038/s41598-020-78904-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/01/2020] [Indexed: 12/03/2022] Open
Abstract
Aphids are virus-spreading insect pests affecting crops worldwide and their fast population build-up and insecticide resistance make them problematic to control. Here, we aim to understand the molecular basis of spotted alfalfa aphid (SAA) or Therioaphis trifolii f. maculata resistance in Medicago truncatula, a model organism for legume species. We compared susceptible and resistant near isogenic Medicago lines upon SAA feeding via transcriptome sequencing. Expression of genes involved in defense and stress responses, protein kinase activity and DNA binding were enriched in the resistant line. Potentially underlying some of these changes in gene expression was the finding that members of the MYB, NAC, AP2 domain and ERF transcription factor gene families were differentially expressed in the resistant versus susceptible lines. A TILLING population created in the resistant cultivar was screened using exome capture sequencing and served as a reverse genetics tool to functionally characterise genes involved in the aphid resistance response. This screening revealed three transcription factors (a NAC, AP2 domain and ERF) as important regulators in the defence response, as a premature stop-codon in the resistant background led to a delay in aphid mortality and enhanced plant susceptibility. This combined functional genomics approach will facilitate the future development of pest resistant crops by uncovering candidate target genes that can convey enhanced aphid resistance.
Collapse
Affiliation(s)
- Silke Jacques
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia.,Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 2600, Australia
| | - Gagan Garg
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia
| | | | - Ling-Ling Gao
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia
| | - Lars G Kamphuis
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia.,Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia.,The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - Karam B Singh
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia. .,Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia. .,The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
18
|
Pingault L, Palmer NA, Koch KG, Heng-Moss T, Bradshaw JD, Seravalli J, Twigg P, Louis J, Sarath G. Differential Defense Responses of Upland and Lowland Switchgrass Cultivars to a Cereal Aphid Pest. Int J Mol Sci 2020; 21:ijms21217966. [PMID: 33120946 PMCID: PMC7672581 DOI: 10.3390/ijms21217966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/01/2023] Open
Abstract
Yellow sugarcane aphid (YSA) (Sipha flava, Forbes) is a damaging pest on many grasses. Switchgrass (Panicum virgatum L.), a perennial C4 grass, has been selected as a bioenergy feedstock because of its perceived resilience to abiotic and biotic stresses. Aphid infestation on switchgrass has the potential to reduce the yields and biomass quantity. Here, the global defense response of switchgrass cultivars Summer and Kanlow to YSA feeding was analyzed by RNA-seq and metabolite analysis at 5, 10, and 15 days after infestation. Genes upregulated by infestation were more common in both cultivars compared to downregulated genes. In total, a higher number of differentially expressed genes (DEGs) were found in the YSA susceptible cultivar (Summer), and fewer DEGs were observed in the YSA resistant cultivar (Kanlow). Interestingly, no downregulated genes were found in common between each time point or between the two switchgrass cultivars. Gene co-expression analysis revealed upregulated genes in Kanlow were associated with functions such as flavonoid, oxidation-response to chemical, or wax composition. Downregulated genes for the cultivar Summer were found in co-expression modules with gene functions related to plant defense mechanisms or cell wall composition. Global analysis of defense networks of the two cultivars uncovered differential mechanisms associated with resistance or susceptibility of switchgrass in response to YSA infestation. Several gene co-expression modules and transcription factors correlated with these differential defense responses. Overall, the YSA-resistant Kanlow plants have an enhanced defense even under aphid uninfested conditions.
Collapse
Affiliation(s)
- Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
| | - Kyle G. Koch
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Jeffrey D. Bradshaw
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Javier Seravalli
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Paul Twigg
- Biology Department, University of Nebraska-Kearney, Kearney, NE 68849, USA;
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| | - Gautam Sarath
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| |
Collapse
|
19
|
Duhlian L, Koramutla MK, Subramanian S, Chamola R, Bhattacharya R. Comparative transcriptomics revealed differential regulation of defense related genes in Brassica juncea leading to successful and unsuccessful infestation by aphid species. Sci Rep 2020; 10:10583. [PMID: 32601289 PMCID: PMC7324606 DOI: 10.1038/s41598-020-66217-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/18/2020] [Indexed: 11/09/2022] Open
Abstract
Productivity of Indian mustard (B. juncea), a major oil yielding crop in rapeseed-mustard group is heavily inflicted by mustard aphid, L. erysimi. Mustard aphid, a specialist aphid species on rapeseed-mustard crops, rapidly multiplies and colonizes the plants leading to successful infestation. In contrary, legume specific cowpea aphid, A. craccivora when released on B. juncea plants fails to build up population and thus remains unsuccessful in infestation. In the present study, differential host response of B. juncea to the two aphid species, one being successful insect-pest and the other being unsuccessful on it has been studied based on transcriptome analysis. Differential feeding efficiency of the two aphid species on mustard plants was evident from the amount of secreted honeydews. Leaf-transcriptomes of healthy and infested plants, treated with the two aphid species, were generated by RNA sequencing on Illumina platform and de novo assembly of the quality reads. A comparative assessment of the differentially expressed genes due to treatments revealed a large extent of overlaps as well as distinctness with respect to the set of genes and their direction of regulation. With respect to host-genes related to transcription factors, oxidative homeostasis, defense hormones and secondary metabolites, L. erysimi led to either suppression or limited activation of the transcript levels compared to A. craccivora. Further, a comprehensive view of the DEGs suggested more potential of successful insect-pests towards transcriptional reprogramming of the host. qRT-PCR based validation of randomly selected up- and down-regulated transcripts authenticated the transcriptome data.
