1
|
Mattos MS, Vandendriessche S, Waisman A, Marques PE. The immunology of B-1 cells: from development to aging. Immun Ageing 2024; 21:54. [PMID: 39095816 PMCID: PMC11295433 DOI: 10.1186/s12979-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
B-1 cells have intricate biology, with distinct function, phenotype and developmental origin from conventional B cells. They generate a B cell receptor with conserved germline characteristics and biased V(D)J recombination, allowing this innate-like lymphocyte to spontaneously produce self-reactive natural antibodies (NAbs) and become activated by immune stimuli in a T cell-independent manner. NAbs were suggested as "rheostats" for the chronic diseases in advanced age. In fact, age-dependent loss of function of NAbs has been associated with clinically-relevant diseases in the elderly, such as atherosclerosis and neurodegenerative disorders. Here, we analyzed comprehensively the ontogeny, phenotypic characteristics, functional properties and emerging roles of B-1 cells and NAbs in health and disease. Additionally, after navigating through the complexities of B-1 cell biology from development to aging, therapeutic opportunities in the field are discussed.
Collapse
Affiliation(s)
- Matheus Silvério Mattos
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Centre of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium.
| |
Collapse
|
2
|
Finn CM, McKinstry KK. Ex Pluribus Unum: The CD4 T Cell Response against Influenza A Virus. Cells 2024; 13:639. [PMID: 38607077 PMCID: PMC11012043 DOI: 10.3390/cells13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Current Influenza A virus (IAV) vaccines, which primarily aim to generate neutralizing antibodies against the major surface proteins of specific IAV strains predicted to circulate during the annual 'flu' season, are suboptimal and are characterized by relatively low annual vaccine efficacy. One approach to improve protection is for vaccines to also target the priming of virus-specific T cells that can protect against IAV even in the absence of preexisting neutralizing antibodies. CD4 T cells represent a particularly attractive target as they help to promote responses by other innate and adaptive lymphocyte populations and can also directly mediate potent effector functions. Studies in murine models of IAV infection have been instrumental in moving this goal forward. Here, we will review these findings, focusing on distinct subsets of CD4 T cell effectors that have been shown to impact outcomes. This body of work suggests that a major challenge for next-generation vaccines will be to prime a CD4 T cell population with the same spectrum of functional diversity generated by IAV infection. This goal is encapsulated well by the motto 'ex pluribus unum': that an optimal CD4 T cell response comprises many individual specialized subsets responding together.
Collapse
Affiliation(s)
| | - K. Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
3
|
Kwon DI, Park S, Jeong YL, Kim YM, Min J, Lee C, Choi JA, Choi YH, Kong HJ, Choi Y, Baek S, Lee KJ, Kang YW, Jeong C, You G, Oh Y, Im SK, Song M, Kim JK, Chang J, Choi D, Lee SW. Fc-fused IL-7 provides broad antiviral effects against respiratory virus infections through IL-17A-producing pulmonary innate-like T cells. Cell Rep Med 2024; 5:101362. [PMID: 38232693 PMCID: PMC10829794 DOI: 10.1016/j.xcrm.2023.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/15/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Repeated pandemics caused by the influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV) have resulted in serious problems in global public health, emphasizing the need for broad-spectrum antiviral therapeutics against respiratory virus infections. Here, we show the protective effects of long-acting recombinant human interleukin-7 fused with hybrid Fc (rhIL-7-hyFc) against major respiratory viruses, including influenza virus, SARS-CoV-2, and respiratory syncytial virus. Administration of rhIL-7-hyFc in a therapeutic or prophylactic regimen induces substantial antiviral effects. During an influenza A virus (IAV) infection, rhIL-7-hyFc treatment increases pulmonary T cells composed of blood-derived interferon γ (IFNγ)+ conventional T cells and locally expanded IL-17A+ innate-like T cells. Single-cell RNA transcriptomics reveals that rhIL-7-hyFc upregulates antiviral genes in pulmonary T cells and induces clonal expansion of type 17 innate-like T cells. rhIL-7-hyFc-mediated disease prevention is dependent on IL-17A in both IAV- and SARS-CoV-2-infected mice. Collectively, we suggest that rhIL-7-hyFc can be used as a broadly active therapeutic for future respiratory virus pandemic.
Collapse
Affiliation(s)
- Dong-Il Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Subin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Yujin L Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Young-Min Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Jeongyong Min
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Changhyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Jung-Ah Choi
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Hyun-Jung Kong
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngwon Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seungtae Baek
- Research Institute of NeoImmuneTech Co., Ltd., Pohang 37666, Republic of Korea
| | - Kun-Joo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Yeon-Woo Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Chaerim Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Gihoon You
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Youngsik Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Sun-Kyoung Im
- Research Institute of NeoImmuneTech Co., Ltd., Pohang 37666, Republic of Korea
| | - Manki Song
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Donghoon Choi
- Research Institute of NeoImmuneTech Co., Ltd., Pohang 37666, Republic of Korea.
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Republic of Korea.
| |
Collapse
|
4
|
Stumpff JP, Kim SY, McFadden MI, Nishida A, Shirazi R, Steuerman Y, Gat-Viks I, Forero A, Nair MG, Morrison J. Pleural macrophages translocate to the lung during infection to promote improved influenza outcomes. Proc Natl Acad Sci U S A 2023; 120:e2300474120. [PMID: 38100417 PMCID: PMC10743374 DOI: 10.1073/pnas.2300474120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Seasonal influenza results in 3 to 5 million cases of severe disease and 250,000 to 500,000 deaths annually. Macrophages have been implicated in both the resolution and progression of the disease, but the drivers of these outcomes are poorly understood. We probed mouse lung transcriptomic datasets using the Digital Cell Quantifier algorithm to predict immune cell subsets that correlated with mild or severe influenza A virus (IAV) infection outcomes. We identified a unique lung macrophage population that transcriptionally resembled small serosal cavity macrophages and whose presence correlated with mild disease. Until now, the study of serosal macrophage translocation in the context of viral infections has been neglected. Here, we show that pleural macrophages (PMs) migrate from the pleural cavity to the lung after infection with IAV. We found that the depletion of PMs increased morbidity and pulmonary inflammation. There were increased proinflammatory cytokines in the pleural cavity and an influx of neutrophils within the lung. Our results show that PMs are recruited to the lung during IAV infection and contribute to recovery from influenza. This study expands our knowledge of PM plasticity and identifies a source of lung macrophages independent of monocyte recruitment and local proliferation.
Collapse
Affiliation(s)
- James P. Stumpff
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Sang Yong Kim
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA92521
| | - Matthew I. McFadden
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH43210
| | - Andrew Nishida
- Department of Microbiology, University of Washington, Seattle, WA98109
| | - Roksana Shirazi
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Yael Steuerman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Irit Gat-Viks
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH43210
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA92521
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| |
Collapse
|
5
|
Ma K, Du W, Wang S, Xiao F, Li J, Tian J, Xing Y, Kong X, Rui K, Qin R, Zhu X, Wang J, Luo C, Wu H, Zhang Y, Wen C, He L, Liu D, Zou H, Lu Q, Wu L, Lu L. B1-cell-produced anti-phosphatidylserine antibodies contribute to lupus nephritis development via TLR-mediated Syk activation. Cell Mol Immunol 2023; 20:881-894. [PMID: 37291237 PMCID: PMC10250184 DOI: 10.1038/s41423-023-01049-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Autoantibodies produced by B cells play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). However, both the cellular source of antiphospholipid antibodies and their contributions to the development of lupus nephritis (LN) remain largely unclear. Here, we report a pathogenic role of anti-phosphatidylserine (PS) autoantibodies in the development of LN. Elevated serum PS-specific IgG levels were measured in model mice and SLE patients, especially in those with LN. PS-specific IgG accumulation was found in the kidney biopsies of LN patients. Both transfer of SLE PS-specific IgG and PS immunization triggered lupus-like glomerular immune complex deposition in recipient mice. ELISPOT analysis identified B1a cells as the main cell type that secretes PS-specific IgG in both lupus model mice and patients. Adoptive transfer of PS-specific B1a cells accelerated the PS-specific autoimmune response and renal damage in recipient lupus model mice, whereas depletion of B1a cells attenuated lupus progression. In culture, PS-specific B1a cells were significantly expanded upon treatment with chromatin components, while blockade of TLR signal cascades by DNase I digestion and inhibitory ODN 2088 or R406 treatment profoundly abrogated chromatin-induced PS-specific IgG secretion by lupus B1a cells. Thus, our study has demonstrated that the anti-PS autoantibodies produced by B1 cells contribute to lupus nephritis development. Our findings that blockade of the TLR/Syk signaling cascade inhibits PS-specific B1-cell expansion provide new insights into lupus pathogenesis and may facilitate the development of novel therapeutic targets for the treatment of LN in SLE.
