1
|
Lloberas N, Vidal-Alabró A, Colom H. Customizing Tacrolimus Dosing in Kidney Transplantation: Focus on Pharmacogenetics. Ther Drug Monit 2025; 47:141-151. [PMID: 39774592 DOI: 10.1097/ftd.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025]
Abstract
ABSTRACT Different polymorphisms in genes encoding metabolizing enzymes and drug transporters have been associated with tacrolimus pharmacokinetics. In particular, studies on CYP3A4 and CYP3A5, and their combined cluster have demonstrated their significance in adjusting tacrolimus dosing to minimize under- and overexposure thereby increasing the proportion of patients who achieve tacrolimus therapeutic target. Many factors influence the pharmacokinetics of tacrolimus, contributing to inter-patient variability affecting individual dosing requirements. On the other hand, the growing use of population pharmacokinetic models in solid organ transplantation, including different tacrolimus formulations, has facilitated the integration of pharmacogenetic data and other variables into algorithms to easier implement the personalized dose adjustment in transplant centers. The future of personalized medicine in transplantation lies in implementing these models in clinical practice, with pharmacogenetics as a key factor to account for the high inter-patient variability in tacrolimus exposure. To date, three clinical trials have validated the clinical application of these approaches. The aim of this review is to provide an overview of the current studies regarding the different population pharmacokinetic including pharmacogenetics and those translated to the clinical practice for individualizing tacrolimus dose adjustment in kidney transplantation.
Collapse
Affiliation(s)
- Nuria Lloberas
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); and
| | - Anna Vidal-Alabró
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); and
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Fang C, Dong C, Huang K, Wen N, Chen Y, Tang S. Factors influencing intrapatient variability of tacrolimus and its association with 1-year post-transplant outcomes in pediatric liver transplant recipients. Front Pharmacol 2024; 15:1473891. [PMID: 39640481 PMCID: PMC11617205 DOI: 10.3389/fphar.2024.1473891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Objective This study aims to explore the factors influencing tacrolimus intrapatient variability (TAC-IPV) and its association with 1-year post-transplant outcomes in pediatric liver transplant recipients. Methods Clinical and biological data of pediatric patients after liver transplantation were collected. The patients were divided into high- and low-IPV groups according to the median TAC-IPV for statistical comparisons. Factors with p < 0.05 in univariate analysis were introduced into binomial logistic regression analysis. Correlation analysis was used to test the connections between the Tac-IPV and outcomes within 1 year after liver transplantation (LT), and Kaplan-Meier was used to draw the survival curves. Results A total of 116 children underwent 746 measurements of TAC trough concentrations. The median TAC-IPV was 32.31% (20.81%, 46.77%). Hematocrit (p = 0.017) and concomitant medications (p = 0.001) were identified as independent influencing factors for TAC-IPV. The incidence of transplant rejection (p = 0.008), CMV infection (p < 0.001), and hospital admission due to infection (p = 0.003) were significantly higher in the high-IPV group than in the low-IPV group. Kaplan-Meier survival analysis suggests that after considering the time factor, high IPV (IPV > 32.31%) was still significantly associated with transplant rejection (HR = 3.17 and p = 0.005) and CMV infection (HR = 2.3 and p < 0.001) within 1 year after LT. Conclusion The study highlights the significant variation in TAC-IPV among children post-liver transplantation, emphasizing the impact of hematocrit levels and concomitant medications on TAC-IPV. Elevated TAC-IPV is associated with increased risks of transplant rejection, CMV infection, and readmission due to infection in the first year after liver transplantation. Close monitoring of patients with high TAC-IPV is recommended to promptly detect adverse reactions and provide timely intervention and treatment.
Collapse
Affiliation(s)
- Chuxuan Fang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunqiang Dong
- Department of Organ Transplantation, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kaiyong Huang
- Department of Organ Transplantation, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ningyu Wen
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiyu Chen
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shuangyi Tang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Štampar P, Blagus T, Goričar K, Bogovič P, Turel G, Strle F, Dolžan V. Genetic variability in the glucocorticoid pathway and treatment outcomes in hospitalized patients with COVID-19: a pilot study. Front Pharmacol 2024; 15:1418567. [PMID: 39135792 PMCID: PMC11317398 DOI: 10.3389/fphar.2024.1418567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction: Corticosteroids are widely used for the treatment of coronavirus disease (COVID)-19. Genetic polymorphisms of the glucocorticoid receptor, metabolizing enzymes, or transporters may affect treatment response to dexamethasone. This study aimed to evaluate the association of the glucocorticoid pathway polymorphisms with the treatment response and short-term outcomes in patients with severe COVID-19. Methods: Our pilot study included 107 hospitalized patients with COVID-19 treated with dexamethasone and/or methylprednisolone, genotyped for 14 polymorphisms in the glucocorticoid pathway. Results: In total, 83% of patients had severe disease, 15.1% had critical disease and only 1.9% had moderate disease. CYP3A4 rs35599367 was the major genetic determinant of COVID-19 severity as carriers of this polymorphism had higher risk of critical disease (OR = 6.538; 95% confidence interval = 1.19-35.914: p = 0.031) and needed intensive care unit treatment more frequently (OR = 10; 95% CI = 1.754-57.021: p = 0.01). This polymorphism was also associated with worse disease outcomes, as those patients had to switch from dexamethasone to methylprednisolone more often (OR = 6.609; 95% CI = 1.137-38.424: p = 0.036), had longer hospitalization (p = 0.022) and needed longer oxygen supplementation (p = 0.040). Carriers of NR3C1 rs6198 polymorphic allele required shorter dexamethasone treatment (p = 0.043), but had higher odds for switching therapy with methylprednisolone (OR = 2.711; 95% CI = 1.018-7.22: p = 0.046). Furthermore, rs6198 was also associated with longer duration of hospitalization (p = 0.001) and longer oxygen supplementation (p = 0.001). NR3C1 rs33388 polymorphic allele was associated with shorter hospitalization (p = 0.025) and lower odds for ICU treatment (OR = 0.144; 95% CI = 0.027-0.769: p = 0.023). GSTP1 rs1695 was associated with duration of hospitalization (p = 0.015), oxygen supplementation and (p = 0.047) dexamethasone treatment (p = 0.022). Conclusion: Our pathway-based approach enabled us to identify novel candidate polymorphisms that can be used as predictive biomarkers associated with response to glucocorticoid treatment in COVID-19. This could contribute to the patient's stratification and personalized treatment approach.
Collapse
Affiliation(s)
- Patricija Štampar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gabriele Turel
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Kwakyi E, Nartey ET, Otabil MK, Asiedu-Gyekye I, Ahorhorlu SY, Bioma V, Kudzi W. A descriptive study of the single-nucleotide polymorphisms known to affect the Tacrolimus trough concentration per dose, among a population of kidney failure patients in a tertiary hospital in Ghana. BMC Res Notes 2024; 17:210. [PMID: 39080672 PMCID: PMC11288130 DOI: 10.1186/s13104-024-06868-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2023] [Accepted: 07/16/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND The burden of chronic kidney disease (CKD) and kidney failure in Ghana is on the ascendency, with the prevalence of CKD estimated at 13.3%. Patients with CKD who progress to kidney failure require life sustaining kidney replacement therapy (KRT) which is almost exclusively available in Ghana as haemodialysis. Kidney transplantation is considered the best KRT option for patients with irreversible kidney failure due to its relative cost efficiency as well as its superiority in terms of survival and quality of life. However, because transplants may trigger an immune response with potential organ rejection, immunosuppressants such as tacrolimus dosing are required. OBJECTIVE This study sought to determine single nucleotide polymorphisms in CYP3A5, CYP3A4 and MDR1 genes that affect the pharmacokinetics of Tacrolimus in a population of Ghanaian patients with kidney failure. METHOD This cross-sectional study comprised of 82 kidney failure patients undergoing maintenance haemodialysis at the Renal and Dialysis unit of Korle-Bu Teaching Hospital (KBTH). Clinical and demographic data were collected and genomic DNA isolated. Samples were genotyped for specific SNPs using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). RESULTS Participants, 58/82 (70.73%) harbored the wildtype CYP3A5*1/*1 AA genotype, 20/82 (24.39%) carried the heterozygous CYP3A5*1/*3 AG genotype, and 4/82 (4.88%) had the homozygous mutant CYP3A5*3/*3 GG genotype. Also, 6/82 (7.32%) carried the wildtype AA genotype, 11/82 (13.41%) had the heterozygous AG genotype, and 65/82 (79.27%) harbored the homozygous mutant GG genotype of CYP3A4*1B (-290 A>G). For MDR1_Ex21 (2677 G>T), 81/82 (98.78%) carried the wildtype GG genotype, while 1/82 (1.22%) had the heterozygous GT genotype. For MDR1_Ex26 (3435 C>T), 63/82 (76.83%) had the wildtype CC genotype, while 18/82 (21.95%) carried the heterozygous CT genotype, and 1/82 (1.22%) harbored the mutant TT genotype. CONCLUSION SNPs in CYP3A4, CYP3A5, and MDR1 genes in a population of Ghanaian kidney failure patients were described. The varying SNPs of the featured genes suggest the need to consider the genetic status of Ghanaians kidney failure patients prior to transplantation and tacrolimus therapy.
Collapse
Affiliation(s)
- Edward Kwakyi
- Department of Medicine, University of Ghana Medical School, Legon, Ghana
| | - Edmund Tetteh Nartey
- Center for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box GP 4236, Legon, Accra, Ghana.
| | - Michael Kobina Otabil
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Ghana, Legon, Ghana
| | - Isaac Asiedu-Gyekye
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Ghana, Legon, Ghana
| | - Samuel Yao Ahorhorlu
- Center for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box GP 4236, Legon, Accra, Ghana
| | - Vincent Bioma
- Department of Medicine, University of Ghana Medical School, Legon, Ghana
| | - William Kudzi
- Center for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box GP 4236, Legon, Accra, Ghana
| |
Collapse
|
5
|
Rotarescu CA, Maruntelu I, Rotarescu I, Constantinescu AE, Constantinescu I. Single Nucleotide Polymorphisms of CYP3A4 and CYP3A5 in Romanian Kidney Transplant Recipients: Effect on Tacrolimus Pharmacokinetics in a Single-Center Experience. J Clin Med 2024; 13:1968. [PMID: 38610733 PMCID: PMC11012255 DOI: 10.3390/jcm13071968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Background: This study examines the impact of CYP3A4 and CYP 3A5 genotypes on tacrolimus (Tac) pharmacokinetics in Romanian kidney transplanted patients. Methods: We included 112 kidney recipients genotyped for CYP3A5*3, CYP3A4*1.001, and CYP3A4*22. Patients were categorized into poor, intermediate, rapid, and ultra-rapid metabolizers based on the functional defects linked to CYP3A variants. Results: Predominantly male (63.4%) with an average age of 40.58 years, the cohort exhibited a high prevalence of the CYP3A4*1/*1 (86.6%) and CYP3A5*3/*3 (77.7%) genotypes. CYP3A4*1.001 and CYP3A5*1 alleles significantly influenced the Tac concentration-to-dose (C0/D) ratio in various post-transplant periods, while the CYP3A4*22 allele showed no such effect (p = 0.016, p < 0.001). Stepwise regression highlighted the CYP3A4*1.001's impact in early post-transplant phases, with hematocrit and age also influencing Tac variability. Conclusions: The study indicates a complex interaction of CYP3A4 and CYP3A5 genotypes on Tac metabolism, suggesting the necessity for personalized medication approaches based on genetic profiling in kidney transplant recipients.