Collapse
Affiliation(s)
- Lianthanzauva Duhlian
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Murali Krishna Koramutla
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - S Subramanian
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rohit Chamola
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Ramcharan Bhattacharya
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
| |
Collapse
|
20
|
Sun M, Voorrips RE, van Kaauwen M, Visser RGF, Vosman B. The ability to manipulate ROS metabolism in pepper may affect aphid virulence. HORTICULTURE RESEARCH 2020; 7:6. [PMID: 31908809 PMCID: PMC6938493 DOI: 10.1038/s41438-019-0231-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 05/14/2023]
Abstract
Myzus persicae has severe economic impact on pepper (Capsicum) cultivation. Previously, we identified two populations of M. persicae, NL and SW, that were avirulent and virulent, respectively on C. baccatum accession PB2013071. The transcriptomics approach used in the current study, which is the first study to explore the pepper-aphid interaction at the whole genome gene expression level, revealed genes whose expression is differentially regulated in pepper accession PB2013071 upon infestation with these M. persicae populations. The NL population induced ROS production genes, while the SW population induced ROS scavenging genes and repressed ROS production genes. We also found that the SW population can induce the removal of ROS which accumulated in response to preinfestion with the NL population, and that preinfestation with the SW population significantly improved the performance of the NL population. This paper supports the hypothesis that M. persicae can overcome the resistance in accession PB2013071 probably because of its ability to manipulate plant defense response especially the ROS metabolism and such ability may benefit avirulent conspecific aphids.
Collapse
Affiliation(s)
- Mengjing Sun
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Roeland E. Voorrips
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Ben Vosman
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| |
Collapse
|
21
|
Ramirez-Prado JS, Latrasse D, Rodriguez-Granados NY, Huang Y, Manza-Mianza D, Brik-Chaouche R, Jaouannet M, Citerne S, Bendahmane A, Hirt H, Raynaud C, Benhamed M. The Polycomb protein LHP1 regulates Arabidopsis thaliana stress responses through the repression of the MYC2-dependent branch of immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1118-1131. [PMID: 31437321 DOI: 10.1111/tpj.14502] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Polycomb repressive complexes (PRCs) have been traditionally associated with the regulation of developmental processes in various organisms, including higher plants. However, similar to other epigenetic regulators, there is accumulating evidence for their role in the regulation of stress and immune-related pathways. In the current study we show that the PRC1 protein LHP1 is required for the repression of the MYC2 branch of jasmonic acid (JA)/ethylene (ET) pathway of immunity. Loss of LHP1 induces the reduction in H3K27me3 levels in the gene bodies of ANAC019 and ANAC055, as well as some of their targets, leading to their transcriptional upregulation. Consistently, increased expression of these two transcription factors leads to the misregulation of several of their genomic targets. The lhp1 mutant mimics the MYC2, ANAC019, and ANAC055 overexpressers in several of their phenotypes, including increased aphid resistance, abscisic acid (ABA) sensitivity and drought tolerance. In addition, like the MYC2 and ANAC overexpressers, lhp1 displays reduced salicylic acid (SA) content caused by a deregulation of ICS1 and BSMT1, as well as increased susceptibility to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000. Together, our results indicate that LHP1 regulates the expression of stress-responsive genes as well as the homeostasis and responses to the stress hormones SA and ABA. This protein emerges as a key chromatin player fine tuning the complex balance between developmental and stress-responsive processes.
Collapse
Affiliation(s)
- Juan Sebastian Ramirez-Prado
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Natalia Yaneth Rodriguez-Granados
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Ying Huang
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Deborah Manza-Mianza
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Rim Brik-Chaouche
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Maelle Jaouannet
- CNRS, INRA, Université Nice Sophia Antipolis, UMR 1355-7254, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Heribert Hirt
- Desert Agriculture Initiative, King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Kingdom of Saudi Arabia
| | - Cecile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| |
Collapse
|
22
|
Kamphuis LG, Klingler JP, Jacques S, Gao LL, Edwards OR, Singh KB. Additive and epistatic interactions between AKR and AIN loci conferring bluegreen aphid resistance and hypersensitivity in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4887-4902. [PMID: 31087095 PMCID: PMC6760273 DOI: 10.1093/jxb/erz222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Aphids, including the bluegreen aphid (BGA; Acyrthosiphon kondoi), are important pests in agriculture. Two BGA resistance genes have been identified in the model legume Medicago truncatula, namely AKR (Acyrthosiphon kondoi resistance) and AIN (Acyrthosiphon induced necrosis). In this study, progeny derived from a cross between a resistant accession named Jester and a highly susceptible accession named A20 were used to study the interaction between the AKR and AIN loci with respect to BGA performance and plant response to BGA infestation. These studies demonstrated that AKR and AIN have additive effects on the BGA resistance phenotype. However, AKR exerts dominant suppression epistasis on AIN-controlled macroscopic necrotic lesions. Nevertheless, both AKR and AIN condition production of H2O2 at the BGA feeding site. Electrical penetration graph analysis demonstrated that AKR prevents phloem sap ingestion, irrespective of the presence of AIN. Similarly, the jasmonic acid defense signaling pathway is recruited by AKR, irrespective of AIN. This research identifies an enhancement of aphid resistance through gene stacking, and insights into the interaction of distinct resistance genes against insect pests.