Collapse
Affiliation(s)
- Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China
- Department of Rheumatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Wenhan Du
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China
- Chongqing International Institute for Immunology, Chongqing, 400038, China
| | - Shiyun Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China
| | - Jingyi Li
- Department of Rheumatology and Immunology, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Jie Tian
- Department of Laboratory Medicine, Affiliated Hospital and Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Yida Xing
- Department of Rheumatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaodan Kong
- Department of Rheumatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital and Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Rencai Qin
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaoxia Zhu
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Cainan Luo
- Department of Rheumatology and Immunology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Zhang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lan He
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Dongzhou Liu
- Department of Rheumatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Lijun Wu
- Department of Rheumatology and Immunology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China.
- Chongqing International Institute for Immunology, Chongqing, 400038, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
6
|
Smith FL, Savage HP, Luo Z, Tipton CM, Lee FEH, Apostol AC, Beaudin AE, Lopez DA, Jensen I, Keller S, Baumgarth N. B-1 plasma cells require non-cognate CD4 T cell help to generate a unique repertoire of natural IgM. J Exp Med 2023; 220:e20220195. [PMID: 36811605 PMCID: PMC9960156 DOI: 10.1084/jem.20220195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/01/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Evolutionarily conserved, "natural" (n)IgM is broadly reactive to both self and foreign antigens. Its selective deficiency leads to increases in autoimmune diseases and infections. In mice, nIgM is secreted independent of microbial exposure to bone marrow (BM) and spleen B-1 cell-derived plasma cells (B-1PC), generating the majority of nIgM, or by B-1 cells that remain non-terminally differentiated (B-1sec). Thus, it has been assumed that the nIgM repertoire is broadly reflective of the repertoire of body cavity B-1 cells. Studies here reveal, however, that B-1PC generate a distinct, oligoclonal nIgM repertoire, characterized by short CDR3 variable immunoglobulin heavy chain regions, 7-8 amino acids in length, some public, many arising from convergent rearrangements, while specificities previously associated with nIgM were generated by a population of IgM-secreting B-1 (B-1sec). BM, but not spleen B-1PC, or B-1sec also required the presence of TCRαβ CD4 T cells for their development from fetal precursors. Together, the studies identify important previously unknown characteristics of the nIgM pool.
Collapse
Affiliation(s)
- Fauna L. Smith
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
- Integrated Pathobiology Graduate Group, University of California, Davis, Davis, CA, USA
| | - Hannah P. Savage
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
- Graduate Group in Immunology, University of California, Davis, Davis, CA, USA
| | - Zheng Luo
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
| | - Christopher M. Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - F. Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - April C. Apostol
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Anna E. Beaudin
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Diego A. Lopez
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Ingvill Jensen
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
| | - Stefan Keller
- Department Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
- Integrated Pathobiology Graduate Group, University of California, Davis, Davis, CA, USA
- Graduate Group in Immunology, University of California, Davis, Davis, CA, USA
- Department Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
7
|
Lee C, Lee H, Park JC, Im SH. Microbial Components and Effector Molecules in T Helper Cell Differentiation and Function. Immune Netw 2023; 23:e7. [PMID: 36911805 PMCID: PMC9995987 DOI: 10.4110/in.2023.23.e7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 03/07/2023] Open
Abstract
The mammalian intestines harbor trillions of commensal microorganisms composed of thousands of species that are collectively called gut microbiota. Among the microbiota, bacteria are the predominant microorganism, with viruses, protozoa, and fungi (mycobiota) making up a relatively smaller population. The microbial communities play fundamental roles in the maturation and orchestration of the immune landscape in health and disease. Primarily, the gut microbiota modulates the immune system to maintain homeostasis and plays a crucial role in regulating the pathogenesis and pathophysiology of inflammatory, neuronal, and metabolic disorders. The microbiota modulates the host immune system through direct interactions with immune cells or indirect mechanisms such as producing short-chain acids and diverse metabolites. Numerous researchers have put extensive efforts into investigating the role of microbes in immune regulation, discovering novel immunomodulatory microbial species, identifying key effector molecules, and demonstrating how microbes and their key effector molecules mechanistically impact the host immune system. Consequently, recent studies suggest that several microbial species and their immunomodulatory molecules have therapeutic applicability in preclinical settings of multiple disorders. Nonetheless, it is still unclear why and how a handful of microorganisms and their key molecules affect the host immunity in diverse diseases. This review mainly discusses the role of microbes and their metabolites in T helper cell differentiation, immunomodulatory function, and their modes of action.
Collapse
Affiliation(s)
- Changhon Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Haena Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - John Chulhoon Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Convergence Research and Education, Yonsei University, Seoul 03722, Korea
- ImmunoBiome Inc., Pohang 37673, Korea
| |
Collapse
|
8
|
Zhang Z, Gao Y, Li L, Luo J, Gao R. Deficiency of C-reactive protein or human C-reactive protein transgenic treatment aggravates influenza A infection in mice. Front Immunol 2022; 13:1028458. [PMID: 36275680 PMCID: PMC9584053 DOI: 10.3389/fimmu.2022.1028458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
C-reactive protein (CRP) has been shown to be a potential candidate target in the immunotherapy of severe influenza A infection. However, it is unclear on the pathogenesis associated with CRP in influenza infections. Here, we used influenza A H1N1 CA04 to infect human CRP transgenic mice (KI), CRP knockout mice (KO), and wild-type mice (WT), respectively, and compared the viral pathogenicity and associated immune response in those mice. The results showed that CA04 infection resulted in 100%, 80%, and 60% death in KO, KI, and WT mice, respectively. Compared to WT mice, CA04 infection resulted in higher TCID50 in lungs on day 3 after infection but lowered HI antibody titers in sera of survivors on day 21 after infection in KI mice. ELISA assay showed that IFN-γ concentration was significantly increased in sera of WT, KI, or KO mice on day 7 after infection, and IL-17 was remarkably increased in sera of WT mice but decreased in sera of KI mice while no significant change in sera of KO mice on day 3 or 7 after infection. Quantitative RT-PCR showed that the relative expression levels of immune checkpoint CTLA-4, LAIR-1, GITR, BTLA, TIM-3, or PD-1 mRNA in the lung presented decreased levels on day 3 or 7 after infection in KI or KO mice. The correlation analysis showed that mRNA expression levels of the 6 molecules positively correlated with viral TICD50 in WT mice but negatively correlated with viral TCID50 in KI or KO mice. However, only LAIR-1 presented a significant correlation in each lung tissue of WT, KI, or KO mice with CA07 infection statistically. IHC results showed that LAIR-1 positive cells could be found in WT, KO, or KI mice lung tissues with CA04 infection, and the positive cells were mainly distributed in an inflammatory dense area. Our results suggested that deficiency of CRP or human CRP transgenic treatment aggravates influenza A virus infection in mice. CRP is a double sword in immune regulation of influenza infection in which IL-17 and immune checkpoint may be involved.
