1
|
Foulkes C, Friedrich N, Ivan B, Stiegeler E, Magnus C, Schmidt D, Karakus U, Weber J, Günthard HF, Pasin C, Rusert P, Trkola A. Assessing bnAb potency in the context of HIV-1 envelope conformational plasticity. PLoS Pathog 2025; 21:e1012825. [PMID: 39836706 PMCID: PMC11774494 DOI: 10.1371/journal.ppat.1012825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/28/2025] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
For use in prevention and treatment, HIV-1 broadly neutralizing antibodies (bnAbs) have to overcome Env conformational heterogeneity of viral quasispecies and neutralize with constant high potency. Comparative analysis of neutralization data from the CATNAP database revealed a nuanced relationship between bnAb activity and Env conformational flexibility, with substantial epitope-specific variation of bnAb potency ranging from increased to decreased activity against open, neutralization-sensitive Env. To systematically investigate the impact of variability in Env conformation on bnAb potency we screened 126 JR-CSF point mutants for generalized neutralization sensitivity to weakly neutralizing antibodies (weak-nAbs) depending on trimer opening and plasma from people with chronic HIV-1 infection. 23 mutations resulted in a highly neutralization sensitive phenotype, which was associated with de-stabilization of the closed, prefusion conformation. Including 19 of these mutants into a Sensitivity Env mutant panel (SENSE-19), we classified bnAbs according to potency variations in response to trimer opening. To verify that these sensitivity patterns are independent of the in vitro assay system, replication-competent SENSE-19 mutant viruses were tested on primary CD4 T cells. While loss of potency on SENSE-19 was registered for bnAbs from several classes recognizing quaternary epitopes on pre-triggered Env, structural destabilization benefitted MPER bnAbs and other inhibitors known to have post-CD4 attachment neutralization activity. Importantly, for a subset of CD4bs bnAbs, and the interface bnAb PGT151, particularly low potency variation was noted, suggesting that Env conformational tolerance can be achieved but is not the rule. In summary, SENSE-19 screens revealed distinct tolerance levels to Env conformational intermediates between bnAbs that provide mechanistic insights in their function and broaden current neutralization breadth assessments.
Collapse
Affiliation(s)
- Caio Foulkes
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Branislav Ivan
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Emanuel Stiegeler
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Carsten Magnus
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Daniel Schmidt
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Umut Karakus
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
2
|
Ding H, Nguyen HT, Li W, Deshpande A, Zhang S, Jiang F, Zhang Z, Anang S, Mothes W, Sodroski J, Kappes JC. Inducible cell lines producing replication-defective human immunodeficiency virus particles containing envelope glycoproteins stabilized in a pretriggered conformation. J Virol 2024; 98:e0172024. [PMID: 39508605 DOI: 10.1128/jvi.01720-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
During the process by which human immunodeficiency virus (HIV-1) enters cells, the envelope glycoprotein (Env) trimer on the virion surface engages host cell receptors. Binding to the receptor CD4 induces Env to undergo transitions from a pretriggered, "closed" (State-1) conformation to more "open" (State 2/3) conformations. Most broadly neutralizing antibodies (bNAbs), which are difficult to elicit, recognize the pretriggered (State-1) conformation. More open Env conformations are recognized by poorly neutralizing antibodies (pNAbs), which are readily elicited during natural infection and vaccination with current Env immunogens. Env heterogeneity likely contributes to HIV-1 persistence by skewing antibody responses away from the pretriggered conformation. The conformationally flexible gp160 Env precursor on the infected cell or virion surface potentially presents multiple pNAb epitopes to the host immune system. Although proteolytic cleavage to produce the functional, mature Env trimer [(gp120/gp41)3] stabilizes State-1, many primary HIV-1 Envs spontaneously sample more open conformations. Here, we establish inducible cell lines that produce replication-defective HIV-1 particles with Env trimers stabilized in a pretriggered conformation. The mature Env is enriched on virus-like particles (VLPs). Using complementary approaches, we estimate an average of 25-50 Env trimers on each VLP. The stabilizing changes in Env limit the natural conformational heterogeneity of the VLP Env trimers, allowing recognition by bNAbs but not pNAbs. These defective VLPs provide a more homogeneous source of pretriggered Env trimers in a native membrane environment. Thus, these VLPs may facilitate the characterization of this functionally important Env conformation and its interaction with the immune system.IMPORTANCEA major impediment to the development of an effective HIV/AIDS vaccine is the inefficiency with which human immunodeficiency virus (HIV-1) envelope glycoproteins elicit antibodies that neutralize multiple virus strains. Neutralizing antibodies recognize a particular shape of the envelope glycoproteins that resides on the viral membrane before the virus engages the host cell. Here, we report the creation of stable cell lines that inducibly produce non-infectious HIV-like particles. The normally flexible envelope glycoprotein spikes on these virus-like particles have been stabilized in a conformation that is recognized by broadly neutralizing antibodies. These virus-like particles allow the study of the envelope glycoprotein conformation, its modification by sugars, and its ability to elicit desired neutralizing antibodies.
Collapse
Affiliation(s)
- Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Ashlesha Deshpande
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Fan Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Henderson R, Anasti K, Manne K, Stalls V, Saunders C, Bililign Y, Williams A, Bubphamala P, Montani M, Kachhap S, Li J, Jaing C, Newman A, Cain DW, Lu X, Venkatayogi S, Berry M, Wagh K, Korber B, Saunders KO, Tian M, Alt F, Wiehe K, Acharya P, Alam SM, Haynes BF. Engineering immunogens that select for specific mutations in HIV broadly neutralizing antibodies. Nat Commun 2024; 15:9503. [PMID: 39489734 PMCID: PMC11532496 DOI: 10.1038/s41467-024-53120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Vaccine development targeting rapidly evolving pathogens such as HIV-1 requires induction of broadly neutralizing antibodies (bnAbs) with conserved paratopes and mutations, and in some cases, the same Ig-heavy chains. The current trial-and-error search for immunogen modifications that improve selection for specific bnAb mutations is imprecise. Here, to precisely engineer bnAb boosting immunogens, we use molecular dynamics simulations to examine encounter states that form when antibodies collide with the HIV-1 Envelope (Env). By mapping how bnAbs use encounter states to find their bound states, we identify Env mutations predicted to select for specific antibody mutations in two HIV-1 bnAb B cell lineages. The Env mutations encode antibody affinity gains and select for desired antibody mutations in vivo. These results demonstrate proof-of-concept that Env immunogens can be designed to directly select for specific antibody mutations at residue-level precision by vaccination, thus demonstrating the feasibility of sequential bnAb-inducing HIV-1 vaccine design.
Collapse
Affiliation(s)
- Rory Henderson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Carrie Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Yishak Bililign
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Ashliegh Williams
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Pimthada Bubphamala
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Maya Montani
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sangita Kachhap
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jingjing Li
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Chuancang Jaing
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Madison Berry
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Kshitij Wagh
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Bette Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- The New Mexico Consortium, Los Alamos, NM, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Ming Tian
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Fred Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Biochemistry, Duke University, Durham, NC, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.
- Department of Immunology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
4
|
D’Addabbo A, Tong T, Crooks ET, Osawa K, Xu J, Thomas A, Allen JD, Crispin M, Binley JM. Impact of glycan depletion, glycan debranching and increased glycan charge on HIV-1 neutralization sensitivity and immunogenicity. Glycobiology 2024; 34:cwae063. [PMID: 39115361 PMCID: PMC11442005 DOI: 10.1093/glycob/cwae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 10/02/2024] Open
Abstract
Broadly neutralizing antibodies (bNAbs) isolated from HIV-1 infected donors are vaccine paradigms. These bNAbs recognize envelope glycoprotein trimers that carry 75-90 oligomannose and complex-type glycans. Although bNAbs and their precursors must navigate past glycans, they usually also make some glycan contacts. Glycan-modified vaccines may therefore be useful to initiate and guide bNAb development. Here, we describe two ways to modify Env glycans for possible vaccine use: 1) using a cocktail of glycosidases (termed "NGAF3" (Neuraminidase, β-Galactosidase, N-Acetylglucosaminidase, endoglycosidase F3 (endo F3)) to deplete complex glycans to try to minimize bNAb-glycan clashes and 2) co-expressing β-1,4-galactosyltransferase 1 (B4G) and β-galactoside α-2,6 sialyltransferase 1 (ST6) during Env biosynthesis, creating bNAb-preferred glycan structures. Mass spectrometry revealed that NGAF3 removed glycan heads at 3/7 sites occupied by complex glycans. B4G overexpression resulted in hybrid glycan development whenever complex glycans were closely spaced. The glycan at position 611 in of Env's gp41 transmembrane subunit was uniquely isolated from the effects of both endo F3 and B4G. B4G and ST6 co-expression increased hybrid and sialylated glycan abundance, reducing glycan complexity. In rabbit vaccinations, B4G + ST6 virus-like particles (VLPs) induced less frequent, weaker titer NAbs, implying that ST6-mediated increased Env charge dampens vaccine antibodies. In some cases, vaccine sera preferentially neutralized B4G + ST6-modified pseudovirus. HIV-1+ donor plasma NAbs were generally more effective against B4G + ST6 modified pseudovirus, suggesting a preference for less complex and/or α-2,6 sialylated Env trimers. Collectively, our data suggest that B4G and ST6 Env modifications are best suited for intermediate or late vaccine shots.
Collapse
Affiliation(s)
- Alessio D’Addabbo
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Tommy Tong
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Emma T Crooks
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Keiko Osawa
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Jiamin Xu
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Alyssa Thomas
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - James M Binley
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| |
Collapse
|
5
|
Kaur A, Vaccari M. Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects. Viruses 2024; 16:368. [PMID: 38543734 PMCID: PMC10974975 DOI: 10.3390/v16030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/01/2024] Open
Abstract
The human immunodeficiency virus (HIV) continues to pose a significant global health challenge, with millions of people affected and new cases emerging each year. While various treatment and prevention methods exist, including antiretroviral therapy and non-vaccine approaches, developing an effective vaccine remains the most crucial and cost-effective solution to combating the HIV epidemic. Despite significant advancements in HIV research, the HIV vaccine field has faced numerous challenges, and only one clinical trial has demonstrated a modest level of efficacy. This review delves into the history of HIV vaccines and the current efforts in HIV prevention, emphasizing pre-clinical vaccine development using the non-human primate model (NHP) of HIV infection. NHP models offer valuable insights into potential preventive strategies for combating HIV, and they play a vital role in informing and guiding the development of novel vaccine candidates before they can proceed to human clinical trials.
Collapse
Affiliation(s)
- Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Bennett AL, Edwards R, Kosheleva I, Saunders C, Bililign Y, Williams A, Bubphamala P, Manosouri K, Anasti K, Saunders KO, Alam SM, Haynes BF, Acharya P, Henderson R. Microsecond dynamics control the HIV-1 Envelope conformation. SCIENCE ADVANCES 2024; 10:eadj0396. [PMID: 38306419 PMCID: PMC10836732 DOI: 10.1126/sciadv.adj0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
The HIV-1 Envelope (Env) glycoprotein facilitates host cell fusion through a complex series of receptor-induced structural changes. Although remarkable progress has been made in understanding the structures of various Env conformations, microsecond timescale dynamics have not been studied experimentally. Here, we used time-resolved, temperature-jump small-angle x-ray scattering to monitor structural rearrangements in an HIV-1 Env SOSIP ectodomain construct with microsecond precision. In two distinct Env variants, we detected a transition that correlated with known Env structure rearrangements with a time constant in the hundreds of microseconds range. A previously unknown structural transition was also observed, which occurred with a time constant below 10 μs, and involved an order-to-disorder transition in the trimer apex. Using this information, we engineered an Env SOSIP construct that locks the trimer in the prefusion closed state by connecting adjacent protomers via disulfides. Our findings show that the microsecond timescale structural dynamics play an essential role in controlling the Env conformation with impacts on vaccine design.