Collapse
Affiliation(s)
- Lars G Kamphuis
- CSIRO Agriculture and Food, Floreat, Australia
- UWA Institute of Agriculture, Crawley, Australia
- Curtin University, Centre for Crop and Disease Management, Bentley, Australia
| | | | - Silke Jacques
- CSIRO Agriculture and Food, Floreat, Australia
- Curtin University, Centre for Crop and Disease Management, Bentley, Australia
| | | | | | - Karam B Singh
- CSIRO Agriculture and Food, Floreat, Australia
- UWA Institute of Agriculture, Crawley, Australia
- Curtin University, Centre for Crop and Disease Management, Bentley, Australia
| |
Collapse
|
23
|
Chaudhary R, Peng HC, He J, MacWilliams J, Teixeira M, Tsuchiya T, Chesnais Q, Mudgett MB, Kaloshian I. Aphid effector Me10 interacts with tomato TFT7, a 14-3-3 isoform involved in aphid resistance. THE NEW PHYTOLOGIST 2019; 221:1518-1528. [PMID: 30357852 DOI: 10.1111/nph.15475] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/31/2018] [Indexed: 05/08/2023]
Abstract
We demonstrated previously that expression of Macrosiphum euphorbiae salivary protein Me10 enhanced aphid reproduction on its host tomato (Solanum lycopersicum). However, the mechanism of action of Me10 remained elusive. To confirm the secretion of Me10 by the aphid into plant tissues, we produced Me10 polyclonal antibodies. To identify the plant targets of Me10, we developed a tomato immune induced complementary DNA yeast two-hybrid library and screened it with Me10 as bait. Immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays were performed to validate one of the interactions in planta, and virus-induced gene silencing was used for functional characterization in tomato. We demonstrated that Me10 is secreted into the plant tissues and interacts with tomato 14-3-3 isoform 7 (TFT7) in yeast. Immunoprecipitation assays confirmed that Me10 and its homologue in Aphis gossypii, Ag10k, interact with TFT7 in planta. Further, BiFC revealed that Me10 interaction with TFT7 occurs in the plant cell cytoplasm. While silencing of TFT7 in tomato leaves did not affect tomato susceptibility to M. euphorbiae, it enhanced longevity and fecundity of A. gossypii, the non-host aphid. Our results suggest the model whereby TFT7 plays a role in aphid resistance in tomato and effectors of the Me10/Ag10k family interfere with TFT7 function during aphid infestation.
Collapse
Affiliation(s)
- Ritu Chaudhary
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Hsuan-Chieh Peng
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Jiangman He
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Jacob MacWilliams
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Marcella Teixeira
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Tokuji Tsuchiya
- College of Bioresource Sciences, Nihon University, Kanagawa, 252-0880, Japan
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA, 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
24
|
Åhman I, Kim SY, Zhu LH. Plant Genes Benefitting Aphids-Potential for Exploitation in Resistance Breeding. FRONTIERS IN PLANT SCIENCE 2019; 10:1452. [PMID: 31798609 PMCID: PMC6874142 DOI: 10.3389/fpls.2019.01452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/18/2019] [Indexed: 05/17/2023]
Abstract
Aphids are phloem sap-feeding insects common as pests in various crops. Here we review 62 omics studies of aphid/plant interactions to search for indications of how aphids may manipulate the plants to make them more suitable as hosts, i.e. more susceptible. Our aim is to try to reveal host plant susceptibility (S) genes, knowledge which can be exploited for making a plant more resistant to its pest by using new plant breeding techniques to knock out or down such S genes. S genes may be of two types, those that are involved in reducing functional plant defense and those involved in further increasing plant factors that are positive to the aphid, such as facilitated access to food or improved nutritional quality. Approximately 40% of the omics studies we have reviewed indicate how aphids may modify their host to their advantage. To exploit knowledge obtained so far, we suggest knocking out/down candidate aphid S genes using CRISPR/Cas9 or RNAi techniques in crops to evaluate if this will be sufficient to keep the aphid pest at economically viable levels without severe pleiotropic effects. As a complement, we also propose functional studies of recessively inherited resistance previously discovered in some aphid-crop combinations, to potentially identify new types of S genes that later could be knocked out or down also in other crops to improve their resistance to aphids.