Collapse
Affiliation(s)
- Zhuohan Zhang
- National Health Commission of People's Republic of China (NHC) Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Health Commission of People's Republic of China (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongjun Gao
- National Health Commission of People's Republic of China (NHC) Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Health Commission of People's Republic of China (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Li
- National Health Commission of People's Republic of China (NHC) Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Health Commission of People's Republic of China (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junhao Luo
- National Health Commission of People's Republic of China (NHC) Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Health Commission of People's Republic of China (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Rongbao Gao
- National Health Commission of People's Republic of China (NHC) Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Health Commission of People's Republic of China (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Rongbao Gao,
| |
Collapse
|
9
|
Gastrointestinal Microbiota Dysbiosis Associated with SARS-CoV-2 Infection in Colorectal Cancer: The Implication of Probiotics. GASTROENTEROLOGY INSIGHTS 2022. [DOI: 10.3390/gastroent13010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The complexity of coronavirus disease 2019 (COVID-19)’s pathophysiology is such that microbial dysbiosis in the lung and gastrointestinal (GI) microbiota may be involved in its pathogenic process. GI microbiota dysbiosis has been associated with respiratory disorders, including COVID-19, as well as sporadic colorectal cancer (CRC) through imbalanced microbiota and compromised immune response. It is pertinent to understand the possible role of probiotics in stabilizing the microbial environment and maintaining the integrity of the respiratory and GI tracts in SARS-CoV-2 induced dysbiosis and colorectal carcinogenesis. The long-term implication of SARS-CoV-2 in GI dysbiosis via microbiota-gut-lung cross-talk could increase the risk of new CRC diagnosis or worsen the condition of previously diagnosed individuals. Recent knowledge shows that the immune-modulatory response to probiotics is shifting the beneficial use of probiotics towards the treatment of various diseases. In this review, we highlight the potential impact of probiotics on SARS-CoV-2 infection associated with CRC through microbiota imbalance in COVID-19 patients.
Collapse
|
10
|
Sahu U, Biswas D, Prajapati VK, Singh AK, Samant M, Khare P. Interleukin-17-A multifaceted cytokine in viral infections. J Cell Physiol 2021; 236:8000-8019. [PMID: 34133758 PMCID: PMC8426678 DOI: 10.1002/jcp.30471] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Viral infections are a major threat to the human population due to the lack of selective therapeutic measures. The morbidity and mortality reported worldwide are very alarming against viral pathogens. The proinflammatory environment is required for viral inhibition by initiating the host immune response. The host immune response fights these pathogens by secreting different cytokines. Interleukin-17 (IL-17) a proinflammatory cytokine mainly produced by T helper type 17 cells, plays a vital role in the regulation of host immune response against various pathogens, including viruses. However, dysregulated production of IL-17 induces chronic inflammation, autoimmune disorders, and may lead to cancer. Recent studies suggest that IL-17 is not only involved in the antiviral immune response but also promotes virus-mediated illnesses. In this review, we discuss the protective and pathogenic role of IL-17 against various viral infections. A detailed understanding of IL-17 during viral infections could contribute to improve therapeutic measures and enable the development of an efficient and safe IL-17 based immunotherapy.
Collapse
Affiliation(s)
- Utkarsha Sahu
- Department of MicrobiologyAll India Institute of Medical SciencesBhopalMadhya PradeshIndia
| | - Debasis Biswas
- Department of MicrobiologyAll India Institute of Medical SciencesBhopalMadhya PradeshIndia
| | | | - Anirudh K. Singh
- Department of MicrobiologyAll India Institute of Medical SciencesBhopalMadhya PradeshIndia
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of ZoologyKumaun UniversityAlmoraUttarakhandIndia
| | - Prashant Khare
- Department of MicrobiologyAll India Institute of Medical SciencesBhopalMadhya PradeshIndia
| |
Collapse
|
11
|
Pre-treatment with chicken IL-17A secreted by bioengineered LAB vector protects chicken embryo fibroblasts against Influenza Type A Virus (IAV) infection. Mol Immunol 2021; 140:106-119. [PMID: 34678620 DOI: 10.1016/j.molimm.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023]
Abstract
The recent advances in our understanding of the host factors in orchestrating qualitatively different immune responses against influenza Type A virus (IAV) have changed the perception of conventional approaches for controlling avian influenza virus (AIV) infection in chickens. Given that infection-induced pathogenicity and replication of influenza virus largely rely on regulating host immune responses, immunoregulatory cytokine profiles often determine the disease outcomes. However, in contrast to the function of other inflammatory cytokines, interleukin-17A (IL-17A) has been described as a 'double-edged sword', indicating that in addition to antiviral host responses, IL-17A has a distinct role in promoting viral infection. Therefore, in the present study, we investigated the chicken IL-17A mediated antiviral immune effects on IAVs infection in primary chicken embryo fibroblasts cells (CEFs). To this end, we first bioengineered a food-grade Lactic Acid Producing Bacteria (LAB), Lactococcus lactis (L. lactis), secreting bioactive recombinant chicken IL-17A (sChIL-17A). Next, the functionality of sChIL-17A was confirmed by transcriptional upregulation of several genes associated with antiviral host responses, including granulocyte-monocyte colony-stimulating factor (GM-CSF) (CSF3 in the chickens), interleukin-6 (IL-6), interferon-α (IFN-α), -β and -γ genes in primary CEFs cells. Consistent with our hypothesis that such a pro-inflammatory state may translate to immunoprotection against IAVs infection, we observed that sChIL-17A pre-treatment could significantly limit the viral replication and protect the primary CEFs cells against two heterotypic IAVs such as A/turkey/Wisconsin/1/1966(H9N2) and A/PR/8/1934(H1N1). Together, the data presented in this work suggest that exogenous application of sChIL-17A secreted by modified LAB vector may represent an alternative strategy for improving antiviral immunity against avian influenza virus infection in chickens.
Collapse
|
12
|
Labarrere CA, Kassab GS. Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2021; 12:652252. [PMID: 34630377 PMCID: PMC8494786 DOI: 10.3389/fimmu.2021.652252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.
Collapse
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
13
|
The metabolic hormone leptin promotes the function of T FH cells and supports vaccine responses. Nat Commun 2021; 12:3073. [PMID: 34031386 PMCID: PMC8144586 DOI: 10.1038/s41467-021-23220-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Follicular helper T (TFH) cells control antibody responses by supporting antibody affinity maturation and memory formation. Inadequate TFH function has been found in individuals with ineffective responses to vaccines, but the mechanism underlying TFH regulation in vaccination is not understood. Here, we report that lower serum levels of the metabolic hormone leptin associate with reduced vaccine responses to influenza or hepatitis B virus vaccines in healthy populations. Leptin promotes mouse and human TFH differentiation and IL-21 production via STAT3 and mTOR pathways. Leptin receptor deficiency impairs TFH generation and antibody responses in immunisation and infection. Similarly, leptin deficiency induced by fasting reduces influenza vaccination-mediated protection for the subsequent infection challenge, which is mostly rescued by leptin replacement. Our results identify leptin as a regulator of TFH cell differentiation and function and indicate low levels of leptin as a risk factor for vaccine failure. T follicular helper (TFH) cell numbers are increased after vaccination and fewer of these cells might result in reduced vaccine responses. Here the authors show in mice and humans that leptin promotes TFH differentiation and that low leptin levels can impair TFH response to vaccines and virus protection in mice.