Collapse
Affiliation(s)
- Ashley L. Bennett
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert Edwards
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Irina Kosheleva
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Carrie Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Yishak Bililign
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashliegh Williams
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Pimthada Bubphamala
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Katayoun Manosouri
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Henderson R, Anasti K, Manne K, Stalls V, Saunders C, Bililign Y, Williams A, Bubphamala P, Montani M, Kachhap S, Li J, Jaing C, Newman A, Cain D, Lu X, Venkatayogi S, Berry M, Wagh K, Korber B, Saunders KO, Tian M, Alt F, Wiehe K, Acharya P, Alam SM, Haynes BF. Engineering immunogens that select for specific mutations in HIV broadly neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571700. [PMID: 38168268 PMCID: PMC10760096 DOI: 10.1101/2023.12.15.571700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Vaccine development targeting rapidly evolving pathogens such as HIV-1 requires induction of broadly neutralizing antibodies (bnAbs) with conserved paratopes and mutations, and, in some cases, the same Ig-heavy chains. The current trial-and-error search for immunogen modifications that improve selection for specific bnAb mutations is imprecise. To precisely engineer bnAb boosting immunogens, we used molecular dynamics simulations to examine encounter states that form when antibodies collide with the HIV-1 Envelope (Env). By mapping how bnAbs use encounter states to find their bound states, we identified Env mutations that were predicted to select for specific antibody mutations in two HIV-1 bnAb B cell lineages. The Env mutations encoded antibody affinity gains and selected for desired antibody mutations in vivo. These results demonstrate proof-of-concept that Env immunogens can be designed to directly select for specific antibody mutations at residue-level precision by vaccination, thus demonstrating the feasibility of sequential bnAb-inducing HIV-1 vaccine design.
Collapse
Affiliation(s)
- Rory Henderson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Carrie Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Yishak Bililign
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashliegh Williams
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Pimthada Bubphamala
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Maya Montani
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Sangita Kachhap
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Jingjing Li
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Chuancang Jaing
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Derek Cain
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Madison Berry
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- The New Mexico Consortium, Los Alamos, NM, 87544 USA
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- The New Mexico Consortium, Los Alamos, NM, 87544 USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Ming Tian
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Fred Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
8
|
Tong T, D’Addabbo A, Xu J, Chawla H, Nguyen A, Ochoa P, Crispin M, Binley JM. Impact of stabilizing mutations on the antigenic profile and glycosylation of membrane-expressed HIV-1 envelope glycoprotein. PLoS Pathog 2023; 19:e1011452. [PMID: 37549185 PMCID: PMC10434953 DOI: 10.1371/journal.ppat.1011452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/17/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023] Open
Abstract
Recent HIV-1 vaccine development has centered on "near native" soluble envelope glycoprotein (Env) trimers that are artificially stabilized laterally (between protomers) and apically (between gp120 and gp41). These mutations have been leveraged for use in membrane-expressed Env mRNA vaccines, although their effects in this context are unclear. To address this question, we used virus-like particle (VLP) produced in 293T cells. Uncleaved (UNC) trimers were laterally unstable upon gentle lysis from membranes. However, gp120/gp41 processing improved lateral stability. Due to inefficient gp120/gp41 processing, UNC is incorporated into VLPs. A linker between gp120 and gp41 neither improved trimer stability nor its antigenic profile. An artificially introduced enterokinase cleavage site allowed post-expression gp120/gp41 processing, concomitantly increasing trimer stability. Gp41 N-helix mutations I559P and NT1-5 imparted lateral trimer stability, but also reduced gp120/gp41 processing and/or impacted V2 apex and interface NAb binding. I559P consistently reduced recognition by HIV+ human plasmas, further supporting antigenic differences. Mutations in the gp120 bridging sheet failed to stabilize membrane trimers in a pre-fusion conformation, and also reduced gp120/gp41 processing and exposed non-neutralizing epitopes. Reduced glycan maturation and increased sequon skipping were common side effects of these mutations. In some cases, this may be due to increased rigidity which limits access to glycan processing enzymes. In contrast, viral gp120 did not show glycan skipping. A second, minor species of high mannose gp160 was unaffected by any mutations and instead bypasses normal folding and glycan maturation. Including the full gp41 cytoplasmic tail led to markedly reduced gp120/gp41 processing and greatly increased the proportion of high mannose gp160. Remarkably, monoclonal antibodies were unable to bind to this high mannose gp160 in native protein gels. Overall, our findings suggest caution in leveraging stabilizing mutations in nucleic acid-based immunogens to ensure they impart valuable membrane trimer phenotypes for vaccine use.
Collapse
Affiliation(s)
- Tommy Tong
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Alessio D’Addabbo
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jiamin Xu
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Albert Nguyen
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Paola Ochoa
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| |
Collapse
|
9
|
Wang S, Matassoli F, Zhang B, Liu T, Shen CH, Bylund T, Johnston T, Henry AR, Teng IT, Tripathi P, Becker JE, Changela A, Chaudhary R, Cheng C, Gaudinski M, Gorman J, Harris DR, Lee M, Morano NC, Novik L, O'Dell S, Olia AS, Parchment DK, Rawi R, Roberts-Torres J, Stephens T, Tsybovsky Y, Wang D, Van Wazer DJ, Zhou T, Doria-Rose NA, Koup RA, Shapiro L, Douek DC, McDermott AB, Kwong PD. HIV-1 neutralizing antibodies elicited in humans by a prefusion-stabilized envelope trimer form a reproducible class targeting fusion peptide. Cell Rep 2023; 42:112755. [PMID: 37436899 PMCID: PMC10491024 DOI: 10.1016/j.celrep.2023.112755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023] Open
Abstract
Elicitation of antibodies that neutralize the tier-2 neutralization-resistant isolates that typify HIV-1 transmission has been a long-sought goal. Success with prefusion-stabilized envelope trimers eliciting autologous neutralizing antibodies has been reported in multiple vaccine-test species, though not in humans. To investigate elicitation of HIV-1 neutralizing antibodies in humans, here, we analyze B cells from a phase I clinical trial of the "DS-SOSIP"-stabilized envelope trimer from strain BG505, identifying two antibodies, N751-2C06.01 and N751-2C09.01 (named for donor-lineage.clone), that neutralize the autologous tier-2 strain, BG505. Though derived from distinct lineages, these antibodies form a reproducible antibody class that targets the HIV-1 fusion peptide. Both antibodies are highly strain specific, which we attribute to their partial recognition of a BG505-specific glycan hole and to their binding requirements for a few BG505-specific residues. Prefusion-stabilized envelope trimers can thus elicit autologous tier-2 neutralizing antibodies in humans, with initially identified neutralizing antibodies recognizing the fusion-peptide site of vulnerability.
Collapse
Affiliation(s)
- Shuishu Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Flavio Matassoli
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy Johnston
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prabhanshu Tripathi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan E Becker
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Anita Changela
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Gaudinski
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas C Morano
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Laura Novik
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Reda Rawi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Danyi Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Van Wazer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
10
|
Bennett AL, Edwards RJ, Kosheleva I, Saunders C, Bililign Y, Williams A, Manosouri K, Saunders KO, Haynes BF, Acharya P, Henderson R. Microsecond dynamics control the HIV-1 envelope conformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541130. [PMID: 37292605 PMCID: PMC10245784 DOI: 10.1101/2023.05.17.541130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The HIV-1 Envelope (Env) glycoprotein facilitates host cell fusion through a complex series of receptor-induced structural changes. Although significant progress has been made in understanding the structures of various Env conformations and transition intermediates that occur within the millisecond timescale, faster transitions in the microsecond timescale have not yet been observed. In this study, we employed time-resolved, temperature-jump small angle X-ray scattering to monitor structural rearrangements in an HIV-1 Env ectodomain construct with microsecond precision. We detected a transition correlated with Env opening that occurs in the hundreds of microseconds range and another more rapid transition that preceded this opening. Model fitting indicated that the early rapid transition involved an order-to-disorder transition in the trimer apex loop contacts, suggesting that conventional conformation-locking design strategies that target the allosteric machinery may be ineffective in preventing this movement. Utilizing this information, we engineered an envelope that locks the apex loop contacts to the adjacent protomer. This modification resulted in significant angle-of-approach shifts in the interaction of a neutralizing antibody. Our findings imply that blocking the intermediate state could be crucial for inducing antibodies with the appropriate bound state orientation through vaccination.
Collapse
Affiliation(s)
- Ashley L Bennett
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - R J Edwards
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Irina Kosheleva
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Carrie Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Yishak Bililign
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashliegh Williams
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Katayoun Manosouri
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
11
|
Zhang YN, Paynter J, Antanasijevic A, Allen JD, Eldad M, Lee YZ, Copps J, Newby ML, He L, Chavez D, Frost P, Goodroe A, Dutton J, Lanford R, Chen C, Wilson IA, Crispin M, Ward AB, Zhu J. Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimmers as HIV-1 vaccine candidates. Nat Commun 2023; 14:1985. [PMID: 37031217 PMCID: PMC10082823 DOI: 10.1038/s41467-023-37742-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Uncleaved prefusion-optimized (UFO) design can stabilize diverse HIV-1 envelope glycoproteins (Envs). Single-component, self-assembling protein nanoparticles (1c-SApNP) can display 8 or 20 native-like Env trimers as vaccine candidates. We characterize the biophysical, structural, and antigenic properties of 1c-SApNPs that present the BG505 UFO trimer with wildtype and modified glycans. For 1c-SApNPs, glycan trimming improves recognition of the CD4 binding site without affecting broadly neutralizing antibodies (bNAbs) to major glycan epitopes. In mice, rabbits, and nonhuman primates, glycan trimming increases the frequency of vaccine responders (FVR) and steers antibody responses away from immunodominant glycan holes and glycan patches. The mechanism of vaccine-induced immunity is examined in mice. Compared with the UFO trimer, the multilayered E2p and I3-01v9 1c-SApNPs show 420 times longer retention in lymph node follicles, 20-32 times greater presentation on follicular dendritic cell dendrites, and up-to-4 times stronger germinal center reactions. These findings can inform future HIV-1 vaccine development.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jennifer Paynter
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joel D Allen
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mor Eldad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Maddy L Newby
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Deborah Chavez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Pat Frost
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Anna Goodroe
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - John Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Christopher Chen
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Max Crispin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
12
|
Tarrés-Freixas F, Aguilar-Gurrieri C, Rodríguez de la Concepción ML, Urrea V, Trinité B, Ortiz R, Pradenas E, Blanco P, Marfil S, Molinos-Albert LM, Barajas A, Pons-Grífols A, Ávila-Nieto C, Varela I, Cervera L, Gutiérrez-Granados S, Segura MM, Gòdia F, Clotet B, Carrillo J, Blanco J. An engineered HIV-1 Gag-based VLP displaying high antigen density induces strong antibody-dependent functional immune responses. NPJ Vaccines 2023; 8:51. [PMID: 37024469 PMCID: PMC10077320 DOI: 10.1038/s41541-023-00648-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Antigen display on the surface of Virus-Like Particles (VLPs) improves immunogenicity compared to soluble proteins. We hypothesised that immune responses can be further improved by increasing the antigen density on the surface of VLPs. In this work, we report an HIV-1 Gag-based VLP platform engineered to maximise the presence of antigen on the VLP surface. An HIV-1 gp41-derived protein (Min), including the C-terminal part of gp41 and the transmembrane domain, was fused to HIV-1 Gag. This resulted in high-density MinGag-VLPs. These VLPs demonstrated to be highly immunogenic in animal models using either a homologous (VLP) or heterologous (DNA/VLP) vaccination regimen, with the latter yielding 10-fold higher anti-Gag and anti-Min antibody titres. Despite these strong humoral responses, immunisation with MinGag-VLPs did not induce neutralising antibodies. Nevertheless, antibodies were predominantly of an IgG2b/IgG2c profile and could efficiently bind CD16-2. Furthermore, we demonstrated that MinGag-VLP vaccination could mediate a functional effect and halt the progression of a Min-expressing tumour cell line in an in vivo mouse model.
Collapse
Affiliation(s)
- Ferran Tarrés-Freixas
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | | | | | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Raquel Ortiz
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Edwards Pradenas
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Pau Blanco
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Sílvia Marfil
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Luis Manuel Molinos-Albert
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ana Barajas
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Anna Pons-Grífols
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Carlos Ávila-Nieto
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Ismael Varela
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cel•lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08913, Cerdanyola del Vallès, Catalonia, Spain
| | - Sònia Gutiérrez-Granados
- Grup d'Enginyeria Cel•lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08913, Cerdanyola del Vallès, Catalonia, Spain
| | - María Mercedes Segura
- Grup d'Enginyeria Cel•lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08913, Cerdanyola del Vallès, Catalonia, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel•lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08913, Cerdanyola del Vallès, Catalonia, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain.
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, 08916, Barcelona, Spain.
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain.
- University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Barcelona, Spain.
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, 08916, Barcelona, Spain.