Collapse
|
25
|
Thorpe P, Escudero-Martinez CM, Cock PJA, Eves-van den Akker S, Bos JIB. Shared Transcriptional Control and Disparate Gain and Loss of Aphid Parasitism Genes. Genome Biol Evol 2018; 10:2716-2733. [PMID: 30165560 PMCID: PMC6186164 DOI: 10.1093/gbe/evy183] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2018] [Indexed: 12/27/2022] Open
Abstract
Aphids are a diverse group of taxa that contain agronomically important species, which vary in their host range and ability to infest crop plants. The genome evolution underlying agriculturally important aphid traits is not well understood. We generated draft genome assemblies for two aphid species: Myzus cerasi (black cherry aphid) and the cereal specialist Rhopalosiphum padi. Using a de novo gene prediction pipeline on both these, and three additional aphid genome assemblies (Acyrthosiphon pisum, Diuraphis noxia, and Myzus persicae), we show that aphid genomes consistently encode similar gene numbers. We compare gene content, gene duplication, synteny, and putative effector repertoires between these five species to understand the genome evolution of globally important plant parasites. Aphid genomes show signs of relatively distant gene duplication, and substantial, relatively recent, gene birth. Putative effector repertoires, originating from duplicated and other loci, have an unusual genomic organization and evolutionary history. We identify a highly conserved effector pair that is tightly physically linked in the genomes of all aphid species tested. In R. padi, this effector pair is tightly transcriptionally linked and shares an unknown transcriptional control mechanism with a subset of ∼50 other putative effectors and secretory proteins. This study extends our current knowledge on the evolution of aphid genomes and reveals evidence for an as-of-yet unknown shared control mechanism, which underlies effector expression, and ultimately plant parasitism.
Collapse
Affiliation(s)
- Peter Thorpe
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Dundee Effector Consortium, The James Hutton Institute, Dundee, United Kingdom
| | - Carmen M Escudero-Martinez
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Dundee Effector Consortium, The James Hutton Institute, Dundee, United Kingdom
| | - Peter J A Cock
- Dundee Effector Consortium, The James Hutton Institute, Dundee, United Kingdom
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Sebastian Eves-van den Akker
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Corresponding authors: E-mails: ;
| | - Jorunn I B Bos
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Dundee Effector Consortium, The James Hutton Institute, Dundee, United Kingdom
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Corresponding authors: E-mails: ;
| |
Collapse
|
26
|
Hamada AM, Fatehi J, Jonsson LMV. Seed treatments with thiamine reduce the performance of generalist and specialist aphids on crop plants. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:84-92. [PMID: 28578733 DOI: 10.1017/s0007485317000529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thiamine is a vitamin that has been shown to act as a trigger to activate plant defence and reduce pathogen and nematode infection as well as aphid settling and reproduction. We have here investigated whether thiamine treatments of seeds (i.e. seed dressing) would increase plant resistance against aphids and whether this would have different effects on a generalist than on specialist aphids. Seeds of wheat, barley, oat and pea were treated with thiamine alone or in combination with the biocontrol bacteria Pseudomonas chlororaphis MA 342 (MA 342). Plants were grown in climate chambers. The effects of seed treatment on fecundity, host acceptance and life span were studied on specialist aphids bird cherry-oat aphid (Rhopalosiphum padi L.) and pea aphid (Acyrthosiphon pisum Harris) and on the generalist green peach aphid (Myzus persicae, Sulzer). Thiamine seed treatments reduced reproduction and host acceptance of all three aphid species. The number of days to reproduction, the length of the reproductive life, the fecundity and the intrinsic rate of increase were found reduced for bird cherry-oat aphid after thiamine treatment of the cereal seeds. MA 342 did not have any effect in any of the plant-aphid combinations, except a weak decrease of pea aphid reproduction on pea. The results show that there are no differential effects of either thiamine or MA 342 seed treatments on specialist and generalist aphids and suggest that seed treatments with thiamine has a potential in aphid pest management.
Collapse
Affiliation(s)
- A M Hamada
- Botany and Microbiology Department, Faculty of Science,Assiut University,Assiut,Egypt
| | - J Fatehi
- Lantmännen BioAgri AB,Fågelbacksvägen 3, 756 51 Uppsala,Sweden
| | - L M V Jonsson
- Department of Ecology, Environment and Plant Sciences,Stockholm University,106 91 Stockholm,Sweden
| |
Collapse
|
27
|
Escudero‐Martinez C, Morris J, Hedley P, Bos J. Barley transcriptome analyses upon interaction with different aphid species identify thionins contributing to resistance. PLANT, CELL & ENVIRONMENT 2017; 40:2628-2643. [PMID: 28452058 PMCID: PMC6084319 DOI: 10.1111/pce.12979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 05/21/2023]
Abstract
Aphids are phloem-feeding insects that cause yield loss on a wide range of crops, including cereals such as barley. Whilst most aphid species are limited to one or few host species, some are able to reproduce on many plants belonging to different families. Interestingly, aphid probing behaviour can be observed on both host and non-host species, indicating that interactions take place at the molecular level that may impact host range. Here, we aimed to gain insight into the interaction of barley with aphid species differing in their ability to infest this crop by analysing transcriptional responses. Firstly, we determined colonization efficiency, settlement and probing behaviour for the aphid species Rhopalosiphum padi, Myzus persicae and Myzus cerasi, which defined host, poor-host and non-host interactions, respectively. Analyses of barley transcriptional responses revealed gene sets differentially regulated upon the different barley-aphid interactions and showed that the poor-host interaction with M. persicae resulted in the strongest regulation of genes. Interestingly, we identified several thionin genes strongly up-regulated upon interaction with M. persicae, and to a lesser extent upon R. padi interaction. Ectopic expression of two of these genes in Nicotiana benthamiana reduced host susceptibility to M. persicae, indicating that thionins contribute to defences against aphids.