Collapse
|
14
|
Paiva IA, Badolato-Corrêa J, Familiar-Macedo D, de-Oliveira-Pinto LM. Th17 Cells in Viral Infections-Friend or Foe? Cells 2021; 10:cells10051159. [PMID: 34064728 PMCID: PMC8151546 DOI: 10.3390/cells10051159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Th17 cells are recognized as indispensable in inducing protective immunity against bacteria and fungi, as they promote the integrity of mucosal epithelial barriers. It is believed that Th17 cells also play a central role in the induction of autoimmune diseases. Recent advances have evaluated Th17 effector functions during viral infections, including their critical role in the production and induction of pro-inflammatory cytokines and in the recruitment and activation of other immune cells. Thus, Th17 is involved in the induction both of pathogenicity and immunoprotective mechanisms seen in the host's immune response against viruses. However, certain Th17 cells can also modulate immune responses, since they can secrete immunosuppressive factors, such as IL-10; these cells are called non-pathogenic Th17 cells. Here, we present a brief review of Th17 cells and highlight their involvement in some virus infections. We cover these notions by highlighting the role of Th17 cells in regulating the protective and pathogenic immune response in the context of viral infections. In addition, we will be describing myocarditis and multiple sclerosis as examples of immune diseases triggered by viral infections, in which we will discuss further the roles of Th17 cells in the induction of tissue damage.
Collapse
|
15
|
Xiao F, Du W, Zhu X, Tang Y, Liu L, Huang E, Deng C, Luo C, Han M, Chen P, Ding L, Hong X, Wu L, Jiang Q, Zou H, Liu D, Lu L. IL-17 drives salivary gland dysfunction via inhibiting TRPC1-mediated calcium movement in Sjögren's syndrome. Clin Transl Immunology 2021; 10:e1277. [PMID: 33968407 PMCID: PMC8082715 DOI: 10.1002/cti2.1277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives This study aims to determine a role of interleukin‐17A (IL‐17) in salivary gland (SG) dysfunction and therapeutic effects of targeting IL‐17 in SG for treating autoimmune sialadenitis in primary Sjögren’s syndrome (pSS). Methods Salivary IL‐17 levels and IL‐17‐secreting cells in labial glands of pSS patients were examined. Kinetic changes of IL‐17‐producing cells in SG from mice with experimental Sjögren’s syndrome (ESS) were analysed. To determine a role of IL‐17 in salivary secretion, IL‐17‐deficient mice and constructed chimeric mice with IL‐17 receptor C (IL‐17RC) deficiency in non‐hematopoietic and hematopoietic cells were examined for saliva flow rates during ESS development. Both human and murine primary SG epithelial cells were treated with IL‐17 for measuring cholinergic activation‐induced calcium movement. Moreover, SG functions were assessed in ESS mice with salivary retrograde cannulation of IL‐17 neutralisation antibodies. Results Increased salivary IL‐17 levels were negatively correlated with saliva flow rates in pSS patients. Both IL‐17‐deficient mice and chimeric mice with non‐hematopoietic cell‐restricted IL‐17RC deficiency exhibited no obvious salivary reduction while chimeric mice with hematopoietic cell‐restricted IL‐17RC deficiency showed significantly decreased saliva secretion during ESS development. In SG epithelial cells, IL‐17 inhibited acetylcholine‐induced calcium movement and downregulated the expression of transient receptor potential canonical 1 via promoting Nfkbiz mRNA stabilisation. Moreover, local IL‐17 neutralisation in SG markedly attenuated hyposalivation and ameliorated tissue inflammation in ESS mice. Conclusion These findings identify a novel function of IL‐17 in driving salivary dysfunction during pSS development and may provide a new therapeutic strategy for targeting SG dysfunction in pSS patients.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Wenhan Du
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Xiaoxia Zhu
- Department of Rheumatology Huashan Hospital and Fudan University Shanghai China
| | - Yuan Tang
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Lixiong Liu
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Enyu Huang
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Chong Deng
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| | - Cainan Luo
- Department of Rheumatology and Immunology People's Hospital of Xinjiang Uygur Autonomous Region Urumqi China
| | - Man Han
- Division of Rheumatology Guang'anmen Hospital China Academy of Chinese Medical Sciences Beijing China
| | - Ping Chen
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Liping Ding
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Lijun Wu
- Department of Rheumatology and Immunology People's Hospital of Xinjiang Uygur Autonomous Region Urumqi China
| | - Quan Jiang
- Division of Rheumatology Guang'anmen Hospital China Academy of Chinese Medical Sciences Beijing China
| | - Hejian Zou
- Department of Rheumatology Huashan Hospital and Fudan University Shanghai China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Liwei Lu
- Department of Pathology Shenzhen Institute of Research and Innovation The University of Hong Kong Hong Kong.,Chongqing International Institute for Immunology Chongqing China
| |
Collapse
|
16
|
Wang X, Lin X, Zheng Z, Lu B, Wang J, Tan AHM, Zhao M, Loh JT, Ng SW, Chen Q, Xiao F, Huang E, Ko KH, Huang Z, Li J, Kok KH, Lu G, Liu X, Lam KP, Liu W, Zhang Y, Yuen KY, Mak TW, Lu L. Host-derived lipids orchestrate pulmonary γδ T cell response to provide early protection against influenza virus infection. Nat Commun 2021; 12:1914. [PMID: 33772013 PMCID: PMC7997921 DOI: 10.1038/s41467-021-22242-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/06/2021] [Indexed: 01/01/2023] Open
Abstract
Innate immunity is important for host defense by eliciting rapid anti-viral responses and bridging adaptive immunity. Here, we show that endogenous lipids released from virus-infected host cells activate lung γδ T cells to produce interleukin 17 A (IL-17A) for early protection against H1N1 influenza infection. During infection, the lung γδ T cell pool is constantly supplemented by thymic output, with recent emigrants infiltrating into the lung parenchyma and airway to acquire tissue-resident feature. Single-cell studies identify IL-17A-producing γδ T (Tγδ17) cells with a phenotype of TCRγδhiCD3hiAQP3hiCXCR6hi in both infected mice and patients with pneumonia. Mechanistically, host cell-released lipids during viral infection are presented by lung infiltrating CD1d+ B-1a cells to activate IL-17A production in γδ T cells via γδTCR-mediated IRF4-dependent transcription. Reduced IL-17A production in γδ T cells is detected in mice either lacking B-1a cells or with ablated CD1d in B cells. Our findings identify a local host-immune crosstalk and define important cellular and molecular mediators for early innate defense against lung viral infection.
Collapse
MESH Headings
- Animals
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Female
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Innate/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Influenza, Human/virology
- Interferon Regulatory Factors/immunology
- Interferon Regulatory Factors/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Lipids/immunology
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/virology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Mice
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.
| | - Xiang Lin
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Zihan Zheng
- Chongqing International Institute for Immunology, Chongqing, China
| | - Bingtai Lu
- Department of Respiratory Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jun Wang
- Department of Respiratory Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Andy Hee-Meng Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Meng Zhao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jia Tong Loh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sze Wai Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Qian Chen
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Enyu Huang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - King-Hung Ko
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Zhong Huang
- Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jingyi Li
- Chongqing International Institute for Immunology, Chongqing, China
| | - Kin-Hang Kok
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Gen Lu
- Department of Respiratory Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Liu
- National Protein Science Facility, Tsinghua University, Beijing, China
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuxia Zhang
- Department of Respiratory Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kwok-Yung Yuen
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Tak Wah Mak
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
17
|
Abstract
The IL-17 family is an evolutionarily old cytokine family consisting of six members (IL-17A through IL-17F). IL-17 family cytokines signal through heterodimeric receptors that include the shared IL-17RA subunit, which is widely expressed throughout the body on both hematopoietic and nonhematopoietic cells. The founding family member, IL-17A, is usually referred to as IL-17 and has received the most attention for proinflammatory roles in autoimmune diseases like psoriasis. However, IL-17 is associated with a wide array of diseases with perhaps surprisingly variable pathologies. This review focuses on recent advances in the roles of IL-17 during health and in disease pathogenesis. To decipher the functions of IL-17 in diverse disease processes it is useful to first consider the physiological functions that IL-17 contributes to health. We then discuss how these beneficial functions can be diverted toward pathogenic amplification of deleterious pathways driving chronic disease.