Collapse
Affiliation(s)
- Corina Andreea Rotarescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (C.A.R.); (A.-E.C.); (I.C.)
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
| | - Ion Maruntelu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (C.A.R.); (A.-E.C.); (I.C.)
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
| | - Ion Rotarescu
- Department of Cardiovascular Surgery, Prof. Dr. C. C. Iliescu Emergency Institute for Cardiovascular Diseases, 258 Fundeni Avenue, 022328 Bucharest, Romania;
| | - Alexandra-Elena Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (C.A.R.); (A.-E.C.); (I.C.)
| | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (C.A.R.); (A.-E.C.); (I.C.)
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
- Academy of Romanian Scientists (AOSR), 3 Ilfov Street, 030167 Bucharest, Romania
| |
Collapse
|
6
|
Beunk L, Nijenhuis M, Soree B, de Boer-Veger NJ, Buunk AM, Guchelaar HJ, Houwink EJF, Risselada A, Rongen GAPJM, van Schaik RHN, Swen JJ, Touw D, van Westrhenen R, Deneer VHM, van der Weide J. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2D6, CYP3A4 and CYP1A2 and antipsychotics. Eur J Hum Genet 2024; 32:278-285. [PMID: 37002327 PMCID: PMC10923774 DOI: 10.1038/s41431-023-01347-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate pharmacogenetics implementation in clinical practice by developing evidence-based guidelines to optimize pharmacotherapy. A guideline describing the gene-drug interaction between the genes CYP2D6, CYP3A4 and CYP1A2 and antipsychotics is presented here. The DPWG identified gene-drug interactions that require therapy adjustments when respective genotype is known for CYP2D6 with aripiprazole, brexpiprazole, haloperidol, pimozide, risperidone and zuclopenthixol, and for CYP3A4 with quetiapine. Evidence-based dose recommendations were obtained based on a systematic review of published literature. Reduction of the normal dose is recommended for aripiprazole, brexpiprazole, haloperidol, pimozide, risperidone and zuclopenthixol for CYP2D6-predicted PMs, and for pimozide and zuclopenthixol also for CYP2D6 IMs. For CYP2D6 UMs, a dose increase or an alternative drug is recommended for haloperidol and an alternative drug or titration of the dose for risperidone. In addition, in case of no or limited clinical effect, a dose increase is recommended for zuclopenthixol for CYP2D6 UMs. Even though evidence is limited, the DPWG recommends choosing an alternative drug to treat symptoms of depression or a dose reduction for other indications for quetiapine and CYP3A4 PMs. No therapy adjustments are recommended for the other CYP2D6 and CYP3A4 predicted phenotypes. In addition, no action is required for the gene-drug combinations CYP2D6 and clozapine, flupentixol, olanzapine or quetiapine and also not for CYP1A2 and clozapine or olanzapine. For identified gene-drug interactions requiring therapy adjustments, genotyping of CYP2D6 or CYP3A4 prior to treatment should not be considered for all patients, but on an individual patient basis only.
Collapse
Affiliation(s)
- Lianne Beunk
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, the Netherlands
| | - Marga Nijenhuis
- Royal Dutch Pharmacists Association (KNMP), The Hague, the Netherlands.
| | - Bianca Soree
- Royal Dutch Pharmacists Association (KNMP), The Hague, the Netherlands
| | | | | | - Henk Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elisa J F Houwink
- Department of Public Health and Primary Care (PHEG), Leiden University Medical Center, Leiden, the Netherlands
- National eHealth Living Lab (NELL), Leiden, the Netherlands
| | - Arne Risselada
- Department of Clinical Pharmacy, Wilhelmina Hospital, Assen, the Netherlands
| | - Gerard A P J M Rongen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Daan Touw
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
- Department of Clinical Pharmacy & Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Roos van Westrhenen
- Department of Psychiatry, Parnassia Group, Amsterdam, the Netherlands
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
- Institute of Psychiatry, Psychology&Neuroscience (IoPPN), King's College London, London, UK
| | - Vera H M Deneer
- Department of Clinical Pharmacy, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jan van der Weide
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, the Netherlands
| |
Collapse
|
7
|
Li Z, Wang X, Li D, Cheng S, Li Z, Guo H, Dong Y, Zheng Y, Li X. Effects of CYP3A4*22 and POR*28 variations on the pharmacokinetics of tacrolimus in renal transplant recipients: a meta-analysis of 18 observational studies. BMC Nephrol 2024; 25:48. [PMID: 38321419 PMCID: PMC10848431 DOI: 10.1186/s12882-024-03467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
PURPOSE This study aimed to investigate the association between cytochrome P450 (CYP) 3A4*22 and cytochrome P450 oxidoreductase (POR)*28 variations and the pharmacokinetics of tacrolimus. METHODS Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science (SCI), MEDLINE, and Embase were systematically searched from inception to August 2022. The outcomes were weight-adjusted daily dose and dose-adjusted trough concentration (C0/Dose). RESULTS The study included 2931 renal transplant recipients from 18 publications. Weight-adjusted daily dose of CYP3A4*1/*1 carriers was 0.04 (WMD = 0.04, 95% CI: 0.02 to 0.06), 0.03 (WMD = 0.03, 95% CI: 0.02 to 0.05), 0.02 (WMD = 0.02, 95% CI: 0.01 to 0.03), or 0.02 mg/kg/day (WMD = 0.02, 95% CI: 0.00 to 0.04) higher than CYP3A4*22 carriers in Caucasians at 1 month, 3 months, 6 months, or 12 months post-transplantation. Conversely, C0/Dose was lower for CYP3A4*1/*1 carriers at 3 days (SMD = -0.35, 95% CI: -0.65 to -0.06), 1 month (SMD = -0.67, 95% CI: -1.16 to -0.18), 3 months (SMD = -0.60, 95% CI: -0.89 to -0.31), 6 months (SMD = -0.76, 95% CI: -1.49 to -0.04), or 12 months post-transplantation (SMD = -0.69, 95% CI: -1.37 to 0.00). Furthermore, C0/Dose of POR*1/*1 carriers was 22.64 (WMD = 22.64, 95% CI: 2.54 to 42.74) or 19.41 (ng/ml)/(mg/kg/day) (WMD = 19.41, 95% CI: 9.58 to 29.24) higher than POR*28 carriers in CYP3A5 expressers at 3 days or 7 days post-transplantation, and higher in Asians at 6 months post-transplantation (SMD = 0.96, 95% CI: 0.50 to 1.43). CONCLUSIONS CYP3A4*22 variant in Caucasians restrains the metabolism of tacrolimus, while POR*28 variant in CYP3A5 expressers enhances the metabolism of tacrolimus for renal transplant recipients. However, further well-designed prospective studies are necessary to substantiate these conclusions given some limitations.
Collapse
Affiliation(s)
- Ze Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Xiaozhen Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dandan Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Sheng Cheng
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Zhe Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Heng Guo
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Yiwen Dong
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Yingming Zheng
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China.
| |
Collapse
|
8
|
Ebid AHI, Ismail DA, Lotfy NM, Mahmoud MA, El-Sharkawy M. Effect of CYP3A4*22, CYP3A5*3 and POR*28 genetic polymorphisms on calcineurin inhibitors dose requirements in early phase renal transplant patients. Pharmacogenet Genomics 2024; 34:43-52. [PMID: 38050720 DOI: 10.1097/fpc.0000000000000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/06/2023]
Abstract
OBJECTIVE This study aimed to investigate the combined effect of CYP3A5*3, CYP3A4*22, and POR*28 genetic polymorphisms on tacrolimus and cyclosporine dose requirements. METHODS One hundred thirty renal transplant patients placed on either tacrolimus or cyclosporine were recruited, where the effect of CYP3A5*3, CYP3A4*22, and POR*28 genetic polymorphisms on their dose requirements were studied at days 14, 30, and 90 post-transplantations. RESULTS The POR*28 allele frequency in the studied population was 29.61%. The tacrolimus dose-adjusted trough concentration ratio (C0/D) was significantly lower in the fast metabolizers group ( CYP3A5*1/POR*28(CT/TT ) carriers) than in the poor metabolizers group ( CYP3A5*3/*3/CYP3A4*22 carriers) throughout the study (14, 30, and 90 days) ( P = 0.001, <0.001, and 0.003, respectively). Meanwhile, there was no significant effect of this gene combination on cyclosporine C0/D. CONCLUSION Combining the CYP3A5*3, POR*28 , and CYP3A4*22 genotypes can have a significant effect on early tacrolimus dose requirements determination and adjustments. However, it does not have such influence on cyclosporine dose requirements.
Collapse
Affiliation(s)
| | - Dina A Ismail
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University
| | - Neama M Lotfy
- Department of Technology of Medical Laboratory, Faculty of Applied Health Sciences Technology, Badr University
| | - Mohamed A Mahmoud
- Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University
| | - Magdy El-Sharkawy
- Department of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Seligson ND, Zhang X, Zemanek MC, Johnson JA, VanGundy Z, Wang D, Phelps MA, Roddy J, Hofmeister CC, Li J, Poi MJ. CYP3A5 influences oral tacrolimus pharmacokinetics and timing of acute kidney injury following allogeneic hematopoietic stem cell transplantation. Front Pharmacol 2024; 14:1334440. [PMID: 38259277 PMCID: PMC10800424 DOI: 10.3389/fphar.2023.1334440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Polymorphisms in genes responsible for the metabolism and transport of tacrolimus have been demonstrated to influence clinical outcomes for patients following allogeneic hematologic stem cell transplant (allo-HSCT). However, the clinical impact of germline polymorphisms specifically for oral formulations of tacrolimus is not fully described. Methods: To investigate the clinical impact of genetic polymorphisms in CYP3A4, CYP3A5, and ABCB1 on oral tacrolimus pharmacokinetics and clinical outcomes, we prospectively enrolled 103 adult patients receiving oral tacrolimus for the prevention of graft-versus-host disease (GVHD) following allo-HSCT. Patients were followed in the inpatient and outpatient phase of care for the first 100 days of tacrolimus therapy. Patients were genotyped for CYP3A5 *3 (rs776746), CYP3A4 *1B (rs2740574), ABCB1 exon 12 (rs1128503), ABCB1 exon 21 (rs2032582), ABCB1 exon 26 (rs1045642). Results: Expression of CYP3A5 *1 was highly correlated with tacrolimus pharmacokinetics in the inpatient phase of care (p < 0.001) and throughout the entirety of the study period (p < 0.001). Additionally, Expression of CYP3A5 *1 was associated with decreased risk of developing AKI as an inpatient (p = 0.06). Variants in ABCB1 were not associated with tacrolimus pharmacokinetics in this study. We were unable to discern an independent effect of CYP3A4 *1B or *22 in this population. Conclusion: Expression of CYP3A5 *1 is highly influential on the pharmacokinetics and clinical outcomes for patients receiving oral tacrolimus as GVHD prophylaxis following allo-HSCT.