Collapse
Affiliation(s)
- C.M. Escudero‐Martinez
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DAUK
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - J.A. Morris
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - P.E. Hedley
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - J.I.B. Bos
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DAUK
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| |
Collapse
|
28
|
Losvik A, Beste L, Mehrabi S, Jonsson L. The Protease Inhibitor CI2c Gene Induced by Bird Cherry-Oat Aphid in Barley Inhibits Green Peach Aphid Fecundity in Transgenic Arabidopsis. Int J Mol Sci 2017. [PMID: 28632160 PMCID: PMC5486138 DOI: 10.3390/ijms18061317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aphids are phloem feeders that cause large damage globally as pest insects. They induce a variety of responses in the host plant, but not much is known about which responses are promoting or inhibiting aphid performance. Here, we investigated whether one of the responses induced in barley by the cereal aphid, bird cherry-oat aphid (Rhopalosiphum padi L.) affects aphid performance in the model plant Arabidopsis thaliana L. A barley cDNA encoding the protease inhibitor CI2c was expressed in A. thaliana and aphid performance was studied using the generalist green peach aphid (Myzus persicae Sulzer). There were no consistent effects on aphid settling or preference or on parameters of life span and long-term fecundity. However, short-term tests with apterous adult aphids showed lower fecundity on three of the transgenic lines, as compared to on control plants. This effect was transient, observed on days 5 to 7, but not later. The results suggest that the protease inhibitor is taken up from the tissue during probing and weakly inhibits fecundity by an unknown mechanism. The study shows that a protease inhibitor induced in barley by an essentially monocot specialist aphid can inhibit a generalist aphid in transgenic Arabidopsis.
Collapse
Affiliation(s)
| | | | - Sara Mehrabi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Lisbeth Jonsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
29
|
Vincent TR, Avramova M, Canham J, Higgins P, Bilkey N, Mugford ST, Pitino M, Toyota M, Gilroy S, Miller AJ, Hogenhout SA, Sanders D. Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic Calcium Elevations in Arabidopsis during Aphid Feeding. THE PLANT CELL 2017; 29:1460-1479. [PMID: 28559475 PMCID: PMC5502460 DOI: 10.1105/tpc.17.00136] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 05/17/2023]
Abstract
A transient rise in cytosolic calcium ion concentration is one of the main signals used by plants in perception of their environment. The role of calcium in the detection of abiotic stress is well documented; however, its role during biotic interactions remains unclear. Here, we use a fluorescent calcium biosensor (GCaMP3) in combination with the green peach aphid (Myzus persicae) as a tool to study Arabidopsis thaliana calcium dynamics in vivo and in real time during a live biotic interaction. We demonstrate rapid and highly localized plant calcium elevations around the feeding sites of M. persicae, and by monitoring aphid feeding behavior electrophysiologically, we demonstrate that these elevations correlate with aphid probing of epidermal and mesophyll cells. Furthermore, we dissect the molecular mechanisms involved, showing that interplay between the plant defense coreceptor BRASSINOSTEROID INSENSITIVE-ASSOCIATED KINASE1 (BAK1), the plasma membrane ion channels GLUTAMATE RECEPTOR-LIKE 3.3 and 3.6 (GLR3.3 and GLR3.6), and the vacuolar ion channel TWO-PORE CHANNEL1 (TPC1) mediate these calcium elevations. Consequently, we identify a link between plant perception of biotic threats by BAK1, cellular calcium entry mediated by GLRs, and intracellular calcium release by TPC1 during a biologically relevant interaction.
Collapse
Affiliation(s)
- Thomas R Vincent
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Marieta Avramova
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - James Canham
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Peter Higgins
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Natasha Bilkey
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
| | - Sam T Mugford
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Marco Pitino
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Masatsugu Toyota
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
- Department of Biochemistry and Molecular Biology, Saitama University, Sakura-ku, Saitama 338-8570, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama 332-0012, Japan
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Dale Sanders
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
30
|
Bak A, Cheung AL, Yang C, Whitham SA, Casteel CL. A viral protease relocalizes in the presence of the vector to promote vector performance. Nat Commun 2017; 8:14493. [PMID: 28205516 PMCID: PMC5316897 DOI: 10.1038/ncomms14493] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 12/31/2016] [Indexed: 12/22/2022] Open
Abstract
Vector-borne pathogens influence host characteristics relevant to host-vector contact, increasing pathogen transmission and survival. Previously, we demonstrated that infection with Turnip mosaic virus, a member of one of the largest families of plant-infecting viruses, increases vector attraction and reproduction on infected hosts. These changes were due to a single viral protein, NIa-Pro. Here we show that NIa-Pro responds to the presence of the aphid vector during infection by relocalizing to the vacuole. Remarkably, vacuolar localization is required for NIa-Pro's ability to enhance aphid reproduction on host plants, vacuole localization disappears when aphids are removed, and this phenomenon occurs for another potyvirus, Potato virus Y, suggesting a conserved role for the protein in vector-host interactions. Taken together, these results suggest that potyviruses dynamically respond to the presence of their vectors, promoting insect performance and transmission only when needed.