Collapse
Affiliation(s)
- Saikat Majumder
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA; ,
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA; ,
| |
Collapse
|
18
|
Chandrasekar SS, Phanse Y, Hildebrand RE, Hanafy M, Wu CW, Hansen CH, Osorio JE, Suresh M, Talaat AM. Localized and Systemic Immune Responses against SARS-CoV-2 Following Mucosal Immunization. Vaccines (Basel) 2021; 9:132. [PMID: 33562141 PMCID: PMC7914464 DOI: 10.3390/vaccines9020132] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The rapid transmission of SARS-CoV-2 in the USA and worldwide necessitates the development of multiple vaccines to combat the COVID-19 global pandemic. Previously, we showed that a particulate adjuvant system, quil-A-loaded chitosan (QAC) nanoparticles, can elicit robust immunity combined with plasmid vaccines when used against avian coronavirus. Here, we report on the immune responses elicited by mucosal homologous plasmid and a heterologous immunization strategy using a plasmid vaccine and a Modified Vaccinia Ankara (MVA) expressing SARS-CoV-2 spike (S) and nucleocapsid (N) antigens. Only the heterologous intranasal immunization strategy elicited neutralizing antibodies against SARS-CoV-2 in serum and bronchoalveolar lavage of mice, suggesting a protective vaccine. The same prime/boost strategy led to the induction of type 1 and type 17 T-cell responses and polyfunctional T-cells expressing multiple type 1 cytokines (e.g., IFN-γ, TNFα, IL-2) in the lungs and spleens of vaccinated mice. In contrast, the plasmid homologous vaccine strategy led to the induction of local mono and polyfunctional T-cells secreting IFN-γ. Outcomes of this study support the potential of QAC-nano vaccines to elicit significant mucosal immune responses against respiratory coronaviruses.
Collapse
Affiliation(s)
- Shaswath S. Chandrasekar
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.S.C.); (R.E.H.); (M.H.); (C.-W.W.); (C.H.H.); (J.E.O.); (M.S.)
| | | | - Rachel E. Hildebrand
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.S.C.); (R.E.H.); (M.H.); (C.-W.W.); (C.H.H.); (J.E.O.); (M.S.)
| | - Mostafa Hanafy
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.S.C.); (R.E.H.); (M.H.); (C.-W.W.); (C.H.H.); (J.E.O.); (M.S.)
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Chia-Wei Wu
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.S.C.); (R.E.H.); (M.H.); (C.-W.W.); (C.H.H.); (J.E.O.); (M.S.)
| | - Chungyi H. Hansen
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.S.C.); (R.E.H.); (M.H.); (C.-W.W.); (C.H.H.); (J.E.O.); (M.S.)
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.S.C.); (R.E.H.); (M.H.); (C.-W.W.); (C.H.H.); (J.E.O.); (M.S.)
- Colombia Wisconsin One Health Consortium, Universidad Nacional Medellín, Calle 75#79a 5, Colombia
| | - M. Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.S.C.); (R.E.H.); (M.H.); (C.-W.W.); (C.H.H.); (J.E.O.); (M.S.)
| | - Adel M. Talaat
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.S.C.); (R.E.H.); (M.H.); (C.-W.W.); (C.H.H.); (J.E.O.); (M.S.)
- Pan Genome Systems, Madison, WI 53719, USA;
| |
Collapse
|
19
|
Tang N, Lu CY, Sue SC, Chen TH, Jan JT, Huang MH, Huang CH, Chen CC, Chiang BL, Huang LM, Wu SC. Type IIb Heat Labile Enterotoxin B Subunit as a Mucosal Adjuvant to Enhance Protective Immunity against H5N1 Avian Influenza Viruses. Vaccines (Basel) 2020; 8:vaccines8040710. [PMID: 33266210 PMCID: PMC7768441 DOI: 10.3390/vaccines8040710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 11/16/2022] Open
Abstract
Human infections with highly pathogenic avian influenza H5N1 viruses persist as a major global health concern. Vaccination remains the primary protective strategy against H5N1 and other novel avian influenza virus infections. We investigated the use of E. coli type IIb heat labile enterotoxin B subunit (LTIIb-B5) as a mucosal adjuvant for intranasal immunizations with recombinant HA proteins against H5N1 avian influenza viruses. Use of LTIIb-B5 adjuvant elicited more potent IgG, IgA, and neutralizing antibody titers in both sera and bronchoalveolar lavage fluids, thus increasing protection against lethal virus challenges. LTIIb-B5 mucosal adjuvanticity was found to trigger stronger Th17 cellular response in spleen lymphocytes and cervical lymph nodes. Studies of anti-IL-17A monoclonal antibody depletion and IL-17A knockout mice also suggest the contribution from Th17 cellular response to anti-H5N1 protective immunity. Our results indicate a link between improved protection against H5N1 live virus challenges and increased Th17 response due to the use of LTIIb-B5 mucosal adjuvant with HA subunit proteins.
Collapse
Affiliation(s)
- Neos Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan; (N.T.); (T.-H.C.)
| | - Chun-Yi Lu
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei 100226, Taiwan; (C.-Y.L.); (B.-L.C.); (L.-M.H.)
| | - Shih-Che Sue
- Department of Life Science, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Ting-Hsuan Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan; (N.T.); (T.-H.C.)
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan;
| | - Chung-Chu Chen
- Department of Internal Medicine, MacKay Memorial Hospital, Hsinchu 30013, Taiwan;
- Teaching Center of Natural Science, Minghsin University of Science and Technology, Hsinchu 202301, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei 100226, Taiwan; (C.-Y.L.); (B.-L.C.); (L.-M.H.)
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei 100226, Taiwan; (C.-Y.L.); (B.-L.C.); (L.-M.H.)
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan; (N.T.); (T.-H.C.)
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence:
| |
Collapse
|
20
|
Identification of potential mRNA panels for severe acute respiratory syndrome coronavirus 2 (COVID-19) diagnosis and treatment using microarray dataset and bioinformatics methods. 3 Biotech 2020; 10:422. [PMID: 33251083 PMCID: PMC7679428 DOI: 10.1007/s13205-020-02406-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
The goal of the present investigation is to identify the differentially expressed genes (DEGs) between SARS-CoV-2 infected and normal control samples to investigate the molecular mechanisms of infection with SARS-CoV-2. The microarray data of the dataset E-MTAB-8871 were retrieved from the ArrayExpress database. Pathway and Gene Ontology (GO) enrichment study, protein–protein interaction (PPI) network, modules, target gene–miRNA regulatory network, and target gene–TF regulatory network have been performed. Subsequently, the key genes were validated using an analysis of the receiver operating characteristic (ROC) curve. In SARS-CoV-2 infection, a total of 324 DEGs (76 up- and 248 down-regulated genes) were identified and enriched in a number of associated SARS-CoV-2 infection pathways and GO terms. Hub and target genes such as TP53, HRAS, MAPK11, RELA, IKZF3, IFNAR2, SKI, TNFRSF13C, JAK1, TRAF6, KLRF2, CD1A were identified from PPI network, target gene–miRNA regulatory network, and target gene–TF regulatory network. Study of the ROC showed that ten genes (CCL5, IFNAR2, JAK2, MX1, STAT1, BID, CD55, CD80, HAL-B, and HLA-DMA) were substantially involved in SARS-CoV-2 patients. The present investigation identified key genes and pathways that deepen our understanding of the molecular mechanisms of SARS-CoV-2 infection, and could be used for SARS-CoV-2 infection as diagnostic and therapeutic biomarkers.