Collapse
Affiliation(s)
- Nathan D. Seligson
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Xunjie Zhang
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Mark C. Zemanek
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Jasmine A. Johnson
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Zachary VanGundy
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Mitch A. Phelps
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Julianna Roddy
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Craig C. Hofmeister
- Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Junan Li
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Ming J. Poi
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Ho TT, Perkins JB, Gonzalez R, Hicks JK, Martinez RA, Duranceau K, North B, Kim J, Teer JK, Yao J, Yoder SJ, Nishihori T, Bejanyan N, Pidala J, Elmariah H. Association between CYP3A4, CYP3A5 and ABCB1 genotype and tacrolimus treatment outcomes among allogeneic HSCT patients. Pharmacogenomics 2024; 25:29-40. [PMID: 38189154 DOI: 10.2217/pgs-2023-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2024] Open
Abstract
Aim: Successful treatment with tacrolimus to prevent graft versus host disease (GVHD) and minimize tacrolimus-related toxicities among allogeneic hematopoietic cell transplantation (alloHCT) recipients is contingent upon quickly achieving and maintaining concentrations within a narrow therapeutic range. The primary objective was to investigate associations between CYP3A4, CYP3A5 or ABCB1 genotype and the proportion of patients that attained an initial tacrolimus goal concentration following initiation of intravenous (iv.) and conversion to oral administration. Materials & methods: We retrospectively evaluated 86 patients who underwent HLA-matched (8/8) related donor alloHCT and were prescribed a tacrolimus-based regimen for GVHD prophylaxis. Results & conclusion: The findings of the present study suggests that CYP3A5 genotype may impact attainment of initial therapeutic tacrolimus concentrations with oral administration in alloHCT recipients.
Collapse
Affiliation(s)
- Teresa T Ho
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Janelle B Perkins
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
| | - Rebecca Gonzalez
- Department of Blood & Marrow Transplant & Cellular Immunotherapy (BMT CI), H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Pharmacy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - James Kevin Hicks
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ronald Alvarez Martinez
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
| | - Katie Duranceau
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
| | - Brianna North
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
| | - Jongphil Kim
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jamie K Teer
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jiqiang Yao
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Sean J Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Taiga Nishihori
- Department of Blood & Marrow Transplant & Cellular Immunotherapy (BMT CI), H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Nelli Bejanyan
- Department of Blood & Marrow Transplant & Cellular Immunotherapy (BMT CI), H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Joseph Pidala
- Department of Blood & Marrow Transplant & Cellular Immunotherapy (BMT CI), H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Hany Elmariah
- Department of Blood & Marrow Transplant & Cellular Immunotherapy (BMT CI), H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Coates S, Lazarus P. Hydrocodone, Oxycodone, and Morphine Metabolism and Drug-Drug Interactions. J Pharmacol Exp Ther 2023; 387:150-169. [PMID: 37679047 PMCID: PMC10586512 DOI: 10.1124/jpet.123.001651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Awareness of drug interactions involving opioids is critical for patient treatment as they are common therapeutics used in numerous care settings, including both chronic and disease-related pain. Not only do opioids have narrow therapeutic indexes and are extensively used, but they have the potential to cause severe toxicity. Opioids are the classical pain treatment for patients who suffer from moderate to severe pain. More importantly, opioids are often prescribed in combination with multiple other drugs, especially in patient populations who typically are prescribed a large drug regimen. This review focuses on the current knowledge of common opioid drug-drug interactions (DDIs), focusing specifically on hydrocodone, oxycodone, and morphine DDIs. The DDIs covered in this review include pharmacokinetic DDI arising from enzyme inhibition or induction, primarily due to inhibition of cytochrome p450 enzymes (CYPs). However, opioids such as morphine are metabolized by uridine-5'-diphosphoglucuronosyltransferases (UGTs), principally UGT2B7, and glucuronidation is another important pathway for opioid-drug interactions. This review also covers several pharmacodynamic DDI studies as well as the basics of CYP and UGT metabolism, including detailed opioid metabolism and the potential involvement of metabolizing enzyme gene variation in DDI. Based upon the current literature, further studies are needed to fully investigate and describe the DDI potential with opioids in pain and related disease settings to improve clinical outcomes for patients. SIGNIFICANCE STATEMENT: A review of the literature focusing on drug-drug interactions involving opioids is important because they can be toxic and potentially lethal, occurring through pharmacodynamic interactions as well as pharmacokinetic interactions occurring through inhibition or induction of drug metabolism.
Collapse
Affiliation(s)
- Shelby Coates
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
12
|
Wanas H, Kamel MH, William EA, Fayad T, Abdelfattah ME, Elbadawy HM, Mikhael ES. The impact of CYP3A4 and CYP3A5 genetic variations on tacrolimus treatment of living-donor Egyptian kidney transplanted patients. J Clin Lab Anal 2023; 37:e24969. [PMID: 37789683 PMCID: PMC10681408 DOI: 10.1002/jcla.24969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Tacrolimus (TAC) is the mainstay of immunosuppressive regimen for kidney transplantations. Its clinical use is complex due to high inter-individual variations which can be partially attributed to genetic variations at the metabolizing enzymes CYP3A4 and CYP3A5. Two single nucleotide polymorphisms (SNPs), CYP3A4*22 and CYP3A5*3, have been reported as important causes of differences in pharmacokinetics that can affect efficacy and/or toxicity of TAC. OBJECTIVE Investigating the effect of CYP3A4*22 and CYP3A5*3 SNPs individually and in combination on the TAC concentration in Egyptian renal recipients. METHODS Overall, 72 Egyptian kidney transplant recipients were genotyped for CYP3A4*22 G>A and CYP3A5*3 T>C. According to the functional defect associated with CYP3A variants, patients were clustered into: poor (PM) and non-poor metabolizers (Non-PM). The impact on dose adjusted through TAC concentrations (C0) and daily doses at different time points after transplantation was evaluated. RESULTS Cyp3A4*1/*22 and PM groups require significantly lower dose of TAC (mg/kg) at different time points with significantly higher concentration/dose (C0/D) ratio at day 10 in comparison to Cyp3A4*1/*1 and Non-PM groups respectively. However, CyP3A5*3 heterozygous individuals did not show any significant difference in comparison to CyP3A5*1/*3 individuals. By comparing between PM and Non-PM, the PM group had a significantly lower rate of recipients not reaching target C0 at day 14. CONCLUSION This is the first study on Egyptian population to investigate the impact of CYP3A4*22 and CYP3A5*3 SNPs individually and in combination on the TAC concentration. This study and future multicenter studies can contribute to the individualization of TAC dosing in Egyptian patients.
Collapse
Affiliation(s)
- Hanaa Wanas
- Medical Pharmacology DepartmentFaculty of Medicine Cairo UniversityCairoEgypt
- Pharmacology and Toxicology Department, Faculty of PharmacyTaibah UniversityMadinahSaudi Arabia
| | - Mai Hamed Kamel
- Clinical and Chemical Pathology DepartmentFaculty of Medicine Cairo UniversityCairoEgypt
| | - Emad Adel William
- National Research Centre, Medical Research and Clinical Studies InstituteCairoEgypt
| | - Tarek Fayad
- Internal Medicine DepartmentFaculty of Medicine Cairo UniversityCairoEgypt
| | | | | | - Emily Samir Mikhael
- Clinical and Chemical Pathology DepartmentFaculty of Medicine Cairo UniversityCairoEgypt
| |
Collapse
|
13
|
Lloberas N, Grinyó JM, Colom H, Vidal-Alabró A, Fontova P, Rigo-Bonnin R, Padró A, Bestard O, Melilli E, Montero N, Coloma A, Manonelles A, Meneghini M, Favà A, Torras J, Cruzado JM. A prospective controlled, randomized clinical trial of kidney transplant recipients developed personalized tacrolimus dosing using model-based Bayesian Prediction. Kidney Int 2023; 104:840-850. [PMID: 37391040 DOI: 10.1016/j.kint.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
For three decades, tacrolimus (Tac) dose adjustment in clinical practice has been calculated empirically according to the manufacturer's labeling based on a patient's body weight. Here, we developed and validated a Population pharmacokinetic (PPK) model including pharmacogenetics (cluster CYP3A4/CYP3A5), age, and hematocrit. Our study aimed to assess the clinical applicability of this PPK model in the achievement of Tac Co (therapeutic trough Tac concentration) compared to the manufacturer's labelling dosage. A prospective two-arm, randomized, clinical trial was conducted to determine Tac starting and subsequent dose adjustments in 90 kidney transplant recipients. Patients were randomized to a control group with Tac adjustment according to the manufacturer's labeling or the PPK group adjusted to reach target Co (6-10 ng/ml) after the first steady state (primary endpoint) using a Bayesian prediction model (NONMEM). A significantly higher percentage of patients from the PPK group (54.8%) compared with the control group (20.8%) achieved the therapeutic target fulfilling 30% of the established superiority margin defined. Patients receiving PPK showed significantly less intra-patient variability compared to the control group, reached the Tac Co target sooner (5 days vs 10 days), and required significantly fewer Tac dose modifications compared to the control group within 90 days following kidney transplant. No statistically significant differences occurred in clinical outcomes. Thus, PPK-based Tac dosing offers significant superiority for starting Tac prescription over classical labeling-based dosing according to the body weight, which may optimize Tac-based therapy in the first days following transplantation.