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
13
|
Nguyen HT, Wang Q, Anang S, Sodroski JG. Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Conformational States on Infectious Virus Particles. J Virol 2023; 97:e0185722. [PMID: 36815832 PMCID: PMC10062176 DOI: 10.1128/jvi.01857-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells involves triggering of the viral envelope glycoprotein (Env) trimer ([gp120/gp41]3) by the primary receptor, CD4, and coreceptors, CCR5 or CXCR4. The pretriggered (State-1) conformation of the mature (cleaved) Env is targeted by broadly neutralizing antibodies (bNAbs), which are inefficiently elicited compared with poorly neutralizing antibodies (pNAbs). Here, we characterize variants of the moderately triggerable HIV-1AD8 Env on virions produced by an infectious molecular proviral clone; such virions contain more cleaved Env than pseudotyped viruses. We identified three types of cleaved wild-type AD8 Env trimers on virions: (i) State-1-like trimers preferentially recognized by bNAbs and exhibiting strong subunit association; (ii) trimers recognized by pNAbs directed against the gp120 coreceptor-binding region and exhibiting weak, detergent-sensitive subunit association; and (iii) a minor gp41-only population. The first Env population was enriched and the other Env populations reduced by introducing State-1-stabilizing changes in the AD8 Env or by treatment of the virions with crosslinker or the State-1-preferring entry inhibitor, BMS-806. These stabilized AD8 Envs were also more resistant to gp120 shedding induced by a CD4-mimetic compound or by incubation on ice. Conversely, a State-1-destabilized, CD4-independent AD8 Env variant exhibited weaker bNAb recognition and stronger pNAb recognition. Similar relationships between Env triggerability and antigenicity/shedding propensity on virions were observed for other HIV-1 strains. State-1 Envs on virions can be significantly enriched by minimizing the adventitious incorporation of uncleaved Env; stabilizing the pretriggered conformation by Env modification, crosslinking or BMS-806 treatment; strengthening Env subunit interactions; and using CD4-negative producer cells. IMPORTANCE Efforts to develop an effective HIV-1 vaccine have been frustrated by the inability to elicit broad neutralizing antibodies that recognize multiple virus strains. Such antibodies can bind a particular shape of the HIV-1 envelope glycoprotein trimer, as it exists on a viral membrane but before engaging receptors on the host cell. Here, we establish simple yet powerful assays to characterize the envelope glycoproteins in a natural context on virus particles. We find that, depending on the HIV-1 strain, some envelope glycoproteins change shape and fall apart, creating decoys that can potentially divert the host immune response. We identify requirements to keep the relevant envelope glycoprotein target for broad neutralizing antibodies intact on virus-like particles. These studies suggest strategies that should facilitate efforts to produce and use virus-like particles as vaccine immunogens.
Collapse
Affiliation(s)
- Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Bell BN, Bruun TUJ, Friedland N, Kim PS. HIV-1 prehairpin intermediate inhibitors show efficacy independent of neutralization tier. Proc Natl Acad Sci U S A 2023; 120:e2215792120. [PMID: 36795752 PMCID: PMC9974412 DOI: 10.1073/pnas.2215792120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
HIV-1 strains are categorized into one of three neutralization tiers based on the relative ease by which they are neutralized by plasma from HIV-1-infected donors not on antiretroviral therapy; tier-1 strains are particularly sensitive to neutralization while tier-2 and tier-3 strains are increasingly difficult to neutralize. Most broadly neutralizing antibodies (bnAbs) previously described target the native prefusion conformation of HIV-1 Envelope (Env), but the relevance of the tiered categories for inhibitors targeting another Env conformation, the prehairpin intermediate, is not well understood. Here, we show that two inhibitors targeting distinct highly conserved regions of the prehairpin intermediate have strikingly consistent neutralization potencies (within ~100-fold for a given inhibitor) against strains in all three neutralization tiers of HIV-1; in contrast, best-in-class bnAbs targeting diverse Env epitopes vary by more than 10,000-fold in potency against these strains. Our results indicate that antisera-based HIV-1 neutralization tiers are not relevant for inhibitors targeting the prehairpin intermediate and highlight the potential for therapies and vaccine efforts targeting this conformation.
Collapse
Affiliation(s)
- Benjamin N. Bell
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - Theodora U. J. Bruun
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Natalia Friedland
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| |
Collapse
|
15
|
Ximba P, Chapman R, Meyers A, Margolin E, van Diepen MT, Sander AF, Woodward J, Moore PL, Williamson AL, Rybicki EP. Development of a synthetic nanoparticle vaccine presenting the HIV-1 envelope glycoprotein. NANOTECHNOLOGY 2022; 33:485102. [PMID: 35882111 DOI: 10.1088/1361-6528/ac842c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Two-component self-assembling virus-like particles (VLPs) are promising scaffolds for achieving high-density display of HIV-1 envelope (gp140) trimers, which can improve the induction of neutralising antibodies (NAbs). In this study gp140 was displayed on the surface of VLPs formed by the AP205 phage coat protein. The CAP256 SU gp140 antigen was selected as the patient who this virus was isolated from developed broadly neutralising antibodies (bNAbs) shortly after superinfection with this virus. The CAP256 SU envelope is also sensitive to several bNAbs and has shown enhanced reactivity for certain bNAb precursors. A fusion protein comprising the HIV-1 CAP256 SU gp140 and the SpyTag (ST) (gp140-ST) was produced in HEK293 cells, and trimers were purified to homogeneity using gel filtration. SpyCatcher (SC)-AP205 VLPs were produced inEscherichia coliand purified by ultracentrifugation. The gp140-ST trimers and the SC-AP205 VLPs were mixed in varying molar ratios to generate VLPs displaying the glycoprotein (AP205-gp140-ST particles). Dynamic light scattering, negative stain electron microscopy and 2D classification indicated that gp140-ST was successfully bound to the VLPs, although not all potential binding sites were occupied. The immunogenicity of the coupled VLPs was evaluated in a pilot study in rabbits. One group was injected four times with coupled VLPs, and the second group was primed with DNA vaccines expressing Env and a mosaic Gag, followed by modified vaccinia Ankara expressing the same antigens. The animals were then boosted twice with coupled VLPs. Encouragingly, gp140-ST displayed on SC-AP205 VLPs was an effective boost to heterologously primed rabbits, leading to induction of autologous Tier 2 neutralising antibodies in 2/5 rabbits. However, four inoculations of coupled VLPs alone failed to elicit any Tier 2 antibodies. These results demonstrate that the native-like structure of HIV-1 envelope trimers and selection of a geometrically-suitable nanoparticle scaffold to achieve a high-density display of the trimers are important considerations that could improve the effect of nanoparticle-displayed gp140.
Collapse
Affiliation(s)
- Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michiel T van Diepen
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jeremy Woodward
- Structural Biology Research Unit, University of Cape Town, South Africa
| | - Penny L Moore
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Rojas Chávez RA, Boyt D, Schwery N, Han C, Wu L, Haim H. Commonly Elicited Antibodies against the Base of the HIV-1 Env Trimer Guide the Population-Level Evolution of a Structure-Regulating Region in gp41. J Virol 2022; 96:e0040622. [PMID: 35658529 PMCID: PMC9278142 DOI: 10.1128/jvi.00406-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
The antibody response against the HIV-1 envelope glycoproteins (Envs) guides evolution of this protein within each host. Whether antibodies with similar target specificities are elicited in different individuals and affect the population-level evolution of Env is poorly understood. To address this question, we analyzed properties of emerging variants in the gp41 fusion peptide-proximal region (FPPR) that exhibit distinct evolutionary patterns in HIV-1 clade B. For positions 534, 536, and 539 in the FPPR, alanine was the major emerging variant. However, 534A and 536A show a constant frequency in the population between 1979 and 2016, whereas 539A is gradually increasing. To understand the basis for these differences, we introduced alanine substitutions in the FPPR of primary HIV-1 strains and examined their functional and antigenic properties. Evolutionary patterns could not be explained by fusion competence or structural stability of the emerging variants. Instead, 534A and 536A exhibited modest but significant increases in sensitivity to antibodies against the membrane-proximal external region (MPER) and gp120-gp41 interface. These Envs were also more sensitive to poorly neutralizing sera from HIV-1-infected individuals than the clade ancestral form or 539A variant. Competition binding assays confirmed for all sera tested the presence of antibodies against the base of the Env trimer that compete with monoclonal antibodies targeting the MPER and gp120-gp41 interface. Our findings suggest that weakly neutralizing antibodies against the trimer base are commonly elicited; they do not exert catastrophic population size reduction effects on emerging variants but, instead, determine their set point frequencies in the population and historical patterns of change. IMPORTANCE Infection by HIV-1 elicits formation of antibodies that target the viral Env proteins and can inactivate the virus. The specific targets of these antibodies vary among infected individuals. It is unclear whether some target specificities are shared among the antibody responses of different individuals. We observed that antibodies against the base of the Env protein are commonly elicited during infection. The selective pressure applied by such antibodies is weak. As a result, they do not completely eliminate the sensitive forms of the virus from the population, but maintain their frequency at a low level that has not increased since the beginning of the AIDS pandemic. Interestingly, the changes in Env do not occur at the sites targeted by the antibodies, but at a distinct region of Env, the fusion peptide-proximal region, which regulates their exposure.
Collapse
Affiliation(s)
- Roberth Anthony Rojas Chávez
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Devlin Boyt
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Nathan Schwery
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Changze Han
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Hillel Haim
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
17
|
Mu Z, Wiehe K, Saunders KO, Henderson R, Cain DW, Parks R, Martik D, Mansouri K, Edwards RJ, Newman A, Lu X, Xia SM, Eaton A, Bonsignori M, Montefiori D, Han Q, Venkatayogi S, Evangelous T, Wang Y, Rountree W, Korber B, Wagh K, Tam Y, Barbosa C, Alam SM, Williams WB, Tian M, Alt FW, Pardi N, Weissman D, Haynes BF. mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice. Cell Rep 2022; 38:110514. [PMID: 35294883 PMCID: PMC8922439 DOI: 10.1016/j.celrep.2022.110514] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/09/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
The success of nucleoside-modified mRNAs in lipid nanoparticles (mRNA-LNP) as COVID-19 vaccines heralded a new era of vaccine development. For HIV-1, multivalent envelope (Env) trimer protein nanoparticles are superior immunogens compared with trimers alone for priming of broadly neutralizing antibody (bnAb) B cell lineages. The successful expression of complex multivalent nanoparticle immunogens with mRNAs has not been demonstrated. Here, we show that mRNAs can encode antigenic Env trimers on ferritin nanoparticles that initiate bnAb precursor B cell expansion and induce serum autologous tier 2 neutralizing activity in bnAb precursor VH + VL knock-in mice. Next-generation sequencing demonstrates acquisition of critical mutations, and monoclonal antibodies that neutralize heterologous HIV-1 isolates are isolated. Thus, mRNA-LNP can encode complex immunogens and may be of use in design of germline-targeting and sequential boosting immunogens for HIV-1 vaccine development.
Collapse
Affiliation(s)
- Zekun Mu
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Diana Martik
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qifeng Han
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tyler Evangelous
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wilton B Williams
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ming Tian
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Frederick W Alt
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Barton F Haynes
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
18
|
High thermostability improves neutralizing antibody responses induced by native-like HIV-1 envelope trimers. NPJ Vaccines 2022; 7:27. [PMID: 35228534 PMCID: PMC8885667 DOI: 10.1038/s41541-022-00446-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 12/01/2022] Open
Abstract
Soluble HIV-1 envelope glycoprotein (Env) immunogens are a prime constituent of candidate vaccines designed to induce broadly neutralizing antibodies. Several lines of evidence suggest that enhancing Env immunogen thermostability can improve neutralizing antibody (NAb) responses. Here, we generated BG505 SOSIP.v9 trimers, which displayed virtually no reactivity with non-neutralizing antibodies and showed increased global and epitope thermostability, compared to previous BG505 SOSIP versions. Chemical crosslinking of BG505 SOSIP.v9 further increased the melting temperature to 91.3 °C, which is almost 25 °C higher than that of the prototype SOSIP.664 trimer. Next, we compared the immunogenicity of a palette of BG505-based SOSIP trimers with a gradient of thermostabilities in rabbits. We also included SOSIP.v9 proteins in which a strain-specific immunodominant epitope was masked by glycans to redirect the NAb response to other subdominant epitopes. We found that increased trimer thermostability correlated with increased potency and consistency of the autologous NAb response. Furthermore, glycan masking steered the NAb response to subdominant epitopes without decreasing the potency of the autologous NAb response. In summary, SOSIP.v9 trimers and their glycan masked versions represent an improved platform for HIV-1 Env based vaccination strategies.