Collapse
|
21
|
Ma K, Du W, Xiao F, Han M, Huang E, Peng N, Tang Y, Deng C, Liu L, Chen Y, Li J, Yuan S, Huang Q, Hong X, Hu D, Cai X, Jiang Q, Liu D, Lu L. IL-17 sustains the plasma cell response via p38-mediated Bcl-xL RNA stability in lupus pathogenesis. Cell Mol Immunol 2020; 18:1739-1750. [PMID: 32917979 DOI: 10.1038/s41423-020-00540-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/15/2020] [Indexed: 02/08/2023] Open
Abstract
Recent studies have demonstrated a central role for plasma cells in the development of autoimmune diseases, such as systemic lupus erythematosus (SLE). Currently, both the phenotypic features and functional regulation of autoreactive plasma cells during SLE pathogenesis remain largely unclear. In this study, we first found that a major subset of IL-17 receptor-expressing plasma cells potently produced anti-dsDNA IgG upon IL-17A (IL-17) stimulation in SLE patients and lupus mice. Using a humanized lupus mouse model, we showed that the transfer of Th17 cell-depleted PBMCs from lupus patients resulted in a significantly reduced plasma cell response and attenuated renal damage in recipient mice compared to the transfer of total SLE PBMCs. Moreover, long-term BrdU incorporation in lupus mice detected highly enriched long-lived BrdU+ subsets among IL-17 receptor-expressing plasma cells. Lupus mice deficient in IL-17 or IL-17 receptor C (IL-17RC) exhibited a diminished plasma cell response and reduced autoantibody production with attenuated renal damage, while the adoptive transfer of Th17 cells triggered the plasma cell response and renal damage in IL-17-deficient lupus mice. In reconstituted chimeric mice, IL-17RC deficiency resulted in severely impaired plasma cell generation but showed no obvious effect on germinal center B cells. Further mechanistic studies revealed that IL-17 significantly promoted plasma cell survival via p38-mediated Bcl-xL transcript stabilization. Together, our findings identified a novel function of IL-17 in enhancing plasma cell survival for autoantibody production in lupus pathogenesis, which may provide new therapeutic strategies for the treatment of SLE.
Collapse
Affiliation(s)
- Kongyang Ma
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China.,Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Wenhan Du
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China
| | - Man Han
- Division of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Enyu Huang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China
| | - Na Peng
- Department of Rheumatology and Nephrology, the Second People's Hospital, China Three Gorges University, Yichang, China
| | - Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China
| | - Chong Deng
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China
| | - Lixiong Liu
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yulan Chen
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Jingjing Li
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Shiwen Yuan
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qin Huang
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, the Second People's Hospital, China Three Gorges University, Yichang, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Quan Jiang
- Division of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China.
| |
Collapse
|
22
|
IL-17A-producing γδ T cells promote liver pathology in acute murine schistosomiasis. Parasit Vectors 2020; 13:334. [PMID: 32611373 PMCID: PMC7329544 DOI: 10.1186/s13071-020-04200-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/20/2020] [Indexed: 02/08/2023] Open
Abstract
Background The main symptoms of schistosomiasis are granuloma and fibrosis, caused by Schistosoma eggs. Numerous types of cells and cytokines are involved in the progression of Schistosoma infection. As a class of innate immune cells, γδ T cells play critical roles in the early immune response. However, their role in modulating granuloma and fibrosis remains to be clarified. Methods Liver fibrosis in wild-type (WT) mice and T cell receptor (TCR) δ knockout (KO) mice infected with Schistosoma japonicum was examined via Masson’s trichrome staining of collagen deposition and quantitative reverse transcriptase-PCR (RT-PCR) of fibrosis-related genes. Granuloma was detected by hematoxylin-eosin (H&E) staining and quantified. Flow cytometry was used for immune cell profiling and for detecting cytokine secretion. The abundance of the related cytokines was measured using quantitative RT-PCR. Results The livers of S. japonicum-infected mice had significantly increased proportions of interleukin (IL)-17A producing γδ T cells and secreted IL-17A. Compared with the WT mice, TCR δ deficiency resulted in reduced pathological impairment and fibrosis in the liver and increased survival in infected mice. In addition, the profibrogenic effects of γδ T cells in infected mice were associated with enhanced CD11b+Gr-1+ cells, concurrent with increased expression of transforming growth factor (TGF)-β in the liver. Conclusions In this mouse model of Schistosoma infection, γδ T cells may promote liver fibrosis by recruiting CD11b+Gr-1+ cells. These findings shed new light on the pathogenesis of liver pathology in murine schistosomiasis.![]()
Collapse
|
23
|
Kumar D, Romero Y, Schuck KN, Smalley H, Subedi B, Fleming SD. Drivers and regulators of humoral innate immune responses to infection and cancer. Mol Immunol 2020; 121:99-110. [PMID: 32199212 PMCID: PMC7207242 DOI: 10.1016/j.molimm.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
The complement cascade consists of cell bound and serum proteins acting together to protect the host from pathogens, remove cancerous cells and effectively links innate and adaptive immune responses. Despite its usefulness in microbial neutralization and clearance of cancerous cells, excessive complement activation causes an immune imbalance and tissue damage in the host. Hence, a series of complement regulatory proteins present at a higher concentration in blood plasma and on cell surfaces tightly regulate the cascade. The complement cascade can be initiated by B-1 B cell production of natural antibodies. Natural antibodies arise spontaneously without any known exogenous antigenic or microbial stimulus and protect against invading pathogens, clear apoptotic cells, provide tissue homeostasis, and modulate adaptive immune functions. Natural IgM antibodies recognize microbial and cancer antigens and serve as an activator of complement mediated lysis. This review will discuss advances in complement activation and regulation in bacterial and viral infections, and cancer. We will also explore the crosstalk of natural antibodies with bacterial populations and cancer.
Collapse
MESH Headings
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Apoptosis/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Bacterial Infections/immunology
- Complement Activation
- Complement System Proteins/immunology
- Complement System Proteins/metabolism
- Humans
- Immunity, Humoral
- Immunity, Innate
- Immunoglobulin M/immunology
- Immunoglobulin M/metabolism
- Neoplasms/immunology
- Receptors, Complement/immunology
- Receptors, Complement/metabolism
- Tumor Escape
- Virus Diseases/immunology
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yeni Romero
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Kaitlynn N Schuck
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Haley Smalley
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Bibek Subedi
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
24
|
Spidale NA, Malhotra N, Frascoli M, Sylvia K, Miu B, Freeman C, Stadinski BD, Huseby E, Kang J. Neonatal-derived IL-17 producing dermal γδ T cells are required to prevent spontaneous atopic dermatitis. eLife 2020; 9:e51188. [PMID: 32065580 PMCID: PMC7025821 DOI: 10.7554/elife.51188] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/11/2020] [Indexed: 01/01/2023] Open
Abstract
Atopic Dermatitis (AD) is a T cell-mediated chronic skin disease and is associated with altered skin barrier integrity. Infants with mutations in genes involved in tissue barrier fitness are predisposed towards inflammatory diseases, but most do not develop or sustain the diseases, suggesting that there exist regulatory immune mechanisms to prevent aberrant inflammation. The absence of one single murine dermal cell type, the innate neonatal-derived IL-17 producing γδ T (Tγδ17) cells, from birth resulted in spontaneous, highly penetrant AD with many of the major hallmarks of human AD. In Tγδ17 cell-deficient mice, basal keratinocyte transcriptome was altered months in advance of AD induction. Tγδ17 cells respond to skin commensal bacteria and the fulminant disease in their absence was driven by skin commensal bacteria dysbiosis. AD in this model was characterized by highly expanded dermal αβ T clonotypes that produce the type three cytokines, IL-17 and IL-22. These results demonstrate that neonatal Tγδ17 cells are innate skin regulatory T cells that are critical for skin homeostasis, and that IL-17 has dual homeostatic and inflammatory function in the skin.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Autoantigens/genetics
- Cell Differentiation
- Dermatitis, Atopic/genetics
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/prevention & control
- Disease Models, Animal
- Gene Expression
- Interleukin-17/biosynthesis
- Interleukins/biosynthesis
- Keratinocytes/cytology
- Keratinocytes/metabolism
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Skin/metabolism
- Skin/microbiology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Nicholas A Spidale
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Nidhi Malhotra
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Michela Frascoli
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Katelyn Sylvia
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Bing Miu
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Coral Freeman
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Brian D Stadinski
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Eric Huseby
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Joonsoo Kang
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| |
Collapse
|
25
|
Li J, Zhang K, Fan W, Zhang S, Li Y, Gu J, Zhou J, Liu W. Transcriptome Profiling Reveals Differential Effect of Interleukin-17A Upon Influenza Virus Infection in Human Cells. Front Microbiol 2019; 10:2344. [PMID: 31681209 PMCID: PMC6798183 DOI: 10.3389/fmicb.2019.02344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023] Open
Abstract
Influenza A virus (IAV) has developed elegant strategies to utilize cellular proteins and pathways to promote replication and evade the host antiviral response. Identification of these sabotaged host factors could increase the number of potential antiviral drug targets. Here, IAV A/PR/8/34 (PR8)- and A/California/04/2009-infected A549 and 293T cells displayed differential virus replication. To determine the host cellular responses of A549 and 293T cells to IAV infection, RNA-seq was used to identify differentially expressed genes. Our data revealed that IAV-infected A549 cells activated stronger virus-sensing signals and highly expressed cytokines, which play significant roles in initiating the innate immune and inflammatory responses. In addition, IAV-infected 293T cells displayed weak immune signaling and cytokine production. Remarkably, IL-17A and associated genes were highly enriched in IAV-infected 293T cells. Furthermore, IL-17A can partially facilitate A549 cell infection by the PR8 strain and PR8-infected IL-17A knock-out mice consistently exhibited decreased weight loss and reduced lung immunopathology, as compared to controls. This work uncovered the differential responses of cells infected with two H1N1 IAV strains and the potential roles of IL-17A in modulating virus infection.