Collapse
Affiliation(s)
- Nuria Lloberas
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.
| | - Josep M Grinyó
- Department of Clinical Sciences, Medicine Unit, University of Barcelona, Barcelona, Spain
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain.
| | - Anna Vidal-Alabró
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Pere Fontova
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Raul Rigo-Bonnin
- Biochemistry Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Ariadna Padró
- Biochemistry Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Oriol Bestard
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Edoardo Melilli
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Nuria Montero
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Ana Coloma
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Anna Manonelles
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Maria Meneghini
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Alex Favà
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Joan Torras
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Josep M Cruzado
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
14
|
Mizuno K, Capparelli EV, Fukuda T, Dong M, Adamson PC, Blumer JL, Cnaan A, Clark PO, Reed MD, Shinnar S, Vinks AA, Glauser TA. Model-Informed Precision Dosing Guidance of Ethosuximide Developed from a Randomized Controlled Clinical Trial of Childhood Absence Epilepsy. Clin Pharmacol Ther 2023; 114:459-469. [PMID: 37316457 DOI: 10.1002/cpt.2965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Ethosuximide was identified as the optimal option for new-onset childhood absence epilepsy (CAE) in a randomized, two-phase dose escalation comparative effectiveness trial of ethosuximide, lamotrigine, and valproic acid. However, 47% of ethosuximide initial monotherapy participants experienced short-term treatment failure. This study aimed to characterize the initial monotherapy ethosuximide exposure-response relationship and to propose model-informed precision dosing guidance. Dose titration occurred over a 16-20-week period until patients experienced seizure freedom or intolerable side effects. Subjects with initial monotherapy failure were randomized to one of the other two medications and dose escalation was repeated. A population pharmacokinetic model was created using plasma concentration data (n = 1,320), collected at 4-week intervals from 211 unique participants during both the initial and second monotherapy phases. A logistic regression analysis was performed on the initial monotherapy cohort (n = 103) with complete exposure-response data. Eighty-four participants achieved seizure freedom with a wide range of ethosuximide area under the curves (AUC) ranging from 420 to 2,420 μg·h/mL. AUC exposure estimates for achieving a 50% and 75% probability of seizure freedom were 1,027 and 1,489 μg·h/mL, respectively, whereas the corresponding cumulative frequency of intolerable adverse events was 11% and 16%. Monte Carlo Simulation indicated a daily dose of 40 and 55 mg/kg to achieve 50% and 75% probability of seizure freedom in the overall population, respectively. We identified the need for adjusted mg/kg dosing in different body weight cohorts. This ethosuximide proposed model-informed precision dosing guidance to achieve seizure freedom carries promise to optimize initial monotherapy success for patients with CAE.
Collapse
Affiliation(s)
- Kana Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Edmund V Capparelli
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tsuyoshi Fukuda
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Min Dong
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Peter C Adamson
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeffery L Blumer
- Rainbow Clinical Research Center, Rainbow Babies and Children's Hospital, and Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Avital Cnaan
- Children's National Health System, Washington, DC, USA
| | - Peggy O Clark
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael D Reed
- Rainbow Clinical Research Center, Rainbow Babies and Children's Hospital, and Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shlomo Shinnar
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tracy A Glauser
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
McEvoy L, Cliff J, Carr DF, Jorgensen A, Lord R, Pirmohamed M. CYP3A genetic variation and taxane-induced peripheral neuropathy: a systematic review, meta-analysis, and candidate gene study. Front Pharmacol 2023; 14:1178421. [PMID: 37469869 PMCID: PMC10352989 DOI: 10.3389/fphar.2023.1178421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Background: Taxane-induced peripheral neuropathy (TIPN) is an important cause of premature treatment cessation and dose-limitation in cancer therapy. It also reduces quality of life and survivorship in affected patients. Genetic polymorphisms in the CYP3A family have been investigated but the findings have been inconsistent and contradictory. Methods: A systematic review identified 12 pharmacogenetic studies investigating genetic variation in CYP3A4*22 and CYP3A5*3 and TIPN. In our candidate gene study, 288 eligible participants (211 taxane participants receiving docetaxel or paclitaxel, and 77 control participants receiving oxaliplatin) were successfully genotyped for CYP3A4*22 and CYP3A5*3. Genotyping data was transformed into a combined CYP3A metaboliser phenotype: Poor metabolisers, intermediate metabolisers and extensive metabolisers. Individual genotypes and combined CYP3A metaboliser phenotypes were assessed in relation to neurotoxicity, including by meta-analysis where possible. Results: In the systematic review, no significant association was found between CYP3A5*3 and TIPN in seven studies, with one study reporting a protective association. For CYP3A4*22, one study has reported an association with TIPN, while four other studies failed to show an association. Evaluation of our patient cohort showed that paclitaxel was found to be more neurotoxic than docetaxel (p < 0.001). Diabetes was also significantly associated with the development of TIPN. The candidate gene analysis showed no significant association between either SNP (CYP3A5*3 and CYP3A4*22) and the development of TIPN overall, or severe TIPN. Meta-analysis showed no association between these two variants and TIPN. Transformed into combined CYP3A metaboliser phenotypes, 30 taxane recipients were poor metabolisers, 159 were intermediate metabolisers, and 22 were extensive metabolisers. No significant association was observed between metaboliser status and case-control status. Summary: We have shown that the risk of peripheral neuropathy during taxane chemotherapy is greater in patients who have diabetes. CYP3A genotype or phenotype was not identified as a risk factor in either the candidate gene analysis or the systematic review/meta-analysis, although we cannot exclude the possibility of a minor contribution, which would require a larger sample size.
Collapse
Affiliation(s)
- Laurence McEvoy
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Joanne Cliff
- Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Daniel F Carr
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Jorgensen
- Health Data Science, University of Liverpool, Liverpool, United Kingdom
| | - Rosemary Lord
- Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Šimičević L, Slišković AM, Kirhmajer MV, Ganoci L, Holik H, Palić J, Samardžić J, Božina T. Risk Factors for Rivaroxaban-Related Bleeding Events-Possible Role of Pharmacogenetics: Case Series. PHARMACY 2023; 11:29. [PMID: 36827667 PMCID: PMC9966833 DOI: 10.3390/pharmacy11010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Non-vitamin K antagonist oral anticoagulants' interindividual trough concentration variability affects efficacy and safety, especially in bleeding events. Rivaroxaban is metabolised via CYP3A4/5-, CYP2J2-, and CYP-independent mechanisms and is a substrate of two transporter proteins: ABCB1 (MDR1, P-glycoprotein) and ABCG2 (BCRP; breast-cancer-resistance protein). The polymorphisms of these genes may possibly affect the pharmacokinetics of rivaroxaban and, consequently, its safety profile. Rivaroxaban variability may be associated with age, liver and kidney function, concomitant illness and therapy, and pharmacogenetic predisposition. This case series is the first, to our knowledge, that presents multiple risk factors for rivaroxaban-related bleeding (RRB) including age, renal function, concomitant diseases, concomitant treatment, and pharmacogenetic data. It presents patients with RRB, along with their complete clinical and pharmacogenetic data, as well as an evaluation of possible risk factors for RRB. Thirteen patients were carriers of ABCB1, ABCG2, CYP2J2, and/or CYP3A4/5 gene polymorphisms. Possible drug-drug interactions with increased bleeding risk were identified in nine patients. Six patients had eGFR <60 mL/min/1.73 m2. Our data suggest a possible role of multiple factors and their interactions in predicting RRB; however, they also indicate the need for further comprehensive multidisciplinary research to enable safer use of this product based on a personalised approach.
Collapse
Affiliation(s)
- Livija Šimičević
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Ana Marija Slišković
- Department of Cardiovascular Diseases, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Majda Vrkić Kirhmajer
- Department of Cardiovascular Diseases, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- Department of Internal Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Lana Ganoci
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Holik
- Department of Internal Medicine, General Hospital Dr Josip Benčević, 35000 Slavonski Brod, Croatia
| | - Jozefina Palić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jure Samardžić
- Department of Cardiovascular Diseases, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- Department of Internal Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tamara Božina
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
Pharmacogenetic Aspects of Drug Metabolizing Enzymes and Transporters in Pediatric Medicine: Study Progress, Clinical Practice and Future Perspectives. Paediatr Drugs 2023; 25:301-319. [PMID: 36707496 DOI: 10.1007/s40272-023-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
As the activity of certain drug metabolizing enzymes or transporter proteins can vary with age, the effect of ontogenetic and genetic variation on the activity of these enzymes is critical for the accurate prediction of treatment outcomes and toxicity in children. This makes pharmacogenetic research in pediatrics particularly important and urgently needed, but also challenging. This review summarizes pharmacogenetic studies on the effects of genetic polymorphisms on pharmacokinetic parameters and clinical outcomes in pediatric populations for certain drugs, which are commonly prescribed by clinicians across multiple therapeutic areas in a general hospital, organized from those with the most to the least pediatric evidence among each drug category. We also further discuss the research status of the gene-guided dosing regimens and clinical implementation of pediatric pharmacogenetics. More and more drug-gene interactions are demonstrated to have clinical validity for children, and pharmacogenomics in pediatrics have shown evidence-based benefits to enhance the efficacy and precision of existing drug dosing regimens in several therapeutic areas. However, the most important limitation to the implementation is the lack of high-quality, rigorous pediatric prospective clinical studies, so adequately powered interventional clinical trials that support incorporation of pharmacogenetics into the care of children are still needed.
Collapse
|
18
|
Tomizawa M, Hori S, Inoue K, Nishimura N, Nakai Y, Miyake M, Yoneda T, Fujimoto K. A Low Tacrolimus Concentration-to-Dose Ratio Increases Calcineurin Inhibitor Nephrotoxicity and Cytomegalovirus Infection Risks in Kidney Transplant Recipients: A Single-Center Study in Japan. Transplant Proc 2023; 55:109-115. [PMID: 36623961 DOI: 10.1016/j.transproceed.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Tacrolimus (TAC) has several problems due to its narrow therapeutic window and variations pharmacokinetics and pharmacodynamics. Recently, several studies reported that TAC metabolism, defined by TAC blood trough concentration to dose (C/D) ratio, was associated with TAC toxicity. Reports on once-daily extended-release TAC (TAC-ER) are limited. The present study aimed to investigate the effect of the TAC metabolic rate on TAC-ER and compare TAC area under the curve (AUC) between fast and slow metabolizers. METHODS A total of 58 recipients were included in this study. The optimal cut-off value and time of the C/D ratio on TAC-ER for fast and slow metabolizers was determined using receiver operating characteristic curve analysis for biopsy-proven calcineurin inhibitor (CNI) nephrotoxicity. RESULTS The optimal time to evaluate the C/D ratio was 1 month after kidney transplantation (KT) and the cut-off value was 0.9. The multivariate analysis for CNI nephrotoxicity risk showed that only TAC metabolism was associated with CNI nephrotoxicity (hazard ratio 10.60, P = .005, 95% CI 2.03-55.22). Cytomegalovirus infection occurred more frequently in fast metabolizers when the cut-off value of the C/D ratio was set to 0.9 at 3 months after KT (P = .04). The TAC C4, AUC2-8, was higher in fast metabolizers than in slow metabolizers (P < .01, P = .03, respectively). CONCLUSION The study revealed that TAC fast metabolizers on TAC-ER may be classified as a high-risk group for CNI nephrotoxicity and cytomegalovirus infection. The result of TAC AUC supported the hypothesis that fast metabolizers tended to be overexposed to immunosuppressive agents early after oral administration.