Collapse
|
19
|
Ng QR, Tee KK, Binley JM, Tong T. Cross-Neutralizing CRF01_AE-Infected Plasma from Malaysia Targets CD4-Binding Site of Human Immunodeficiency Virus Type-1 Envelope Glycoprotein. AIDS Res Hum Retroviruses 2022; 38:162-172. [PMID: 34006141 PMCID: PMC9206480 DOI: 10.1089/aid.2020.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) antigenic variation poses a great challenge for vaccine immunogen design to elicit broadly neutralizing antibodies (bNAbs). Over the last 10-15 years, great progress has been made to understand the conserved sites of sensitivity on HIV envelope glycoprotein spikes targeted by bNAbs. Plasma neutralization mapping and monoclonal antibody isolation efforts have revealed five major conserved epitope clusters. Most of this work has focused on subtype B and C-infected Caucasian or African donors. It is not clear if the same epitopes and epitope rank order preferences are also true in donors infected with different HIV-1 subtypes and with different racial backgrounds. To investigate this point, in this study we report the first attempt to profile the bNAb specificities of CRF01_AE-infected Malaysian plasmas. We first measured neutralization titers of 21 plasmas against a subtype A, B, and AE pseudovirus panel. This revealed that 14% (3 of 21) plasmas had cross-clade breadth. Focusing on the cross-neutralizing plasma P9, we used AE and JR-FL mutant pseudoviruses, gp120 monomer interference, and native polyacrylamide gel electrophoresis to better understand the neutralization specificity. P9 demonstrates CD4-binding-site specificity with trimer dependence and D368 independence.
Collapse
Affiliation(s)
- Qi Ron Ng
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - James M. Binley
- HIV and Coronavirus Vaccine Development, San Diego Biomedical Research Institute, San Diego, California, USA
| | - Tommy Tong
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.,Address correspondence to: Tommy Tong, Department of Biological Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| |
Collapse
|
20
|
Crooks ET, Almanza F, D’Addabbo A, Duggan E, Zhang J, Wagh K, Mou H, Allen JD, Thomas A, Osawa K, Korber BT, Tsybovsky Y, Cale E, Nolan J, Crispin M, Verkoczy LK, Binley JM. Engineering well-expressed, V2-immunofocusing HIV-1 envelope glycoprotein membrane trimers for use in heterologous prime-boost vaccine regimens. PLoS Pathog 2021; 17:e1009807. [PMID: 34679128 PMCID: PMC8565784 DOI: 10.1371/journal.ppat.1009807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/03/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-1 vaccine immunofocusing strategies may be able to induce broadly-reactive neutralizing antibodies (NAbs). Here, we engineered a panel of diverse, membrane-resident native HIV-1 trimers vulnerable to two broad targets-the V2 apex and fusion peptide (FP). Selection criteria included i) high expression and ii) infectious function, so that trimer neutralization sensitivity can be profiled in pseudovirus (PV) assays. Initially, we boosted the expression of 17 candidate trimers by truncating gp41 and introducing a gp120-gp41 SOS disulfide to prevent gp120 shedding. "Repairs" were made to fill glycan holes and eliminate other strain-specific aberrations. A new neutralization assay allowed PV infection when our standard assay was insufficient. Trimers with exposed V3 loops, a target of non-NAbs, were discarded. To try to increase V2-sensitivity, we removed clashing glycans and modified the C-strand. Notably, a D167N mutation improved V2-sensitivity in several cases. Glycopeptide analysis of JR-FL trimers revealed near complete sequon occupation and that filling the N197 glycan hole was well-tolerated. In contrast, sequon optimization and inserting/removing glycans at other positions frequently had global "ripple" effects on glycan maturation and sequon occupation throughout the gp120 outer domain and gp41. V2 MAb CH01 selectively bound to trimers with small high mannose glycans near the base of the V1 loop, thereby avoiding clashes. Knocking in a rare N49 glycan was found to perturb gp41 glycans, increasing FP NAb sensitivity-and sometimes improving expression. Finally, a biophysical analysis of VLPs revealed that i) ~25% of particles bear Env spikes, ii) spontaneous particle budding is high and only increases 4-fold upon Gag transfection, and iii) Env+ particles express ~30-40 spikes. Taken together, we identified 7 diverse trimers with a range of sensitivities to two targets to allow rigorous testing of immunofocusing vaccine concepts.
Collapse
Affiliation(s)
- Emma T. Crooks
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Francisco Almanza
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Alessio D’Addabbo
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Erika Duggan
- Scintillon Institute, San Diego, California, United States of America
- Cellarcus BioSciences, La Jolla, California, United States of America
| | - Jinsong Zhang
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Kshitij Wagh
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Huihui Mou
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Alyssa Thomas
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Bette T. Korber
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Yaroslav Tsybovsky
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Evan Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Nolan
- Scintillon Institute, San Diego, California, United States of America
- Cellarcus BioSciences, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Laurent K. Verkoczy
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| |
Collapse
|
21
|
Hitting the sweet spot: exploiting HIV-1 glycan shield for induction of broadly neutralizing antibodies. Curr Opin HIV AIDS 2021; 15:267-274. [PMID: 32675574 DOI: 10.1097/coh.0000000000000639] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The surface of the HIV-1 Env glycoprotein, the target of neutralizing antibodies, is extensively covered by N-linked glycans that create a glycan shield. Broadly neutralizing antibodies (bNAbs), the primary targets of HIV-1 vaccine design, have to negotiate this glycan shield. Here, we review the barriers and opportunities that the HIV-1 glycan shield presents for vaccine induction of bNAbs. RECENT FINDINGS Glycan shields can impact the nature of the antibody response and influence the development of neutralization breadth in HIV-1 infections. The architecture of the glycan shield arising from glycan interactions and dynamics have been modeled, and its fine structure, that is, the site-wise glycan heterogeneity, has been determined for some isolates. Although the extent of glycan shielding is conserved, the precise number, location and processing of glycans, however, is strain-dependent. New insights continue to reveal how such differences can impact bNAb activity and development. Novel approaches have exploited the glycan shield for designing immunogens that bind the germline precursors of bNAbs, a critical roadblock for vaccine-induction of bNAbs. SUMMARY The HIV-1 glycan shield can significantly impact the induction and maturation of bNAbs, and a better understanding of how to manipulate it will improve immunogen design.
Collapse
|
22
|
Sliepen K, Schermer E, Bontjer I, Burger JA, Lévai RF, Mundsperger P, Brouwer PJM, Tolazzi M, Farsang A, Katinger D, Moore JP, Scarlatti G, Shattock RJ, Sattentau QJ, Sanders RW. Interplay of diverse adjuvants and nanoparticle presentation of native-like HIV-1 envelope trimers. NPJ Vaccines 2021; 6:103. [PMID: 34404812 PMCID: PMC8371121 DOI: 10.1038/s41541-021-00364-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
The immunogenicity of HIV-1 envelope (Env) trimers is generally poor. We used the clinically relevant ConM SOSIP trimer to compare the ability of different adjuvants (squalene emulsion, ISCOMATRIX, GLA-LSQ, and MPLA liposomes) to support neutralizing antibody (NAb) responses in rabbits. The trimers were administered as free proteins or on nanoparticles. The rank order for the adjuvants was ISCOMATRIX > SE > GLA-LSQ ~ MPLA liposomes > no adjuvant. Stronger NAb responses were elicited when the ConM SOSIP trimers were presented on ferritin nanoparticles. We also found that the GLA-LSQ adjuvant induced an unexpectedly strong antibody response to the ferritin core of the nanoparticles. This "off-target" effect may have compromised its ability to induce the more desired antitrimer antibodies. In summary, both adjuvants and nanoparticle display can improve the magnitude of the antibody response to SOSIP trimers but the best combination of trimer presentation and adjuvant can only be identified experimentally.
Collapse
Affiliation(s)
- Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Edith Schermer
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Réka Felfödiné Lévai
- Control Laboratory of Veterinary Medicinal Products and Animal Facility, Directorate of Veterinary Medicinal Products, National Food Chain Safety Office, Budapest, Hungary
| | | | - Philip J M Brouwer
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Attila Farsang
- Control Laboratory of Veterinary Medicinal Products and Animal Facility, Directorate of Veterinary Medicinal Products, National Food Chain Safety Office, Budapest, Hungary
| | - Dietmar Katinger
- Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg, Austria
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Robin J Shattock
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London, W21PG, UK
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
23
|
Limited Evidence for a Relationship between HIV-1 Glycan Shield Features in Early Infection and the Development of Neutralization Breadth. J Virol 2021; 95:e0079721. [PMID: 34160251 PMCID: PMC8354232 DOI: 10.1128/jvi.00797-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Identifying whether viral features present in acute HIV-1 infection predetermine the development of neutralization breadth is critical to vaccine design. Incorporating such features in vaccine antigens could initiate cross-reactive antibody responses that could sufficiently protect vaccinees from HIV-1 infection despite the uniqueness of each founder virus. To understand the relationship between Env determinants and the development of neutralization breadth, we focused on 197 individuals enrolled in two cohorts in Thailand and East Africa (RV144 and RV217) and followed since their diagnosis in acute or early HIV-1 infection. We analyzed the distribution of variable loop lengths and glycans, as well as the predicted density of the glycan shield, and compared these envelope features to the neutralization breadth data obtained 3 years after infection (n = 121). Our study revealed limited evidence for glycan shield features that associate with the development of neutralization breadth. While the glycan shield tended to be denser in participants who subsequently developed breadth, no significant relationship was found between the size of glycan holes and the development of neutralization breadth. The parallel analysis of 3,000 independent Env sequences showed no evidence of directional evolution of glycan shield features since the beginning of the epidemic. Together, our results highlight that glycan shield features in acute and early HIV-1 infection may not play a role determinant enough to dictate the development of neutralization breadth and instead suggest that the glycan shield’s reactive properties that are associated with immune evasion may have a greater impact. IMPORTANCE A major goal of HIV-1 vaccine research is to design vaccine candidates that elicit potent broadly neutralizing antibodies (bNAbs). Different viral features have been associated with the development of bNAbs, including the glycan shield on the surface of the HIV-1 Envelope (Env). Here, we analyzed data from two cohorts of individuals who were followed from early infection to several years after infection spanning multiple HIV-1 subtypes. We compared Env glycan features in HIV-1 sequences obtained in early infection to the potency and breadth of neutralizing antibodies measured 1 to 3 years after infection. We found limited evidence of glycan shield properties that associate with the development of neutralization breadth in these cohorts. These results may have important implications for antigen design in future vaccine strategies and emphasize that HIV-1 vaccines will need to rely on a complex set of properties to elicit neutralization breadth.