Collapse
Affiliation(s)
- Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Kun Zhang
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yun Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinyan Gu
- MOE Joint International Research Laboratory of Animal Immunology, Nanjing Agricultural University, Nanjing, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
T-bet optimizes CD4 T-cell responses against influenza through CXCR3-dependent lung trafficking but not functional programming. Mucosal Immunol 2019; 12:1220-1230. [PMID: 31278374 PMCID: PMC6717559 DOI: 10.1038/s41385-019-0183-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 02/04/2023]
Abstract
Although clearance of many intracellular pathogens requires T-bet-dependent CD4 T cell programming, the extent to which T-bet is needed to direct protective CD4 responses against influenza is not known. Here, we characterize wild-type and T-bet-deficient CD4 cells during murine influenza infection. Surprisingly, although T-bet expression has broad impacts on cytokine production by virus-specific CD4 cells, the protective efficacy of T-bet-deficient effector cells is only marginally reduced. This reduction is due to lower CXCR3 expression, leading to suboptimal accumulation of activated T-bet-deficient cells in the infected lung. However, T-bet-deficient cells outcompete wild-type cells to form lung-resident and circulating memory populations following viral clearance, and primed T-bet-deficient mice efficiently clear supralethal heterosubtypic influenza challenges even when depleted of CD8 T cells. These results are relevant to the identification of more incisive correlates of protective T cells and for vaccines that aim to induce durable cellular immunity against influenza.
Collapse
|
27
|
Tomic A, Tomic I, Rosenberg-Hasson Y, Dekker CL, Maecker HT, Davis MM. SIMON, an Automated Machine Learning System, Reveals Immune Signatures of Influenza Vaccine Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:749-759. [PMID: 31201239 PMCID: PMC6643048 DOI: 10.4049/jimmunol.1900033] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022]
Abstract
Machine learning holds considerable promise for understanding complex biological processes such as vaccine responses. Capturing interindividual variability is essential to increase the statistical power necessary for building more accurate predictive models. However, available approaches have difficulty coping with incomplete datasets which is often the case when combining studies. Additionally, there are hundreds of algorithms available and no simple way to find the optimal one. In this study, we developed Sequential Iterative Modeling "OverNight" (SIMON), an automated machine learning system that compares results from 128 different algorithms and is particularly suitable for datasets containing many missing values. We applied SIMON to data from five clinical studies of seasonal influenza vaccination. The results reveal previously unrecognized CD4+ and CD8+ T cell subsets strongly associated with a robust Ab response to influenza Ags. These results demonstrate that SIMON can greatly speed up the choice of analysis modalities. Hence, it is a highly useful approach for data-driven hypothesis generation from disparate clinical datasets. Our strategy could be used to gain biological insight from ever-expanding heterogeneous datasets that are publicly available.
Collapse
Affiliation(s)
- Adriana Tomic
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94304;
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Ivan Tomic
- Independent researcher, Palo Alto, CA 94303
| | | | - Cornelia L Dekker
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304
| | - Holden T Maecker
- Human Immune Monitoring Center, Stanford University, Stanford, CA 94304
| | - Mark M Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94304
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304; and
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94304
| |
Collapse
|
28
|
Ma WT, Yao XT, Peng Q, Chen DK. The protective and pathogenic roles of IL-17 in viral infections: friend or foe? Open Biol 2019; 9:190109. [PMID: 31337278 PMCID: PMC6685926 DOI: 10.1098/rsob.190109] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Viral infections cause substantial human morbidity and mortality, and are a significant health burden worldwide. Following a viral infection, the host may initiate complex antiviral immune responses to antagonize viral invasion and replication. However, proinflammatory antiviral immune responses pose a great threat to the host if not properly held in check. Interleukin (IL)-17 is a pleiotropic cytokine participating in a variety of physiological and pathophysiological conditions, including tissue integrity maintenance, cancer progression, autoimmune disease development and, more intriguingly, infectious diseases. Abundant evidence suggests that while IL-17 plays a crucial role in enhancing effective antiviral immune responses, it may also promote and exacerbate virus-induced illnesses. Accumulated experimental and clinical evidence has broadened our understanding of the seemingly paradoxical role of IL-17 in viral infections and suggests that IL-17-targeted immunotherapy may be a promising therapeutic option. Herein, we summarize current knowledge regarding the protective and pathogenic roles of IL-17 in viral infections, with emphasis on underlying mechanisms. The various and critical roles of IL-17 in viral infections necessitate the development of therapeutic strategies that are uniquely tailored to both the infectious agent and the infection environment.
Collapse
Affiliation(s)
- Wen-Tao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | - Xiao-Ting Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | - Qun Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | - De-Kun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| |
Collapse
|
29
|
Wang X, Ye C, Lin X, Ma K, Xiao F, Dong L, Lu L. New insights into the significance of the BCR repertoire in B-1 cell development and function. Cell Mol Immunol 2019; 16:772-773. [PMID: 31197257 DOI: 10.1038/s41423-019-0249-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023] Open
Affiliation(s)
- Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Cong Ye
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Lin
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Kongyang Ma
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
30
|
Seelige R, Saddawi-Konefka R, Adams NM, Picarda G, Sun JC, Benedict CA, Bui JD. Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection. Sci Rep 2018; 8:13670. [PMID: 30209334 PMCID: PMC6135835 DOI: 10.1038/s41598-018-32011-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
Abstract
Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses.