Collapse
Affiliation(s)
- Aurélie Bak
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Andrea L. Cheung
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Chunling Yang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Steven A. Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Clare L. Casteel
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| |
Collapse
|
31
|
Bak A, Cheung AL, Yang C, Whitham SA, Casteel CL. A viral protease relocalizes in the presence of the vector to promote vector performance. Nat Commun 2017. [PMID: 28205516 DOI: 10.1038/ncomms14493c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Vector-borne pathogens influence host characteristics relevant to host-vector contact, increasing pathogen transmission and survival. Previously, we demonstrated that infection with Turnip mosaic virus, a member of one of the largest families of plant-infecting viruses, increases vector attraction and reproduction on infected hosts. These changes were due to a single viral protein, NIa-Pro. Here we show that NIa-Pro responds to the presence of the aphid vector during infection by relocalizing to the vacuole. Remarkably, vacuolar localization is required for NIa-Pro's ability to enhance aphid reproduction on host plants, vacuole localization disappears when aphids are removed, and this phenomenon occurs for another potyvirus, Potato virus Y, suggesting a conserved role for the protein in vector-host interactions. Taken together, these results suggest that potyviruses dynamically respond to the presence of their vectors, promoting insect performance and transmission only when needed.
Collapse
Affiliation(s)
- Aurélie Bak
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Andrea L Cheung
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Chunling Yang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Clare L Casteel
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| |
Collapse
|
32
|
Arena GD, Ramos-González PL, Nunes MA, Ribeiro-Alves M, Camargo LEA, Kitajima EW, Machado MA, Freitas-Astúa J. Citrus leprosis virus C Infection Results in Hypersensitive-Like Response, Suppression of the JA/ET Plant Defense Pathway and Promotion of the Colonization of Its Mite Vector. FRONTIERS IN PLANT SCIENCE 2016; 7:1757. [PMID: 27933078 PMCID: PMC5122717 DOI: 10.3389/fpls.2016.01757] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/08/2016] [Indexed: 05/20/2023]
Abstract
Leprosis is a serious disease of citrus caused by Citrus leprosis virus C (CiLV-C, genus Cilevirus) whose transmission is mediated by false spider mites of the genus Brevipalpus. CiLV-C infection does not systemically spread in any of its known host plants, thus remaining restricted to local lesions around the feeding sites of viruliferous mites. To get insight into this unusual pathosystem, we evaluated the expression profiles of genes involved in defense mechanisms of Arabidopsis thaliana and Citrus sinensis upon infestation with non-viruliferous and viruliferous mites by using reverse-transcription qPCR. These results were analyzed together with the production of reactive oxygen species (ROS) and the appearance of dead cells as assessed by histochemical assays. After interaction with non-viruliferous mites, plants locally accumulated ROS and triggered the salicylic acid (SA) and jasmonate/ethylene (JA/ET) pathways. ERF branch of the JA/ET pathways was highly activated. In contrast, JA pathway genes were markedly suppressed upon the CiLV-C infection mediated by viruliferous mites. Viral infection also intensified the ROS burst and cell death, and enhanced the expression of genes involved in the RNA silencing mechanism and SA pathway. After 13 days of infestation of two sets of Arabidopsis plants with non-viruliferous and viruliferous mites, the number of mites in the CiLV-C infected Arabidopsis plants was significantly higher than in those infested with the non-viruliferous ones. Oviposition of the viruliferous mites occurred preferentially in the CiLV-C infected leaves. Based on these results, we postulated the first model of plant/Brevipalpus mite/cilevirus interaction in which cells surrounding the feeding sites of viruliferous mites typify the outcome of a hypersensitive-like response, whereas viral infection induces changes in the behavior of its vector.