Collapse
Affiliation(s)
| | - Shunta Hori
- Department of Urology, Nara Medical University, Nara, Japan
| | - Kuniaki Inoue
- Department of Urology, Nara Medical University, Nara, Japan
| | | | - Yasushi Nakai
- Department of Urology, Nara Medical University, Nara, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, Nara, Japan
| | - Tatsuo Yoneda
- Department of Urology, Nara Medical University, Nara, Japan
| | | |
Collapse
|
19
|
Islam F, Islam MR, Nafady MH, Faysal M, Khan SL, Zehravi M, Emran TB, Rahman MH. Pharmacogenomics of immunosuppressants. Pharmacogenomics 2023:323-344. [DOI: 10.1016/b978-0-443-15336-5.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/01/2023] Open
|
20
|
Ebid AHIM, Ismail DA, Lotfy NM, Mahmoud MA, ELSharkawy M. Influence of CYP3A4*22 and CYP3A5*3 combined genotypes on tacrolimus dose requirements in Egyptian renal transplant patients. J Clin Pharm Ther 2022; 47:2255-2263. [PMID: 36379901 DOI: 10.1111/jcpt.13804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Tacrolimus is a widely prescribed immunosuppressant agent for kidney transplantation. However, optimal dosing is challenging due to its narrow therapeutic index, potentially serious adverse effects, and wide inter-individual variability in pharmacokinetics. Cytochrome P450 3A (CPY3A) enzymes metabolize tacrolimus, so allelic variants such as CYP3A4*22 and CYP3A5*3 may contribute to individual differences in pharmacokinetics and therapeutic efficacy of tacrolimus. This study assessed the frequency and influences of CYP3A4*22 and CYP3A5*3 genotypes, alone and combined, on tacrolimus pharmacokinetics and dose requirements in Egyptian kidney transplant patients. METHODS This is a prospective multicenter observational cohort study. Patients were genotyped for the CYP3A4*22 (rs35599367), and CYP3A5*3 (rs776746). Tacrolimus dose (mg), through blood level (ng/ml), and dose-adjusted trough concentration (C0/D) (ng/ml per mg/kg) were recorded during the first and third months post-transplantation and compared among genotype groups. RESULTS The CYP3A4*22 allele was rare (3.2% of subjects) while the CYP3A5*3 allele was widespread (90.38%) in this cohort. At the third month post-transplantation, median C0/D was significantly higher among CYP3A4*22 carriers than CYP3A4*1/*1 (146.25 [100-380] versus 85.57 [27-370] ng/ml per mg/kg, p = 0.028). Patients harbouring the one copy of the CYP3A4*22 allele and the CYP3A5*3/*3 genotype (n = 5) were classified as poor tacrolimus metabolizers, the CYP3A5*3/*3 plus CYP3A4*1/*1 genotype as intermediate metabolizers (n = 60), and the CYP3A4*1/*1 plus CYP3A5*1/*1 genotype as normal metabolizers (n = 13). During the first month post-transplantation, C0/D was significantly greater in poor metabolizers (113.07 ng/ml per mg/kg) than intermediate and normal metabolizers (90.380 and 49.09 ng/ml per mg/kg) (p < 0.0005). This rank order was also observed during the third month. Acute rejection rate and renal function at discharge did not differ among genotypes. CONCLUSION Pharmacogenetics testing for CYP3A4*22 and CYP3A5*3 before renal transplantation may help in the adjustment of tacrolimus starting dose and identify patients at risk of tacrolimus overexposure or underexposure.
Collapse
Affiliation(s)
| | - Dina Ahmed Ismail
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Neama M Lotfy
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Adel Mahmoud
- Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Magdy ELSharkawy
- Department of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
21
|
Guimbellot JS, Nichols DP, Brewington JJ. Novel Applications of Biomarkers and Personalized Medicine in Cystic Fibrosis. Clin Chest Med 2022; 43:617-630. [PMID: 36344070 DOI: 10.1016/j.ccm.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Abstract
As routine care in cystic fibrosis (CF) becomes increasingly personalized, new opportunities to further focus care on the individual have emerged. These opportunities are increasingly filled through research in tools aiding drug selection, drug monitoring and titration, disease-relevant biomarkers, and evaluation of therapeutic benefits. Herein, we will discuss such research tools presently being translated into the clinic to improve the personalization of care in CF.
Collapse
Affiliation(s)
- Jennifer S Guimbellot
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham; 1600 7th Avenue South, ACC 620, Birmingham, AL 35233, USA
| | - David P Nichols
- Department of Pediatrics, Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington School of Medicine, Building Cure, 1920 Terry Avenue, Office 4-209, Seattle, WA 98109, USA
| | - John J Brewington
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2021, Cincinnati, OH 45229, USA.
| |
Collapse
|
22
|
Yang S, Jiang H, Li C, Lu H, Li C, Ye D, Qi H, Xu W, Bao X, Maseko N, Zhang S, Shao R, Li L. Genomewide association study identifies a novel variant associated with tacrolimus trough concentration in Chinese renal transplant recipients. Clin Transl Sci 2022; 15:2640-2651. [PMID: 35977080 PMCID: PMC9652447 DOI: 10.1111/cts.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Tacrolimus (TAC) is an immunosuppressant widely used in kidney transplantation. TAC displays considerable interindividual variability in pharmacokinetics (PKs). Genetic and clinical factors play important roles in TAC PKs. We enrolled a total of 251 Chinese renal transplant recipients and conducted a genomewide association study (GWAS), linkage disequilibrium (LD), and one-way analysis of variance (ANOVA) to find genetic variants affecting log-transformed TAC trough blood concentration/dose ratio (log[C0 /D]). In addition, we performed dual luciferase reporter gene assays and multivariate regression models to evaluate the effect of the genetic variants. The GWAS results showed that all 23 genomewide significant single-nucleotide polymorphisms (p < 5 × 10-8 ) were located on chromosome 7, including CYP3A5*3. LD, conditional association analysis, and one-way ANOVA showed that rs75125371 T > C independently influenced TAC log(C0 /D). Dual luciferase reporter gene assays indicated that rs75125371 minor allele (C) was significantly associated with increased normalized luciferase activity than the major allele (T) in the Huh7 cells (p = 1.2 × 10-5 ) and HepaRG cells (p = 0.0097). A model inclusive of age, sex, hematocrit, CYP3A5*3, and rs75125371 explained 37.34% variance in TAC C0 . These results suggest that rs75125371 T > C is a functional and population-specific variant affecting TAC C0 in Chinese renal transplant recipients.
Collapse
Affiliation(s)
- Siyao Yang
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Haixia Jiang
- Department of Laboratory Medicine, Nanfang Hospital, The First School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Chengcheng Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Huijie Lu
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Demei Ye
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Huana Qi
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wenbin Xu
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaojie Bao
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Nicola Maseko
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siqi Zhang
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ruifan Shao
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- Experimental Education and Administration Center, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
23
|
Brunet M, Pastor-Anglada M. Insights into the Pharmacogenetics of Tacrolimus Pharmacokinetics and Pharmacodynamics. Pharmaceutics 2022; 14:1755. [PMID: 36145503 PMCID: PMC9503558 DOI: 10.3390/pharmaceutics14091755] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
The influence of pharmacogenetics in tacrolimus pharmacokinetics and pharmacodynamics needs further investigation, considering its potential in assisting clinicians to predict the optimal starting dosage and the need for a personalized adjustment of the dose, as well as to identify patients at a high risk of rejection, drug-related adverse effects, or poor outcomes. In the past decade, new pharmacokinetic strategies have been developed to improve personalized tacrolimus treatment. Several studies have shown that patients with tacrolimus doses C0/D < 1 ng/mL/mg may demonstrate a greater incidence of drug-related adverse events and infections. In addition, C0 tacrolimus intrapatient variability (IPV) has been identified as a potential biomarker to predict poor outcomes related to drug over- and under-exposure. With regard to tacrolimus pharmacodynamics, inconsistent genotype-phenotype relationships have been identified. The aim of this review is to provide a concise summary of currently available data regarding the influence of pharmacogenetics on the clinical outcome of patients with high intrapatient variability and/or a fast metabolizer phenotype. Moreover, the role of membrane transporters in the interindividual variability of responses to tacrolimus is critically discussed from a transporter scientist’s perspective. Indeed, the relationship between transporter polymorphisms and intracellular tacrolimus concentrations will help to elucidate the interplay between the biological mechanisms underlying genetic variations impacting drug concentrations and clinical effects.
Collapse
Affiliation(s)
- Mercè Brunet
- Farmacologia i Toxicologia, Servei de Bioquímica i Genètica Molecular, Centre de Diagnòstic Biomèdic. Hospital Clínic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Marçal Pastor-Anglada
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Molecular Pharmacology and Experimental Therapeutics (MPET), Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
24
|
Gloor Y, Lloret-Linares C, Bosilkovska M, Perroud N, Richard-Lepouriel H, Aubry JM, Daali Y, Desmeules JA, Besson M. Drug metabolic enzyme genotype-phenotype discrepancy: High phenoconversion rate in patients treated with antidepressants. Biomed Pharmacother 2022; 152:113202. [PMID: 35653884 DOI: 10.1016/j.biopha.2022.113202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022] Open
Abstract
Cytochromes from the P450 family (CYP) play a central role in the primary metabolism of frequently prescribed antidepressants, potentially affecting their efficacy and tolerance. There are however important differences in the drug metabolic capacities of each individual resulting from a combination of intrinsic and environmental factors. This variability can present an important risk for patients and increases the difficulty of drug prescription in clinical practice. Pharmacogenetic studies have uncovered a number of alleles defining the intrinsic metabolizer status, however, additional factors affecting cytochrome activity can modify this activity and result in a phenoconversion. The present study investigates the discrepancy between the genetically predicted and actually measured activities for the six most important liver cytochromes (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) in a cohort of patients under antidepressant treatment, previously shown to have a high proportion of patients with low metabolizing activities. We now performed the genetic characterization of this cohort to determine the extent of the genetic versus environmental contribution in these decreased activities. For all enzyme tested, we observed an important rate of phenoconversion, affecting between 33 % and 65 % of the patients, as well as a significant (p < 1E-06) global reduction in the effective but not predicted activities of CYP2D6, CYP2C9 and CYP2C19 compared to the general population. Our results highlight the advantages of phenotyping versus genotyping as well as the increased risk of treatment failure or adverse effect occurrence in a polymedicated population.