Collapse
|
24
|
Kumar S, Lin X, Ngo T, Shapero B, Sou C, Allen JD, Copps J, Zhang L, Ozorowski G, He L, Crispin M, Ward AB, Wilson IA, Zhu J. Neutralizing Antibodies Induced by First-Generation gp41-Stabilized HIV-1 Envelope Trimers and Nanoparticles. mBio 2021; 12:e0042921. [PMID: 34156262 PMCID: PMC8262854 DOI: 10.1128/mbio.00429-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
The immunogenicity of gp41-stabilized HIV-1 BG505 envelope (Env) trimers and nanoparticles (NPs) was recently assessed in mice and rabbits. Here, we combined Env-specific B-cell sorting and repertoire sequencing to identify neutralizing antibodies (NAbs) from immunized animals. A panel of mouse NAbs was isolated from mice immunized with a 60-meric I3-01 NP presenting 20 stabilized trimers. Three mouse NAbs potently neutralized BG505.T332N by recognizing a glycan epitope centered in the C3/V4 region on BG505 Env, as revealed by electron microscopy (EM), X-ray crystallography, and epitope mapping. A set of rabbit NAbs was isolated from rabbits immunized with a soluble trimer and a 24-meric ferritin NP presenting 8 trimers. Neutralization assays against BG505.T332N variants confirmed that potent rabbit NAbs targeted previously described glycan holes on BG505 Env and accounted for a significant portion of the autologous NAb response in both the trimer and ferritin NP groups. Last, we examined NAb responses that were induced by non-BG505 Env immunogens. We determined a 3.4-Å-resolution crystal structure for the clade C transmitted/founder (T/F) Du172.17 Env with a redesigned heptad repeat 1 (HR1) bend in gp41. This clade C Env, in a soluble trimer form and in a multivalent form with 8 trimers attached to ferritin NP, and the gp41-stabilized clade A Q482-d12 Env trimer elicited distinct NAb responses in rabbits, with notable differences in neutralization breadth. Although eliciting a broad NAb response remains a major challenge, our study provides valuable information on an HIV-1 vaccine design strategy that combines gp41 stabilization and NP display. IMPORTANCE Self-assembling protein nanoparticles (NPs) presenting BG505 envelope (Env) trimers can elicit tier 2 HIV-1-neutralizing antibody (NAb) responses more effectively than soluble trimers. In the present study, monoclonal NAbs were isolated from previously immunized mice and rabbits for structural and functional analyses, which revealed that potent mouse NAbs recognize the C3/V4 region and small NP-elicited rabbit NAbs primarily target known glycan holes on BG505 Env. This study validates the gp41 stabilization strategy for HIV-1 Env vaccine design and highlights the challenge in eliciting a broad NAb response.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
| | - Xiaohe Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Timothy Ngo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Benjamin Shapero
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Cindy Sou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lei Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
25
|
Karch CP, Matyas GR. The current and future role of nanovaccines in HIV-1 vaccine development. Expert Rev Vaccines 2021; 20:935-944. [PMID: 34184607 DOI: 10.1080/14760584.2021.1945448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: An efficacious vaccine for HIV-1 has been sought for over 30 years to eliminate the virus from the human population. Many challenges have occurred in the attempt to produce a successful immunogen, mainly caused by the basic biology of the virus. Immunogens have been developed focusing on inducing one or more of the following types of immune responses; neutralizing antibodies, non-neutralizing antibodies, and T-cell mediated responses. One way to better present and develop an immunogen for HIV-1 is through the use of nanotechnology and nanoparticles.Areas covered: This article gives a basic overview of the HIV-1 vaccine field, as well as nanotechnology, specifically nanovaccines. It then covers the application of nanovaccines made from biological macromolecules to HIV-1 vaccine development for neutralizing antibodies, non-neutralizing antibodies, and T-cell-mediated responses.Expert opinion: Nanovaccines are an area that is ripe for further exploration in HIV-1 vaccine field. Not only are nanovaccines capable of carrying and presenting antigens in native-like conformations, but they have also repeatedly been shown to increase immunogenicity over recombinant antigens alone. Only through further research can the true role of nanovaccines in the development of an efficacious HIV-1 vaccine be established.
Collapse
Affiliation(s)
- Christopher P Karch
- Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Laboratory of Adjuvant and Antigen Research, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
26
|
Membrane Env Liposomes Facilitate Immunization with Multivalent Full-Length HIV Spikes. J Virol 2021; 95:e0000521. [PMID: 33883221 DOI: 10.1128/jvi.00005-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A major goal of HIV vaccine design is to elicit broadly neutralizing antibodies (bNAbs). Such bNAbs target HIV's trimeric, membrane-embedded envelope glycoprotein spikes (mEnv). Soluble Env (sEnv) trimers have been used as vaccines, but engineering sEnvs for stability, multivalency, and desired antigenicity is problematic and deletes key neutralizing epitopes on glycoprotein 41 (gp41) while creating neoepitopes that elicit unwanted antibodies. Meanwhile, multivalent mEnv vaccines are challenging to develop due to trimer instability and low mEnv copy number amid other extraneous proteins on virus-like particles. Here, we describe a multivalent mEnv vaccine platform that does not require protein engineering or extraneous proteins. mEnv trimers were fixed, purified, and combined with naked liposomes in mild detergent. On removal of detergent, mEnv spikes were observed embedded in liposome particles (mean diameter, 133 nm) in correct orientation. These particles were recognized by HIV bNAbs and not non-NAbs and are designated mEnv liposomes (MELs). Following a sequential immunization scheme in rabbits, MELs elicited antibodies that neutralized tier 2 HIV isolates. Analysis of serum antibody specificities, including those to epitopes involving a missing conserved N-glycosylation site at position 197 near the CD4 binding site on two of the immunogens, provides clues on how NAb responses can be improved with modified immunogens. In sum, MELs are a biochemically defined platform that enables rational immunization strategies to elicit HIV bNAbs using multimerized mEnv. IMPORTANCE A vaccine that induced broadly neutralizing antibodies against HIV would likely end the AIDS pandemic. Such antibodies target membrane-embedded envelope glycoprotein spikes (mEnv) that HIV uses to enter cells. Due to HIV Env's low expression and instability, soluble stabilized Env trimers have been used as vaccine candidates, but these have an altered base that disrupts targets of HIV broadly neutralizing antibodies that bind near the membrane and are not available for all HIV isolates. Here, we describe membrane Env liposomes (MELs) that display a multivalent array of stable mEnvs on liposome particles. MELs showed the expected antibody recognition properties, including targeting parts of mEnv missing on soluble Envs. Immunization with MELs elicited antibodies that neutralized diverse HIV isolates. The MEL platform facilitates vaccine development with potentially any HIV Env at high valency, and a similar approach may be useful for eliciting antibodies to membrane-embedded targets of therapeutic interest.
Collapse
|
27
|
Cai F, Chen WH, Wu W, Jones JA, Choe M, Gohain N, Shen X, LaBranche C, Eaton A, Sutherland L, Lee EM, Hernandez GE, Wu NR, Scearce R, Seaman MS, Moody MA, Santra S, Wiehe K, Tomaras GD, Wagh K, Korber B, Bonsignori M, Montefiori DC, Haynes BF, de Val N, Joyce MG, Saunders KO. Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated non-human primates. PLoS Pathog 2021; 17:e1009624. [PMID: 34086838 PMCID: PMC8216552 DOI: 10.1371/journal.ppat.1009624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/21/2021] [Accepted: 05/07/2021] [Indexed: 11/19/2022] Open
Abstract
A primary goal of HIV-1 vaccine development is the consistent elicitation of protective, neutralizing antibodies. While highly similar neutralizing antibodies (nAbs) have been isolated from multiple HIV-infected individuals, it is unclear whether vaccination can consistently elicit highly similar nAbs in genetically diverse primates. Here, we show in three outbred rhesus macaques that immunization with Env elicits a genotypically and phenotypically conserved nAb response. From these vaccinated macaques, we isolated four antibody lineages that had commonalities in immunoglobulin variable, diversity, and joining gene segment usage. Atomic-level structures of the antigen binding fragments of the two most similar antibodies showed nearly identical paratopes. The Env binding modes of each of the four vaccine-induced nAbs were distinct from previously known monoclonal HIV-1 neutralizing antibodies, but were nearly identical to each other. The similarities of these antibodies show that the immune system in outbred primates can respond to HIV-1 Env vaccination with a similar structural and genotypic solution for recognizing a particular neutralizing epitope. These results support rational vaccine design for HIV-1 that aims to reproducibly elicit, in genetically diverse primates, nAbs with specific paratope structures capable of binding conserved epitopes.
Collapse
Affiliation(s)
- Fangping Cai
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Weimin Wu
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Julia A. Jones
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Neelakshi Gohain
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Amanda Eaton
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Esther M. Lee
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nelson R. Wu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard Scearce
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - M. Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
28
|
Gonelli CA, King HAD, Mackenzie C, Sonza S, Center RJ, Purcell DFJ. Immunogenicity of HIV-1-Based Virus-Like Particles with Increased Incorporation and Stability of Membrane-Bound Env. Vaccines (Basel) 2021; 9:239. [PMID: 33801906 PMCID: PMC8002006 DOI: 10.3390/vaccines9030239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/04/2023] Open
Abstract
An optimal prophylactic vaccine to prevent human immunodeficiency virus (HIV-1) transmission should elicit protective antibody responses against the HIV-1 envelope glycoprotein (Env). Replication-incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present virion-associated Env with a native-like structure during vaccination that closely resembles that encountered on infectious virus. Here, we optimized the incorporation of Env into previously designed mature-form VLPs (mVLPs) and assessed their immunogenicity in mice. The incorporation of Env into mVLPs was increased by replacing the Env transmembrane and cytoplasmic tail domains with those of influenza haemagglutinin (HA-TMCT). Furthermore, Env was stabilized on the VLP surface by introducing an interchain disulfide and proline substitution (SOSIP) mutations typically employed to stabilize soluble Env trimers. The resulting mVLPs efficiently presented neutralizing antibody epitopes while minimizing exposure of non-neutralizing antibody sites. Vaccination of mice with mVLPs elicited a broader range of Env-specific antibody isotypes than Env presented on immature VLPs or extracellular vesicles. The mVLPs bearing HA-TMCT-modified Env consistently induced anti-Env antibody responses that mediated modest neutralization activity. These mVLPs are potentially useful immunogens for eliciting neutralizing antibody responses that target native Env epitopes on infectious HIV-1 virions.
Collapse
Affiliation(s)
- Christopher A. Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| | - Hannah A. D. King
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
- Viral Entry and Vaccines Laboratory, Disease Elimination, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| | - Secondo Sonza
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| | - Rob J. Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
- Viral Entry and Vaccines Laboratory, Disease Elimination, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| |
Collapse
|
29
|
Lu M. Single-Molecule FRET Imaging of Virus Spike-Host Interactions. Viruses 2021; 13:v13020332. [PMID: 33669922 PMCID: PMC7924862 DOI: 10.3390/v13020332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
As a major surface glycoprotein of enveloped viruses, the virus spike protein is a primary target for vaccines and anti-viral treatments. Current vaccines aiming at controlling the COVID-19 pandemic are mostly directed against the SARS-CoV-2 spike protein. To promote virus entry and facilitate immune evasion, spikes must be dynamic. Interactions with host receptors and coreceptors trigger a cascade of conformational changes/structural rearrangements in spikes, which bring virus and host membranes in proximity for membrane fusion required for virus entry. Spike-mediated viral membrane fusion is a dynamic, multi-step process, and understanding the structure–function-dynamics paradigm of virus spikes is essential to elucidate viral membrane fusion, with the ultimate goal of interventions. However, our understanding of this process primarily relies on individual structural snapshots of endpoints. How these endpoints are connected in a time-resolved manner, and the order and frequency of conformational events underlying virus entry, remain largely elusive. Single-molecule Förster resonance energy transfer (smFRET) has provided a powerful platform to connect structure–function in motion, revealing dynamic aspects of spikes for several viruses: SARS-CoV-2, HIV-1, influenza, and Ebola. This review focuses on how smFRET imaging has advanced our understanding of virus spikes’ dynamic nature, receptor-binding events, and mechanism of antibody neutralization, thereby informing therapeutic interventions.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
30
|
Charles TP, Burton SL, Arunachalam PS, Cottrell CA, Sewall LM, Bollimpelli VS, Gangadhara S, Dey AK, Ward AB, Shaw GM, Hunter E, Amara RR, Pulendran B, van Gils MJ, Derdeyn CA. The C3/465 glycan hole cluster in BG505 HIV-1 envelope is the major neutralizing target involved in preventing mucosal SHIV infection. PLoS Pathog 2021; 17:e1009257. [PMID: 33556148 PMCID: PMC7895394 DOI: 10.1371/journal.ppat.1009257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/19/2021] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
Stabilized HIV-1 envelope (Env) trimers elicit tier 2 autologous neutralizing antibody (nAb) responses in immunized animals. We previously demonstrated that BG505 SOSIP.664.T332N gp140 (BG505 SOSIP) immunization of rhesus macaques (RM) provided robust protection against autologous intra-vaginal simian-human immunodeficiency virus (SHIV) challenge that was predicted by high serum nAb titers. Here, we show that nAb in these protected RM targeted a glycan hole proximal to residue 465 in gp120 in all cases. nAb also targeted another glycan hole at residues 241/289 and an epitope in V1 at varying frequencies. Non-neutralizing antibodies directed at N611-shielded epitopes in gp41 were also present but were more prevalent in RM with low nAb titers. Longitudinal analysis demonstrated that nAb broadened in some RM during sequential immunization but remained focused in others, the latter being associated with increases in nAb titer. Thirty-eight monoclonal antibodies (mAbs) isolated from a protected RM with an exceptionally high serum neutralization titer bound to the trimer in ELISA, and four of the mAbs potently neutralized the BG505 Env pseudovirus (PV) and SHIV. The four neutralizing mAbs were clonally related and targeted the 465 glycan hole to varying degrees, mimicking the serum. The data demonstrate that the C3/465 glycan hole cluster was the dominant neutralization target in high titer protected RM, despite other co-circulating neutralizing and non-neutralizing specificities. The isolation of a neutralizing mAb family argues that clonotype expansion occurred during BG505 SOSIP immunization, leading to high titer, protective nAb and setting a desirable benchmark for HIV vaccines.