Collapse
Affiliation(s)
- Gabriella D. Arena
- Laboratório de Biotecnologia de Citros, Centro APTA Citros Sylvio Moreira, Instituto Agronômico de CampinasSão Paulo, Brazil
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloSão Paulo, Brazil
- Universidade Estadual de CampinasSão Paulo, Brazil
| | - Pedro L. Ramos-González
- Laboratório de Biotecnologia de Citros, Centro APTA Citros Sylvio Moreira, Instituto Agronômico de CampinasSão Paulo, Brazil
- Laboratório de Bioquímica Fitopatológica, Instituto BiológicoSão Paulo, Brazil
| | - Maria A. Nunes
- Laboratório de Biotecnologia de Citros, Centro APTA Citros Sylvio Moreira, Instituto Agronômico de CampinasSão Paulo, Brazil
| | | | - Luis E. A. Camargo
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloSão Paulo, Brazil
| | - Elliot W. Kitajima
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloSão Paulo, Brazil
| | - Marcos A. Machado
- Laboratório de Biotecnologia de Citros, Centro APTA Citros Sylvio Moreira, Instituto Agronômico de CampinasSão Paulo, Brazil
| | - Juliana Freitas-Astúa
- Laboratório de Bioquímica Fitopatológica, Instituto BiológicoSão Paulo, Brazil
- Embrapa Mandioca e FruticulturaCruz das Almas, Brazil
| |
Collapse
|
33
|
Brachycorynella asparagi (Mordv.) Induced-Oxidative Stress and Antioxidative Defenses of Asparagus officinalis L. Int J Mol Sci 2016; 17:ijms17101740. [PMID: 27775613 PMCID: PMC5085768 DOI: 10.3390/ijms17101740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to investigate whether and to what extent oxidative stress is induced in leaves of one- and two-month-old plants of Asparagus officinalis L. cv. Argenteuil infested by Brachycorynella asparagi (Mordvilko) at a varied population size. The pest B. asparagi has been described as the most damaging species feeding on asparagus. Analyses using electron paramagnetic resonance (EPR) demonstrated generally higher concentrations of semiquinone radicals with g-values of 2.0045 ± 0.0005 and 2.0026 ± 0.0005 in Asparagus officinalis (A. officinalis) leaves after Brachycorynella asparagi (B. asparagi) infestation than in the control. Observations of leaves under a confocal microscope showed a post-infestation enhanced generation of the superoxide anion radical (O₂•-) and hydrogen peroxide (H₂O₂) in comparison to the control. Strong fluctuations in Mn2+ ion levels detected by EPR spectroscopy versus time were detected in leaves infested by aphids, which may indicate the involvement of these ions in the control of O₂•- production. An enhanced superoxide dismutase activity is an important element in leaf defense against oxidative stress. Visible symptoms were found in aphid-infested A. officinalis. Damage to leaves of one- and two-month-old A. officinalis plants by the aphid B. asparagi was dependent on the intensity, duration of infestation and plant age.
Collapse
|
34
|
Aphid-stimulated transcriptional reconfigurations of chlorophyllase-2 gene in maize (Zea mays L.) seedlings. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Sytykiewicz H. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids. Biochem Biophys Res Commun 2016; 476:90-5. [PMID: 27178208 DOI: 10.1016/j.bbrc.2016.05.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 02/06/2023]
Abstract
Plant NADPH oxidases (NOXs) encompass a group of membrane-bound enzymes participating in formation of reactive oxygen species (ROS) under physiological conditions as well as in response to environmental stressors. The purpose of the survey was to unveil the role of NADPH oxidase in pro-oxidative responses of maize (Zea mays L.) seedling leaves exposed to cereal aphids' infestation. The impact of apteral females of bird cherry-oat aphid (Rhopalosiphum padi L.) and grain aphid (Sitobion avenae F.) feeding on expression levels of all four NADPH oxidase genes (rbohA, rbohB, rbohC, rbohD) and total activity of NOX enzyme in maize plants were investigated. In addition, inhibitory effect of diphenylene iodonium (DPI) pre-treatment on NOX activity and hydrogen peroxide content in aphid-stressed maize seedlings was studied. Leaf infestation biotests were accomplished on 14-day-old seedlings representing two aphid-resistant varieties (Ambrozja and Waza) and two aphid-susceptible ones (Tasty Sweet and Złota Karłowa). Insects' attack led to profound upregulation of rbohA and rbohD genes in tested host plants, lower elevations were noted in level of rbohB mRNA, whereas abundance of rbohC transcript was not significantly altered. It was uncovered aphid-induced enhancement of NOX activity in examined plants. Higher increases in expression of all investigated rboh genes and activity of NADPH oxidase occurred in tissues of more resistant maize cultivars than in susceptible ones. Furthermore, DPI treatment resulted in strong reduction of NOX activity and H2O2 accumulation in aphid-infested Z. mays plants, thus evidencing circumstantial role of the enzyme in insect-elicited ROS generation.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Siedlce University of Natural Sciences and Humanities, Department of Biochemistry and Molecular Biology, Prusa 12, 08-110 Siedlce, Poland.