Collapse
Affiliation(s)
- Y Gloor
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency, Geneva University Hospitals (HUG), Geneva, Switzerland.
| | - C Lloret-Linares
- Department of Nutritional and Metabolic Diseases, Ramsay Générale de Santé, Pays de Savoie Private Hospital, Annemasse, France
| | - M Bosilkovska
- Clinical Pharmacology and Toxicology, Department of Anaesthetics Pharmacology and Intensive Care, University of Geneva, Geneva, Switzerland
| | - N Perroud
- Division of Psychiatric Specialties, Department of Mental Health and Psychiatry, University of Geneva, Geneva, Switzerland; Division of Psychiatric Specialties, Department of Psychiatry, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - H Richard-Lepouriel
- Division of Psychiatric Specialties, Department of Mental Health and Psychiatry, University of Geneva, Geneva, Switzerland; Division of Psychiatric Specialties, Department of Psychiatry, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - J-M Aubry
- Division of Psychiatric Specialties, Department of Mental Health and Psychiatry, University of Geneva, Geneva, Switzerland
| | - Y Daali
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency, Geneva University Hospitals (HUG), Geneva, Switzerland; Clinical Pharmacology and Toxicology, Department of Anaesthetics Pharmacology and Intensive Care, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - J A Desmeules
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency, Geneva University Hospitals (HUG), Geneva, Switzerland; Clinical Pharmacology and Toxicology, Department of Anaesthetics Pharmacology and Intensive Care, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - M Besson
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency, Geneva University Hospitals (HUG), Geneva, Switzerland; Clinical Pharmacology and Toxicology, Department of Anaesthetics Pharmacology and Intensive Care, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Crespo E, Vidal-Alabró A, Jouve T, Fontova P, Stein M, Mocka S, Meneghini M, Sefrin A, Hruba P, Gomà M, Torija A, Donadeu L, Favà A, Cruzado JM, Melilli E, Moreso F, Viklicky O, Bemelman F, Reinke P, Grinyó J, Lloberas N, Bestard O. Tacrolimus CYP3A Single-Nucleotide Polymorphisms and Preformed T- and B-Cell Alloimmune Memory Improve Current Pretransplant Rejection-Risk Stratification in Kidney Transplantation. Front Immunol 2022; 13:869554. [PMID: 35833145 PMCID: PMC9272702 DOI: 10.3389/fimmu.2022.869554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Achieving fast immunosuppression blood exposure after kidney transplantation is key to abrogating both preformed and de novo anti-donor humoral and cellular alloresponses. However, while tacrolimus (TAC) is the cornerstone immunosuppressant inhibiting adaptive alloimmunity, its blood exposure is directly impacted by different single-nucleotide polymorphisms (SNPs) in CYP3A TAC-metabolizing enzymes. Here, we investigated how functional TAC-CYP3A genetic variants (CYP3A4*22/CYP3A5*3) influence the main baseline clinical and immunological risk factors of biopsy-proven acute rejection (BPAR) by means of preformed donor-specific antibodies (DSAs) and donor-specific alloreactive T cells (DSTs) in a large European cohort of 447 kidney transplants receiving TAC-based immunosuppression. A total of 70 (15.7%) patients developed BPAR. Preformed DSAs and DSTs were observed in 12 (2.7%) and 227 (50.8%) patients, respectively. According to the different CYP3A4*22 and CYP3A5*3 functional allele variants, we found 4 differential new clusters impacting fasting TAC exposure after transplantation; 7 (1.6%) were classified as high metabolizers 1 (HM1), 71 (15.9%) as HM2, 324 (72.5%) as intermediate (IM), and 45 (10.1%) as poor metabolizers (PM1). HM1/2 showed significantly lower TAC trough levels and higher dose requirements than IM and PM (p < 0.001) and more frequently showed TAC underexposure (<5 ng/ml). Multivariate Cox regression analyses revealed that CYP3A HM1 and IM pharmacogenetic phenotypes (hazard ratio (HR) 12.566, 95% CI 1.99–79.36, p = 0.007, and HR 4.532, 95% CI 1.10–18.60, p = 0.036, respectively), preformed DSTs (HR 3.482, 95% CI 1.99–6.08, p < 0.001), DSAs (HR 4.421, 95% CI 1.63–11.98, p = 0.003), and delayed graft function (DGF) (HR 2.023, 95% CI 1.22–3.36, p = 0.006) independently predicted BPAR. Notably, a significant interaction between T-cell depletion and TAC underexposure was observed, showing a reduction of the BPAR risk (HR 0.264, 95% CI 0.08–0.92, p = 0.037). Such variables except for DSAs displayed a higher predictive risk for the development of T cell-mediated rejection (TCMR). Refinement of pretransplant monitoring by incorporating TAC CYP3A SNPs with preformed DSAs as well as DSTs may improve current rejection-risk stratification and help induction treatment decision-making.
Collapse
Affiliation(s)
- Elena Crespo
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- *Correspondence: Oriol Bestard, ; Elena Crespo,
| | - Anna Vidal-Alabró
- Experimental Nephrology and Transplantation Laboratory, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Thomas Jouve
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Faculty of Health, Université Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, INSERM 1209, CNRS 5309, Grenoble, France
| | - Pere Fontova
- Experimental Nephrology and Transplantation Laboratory, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Maik Stein
- Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Sonila Mocka
- Experimental Nephrology and Transplantation Laboratory, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Maria Meneghini
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Kidney Transplant Unit and Nephrology Department, Vall d’Hebron Hospital, Barcelona, Spain
| | - Anett Sefrin
- Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Petra Hruba
- Department of Nephrology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Montserrat Gomà
- Pathology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Alba Torija
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Laura Donadeu
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Alex Favà
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Josep M. Cruzado
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Edoardo Melilli
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Francesc Moreso
- Kidney Transplant Unit and Nephrology Department, Vall d’Hebron Hospital, Barcelona, Spain
| | - Ondrej Viklicky
- Department of Nephrology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Frederike Bemelman
- Renal Transplant Unit, Department of Internal Medicine, Amsterdam University Medical Centers, Academic Medical Center—University of Amsterdam, Amsterdam, Netherlands
| | - Petra Reinke
- Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Josep Grinyó
- Department of Clinical Sciences, Barcelona University, Barcelona, Spain
| | - Nuria Lloberas
- Experimental Nephrology and Transplantation Laboratory, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Oriol Bestard
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Kidney Transplant Unit and Nephrology Department, Vall d’Hebron Hospital, Barcelona, Spain
- *Correspondence: Oriol Bestard, ; Elena Crespo,
| |
Collapse
|
26
|
Sridharan K, Shah S, Jassim A, Hammad M, Ebrahim Al Gadhban J, Al Segai O. Evaluation of Pharmacogenetics of Drug-Metabolizing Enzymes and Drug Efflux Transporter in Renal Transplants Receiving Immunosuppressants. J Pers Med 2022; 12:jpm12050823. [PMID: 35629245 PMCID: PMC9147030 DOI: 10.3390/jpm12050823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cytochrome P450 (CYP) enzymes, such as CYP3A4, and CYP3A5, P450 oxidoreductase (POR), peroxisome proliferator activated receptor alpha (PPAR-alpha), and drug transporter (ABCB1) were observed to influence concentrations of immunosuppressants (cyclosporine, everolimus, sirolimus, and tacrolimus) and outcomes in renal transplants. We carried out the present study to evaluate the prevalence and impact of these single nucleotide polymorphisms (SNPs) in adult renal transplants. SNPs were evaluated using commercial TaqMan® assays. Serum drug concentrations were estimated using immunoassays. One hundred and forty-six patients were recruited. SNPs in CYP3A5*3 were significantly associated with greater dose-adjusted cyclosporine and tacrolimus concentrations. SNPs in POR*28 were observed with significantly lower dose-adjusted concentrations, particularly with cyclosporine and tacrolimus. ABCB1 homozygous polymorphisms were observed with significantly lower time spent in the therapeutic range with cyclosporine and everolimus/sirolimus. Cyclosporine was observed in a significantly greater proportion of patients with elevated GGT, and SNPs in PPAR-alpha were significantly associated with an increased risk of this adverse event. Hypertriglyceridemia with everolimus was significantly associated with POR*28 polymorphisms. There is a need to validate the influence of these SNPs in a prospective study and develop an algorithm predicting the achievement of target concentrations.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology & Therapeutics, College of Medicine & Medical Sciences, Arabian Gulf University, Manama 328, Bahrain
- Correspondence: ; Tel.: +973-33453123
| | - Shamik Shah
- Department of Nephrology, Salmaniya Medical Complex, Manama 328, Bahrain; (S.S.); (J.E.A.G.)
- Department of Internal Medicine, College of Medicine & Medical Sciences, Arabian Gulf University, Manama 328, Bahrain
| | - Anfal Jassim
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 328, Bahrain;
| | - Mona Hammad
- Salmaniya Medical Complex, Manama 328, Bahrain;
| | | | - Ola Al Segai
- Department of Biochemistry, Salmaniya Medical Complex, Manama 328, Bahrain;
| |
Collapse
|
27
|
Everton JBF, Patrício FJB, Faria MS, Ferreira TCA, Filho NS, Silva GEB, Romão EA, Magalhães M. Impact of POR*28 Variant on Tacrolimus Pharmacokinetics in Kidney Transplant Patients with Different CYP3A5 Genotypes. Curr Drug Metab 2022; 23:233-241. [PMID: 35578867 DOI: 10.2174/1389200223666220516094226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2021] [Revised: 01/28/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The introduction of tacrolimus (TAC) in clinical practice was essential to the establishment of transplantation as therapy for patients with chronic renal disease. However, the higher interindividual variation of TAC metabolism has been an important limiting factor for its clinical use. Although the relationship between CYP3A5 polymorphisms and TAC pharmacokinetics (PK) is well established, the effects of other genetic variants on TAC metabolism, such as POR*28, still remain uncertain. OBJECTIVE To evaluate the impact of POR variants on TAC PK in renal transplant patients with different CYP3A5 genotypes (expressers and non-expressers). METHODS A total of 115 patients were included in this study. Genomic DNA was isolated from peripheral blood, and the real-time PCR technique was used to analyze the polymorphism POR rs1057868; C>T. RESULTS During the initial post-transplant period, variant allele carriers (*1/*28 and *28/*28) showed a lower TAC dose requirement than POR wild homozygotes (*1/*1). Regarding the influence of the different polymorphisms of POR within the CYP3A5 expresser and non-expresser groups, no differences were observed in any of the PK parameters analyzed during 12 months after transplantation. CONCLUSION In the studied population, the variant allelic POR*28 was significantly associated with lower TAC dose requirements and higher Co/D ratio in the first-month post-transplant. However, the effects of this polymorphism on the CYP3A5 enzyme activity were not observed.
Collapse
Affiliation(s)
- Janaina B F Everton
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil.,Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís, Brazil
| | - Fernando J B Patrício
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Manuel S Faria
- linical Research Center of the University Hospital of the Federal University of Maranhão (CEPEC/HUUFMA/EBSERH), São Luís, Brazil
| | - Teresa C A Ferreira
- Kidney Transplant Unit, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Natalino Salgado Filho
- Nephrology Unit, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Gyl E B Silva
- Pathology Unit, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Elen A Romão
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Magalhães
- Research and Extension Nucleus (NUPE), UNDB University Center, São Luís, Brazil
| |
Collapse
|
28
|
Gloor Y, Czarnetzki C, Curtin F, Gil-Wey B, Tramèr MR, Desmeules JA. Genetic Susceptibility Toward Nausea and Vomiting in Surgical Patients. Front Genet 2022; 12:816908. [PMID: 35173765 PMCID: PMC8842269 DOI: 10.3389/fgene.2021.816908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Postoperative nausea and vomiting (PONV) are frequently occurring adverse effects following surgical procedures. Despite predictive risk scores and a pallet of prophylactic antiemetic treatments, it is still estimated to affect around 30% of the patients, reducing their well-being and increasing the burden of post-operative care. The aim of the current study was to characterize selected genetic risk factors of PONV to improve the identification of at risk patients. We genotyped 601 patients followed during the first 24 h after surgery for PONV symptoms in the absence of any antiemetic prophylaxis. These patients were recruited in the frame of a randomized, placebo controlled clinical study aiming to test the efficacy of dexamethasone as a treatment of established PONV. We examined the impact of selected single nucleotide polymorphisms (SNPs) located around 13 different genes and the predicted activity of 6 liver drug metabolizing enzymes from the cytochromes P450 family (CYP) on the occurrence and recurrence of PONV. Our genetic study confirms the importance of genetic variations in the type 3B serotonin receptor in the occurrence of PONV. Our modelling shows that integration of rs3782025 genotype in preoperative risk assessments may help improve the targeting of antiemetic prophylaxis towards patients at risk of PONV.