Collapse
Affiliation(s)
- Tysheena P. Charles
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Samantha L. Burton
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Prabhu S. Arunachalam
- Departments of Pathology, and Microbiology and Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, United States of America
| | - Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Venkata S. Bollimpelli
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Sailaja Gangadhara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Antu K. Dey
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - George M. Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rama R. Amara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Bali Pulendran
- Departments of Pathology, and Microbiology and Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (MJVG); (CAD)
| | - Cynthia A. Derdeyn
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (MJVG); (CAD)
| |
Collapse
|
31
|
Margolin E, Allen JD, Verbeek M, van Diepen M, Ximba P, Chapman R, Meyers A, Williamson AL, Crispin M, Rybicki E. Site-Specific Glycosylation of Recombinant Viral Glycoproteins Produced in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2021; 12:709344. [PMID: 34367227 PMCID: PMC8341435 DOI: 10.3389/fpls.2021.709344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/24/2021] [Indexed: 05/03/2023]
Abstract
There is an urgent need to establish large scale biopharmaceutical manufacturing capacity in Africa where the infrastructure for biologics production is severely limited. Molecular farming, whereby pharmaceuticals are produced in plants, offers a cheaper alternative to mainstream expression platforms, and is amenable to rapid large-scale production. However, there are several differences along the plant protein secretory pathway compared to mammalian systems, which constrain the production of complex pharmaceuticals. Viral envelope glycoproteins are important targets for immunization, yet in some cases they accumulate poorly in plants and may not be properly processed. Whilst the co-expression of human chaperones and furin proteases has shown promise, it is presently unclear how plant-specific differences in glycosylation impact the production of these proteins. In many cases it may be necessary to reproduce features of their native glycosylation to produce immunologically relevant vaccines, given that glycosylation is central to the folding and immunogenicity of these antigens. Building on previous work, we transiently expressed model glycoproteins from HIV and Marburg virus in Nicotiana benthamiana and mammalian cells. The proteins were purified and their site-specific glycosylation was determined by mass-spectrometry. Both glycoproteins yielded increased amounts of protein aggregates when produced in plants compared to the equivalent mammalian cell-derived proteins. The glycosylation profiles of the plant-produced glycoproteins were distinct from the mammalian cell produced proteins: they displayed lower levels of glycan occupancy, reduced complex glycans and large amounts of paucimannosidic structures. The elucidation of the site-specific glycosylation of viral glycoproteins produced in N. benthamiana is an important step toward producing heterologous viral glycoproteins in plants with authentic human-like glycosylation.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Emmanuel Margolin,
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Matthew Verbeek
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Michiel van Diepen
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- Max Crispin,
| | - Edward Rybicki
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
32
|
Moyo T, Guleid FH, Schomaker M, Williamson C, Dorfman JR. HIV-1 Subtype C Tier 3 Viruses Have Increased Infectivity Compared to Tier 2 Viruses. AIDS Res Hum Retroviruses 2020; 36:1010-1019. [PMID: 32935560 DOI: 10.1089/aid.2020.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A primary concern of an antibody-based HIV-1 therapy is the virus' ability to rapidly escape antibody responses. Therefore, we investigated the relationships between antibody neutralization sensitivity, viral phenotype, and infectivity in 13 subtype C viruses using a HeLa transfectant-based assay. We observed that the seven tier 3 viruses exhibited higher infectivity than the tier 2 viruses, suggesting that higher neutralization resistance did not have a substantial entry cost. There was no relationship between neutralization resistance and susceptibility to entry inhibitors Maraviroc, PSC RANTES, or the fusion inhibitor T20, indicating that neutralization resistance may not alter these inhibitor target sites. By analyzing glycosylation patterns in 82 subtype C viruses, we found that the presence of an N-linked glycan motif at position N413 and its absence at N332 were the most important predictors of neutralization resistance. In a set of 200 subtype C viruses, tier 3 strains were more resistant than tier 2 or 1B viruses to several broadly neutralizing monoclonal antibodies targeting three different epitopes. This suggests that it is unlikely that resistance to antibodies targeting a single epitope drives overall resistance. In the context of an antibody-based intervention, highly resistant viruses with increased infectivity, circulating in the population, could hinder HIV-1 control since entry of tier 3 viruses is not always selected against. Therefore, for any long-term antibody-based intervention to be globally relevant, it must elicit responses that limit the occurrence of resistance.
Collapse
Affiliation(s)
- Thandeka Moyo
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Fatuma H. Guleid
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Michael Schomaker
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| | - Jeffrey R. Dorfman
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
33
|
Tortorici MA, Beltramello M, Lempp FA, Pinto D, Dang HV, Rosen LE, McCallum M, Bowen J, Minola A, Jaconi S, Zatta F, De Marco A, Guarino B, Bianchi S, Lauron EJ, Tucker H, Zhou J, Peter A, Havenar-Daughton C, Wojcechowskyj JA, Case JB, Chen RE, Kaiser H, Montiel-Ruiz M, Meury M, Czudnochowski N, Spreafico R, Dillen J, Ng C, Sprugasci N, Culap K, Benigni F, Abdelnabi R, Foo SYC, Schmid MA, Cameroni E, Riva A, Gabrieli A, Galli M, Pizzuto MS, Neyts J, Diamond MS, Virgin HW, Snell G, Corti D, Fink K, Veesler D. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science 2020; 370:950-957. [PMID: 32972994 PMCID: PMC7857395 DOI: 10.1126/science.abe3354] [Citation(s) in RCA: 433] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022]
Abstract
Efficient therapeutic options are needed to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has caused more than 922,000 fatalities as of 13 September 2020. We report the isolation and characterization of two ultrapotent SARS-CoV-2 human neutralizing antibodies (S2E12 and S2M11) that protect hamsters against SARS-CoV-2 challenge. Cryo-electron microscopy structures show that S2E12 and S2M11 competitively block angiotensin-converting enzyme 2 (ACE2) attachment and that S2M11 also locks the spike in a closed conformation by recognition of a quaternary epitope spanning two adjacent receptor-binding domains. Antibody cocktails that include S2M11, S2E12, or the previously identified S309 antibody broadly neutralize a panel of circulating SARS-CoV-2 isolates and activate effector functions. Our results pave the way to implement antibody cocktails for prophylaxis or therapy, circumventing or limiting the emergence of viral escape mutants.
Collapse
MESH Headings
- Amino Acid Motifs/immunology
- Angiotensin-Converting Enzyme 2
- Animals
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Betacoronavirus/immunology
- CHO Cells
- COVID-19
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Cricetinae
- Cricetulus
- Cryoelectron Microscopy
- HEK293 Cells
- Humans
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/immunology
- Microscopy, Electron
- Pandemics/prevention & control
- Peptidyl-Dipeptidase A/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/therapy
- Protein Domains/immunology
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/antagonists & inhibitors
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
Collapse
Affiliation(s)
- M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Martina Beltramello
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Dora Pinto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Ha V Dang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrea Minola
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabrizia Zatta
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Anna De Marco
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Barbara Guarino
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Siro Bianchi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Alessia Peter
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - James Brett Case
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rita E Chen
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | - Josh Dillen
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Cindy Ng
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Nicole Sprugasci
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Katja Culap
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | - Michael A Schmid
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Agostino Riva
- III Division of Infectious Diseases, Luigi Sacco University Hospital, University of Milan, Italy
| | - Arianna Gabrieli
- III Division of Infectious Diseases, Luigi Sacco University Hospital, University of Milan, Italy
| | - Massimo Galli
- III Division of Infectious Diseases, Luigi Sacco University Hospital, University of Milan, Italy
| | - Matteo S Pizzuto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA 94158, USA
- Washington University School of Medicine, St. Louis, MO, USA
- UTSouthwestern Medical Center, Dallas, TX, USA
| | | | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Katja Fink
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
34
|
Ng'uni T, Chasara C, Ndhlovu ZM. Major Scientific Hurdles in HIV Vaccine Development: Historical Perspective and Future Directions. Front Immunol 2020; 11:590780. [PMID: 33193428 PMCID: PMC7655734 DOI: 10.3389/fimmu.2020.590780] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Following the discovery of HIV as a causative agent of AIDS, the expectation was to rapidly develop a vaccine; but thirty years later, we still do not have a licensed vaccine. Progress has been hindered by the extensive genetic variability of HIV and our limited understanding of immune responses required to protect against HIV acquisition. Nonetheless, valuable knowledge accrued from numerous basic and translational science research studies and vaccine trials has provided insight into the structural biology of the virus, immunogen design and novel vaccine delivery systems that will likely constitute an effective vaccine. Furthermore, stakeholders now appreciate the daunting scientific challenges of developing an effective HIV vaccine, hence the increased advocacy for collaborative efforts among academic research scientists, governments, pharmaceutical industry, philanthropy, and regulatory entities. In this review, we highlight the history of HIV vaccine development efforts, highlighting major challenges and future directions.
Collapse
Affiliation(s)
- Tiza Ng'uni
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Caroline Chasara
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Zaza M Ndhlovu
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
35
|
Das S, Kumar R, Ahmed S, Parray HA, Samal S. Efficiently cleaved HIV-1 envelopes: can they be important for vaccine immunogen development? Ther Adv Vaccines Immunother 2020; 8:2515135520957763. [PMID: 33103053 PMCID: PMC7549152 DOI: 10.1177/2515135520957763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
The enormous diversity of HIV-1 is a significant impediment in selecting envelopes (Envs) that can be suitable for designing vaccine immunogens. While tremendous progress has been made in developing soluble, trimeric, native-like Env proteins, those that have elicited neutralizing antibodies (Abs) in animal models are relatively few. A strategy of selecting naturally occurring Envs suitable for immunogen design by studying the correlation between efficient cleavage on the cell surface and their selective binding to broadly neutralizing Abs (bNAbs) and not to non-neutralizing Abs (non-NAbs), properties essential in immunogens, may be useful. Here we discuss some of the challenges of developing an efficacious HIV-1 vaccine and the work done in generating soluble immunogens. We also discuss the study of naturally occurring, membrane-bound, efficiently cleaved (naturally more sensitive to furin) Envs and how they may positively add to the repertoire of HIV-1 Envs that can be used for vaccine immunogen design. However, even with such Envs, the challenges of developing well-folded, native-like trimers as soluble proteins or using other immunogen strategies such as virus-like particles with desirable antigenic properties remain, and are formidable. In spite of the progress that has been made in the HIV-1 vaccine field, an immunogen that elicits neutralizing Abs with significant breadth and potency in vaccines has still not been developed. Efficiently cleaved Envs may increase the number of available Envs suitable for immunogen design and should be studied further.