| |
Collapse
|
36
|
Thorpe P, Cock PJA, Bos J. Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets. BMC Genomics 2016; 17:172. [PMID: 26935069 PMCID: PMC4776380 DOI: 10.1186/s12864-016-2496-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/17/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Aphids are phloem-feeding insects that cause significant economic losses to agriculture worldwide. While feeding and probing these insects deliver molecules, called effectors, inside their host to enable infestation. The identification and characterization of these effectors from different species that vary in their host range is an important step in understanding the infestation success of aphids and aphid host range variation. This study employs a multi-disciplinary approach based on transcriptome sequencing and proteomics to identify and compare effector candidates from the broad host range aphid Myzus persicae (green peach aphid) (genotypes O, J and F), and narrow host range aphids Myzus cerasi (black cherry aphid) and Rhopalosiphum padi (bird-cherry oat aphid). RESULTS Using a combination of aphid transcriptome sequencing on libraries derived from head versus body tissues as well as saliva proteomics we were able to predict candidate effectors repertoires from the different aphid species and genotypes. Among the identified conserved or core effector sets, we identified a significant number of previously identified aphid candidate effectors indicating these proteins may be involved in general infestation strategies. Moreover, we identified aphid candidate effector sequences that were specific to one species, which are interesting candidates for further validation and characterization with regards to species-specific functions during infestation. We assessed our candidate effector repertoires for evidence of positive selection, and identified 49 candidates with DN/DS ratios >1. We noted higher rates of DN/DS ratios in predicted aphid effectors than non-effectors. Whether this reflects positive selection due to co-evolution with host plants, or increased neofunctionalization upon gene duplication remains to be investigated. CONCLUSION Our work provides a comprehensive overview of the candidate effector repertoires from three different aphid species with varying host ranges. Comparative analyses revealed candidate effectors that are most likely are involved in general aspects of infestation, whereas others, that are highly divergent, may be involved in specific processes important for certain aphid species. Insights into the overlap and differences in aphid effector repertoires are important in understanding how different species successfully infest different ranges of plant species.
Collapse
Affiliation(s)
- Peter Thorpe
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Peter J A Cock
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jorunn Bos
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
- Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
- College of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
37
|
Foyer CH, Rasool B, Davey JW, Hancock RD. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2025-37. [PMID: 26936830 DOI: 10.1093/jxb/erw079] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Brwa Rasool
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Jack W Davey
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
38
|
Groen SC, Humphrey PT, Chevasco D, Ausubel FM, Pierce NE, Whiteman NK. Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis. JOURNAL OF INSECT PHYSIOLOGY 2016. [PMID: 26205072 PMCID: PMC4721946 DOI: 10.1016/j.jinsphys.2015.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant-herbivore interactions have evolved in the presence of plant-colonizing microbes. These microbes can have important third-party effects on herbivore ecology, as exemplified by drosophilid flies that evolved from ancestors feeding on plant-associated microbes. Leaf-mining flies in the genus Scaptomyza, which is nested within the paraphyletic genus Drosophila, show strong associations with bacteria in the genus Pseudomonas, including Pseudomonas syringae. Adult females are capable of vectoring these bacteria between plants and larvae show a preference for feeding on P. syringae-infected leaves. Here we show that Scaptomyza flava larvae can also vector P. syringae to and from feeding sites, and that they not only feed more, but also develop faster on plants previously infected with P. syringae. Our genetic and physiological data show that P. syringae enhances S. flava feeding on infected plants at least in part by suppressing anti-herbivore defenses mediated by reactive oxygen species.
Collapse
Affiliation(s)
- Simon C Groen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Parris T Humphrey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States.
| | - Daniela Chevasco
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Frederick M Ausubel
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, United States.
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Noah K Whiteman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
39
|
Rubio M, Ballester AR, Olivares PM, Castro de Moura M, Dicenta F, Martínez-Gómez P. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.). PLoS One 2015; 10:e0144670. [PMID: 26658051 PMCID: PMC4684361 DOI: 10.1371/journal.pone.0144670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, “Rojo Pasión” and “Z506-7”, resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance.
Collapse
Affiliation(s)
- Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Ana Rosa Ballester
- Department of Food Science, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustín Escardino 7, 46980 Paterna (Valencia) Spain
| | - Pedro Manuel Olivares
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Manuel Castro de Moura
- aScidea Computational Biology Solutions, S.L. Parc de Reserca UAB, Edifici Eureka. 08193 Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Federico Dicenta
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
- * E-mail:
| |
Collapse
|
40
|
Jaouannet M, Morris JA, Hedley PE, Bos JIB. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance. PLoS Pathog 2015; 11:e1004918. [PMID: 25993686 PMCID: PMC4439036 DOI: 10.1371/journal.ppat.1004918] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022] Open
Abstract
Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. Aphids are phloem-feeding insects that cause feeding damage and transmit plant viruses to many crops. While most aphid species are restricted to one or few host plants, some aphids can infest a wide range of plant species. These insects spend a considerable time on non-hosts, where they probe the leaf tissue and secrete saliva, but for unknown reasons are unable to ingest phloem sap. This suggests that aphids interact with non-host plants at the molecular level, but potentially do not suppress plant defences and/or promote the release of nutrients. We compared gene expression of plants during host and non-host interactions with aphids to identify genes involved in immunity. We found significant overlap in the plant responses to aphids regardless of the type of interaction. Despite this, we identified a set of genes specifically affected during host or non-host interactions with specific aphid species. In addition, we showed that several of these genes contribute to host and/or non-host immunity. These findings are important, as they advance our understanding of the plant cellular processes involved in host and non-host responses against insect pests. Understanding mechanisms of host and non-host resistance to plant parasites is essential for development of novel control strategies.
Collapse
Affiliation(s)
- Maëlle Jaouannet
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Dundee Effector Consortium, Dundee, United Kingdom
| | - Jenny A. Morris
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Peter E. Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Jorunn I. B. Bos
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Dundee Effector Consortium, Dundee, United Kingdom
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|