Collapse
Affiliation(s)
- Yvonne Gloor
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Christoph Czarnetzki
- Division of Anesthesiology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland.,Division of Anesthesiology, Department of Anesthesiology, Intensive Care and Emergency Medicine, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - François Curtin
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland.,Personalized Health Programs, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland
| | - Béatrice Gil-Wey
- Division of Anesthesiology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Martin R Tramèr
- Division of Anesthesiology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Jules A Desmeules
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
29
|
|
30
|
CYP3A-status is associated with blood concentration and dose-requirement of tacrolimus in heart transplant recipients. Sci Rep 2021; 11:21389. [PMID: 34725418 PMCID: PMC8560807 DOI: 10.1038/s41598-021-00942-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023] Open
Abstract
High inter-individual variability in tacrolimus clearance is attributed to genetic polymorphisms of CYP3A enzymes. However, due to CYP3A phenoconversion induced by non-genetic factors, continuous changes in tacrolimus-metabolizing capacity entail frequent dose-refinement for optimal immunosuppression. In heart transplant recipients, the contribution of patients' CYP3A-status (CYP3A5 genotype and CYP3A4 expression) to tacrolimus blood concentration and dose-requirement was evaluated in the early and late post-operative period. In low CYP3A4 expressers carrying CYP3A5*3/*3, the dose-corrected tacrolimus level was significantly higher than in normal CYP3A4 expressers or in those with CYP3A5*1. Modification of the initial tacrolimus dose was required for all patients: dose reduction by 20% for low CYP3A4 expressers, a 40% increase for normal expressers and a 2.4-fold increase for CYP3A5*1 carriers. The perioperative high-dose corticosteroid therapy was assumed to ameliorate the low initial tacrolimus-metabolizing capacity during the first month. The fluctuation of CYP3A4 expression and tacrolimus blood concentration (C0/D) was found to be associated with tapering and cessation of corticosteroid in CYP3A5 non-expressers, but not in those carrying CYP3A5*1. Although monitoring of tacrolimus blood concentration cannot be omitted, assaying recipients' CYP3A-status can guide optimization of the initial tacrolimus dose, and can facilitate personalized tacrolimus therapy during steroid withdrawal in the late post-operative period.
Collapse
|
31
|
Mulder TAM, van Eerden RAG, de With M, Elens L, Hesselink DA, Matic M, Bins S, Mathijssen RHJ, van Schaik RHN. CYP3A4∗22 Genotyping in Clinical Practice: Ready for Implementation? Front Genet 2021; 12:711943. [PMID: 34306041 PMCID: PMC8296839 DOI: 10.3389/fgene.2021.711943] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most important drug metabolizing enzyme in the liver, responsible for the oxidative metabolism of ∼50% of clinically prescribed drugs. Therefore, genetic variation in CYP3A4 could potentially affect the pharmacokinetics, toxicity and clinical outcome of drug treatment. Thus far, pharmacogenetics for CYP3A4 has not received much attention. However, the recent discovery of the intron 6 single-nucleotide polymorphism (SNP) rs35599367C > T, encoding the CYP3A4∗22 allele, led to several studies into the pharmacogenetic effect of CYP3A4∗22 on different drugs. This allele has a relatively minor allele frequency of 3-5% and an effect on CYP3A4 enzymatic activity. Thus far, no review summarizing the data published on several drugs is available yet. This article therefore addresses the current knowledge on CYP3A4∗22. This information may help in deciding if, and for which drugs, CYP3A4∗22 genotype-based dosing could be helpful in improving drug therapy. CYP3A4∗22 was shown to significantly influence the pharmacokinetics of several drugs, with currently being most thoroughly investigated tacrolimus, cyclosporine, and statins. Additional studies, focusing on toxicity and clinical outcome, are warranted to demonstrate clinical utility of CYP3A4∗22 genotype-based dosing.
Collapse
Affiliation(s)
- Tessa A M Mulder
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Mirjam de With
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Laure Elens
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Erasmus MC Transplant Institute, Rotterdam, Netherlands
| | - Maja Matic
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
32
|
Fohner AE, Dalton R, Skagen K, Jackson K, Claw KG, Hopkins SE, Robinson R, Khan BA, Prasad B, Schuetz EG, Nickerson DA, Thornton TA, Dillard DA, Boyer BB, Thummel KE, Woodahl EL. Characterization of CYP3A pharmacogenetic variation in American Indian and Alaska Native communities, targeting CYP3A4*1G allele function. Clin Transl Sci 2021; 14:1292-1302. [PMID: 33503331 PMCID: PMC8301563 DOI: 10.1111/cts.12970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023] Open
Abstract
The frequencies of genetic variants in the CYP3A4 and CYP3A5 genes differ greatly across global populations, leading to profound differences in the metabolic activity of these enzymes and resulting drug metabolism rates, with important consequences for therapeutic safety and efficacy. Yet, the impact of genetic variants on enzyme activity are incompletely described, particularly in American Indian and Alaska Native (AIAN) populations. To characterize genetic variation in CYP3A4 and CYP3A5 and its effect on enzyme activity, we partnered with AIAN people living in two regions of Alaska: Yup'ik Alaska Native people living in the Yukon-Kuskokwim Delta region of rural southwest Alaska and AIAN people receiving care at the Southcentral Foundation in Anchorage, Alaska. We identified low frequencies of novel and known variation in CYP3A4 and CYP3A5, including low frequencies of the CYP3A4*1G and CYP3A5*1 variants, and linkage disequilibrium patterns that differed from those we previously identified in an American Indian population in western Montana. We also identified increased activity of the CYP3A4*1G allele in vitro and in vivo. We demonstrated that the CYP3A4*1G allele confers increased protein content in human lymphoblastoid cells and both increased protein content and increased activity in human liver microsomes. We confirmed enhanced CYP3A4-mediated 4β-vitamin D hydroxylation activity in Yup'ik people with the CYP3A4*1G allele. AIAN people in Alaska and Montana who carry the CYP3A4*1G allele-coupled with low frequency of the functional CYP3A5*1 variant-may metabolize CYP3A substrates more rapidly than people with the reference CYP3A4 allele.
Collapse
Affiliation(s)
- Alison E. Fohner
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Rachel Dalton
- Department of Biomedical and Pharmaceutical SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Kasse Skagen
- Department of Biomedical and Pharmaceutical SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Konner Jackson
- Department of Biomedical and Pharmaceutical SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Katrina G. Claw
- Division of Biomedical Informatics and Personalized MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Scarlett E. Hopkins
- Department of Obstetrics and GynecologyOregon Health & Science UniversityPortlandOregonUSA
| | | | | | - Bhagwat Prasad
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Erin G. Schuetz
- Department of Pharmaceutical SciencesSt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | | | | | | | - Bert B. Boyer
- Department of Obstetrics and GynecologyOregon Health & Science UniversityPortlandOregonUSA
| | | | - Erica L. Woodahl
- Department of Biomedical and Pharmaceutical SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
33
|
Therapeutic drug monitoring of immunosuppressive drugs in hepatology and gastroenterology. Best Pract Res Clin Gastroenterol 2021; 54-55:101756. [PMID: 34874840 DOI: 10.1016/j.bpg.2021.101756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 01/31/2023]
Abstract
Immunosuppressive drugs have been key to the success of liver transplantation and are essential components of the treatment of inflammatory bowel disease (IBD) and autoimmune hepatitis (AIH). For many but not all immunosuppressants, therapeutic drug monitoring (TDM) is recommended to guide therapy. In this article, the rationale and evidence for TDM of tacrolimus, mycophenolic acid, the mammalian target of rapamycin inhibitors, and azathioprine in liver transplantation, IBD, and AIH is reviewed. New developments, including algorithm-based/computer-assisted immunosuppressant dosing, measurement of immunosuppressants in alternative matrices for whole blood, and pharmacodynamic monitoring of these agents is discussed. It is expected that these novel techniques will be incorporate into the standard TDM in the next few years.
Collapse
|
34
|
Chen D, Lu H, Sui W, Li L, Xu J, Yang T, Yang S, Zheng P, Chen Y, Chen J, Xue W, Li Q, Zheng Q, Ye D, Sadee W, Wang D, Qian W, Lai L, Li C, Li L. Functional CYP3A variants affecting tacrolimus trough blood concentrations in Chinese renal transplant recipients. THE PHARMACOGENOMICS JOURNAL 2021; 21:376-389. [PMID: 33649515 DOI: 10.1038/s41397-021-00216-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/12/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
The aim of this study was to identify novel genetic variants affecting tacrolimus trough blood concentrations. We analyzed the association between 58 single nucleotide polymorphisms (SNPs) across the CYP3A gene cluster and the log-transformed tacrolimus concentration/dose ratio (log (C0/D)) in 819 renal transplant recipients (Discovery cohort). Multivariate linear regression was used to test for associations between tacrolimus log (C0/D) and clinical factors. Luciferase reporter gene assays were used to evaluate the functions of select SNPs. Associations of putative functional SNPs with log (C0/D) were further tested in 631 renal transplant recipients (Replication cohort). Nine SNPs were significantly associated with tacrolimus log (C0/D) after adjustment for CYP3A5*3 and clinical factors. Dual luciferase reporter assays indicated that the rs4646450 G allele and rs3823812 T allele were significantly associated with increased normalized luciferase activity ratios (p < 0.01). Moreover, CYP3A7*2 was associated with higher TAC log(C0/D) in the group of CYP3A5 expressers. Age, serum creatinine and hematocrit were significantly associated with tacrolimus log (C0/D). CYP3A7*2, rs4646450, and rs3823812 are proposed as functional SNPs affecting tacrolimus trough blood concentrations in Chinese renal transplant recipients. Clinical factors also significantly affect tacrolimus metabolism.