Collapse
Affiliation(s)
- Supratik Das
- THSTI-IAVI HIV Vaccine Design Program,
Translational Health Science and Technology Institute, NCR Biotech Science
Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad,
Haryana 121001, India
| | - Rajesh Kumar
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shubbir Ahmed
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Hilal Ahmad Parray
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
36
|
Chen CW, Saubi N, Joseph-Munné J. Design Concepts of Virus-Like Particle-Based HIV-1 Vaccines. Front Immunol 2020; 11:573157. [PMID: 33117367 PMCID: PMC7561392 DOI: 10.3389/fimmu.2020.573157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023] Open
Abstract
Prophylactic vaccines remain the best approach for controlling the human immunodeficiency virus-1 (HIV-1) transmission. Despite the limited efficacy of the RV144 trial in Thailand, there is still no vaccine candidate that has been proven successful. Consequently, great efforts have been made to improve HIV-1 antigens design and discover delivery platforms for optimal immune elicitation. Owing to immunogenic, structural, and functional diversity, virus-like particles (VLPs) could act as efficient vaccine carriers to display HIV-1 immunogens and provide a variety of HIV-1 vaccine development strategies as well as prime-boost regimes. Here, we describe VLP-based HIV-1 vaccine candidates that have been enrolled in HIV-1 clinical trials and summarize current advances and challenges according to preclinical results obtained from five distinct strategies. This mini-review provides multiple perspectives to help in developing new generations of VLP-based HIV-1 vaccine candidates with better capacity to elicit specific anti-HIV immune responses.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Narcís Saubi
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,EAVI2020 European AIDS Vaccine Initiative H2020 Research Programme, London, United Kingdom
| | - Joan Joseph-Munné
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,EAVI2020 European AIDS Vaccine Initiative H2020 Research Programme, London, United Kingdom.,Microbiology Department, Hospital Universitari de la Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
37
|
Galili U. Amplifying immunogenicity of prospective Covid-19 vaccines by glycoengineering the coronavirus glycan-shield to present α-gal epitopes. Vaccine 2020; 38:6487-6499. [PMID: 32907757 PMCID: PMC7437500 DOI: 10.1016/j.vaccine.2020.08.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
The many carbohydrate chains on Covid-19 coronavirus SARS-CoV-2 and its S-protein form a glycan-shield that masks antigenic peptides and decreases uptake of inactivated virus or S-protein vaccines by APC. Studies on inactivated influenza virus and recombinant gp120 of HIV vaccines indicate that glycoengineering of glycan-shields to present α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) enables harnessing of the natural anti-Gal antibody for amplifying vaccine efficacy, as evaluated in mice producing anti-Gal. The α-gal epitope is the ligand for the natural anti-Gal antibody which constitutes ~1% of immunoglobulins in humans. Upon administration of vaccines presenting α-gal epitopes, anti-Gal binds to these epitopes at the vaccination site and forms immune complexes with the vaccines. These immune complexes are targeted for extensive uptake by APC as a result of binding of the Fc portion of immunocomplexed anti-Gal to Fc receptors on APC. This anti-Gal mediated effective uptake of vaccines by APC results in 10-200-fold higher anti-viral immune response and in 8-fold higher survival rate following challenge with a lethal dose of live influenza virus, than same vaccines lacking α-gal epitopes. It is suggested that glycoengineering of carbohydrate chains on the glycan-shield of inactivated SARS-CoV-2 or on S-protein vaccines, for presenting α-gal epitopes, will have similar amplifying effects on vaccine efficacy. α-Gal epitope synthesis on coronavirus vaccines can be achieved with recombinant α1,3galactosyltransferase, replication of the virus in cells with high α1,3galactosyltransferase activity as a result of stable transfection of cells with several copies of the α1,3galactosyltransferase gene (GGTA1), or by transduction of host cells with replication defective adenovirus containing this gene. In addition, recombinant S-protein presenting multiple α-gal epitopes on the glycan-shield may be produced in glycoengineered yeast or bacteria expression systems containing the corresponding glycosyltransferases. Prospective Covid-19 vaccines presenting α-gal epitopes may provide better protection than vaccines lacking this epitope because of increased uptake by APC.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Genetic Engineering
- HIV Core Protein p24/chemistry
- HIV Core Protein p24/genetics
- HIV Core Protein p24/immunology
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- Humans
- Immunogenicity, Vaccine
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/virology
- Mice
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Trisaccharides/chemistry
- Trisaccharides/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush Medical School, Chicago, IL, USA.
| |
Collapse
|
38
|
Ahmed S, Shrivastava T, Kumar R, Kumar M, Banerjee M, Kumar N, Bansal M, Das S, Samal S. Design and characterization of a germ-line targeting soluble, native-like, trimeric HIV-1 Env lacking key glycans from the V1V2-loop. Biochim Biophys Acta Gen Subj 2020; 1865:129733. [PMID: 32949621 DOI: 10.1016/j.bbagen.2020.129733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The HIV-1 envelope glycoprotein (Env) is the primary target for broadly neutralizing antibodies (bNAbs) which can block infection. The current design strategy of soluble forms of Env in native-like trimeric conformation induces neutralizing antibodies with minimal breadth and potency. Extensive shielding by N-glycans on the surface of the HIV-1 Env acts as an immune evasion mechanism by restricting B cell recognition of conserved neutralizing determinants. An alternate approach is to design Env protein with glycan deletion to expose the protein surface. METHODS A stable native-like trimeric Env with glycan holes at potentially immunogenic locations is expected to elicit better induction of germ-line B-cells due to exposure of the immunogenic regions. However, the extent and consequences of glycan removal from the trimer apex that form an important epitope is not explored. In this work, we have designed a construct with glycans deleted from the trimer apex of an Indian clade C origin Env that has previously been characterized for immunogenicity, to understand the impact of deglycosylation on the structural and functional integrity as well as on the antibody binding properties. RESULTS The V1V2 glycan-deleted protein maintains native-like trimeric conformation with improved accessibility of the V1V2-directed germ-line antibodies. Furthermore, we showed that the protein binds specifically to quaternary conformation-dependent bnAbs but minimally to non-neutralizing antibodies. CONCLUSIONS This study provide an important design aspect of HIV-1 Env-based immunogens with glycan holes in the apex region that could be useful in eliciting apex directed antibodies in immunization studies.
Collapse
Affiliation(s)
- Shubbir Ahmed
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| | - Tripti Shrivastava
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajesh Kumar
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Mohit Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Naresh Kumar
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manish Bansal
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Supratik Das
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
39
|
Host Synthesized Carbohydrate Antigens on Viral Glycoproteins as "Achilles' Heel" of Viruses Contributing to Anti-Viral Immune Protection. Int J Mol Sci 2020; 21:ijms21186702. [PMID: 32933166 PMCID: PMC7555091 DOI: 10.3390/ijms21186702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023] Open
Abstract
The glycans on enveloped viruses are synthesized by host-cell machinery. Some of these glycans on zoonotic viruses of mammalian reservoirs are recognized by human natural antibodies that may protect against such viruses. These antibodies are produced mostly against carbohydrate antigens on gastrointestinal bacteria and fortuitously, they bind to carbohydrate antigens synthesized in other mammals, neutralize and destroy viruses presenting these antigens. Two such antibodies are: anti-Gal binding to α-gal epitopes synthesized in non-primate mammals, lemurs, and New World monkeys, and anti-N-glycolyl neuraminic acid (anti-Neu5Gc) binding to N-glycolyl-neuraminic acid (Neu5Gc) synthesized in apes, Old World monkeys, and many non-primate mammals. Anti-Gal appeared in Old World primates following accidental inactivation of the α1,3galactosyltransferase gene 20–30 million years ago. Anti-Neu5Gc appeared in hominins following the inactivation of the cytidine-monophosphate-N-acetyl-neuraminic acid hydroxylase gene, which led to the loss of Neu5Gc <6 million-years-ago. It is suggested that an epidemic of a lethal virus eliminated ancestral Old World-primates synthesizing α-gal epitopes, whereas few mutated offspring lacking α-gal epitopes and producing anti-Gal survived because anti-Gal destroyed viruses presenting α-gal epitopes, following replication in parental populations. Similarly, anti-Neu5Gc protected few mutated hominins lacking Neu5Gc in lethal virus epidemics that eliminated parental hominins synthesizing Neu5Gc. Since α-gal epitopes are presented on many zoonotic viruses it is suggested that vaccines elevating anti-Gal titers may be of protective significance in areas endemic for such zoonotic viruses. This protection would be during the non-primate mammal to human virus transmission, but not in subsequent human to human transmission where the virus presents human glycans. In addition, production of viral vaccines presenting multiple α-gal epitopes increases their immunogenicity because of effective anti-Gal-mediated targeting of vaccines to antigen presenting cells for extensive uptake of the vaccine by these cells.
Collapse
|
40
|
Seabright GE, Cottrell CA, van Gils MJ, D'addabbo A, Harvey DJ, Behrens AJ, Allen JD, Watanabe Y, Scaringi N, Polveroni TM, Maker A, Vasiljevic S, de Val N, Sanders RW, Ward AB, Crispin M. Networks of HIV-1 Envelope Glycans Maintain Antibody Epitopes in the Face of Glycan Additions and Deletions. Structure 2020; 28:897-909.e6. [PMID: 32433992 PMCID: PMC7416112 DOI: 10.1016/j.str.2020.04.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/27/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
Numerous broadly neutralizing antibodies (bnAbs) have been identified that target the glycans of the HIV-1 envelope spike. Neutralization breadth is notable given that glycan processing can be substantially influenced by the presence or absence of neighboring glycans. Here, using a stabilized recombinant envelope trimer, we investigate the degree to which mutations in the glycan network surrounding an epitope impact the fine glycan processing of antibody targets. Using cryo-electron microscopy and site-specific glycan analysis, we reveal the importance of glycans in the formation of the 2G12 bnAb epitope and show that the epitope is only subtly impacted by variations in the glycan network. In contrast, we show that the PG9 and PG16 glycan-based epitopes at the trimer apex are dependent on the presence of the highly conserved surrounding glycans. Glycan networks underpin the conservation of bnAb epitopes and are an important parameter in immunogen design.
Collapse
Affiliation(s)
- Gemma E Seabright
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Alessio D'addabbo
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - David J Harvey
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7FZ, UK
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Nicole Scaringi
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Thomas M Polveroni
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Allison Maker
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Natalia de Val
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA; Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW We will discuss recent advances in the development of nanoparticle vaccines presenting HIV-1 envelope trimer vaccines and the immunological mechanisms by which they act. RECENT FINDINGS The multivalent presentation of Env trimers on nanoparticles is a promising strategy to increase Env immunogenicity. Recent studies have shed light on how Env nanoparticles increase lymph node trafficking and germinal center formation by using the lectin-mediated complement pathway and enhancing the interaction with naïve B cells. Meanwhile, research on different nanoparticle platforms has resulted in improved designs, such as liposomes with improved stability, and the emergence of novel platforms such as protein nanoparticles that self-assemble in vitro. Immmunogenicity studies with these nanoparticles delineate the advantages and expose the limitations of the different nanoparticle platforms. SUMMARY It is becoming increasingly clear that HIV-1 vaccine research might benefit greatly from using nanoparticles presenting Env trimers, particularly during the priming stage of immunization. Among the different nanoparticles that are being pursued, in vitro-assembling nanoparticles allow for greater control of Env quality making them a promising nanoparticle platform.
Collapse
|
42
|
Hariharan V, Kane RS. Glycosylation as a tool for rational vaccine design. Biotechnol Bioeng 2020; 117:2556-2570. [PMID: 32330286 DOI: 10.1002/bit.27361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022]
Abstract
The discovery of broadly neutralizing antibodies that can neutralize multiple strains or subtypes of a pathogen has renewed interest in the development of broadly protective vaccines. To that end, there has been an interest in designing immunofocusing strategies to direct the immune response to specific, conserved regions on antigenic proteins. Modulation of glycosylation is one such immunofocusing strategy; extensive glycosylation is often exploited by pathogens for immune evasion. Masking epitopes on protein immunogens with "self" glycans can also shield the underlying protein surface from humoral immune surveillance. We review recent advances in applying glycosylation as an immunofocusing tool. We also highlight recent interesting work in the HIV-1 field involving the identification and elicitation of broadly neutralizing antibodies that incorporate glycans into their binding epitopes.
Collapse
Affiliation(s)
- Vivek Hariharan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
43
|
Aldon Y, McKay PF, Allen J, Ozorowski G, Felfödiné Lévai R, Tolazzi M, Rogers P, He L, de Val N, Fábián K, Scarlatti G, Zhu J, Ward AB, Crispin M, Shattock RJ. Rational Design of DNA-Expressed Stabilized Native-Like HIV-1 Envelope Trimers. Cell Rep 2019; 24:3324-3338.e5. [PMID: 30232012 PMCID: PMC6167709 DOI: 10.1016/j.celrep.2018.08.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 05/16/2018] [Accepted: 08/17/2018] [Indexed: 11/17/2022] Open
Abstract
The HIV-1-envelope glycoprotein (Env) is the main target of antigen design for antibody-based prophylactic vaccines. The generation of broadly neutralizing antibodies (bNAb) likely requires the appropriate presentation of stabilized trimers preventing exposure of non-neutralizing antibody (nNAb) epitopes. We designed a series of membrane-bound Envs with increased trimer stability through the introduction of key stabilization mutations. We derived a stabilized HIV-1 trimer, ConSOSL.UFO.750, which displays a dramatic reduction in nNAb binding while maintaining high quaternary and MPER-specific bNAb binding. Its soluble counterpart, ConSOSL.UFO.664, displays similar antigenicity, and its native-like Env structure is confirmed by negative stain-EM and glycosylation profiling of the soluble ConSOSL.UFO.664 trimer. A rabbit immunization study demonstrated that the ConSOSL.UFO.664 can induce autologous tier 2 neutralization. We have successfully designed a stabilized native-like Env trimer amenable to nucleic acid or viral vector-based vaccination strategies. DNA-expressed closed pre-fusion native-like Env with preserved MPER exposure Env antigenicity varies across cell types and assays Muscle cells present properly folded and glycosylated membrane-bound Envs Fully glycosylated ConSOSL.UFO.664 induces autologous tier 2 neutralization
Collapse
Affiliation(s)
- Yoann Aldon
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - Paul F McKay
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - Joel Allen
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Réka Felfödiné Lévai
- Department of Immunology, National Food Chain Safety Office, Directorate of Veterinary Medicinal Products, Budapest, Hungary
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Paul Rogers
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - Linling He
- Department of Integrative Structural and Computational Biology, Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katalin Fábián
- Department of Immunology, National Food Chain Safety Office, Directorate of Veterinary Medicinal Products, Budapest, Hungary
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robin J Shattock
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
44
|
del Moral-Sánchez I, Sliepen K. Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Rev Vaccines 2019; 18:1127-1143. [PMID: 31791150 PMCID: PMC6961309 DOI: 10.1080/14760584.2019.1690458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Despite intensive research efforts, there is still no effective prophylactic vaccine available against HIV-1. Currently, substantial efforts are devoted to the development of vaccines aimed at inducing broadly neutralizing antibodies (bNAbs), which are capable of neutralizing most HIV-1 strains. All bNAbs target the HIV-1 envelope glycoprotein (Env), but Env immunizations usually only induce neutralizing antibodies (NAbs) against the sequence-matched virus and not against other strains.Areas covered: We describe the different strategies that have been explored to improve the breadth and potency of anti-HIV-1 NAb responses. The discussed strategies include the application of engineered Env immunogens, optimization of (bNAb) epitopes, different cocktail and sequential vaccination strategies, nanoparticles and nucleic acid-based vaccines.Expert opinion: A combination of the strategies described in this review and future approaches are probably needed to develop an effective HIV-1 vaccine that can induce broad, potent and long-lasting NAb responses.