Collapse
Affiliation(s)
- Ruth Seelige
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | | | - Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Gaëlle Picarda
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, CA, 92093, USA.
| |
Collapse
|
31
|
Matsuzaki G, Umemura M. Interleukin-17 family cytokines in protective immunity against infections: role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17s. Microbiol Immunol 2018; 62:1-13. [PMID: 29205464 DOI: 10.1111/1348-0421.12560] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 11/27/2022]
Abstract
Interleukin-17 family cytokines, consisting of six members, participate in immune response in infections and autoimmune and inflammatory diseases. The prototype cytokine of the family, IL-17A, was originally identified from CD4+ T cells which are now termed Th17 cells. Later, IL-17A-producing cells were expanded to include various hematopoietic cells, namely CD8+ T cells (Tc17), invariant NKT cells, γδ T cells, non-T non-B lymphocytes (termed type 3 innate lymphoid cells) and neutrophils. Some IL-17 family cytokines other than IL-17A are also expressed by CD4+ T cells: IL-17E by Th2 cells and IL-17F by Th17 cells. IL-17A and IL-17F induce expression of pro-inflammatory cytokines to induce inflammation and anti-microbial peptides to kill pathogens, whereas IL-17E induces allergic inflammation. However, the functions of other IL-17 family cytokines have been unclear. Recent studies have shown that IL-17B and IL-17C are expressed by epithelial rather than hematopoietic cells. Interestingly, expression of IL-17E and IL-17F by epithelial cells has also been reported and epithelial cell-derived IL-17 family cytokines shown to play important roles in immune responses to infections at epithelial sites. In this review, we summarize current information on hematopoietic cell-derived IL-17A and non-hematopoietic cell-derived IL-17B, IL-17C, IL-17D, IL-17E and IL-17F in infections and propose functional differences between these two categories of IL-17 family cytokines.
Collapse
Affiliation(s)
- Goro Matsuzaki
- Molecular Microbiology Group, Tropical Biosphere Research Center and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Masayuki Umemura
- Molecular Microbiology Group, Tropical Biosphere Research Center and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
32
|
Yam-Puc JC, Zhang L, Zhang Y, Toellner KM. Role of B-cell receptors for B-cell development and antigen-induced differentiation. F1000Res 2018; 7:429. [PMID: 30090624 PMCID: PMC5893946 DOI: 10.12688/f1000research.13567.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
B-cell development is characterized by a number of tightly regulated selection processes. Signals through the B-cell receptor (BCR) guide and are required for B-cell maturation, survival, and fate decision. Here, we review the role of the BCR during B-cell development, leading to the emergence of B1, marginal zone, and peripheral follicular B cells. Furthermore, we discuss BCR-derived signals on activated B cells that lead to germinal center and plasma cell differentiation.
Collapse
Affiliation(s)
- Juan Carlos Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lingling Zhang
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
33
|
Choi SC, Xu Z, Li W, Yang H, Roopenian DC, Morse HC, Morel L. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4 + T Cell Polarization. THE JOURNAL OF IMMUNOLOGY 2018; 200:3087-3099. [PMID: 29563177 DOI: 10.4049/jimmunol.1701179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/28/2018] [Indexed: 11/19/2022]
Abstract
Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4+ T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4+ T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4+ T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4+ T cells were introduced into Rag1-/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4+ T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4+ T cells in a nonredundant manner with myeloid/stromal cells.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Zhiwei Xu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Hong Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | | | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610;
| |
Collapse
|
34
|
Choi SC, Morel L. B cell contribution of the CD4 + T cell inflammatory phenotypes in systemic lupus erythematosus. Autoimmunity 2017; 50:37-41. [PMID: 28166683 DOI: 10.1080/08916934.2017.1280028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease in which the effector molecules responsible for tissue damage are antibodies directed against a large number of self-antigens, among which nucleic acids complexed with proteins play a prominent role. These pathogenic autoantibodies are produced by plasma cells differentiated from activated autoreactive B cells, a process that requires complex interactions between multiple components of the immune systems. A key step in the activation of autoreactive B cells is provided by CD4+ T cells through cytokines and cell-to-cell contact. Lupus CD4+ T cells are autoreactive and they present an activated inflammatory phenotype that has been shown to contribute to disease. In addition to their role in antibody production, B cells have other effector functions, the most important ones being antigen presentation to and co-stimulation of CD4+ T cells, as well as the secretion of cytokines. Here, we review what is known, largely based on mouse models, how these B cell effector functions contribute to the CD4+ T cell inflammatory phenotypes in lupus. When possible, we compare CD4+ T cell activation by B cells and by dendritic cells, and speculate how these interactions may contribute to the disease process.
Collapse
Affiliation(s)
- Seung-Chul Choi
- a Department of Pathology, Immunology, and Laboratory Medicine , University of Florida , Gainesville , FL , USA
| | - Laurence Morel
- a Department of Pathology, Immunology, and Laboratory Medicine , University of Florida , Gainesville , FL , USA
| |
Collapse
|
35
|
Xiao F, Lin X, Tian J, Wang X, Chen Q, Rui K, Ma J, Wang S, Wang Q, Wang X, Liu D, Sun L, Lu L. Proteasome inhibition suppresses Th17 cell generation and ameliorates autoimmune development in experimental Sjögren's syndrome. Cell Mol Immunol 2017; 14:cmi20178. [PMID: 28690324 PMCID: PMC5675963 DOI: 10.1038/cmi.2017.8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022] Open
Abstract
Immunoproteasome activation in immune cells is involved in the modulation of immune responses. Increasing evidence indicates that proteasome inhibitors show beneficial effects in treating autoimmune diseases, but it remains unclear whether proteasome inhibition is an effective approach for suppressing autoimmune development in Sjögren's syndrome (SS). Our previous work has demonstrated a critical role for Th17 cells in the development of experimental SS (ESS) in mice. In this study, we detected high levels of low-molecular-weight protein 7 (LMP7), a key subunit of the immunoproteasome, in Th17 cells from ESS mice. Moreover, treatment with bortezomib (BTZ), a proteasome inhibitor, markedly suppressed Th17 differentiation in both murine and human naive T cells in culture. Furthermore, ESS mice treated with BTZ displayed significantly higher saliva flow rates and a reduction in tissue destruction in the salivary glands compared with vehicle-treated ESS mice. Notably, BTZ-treated ESS mice showed markedly decreased Th17 cells, germinal center B cells and plasma cells in the peripheral lymphoid organs. In addition, adoptively transferred wild type naive CD4+ T cells rapidly differentiated into Th17 cells and induced salivary dysfunction in IL-17-deficient mice immunized for ESS induction. However, BTZ treatment profoundly suppressed the donor T-cell-derived Th17 response and ameliorated the reduction in salivary secretion in IL-17-deficient recipient mice. Taken together, our findings demonstrate that proteasome inhibition can effectively ameliorate ESS by suppressing the Th17 response, which may contribute to the development of a novel therapeutic strategy for the treatment of SS.Cellular &Molecular Immunology advance online publication, 10 July 2017; doi:10.1038/cmi.2017.8.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Xiang Lin
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Jie Tian
- Department of Immunology, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013 China
| | - Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Qian Chen
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Ke Rui
- Department of Immunology, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013 China
| | - Jie Ma
- Department of Immunology, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013 China
| | - Shengjun Wang
- Department of Immunology, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013 China
| | - Qingwen Wang
- Department of Rheumatology and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xiaoqi Wang
- Department of Rheumatology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Dongzhou Liu
- Department of Rheumatology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Thomas K, Vassilopoulos D. Immunization in patients with inflammatory rheumatic diseases. Best Pract Res Clin Rheumatol 2016; 30:946-963. [PMID: 27964798 DOI: 10.1016/j.berh.2016.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 12/25/2022]
Abstract
Immunization represents the most efficient and simplest intervention to prevent certain viral and bacterial infections in the general population as well as in the vulnerable population of patients with inflammatory rheumatic diseases treated with immunosuppressives. Here, we present an updated review of literature data regarding the safety and efficacy of immunizations against different pathogens in rheumatic patients treated with conventional immunosuppressives or the newer biologic agents while at the same time we provide practical guidance for the appropriate vaccine administration in this patient population.
Collapse
Affiliation(s)
- Konstantinos Thomas
- Joint Rheumatology Program, Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens School of Medicine, Hippokration General Hospital, 114 Vass. Sophias Ave., 115 27, Athens, Greece
| | - Dimitrios Vassilopoulos
- Joint Rheumatology Program, Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens School of Medicine, Hippokration General Hospital, 114 Vass. Sophias Ave., 115 27, Athens, Greece.
| |
Collapse
|