Collapse
Affiliation(s)
- Iván del Moral-Sánchez
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,CONTACT Kwinten Sliepen Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines Neutralization Breadth. Cell Rep 2019; 25:893-908.e7. [PMID: 30355496 PMCID: PMC6426304 DOI: 10.1016/j.celrep.2018.09.087] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/03/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Densely arranged N-linked glycans shield the HIV-1 envelope (Env) trimer from antibody recognition. Strain-specific breaches in this shield (glycan holes) can be targets of vaccine-induced neutralizing antibodies that lack breadth. To understand the interplay between glycan holes and neutralization breadth in HIV-1 infection, we developed a sequence-and structure-based approach to identify glycan holes for individual Env sequences that are shielded in most M-group viruses. Applying this approach to 12 longitudinally followed individuals, we found that transmitted viruses with more intact glycan shields correlated with development of greater neutralization breadth. Within 2 years, glycan acquisition filled most glycan holes present at transmission, indicating escape from hole-targeting neutralizing antibodies. Glycan hole filling generally preceded the time to first detectable breadth, although time intervals varied across hosts. Thus, completely glycan-shielded viruses were associated with accelerated neutralization breadth development, suggesting that Env immunogens with intact glycan shields may be preferred components of AIDS vaccines. Wagh et al. show that transmitted viruses with more intact glycan shields are correlated with development of neutralization breadth in HIV-1-infected individuals. This is consistent with previous findings that glycan holes in Env immunogens are targeted by strain-specific neutralizing responses, and suggests that immunogens with intact glycan Shields may be advantageous.
Collapse
|
46
|
Jan M, Upadhyay C, Hioe CE. HIV-1 Envelope Glycan Composition as a Key Determinant of Efficient Virus Transmission via DC-SIGN and Resistance to Inhibitory Lectins. iScience 2019; 21:413-427. [PMID: 31704652 PMCID: PMC6889591 DOI: 10.1016/j.isci.2019.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 02/04/2023] Open
Abstract
The HIV-1 envelope (Env) surface is shrouded with an assortment of oligomannose-, hybrid-, and complex-type glycans that enable virus interaction with carbohydrate-recognizing lectins. This study examined the importance of glycan heterogeneity for HIV-1 transmission through the trans-infection pathway by the host mannose-binding lectin DC-SIGN. A diversity of glycan content was observed among HIV-1 strains and associated with varying degrees of trans-infection via DC-SIGN and sensitivity to trans-infection blockage by antiviral lectins. When Env glycans were modified to display only the oligomannose type, DC-SIGN-mediated virus capture was enhanced; however, virus trans-infection was diminished because of increased degradation, which was alleviated by incorporation with hybrid-type glycans. Amino acid changes in the Env signal peptide (SP) modulated the Env glycan content, leading to alterations in DC-SIGN-dependent trans-infection and virus sensitivity to antiviral lectins. Hence, SP variation and glycosylation that confer varied types of oligosaccharides to HIV-1 Env are critical determinants for virus fitness and phenotypic diversity.
Collapse
Affiliation(s)
- Muzafar Jan
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Research Service, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Catarina E. Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Research Service, James J. Peters VA Medical Center, Bronx, NY 10468, USA,Corresponding author
| |
Collapse
|
47
|
Gorman J, Mason RD, Nettey L, Cavett N, Chuang GY, Peng D, Tsybovsky Y, Verardi R, Nguyen R, Ambrozak D, Biris K, LaBranche CC, Ramesh A, Schramm CA, Zhou J, Bailer RT, Kepler TB, Montefiori DC, Shapiro L, Douek DC, Mascola JR, Roederer M, Kwong PD. Isolation and Structure of an Antibody that Fully Neutralizes Isolate SIVmac239 Reveals Functional Similarity of SIV and HIV Glycan Shields. Immunity 2019; 51:724-734.e4. [PMID: 31586542 DOI: 10.1016/j.immuni.2019.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/20/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
HIV- and SIV-envelope (Env) trimers are both extensively glycosylated, and antibodies identified to date have been unable to fully neutralize SIVmac239. Here, we report the isolation, structure, and glycan interactions of antibody ITS90.03, a monoclonal antibody that completely neutralized the highly neutralization-resistant isolate, SIVmac239. The co-crystal structure of a fully glycosylated SIVmac239-gp120 core in complex with rhesus CD4 and the antigen-binding fragment of ITS90.03 at 2.5-Å resolution revealed that ITS90 recognized an epitope comprised of 45% glycan. SIV-gp120 core, rhesus CD4, and their complex could each be aligned structurally to their human counterparts. The structure revealed that glycans masked most of the SIV Env protein surface, with ITS90 targeting a glycan hole, which is occupied in ∼83% of SIV strains by glycan N238. Overall, the SIV glycan shield appears to functionally resemble its HIV counterpart in coverage of spike, shielding from antibody, and modulation of receptor accessibility.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonard Nettey
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Cavett
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dongjun Peng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Nguyen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Ambrozak
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristin Biris
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Celia C LaBranche
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| | - Akshaya Ramesh
- Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Kepler
- Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Brouwer PJM, Antanasijevic A, Berndsen Z, Yasmeen A, Fiala B, Bijl TPL, Bontjer I, Bale JB, Sheffler W, Allen JD, Schorcht A, Burger JA, Camacho M, Ellis D, Cottrell CA, Behrens AJ, Catalano M, Del Moral-Sánchez I, Ketas TJ, LaBranche C, van Gils MJ, Sliepen K, Stewart LJ, Crispin M, Montefiori DC, Baker D, Moore JP, Klasse PJ, Ward AB, King NP, Sanders RW. Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nat Commun 2019; 10:4272. [PMID: 31537780 PMCID: PMC6753213 DOI: 10.1038/s41467-019-12080-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
The development of native-like HIV-1 envelope (Env) trimer antigens has enabled the induction of neutralizing antibody (NAb) responses against neutralization-resistant HIV-1 strains in animal models. However, NAb responses are relatively weak and narrow in specificity. Displaying antigens in a multivalent fashion on nanoparticles (NPs) is an established strategy to increase their immunogenicity. Here we present the design and characterization of two-component protein NPs displaying 20 stabilized SOSIP trimers from various HIV-1 strains. The two-component nature permits the incorporation of exclusively well-folded, native-like Env trimers into NPs that self-assemble in vitro with high efficiency. Immunization studies show that the NPs are particularly efficacious as priming immunogens, improve the quality of the Ab response over a conventional one-component nanoparticle system, and are most effective when SOSIP trimers with an apex-proximate neutralizing epitope are displayed. Their ability to enhance and shape the immunogenicity of SOSIP trimers make these NPs a promising immunogen platform.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Amsterdam UMC, Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Zachary Berndsen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, 10065, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, 98195, USA
| | - Tom P L Bijl
- Amsterdam UMC, Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
| | - Ilja Bontjer
- Amsterdam UMC, Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
| | - Jacob B Bale
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, 98195, USA.,Arzeda Corporation, Seattle, Washington, 98119, USA
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, 98195, USA
| | - Joel D Allen
- Biological Sciences and Institute of Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK
| | - Anna Schorcht
- Amsterdam UMC, Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
| | - Judith A Burger
- Amsterdam UMC, Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
| | - Miguel Camacho
- Amsterdam UMC, Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
| | - Daniel Ellis
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, 98195, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Anna-Janina Behrens
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, OX1 3QU, Oxford, UK.,New England Biolabs, Inc., Ipswich, Massachussetts, 01938, USA
| | - Marco Catalano
- Amsterdam UMC, Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
| | - Iván Del Moral-Sánchez
- Amsterdam UMC, Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, 10065, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Marit J van Gils
- Amsterdam UMC, Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
| | - Kwinten Sliepen
- Amsterdam UMC, Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
| | - Lance J Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, 98195, USA
| | - Max Crispin
- Biological Sciences and Institute of Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK.,Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, OX1 3QU, Oxford, UK
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington, 98105, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, 10065, USA
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, 10065, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195, USA. .,Institute for Protein Design, University of Washington, Seattle, Washington, 98195, USA.
| | - Rogier W Sanders
- Amsterdam UMC, Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands.
| |
Collapse
|
49
|
Sacks D, Bhiman JN, Wiehe K, Gorman J, Kwong PD, Morris L, Moore PL. Somatic hypermutation to counter a globally rare viral immunotype drove off-track antibodies in the CAP256-VRC26 HIV-1 V2-directed bNAb lineage. PLoS Pathog 2019; 15:e1008005. [PMID: 31479499 PMCID: PMC6743783 DOI: 10.1371/journal.ppat.1008005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/13/2019] [Accepted: 07/29/2019] [Indexed: 11/18/2022] Open
Abstract
Previously we have described the V2-directed CAP256-VRC26 lineage that includes broadly neutralizing antibodies (bNAbs) that neutralize globally diverse strains of HIV. We also identified highly mutated "off-track" lineage members that share high sequence identity to broad members but lack breadth. Here, we defined the mutations that limit the breadth of these antibodies and the probability of their emergence. Mutants and chimeras between two pairs of closely related antibodies were generated: CAP256.04 and CAP256.25 (30% and 63% breadth, respectively) and CAP256.20 and CAP256.27 (2% and 59% breadth). Antibodies were tested against 14 heterologous HIV-1 viruses and select mutants to assess breadth and epitope specificity. A single R100rA mutation in the third heavy chain complementarity-determining region (CDRH3) introduced breadth into CAP256.04, but all three CAP256.25 heavy chain CDRs were required for potency. In contrast, in the CAP256.20/27 chimeras, replacing only the CDRH3 of CAP256.20 with that of CAP256.27 completely recapitulated breadth and potency, likely through the introduction of three charge-reducing mutations. In this individual, the mutations that limited the breadth of the off-track antibodies were predicted to occur with a higher probability than those in the naturally paired bNAbs, suggesting a low barrier to the evolution of the off-track phenotype. Mapping studies to determine the viral immunotypes (or epitope variants) that selected off-track antibodies indicated that unlike broader lineage members, CAP256.20 preferentially neutralized viruses containing 169Q. This suggests that this globally rare immunotype, which was common in donor CAP256, drove the off-track phenotype. These data show that affinity maturation to counter globally rare viral immunotypes can drive antibodies within a broad lineage along multiple pathways towards strain-specificity. Defining developmental pathways towards and away from breadth may facilitate the selection of immunogens that elicit bNAbs and minimize off-track antibodies.
Collapse
Affiliation(s)
- David Sacks
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jinal N. Bhiman
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
50
|
Abstract
Single-molecule Förster resonance energy transfer (smFRET) imaging has emerged as a powerful tool to probe conformational dynamics of viral proteins, identify novel structural intermediates that are hiding in averaging population-based measurements, permit access to the energetics of transitions and as such to the precise molecular mechanisms of viral replication. One strength of smFRET is the capability of characterizing biological molecules in their fully hydrated/native state, which are not necessarily available to other structural methods. Elegant experimental design for physiologically relevant conditions, such as intact virions, has permitted the detection of previously unknown conformational states of viral glycoproteins, revealed asymmetric intermediates, and allowed access to the real-time imaging of conformational changes during viral fusion. As more laboratories are applying smFRET, our understanding of the molecular mechanisms and the dynamic nature of viral proteins throughout the virus life cycle are predicted to improve and assist the development of novel antiviral therapies and vaccine design.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States.
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|