Collapse
Affiliation(s)
- Dina Chen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huijie Lu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiguo Sui
- Guangxi Key laboratory of Metabolic Diseases Research, Nephrology Department of Guilin NO. 924 Hospital, Guilin, Guangxi, China
| | - Liqing Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Xu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tengfei Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Siyao Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Zheng
- Department of Pharmacy, Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Chen
- Department of Pharmacy, Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiejing Chen
- Guangxi Key laboratory of Metabolic Diseases Research, Nephrology Department of Guilin NO. 924 Hospital, Guilin, Guangxi, China
| | - Wen Xue
- Guangxi Key laboratory of Metabolic Diseases Research, Nephrology Department of Guilin NO. 924 Hospital, Guilin, Guangxi, China
| | - Qingping Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Que Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Demei Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wolfgang Sadee
- Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Danxin Wang
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Wanying Qian
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Liusheng Lai
- Guangxi Key laboratory of Metabolic Diseases Research, Nephrology Department of Guilin NO. 924 Hospital, Guilin, Guangxi, China
| | - Chuanjiang Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Sarwar S, Tareen MU, Sabir M, Sultan A, Malik SA. NF-κB1 intronic region polymorphisms as risk factor for head and neck cancer in HPV-infected population from Pakistan. Curr Mol Med 2021; 22:74-82. [PMID: 33653249 DOI: 10.2174/1566524021666210302144344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Head and neck cancer (HNC) developed due to the number of risk factors, including infection of Human Papillomavirus (HPV). The genetic predisposition also plays an important role in deregulating the NF-κB pathway, and certain polymorphisms are reported to affect the pathway genes. OBJECTIVES The present study was conducted for the detection of HPV and polymorphisms in the NF-κB1 gene of HNC patients in the Pakistani population. METHODS Genomic DNA from HNC tumors samples were extracted using the Exgene SV DNA extraction Kit. Allele-specific PCR and direct sequencing were done for analysis of NF-κB1 SNPs, 94ins/del (rs28362491), rs1598858, and rs4648068. RESULTS The genotypes AG (36.2%/ 12%) of rs1598858, and AG (28.3%/ 12%) and GG (28.3%/ 22%) of rs4648068 were associated with significantly (p≤0.05) increased risk of head and neck cancer in studied population. Furthermore, among the HNC cases, genotypes AGrs1598858 (p≤0.014) and GGrs4648068 (p≤0.001) had increased risk of HPV related cancers. Tobacco use (OR-3.158442; [1.140, 8.754]), lymph nodes involvement (OR 4.05128; [1.854, 8.852]), and poorly differentiated tumors (OR 1.997155; [0.940, 4.245]) were positively associated with HPV induced cancers. CONCLUSION It was the first comprehensive study from Pakistan, to evaluate the polymorphic variants of NF-κB1. Genotypes AGrs4648068, GGrs4648068, and AGrs1598858 of NF-κB1 gene are associated with increased risk of head and neck cancers in the Pakistani population. It can be concluded that HPV infection, lymph nodes and tobacco use can act synergetic to each other and add up in modulating HNC when present together with intronic SNPs of NF-κB1 gene.
Collapse
Affiliation(s)
- Sumaira Sarwar
- Department of Biochemistry, Quaid-I-Azam University, Islamabad. Pakistan
| | | | - Maimoona Sabir
- Department of Microbiology, University of Haripur, KP. Pakistan
| | - Aneesa Sultan
- Department of Biochemistry, Quaid-I-Azam University, Islamabad. Pakistan
| | - Salman A Malik
- Department of Biochemistry, Quaid-I-Azam University, Islamabad. Pakistan
| |
Collapse
|
36
|
Everton JBF, Patrício FJB, Faria MS, Ferreira TCA, Romao EA, Silva GEB, Magalhães M. CYP3A5 and PPARA genetic variants are associated with low trough concentration to dose ratio of tacrolimus in kidney transplant recipients. Eur J Clin Pharmacol 2021; 77:879-886. [PMID: 33398393 DOI: 10.1007/s00228-020-03076-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2020] [Accepted: 12/22/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Genetic polymorphisms have been associated with variation in the metabolism of tacrolimus (TAC) in kidney transplant patients. This study is aimed at assessing the impact of allelic variants of CYP3A5 and PPARA genes on the pharmacokinetics (PK) of TAC in Brazilian kidney transplant recipients in the first-year post-transplant. METHODS A total of 127 patients were included for genetic evaluation. Genomic DNA was isolated from peripheral blood and real-time PCR was used to analyze the main polymorphisms described for the genes CYP3A5 (rs776746; C > G) and PPARA (rs4823613; A > G and rs4253728; G > A). RESULTS CYP3A5 expressors showed a lower Co/dose ratio than non-expressors, with the median values of this parameter <1.01 ng/mL/mg in the first group at all evaluated times. Additionally, PPARA variant homozygotes had a lower Co/D ratio than wild allele carriers in the 12-month post-transplant period, with a median value of 0.65 ng/mL/mg. In the CYP3A5 expressers, the presence of the variant homozygous genotype PPARA was associated with a lower value of Co/D compared with the other genotypic groups at month 12. CONCLUSION In the population under study, polymorphisms on CYP3A5 and PPARA were identified as determining and independent factors associated with the reduction of Co/D of TAC. Thus, the genotyping of these genetic variants may be a useful tool for the individualized prescription of TAC in kidney transplant patients.
Collapse
Affiliation(s)
- Janaína B F Everton
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão, São Luís, Brazil.,Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil
| | - Fernando J B Patrício
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Manuel S Faria
- Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil.,Clinical Research Center, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Teresa C A Ferreira
- Kidney Transplant Unit, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Elen A Romao
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gyl E B Silva
- Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil.,Pathology Unit, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Marcelo Magalhães
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão, São Luís, Brazil. .,Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil. .,Clinical Research Center, University Hospital of the Federal University of Maranhão, São Luís, Brazil.
| |
Collapse
|
37
|
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in others. A significant source of this variability in drug response is drug metabolism, where differences in presystemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, Cmax, and/or Cmin) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is recognized that both intrinsic factors (e.g., genetics, age, sex, and disease states) and extrinsic factors (e.g., diet , chemical exposures from the environment, and the microbiome) play a significant role. For drug-metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, upregulation and downregulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less predictable and time-dependent manner. Understanding the mechanistic basis for variability in drug disposition and response is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that will improve outcomes in maintaining health and treating disease.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brice D Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Christi W Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Xiong Y, Zheng X, Ke W, Gong G, Wang Y, Dan C, Huang P, Wu J, Guo W, Mei J. Function and association analysis of Cyclophilin A gene with resistance to Edwardsiella ictaluri in yellow catfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103783. [PMID: 32735962 DOI: 10.1016/j.dci.2020.103783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/18/2020] [Revised: 05/08/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Edwardsiella ictaluri (E. ictaluri) is one of the main bacterial pathogens in catfish which has caused serious economic loss to yellow catfish (Pelteobagrus fulvidraco) in China. In our previous work, we demonstrated that CypA was up-regulated at the early stage of E. ictaluri infection in yellow catfish and displayed strong chemotactic activity for leukocytes in vitro. However, the effect of CypA on E. ictaluri is unknown in vivo. Therefore, two homozygous transgenic zebrafish lines expressing yellow catfish CypA (TG-CypA-1 and TG-CypA-2) were generated. After challenged with E. ictaluri at a dose of 1.0 × 104 CFU per adult fish, both two transgenic lines exhibited a higher resistance to bacterial infection than the wildtype zebrafish. Herein, CypA gene in E. ictaluri-challenged yellow catfish was screened for presence of polymorphisms by sequencing and six single nucleotide polymorphisms (SNPs) were identified. SNP association analysis revealed that 528T/C SNP in the first intron was significantly different in disease-susceptible and -resistant groups, which was confirmed in two independent populations of yellow catfish. Moreover, the relative expression of CypA in the resistant group (CC genotype in 528T/C SNP) was significantly higher than that in the susceptible group (TT genotype in 528T/C SNP) in different immune organs of yellow catfish including spleen, head kidney, body kidney and liver. Our results reveal the potential function of CypA in host defense to bacterial infection and suggest the SNP marker in CypA gene associated with the resistance to E. ictaluri may facilitate the selective breeding of disease-resistant yellow catfish in the future.
Collapse
Affiliation(s)
- Yang Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaozhen Zheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wensi Ke
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhong Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Peipei Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiankai Wu
- Kangyu Fisheries Technology Co. Ltd. of Sheyang County, Sheyang, 224300, China
| | - Wenjie Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
39
|
Francke MI, Hesselink DA, Li Y, Koch BCP, de Wit LEA, van Schaik RHN, Yang L, Baan CC, van Gelder T, de Winter BCM. Monitoring the tacrolimus concentration in peripheral blood mononuclear cells of kidney transplant recipients. Br J Clin Pharmacol 2020; 87:1918-1929. [PMID: 33025649 PMCID: PMC8056738 DOI: 10.1111/bcp.14585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
Aims Tacrolimus is a critical dose drug and to avoid under‐ and overexposure, therapeutic drug monitoring is standard practice. However, rejection and drug‐related toxicity occur despite whole‐blood tacrolimus pre‐dose concentrations ([Tac]blood) being on target. Monitoring tacrolimus concentrations at the target site (within peripheral blood mononuclear cells; [Tac]cells) may better correlate with drug‐efficacy. The aim of this study was to (1) investigate the relationship between [Tac]blood and [Tac]cells, (2) identify factors affecting the tacrolimus distribution in cells and whole‐blood, and (3) study the relationship between [Tac]cells and clinical outcomes after kidney transplantation. Methods A total of 175 renal transplant recipients were prospectively followed. [Tac]blood and [Tac]cells were determined at Months 3, 6 and 12 post‐transplantation. Patients were genotyped for ABCB1 1199G>A and 3435C>T, CYP3A4 15389C>T, and CYP3A5 6986G>A. Data on rejection and tacrolimus‐related nephrotoxicity and post‐transplant diabetes mellitus were collected. Results Correlations between [Tac]blood and [Tac]cells were moderate to poor (Spearman's r = 0.31; r = 0.41; r = 0.61 at Months 3, 6 and 12, respectively). The [Tac]cells/[Tac]blood ratio was stable over time in most patients (median intra‐patient variability 39.0%; range 3.5%–173.2%). Age, albumin and haematocrit correlated with the [Tac]cells/[Tac]blood ratio. CYP3A5 and CYP3A4 genotype combined affected both dose‐corrected [Tac]blood and [Tac]cells. ABCB1 was not significantly related to tacrolimus distribution. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes. Conclusions The correlation between [Tac]blood and [Tac]cells is poor. Age, albumin and haematocrit correlate with the [Tac]cells/[Tac]blood ratio, whereas genetic variation in ABCB1, CYP3A4 and CYP3A5 do not. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes.
Collapse
Affiliation(s)
- Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Yi Li
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lucia E A de Wit
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lin Yang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
40
|
Ben-Fredj N, Hannachi I, Chadli Z, Ben-Romdhane H, A Boughattas N, Ben-Fadhel N, Aouam K. Dosing algorithm for Tacrolimus in Tunisian Kidney transplant patients: Effect of CYP 3A4*1B and CYP3A4*22 polymorphisms. Toxicol Appl Pharmacol 2020; 407:115245. [DOI: 10.1016/j.taap.2020.115245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 11/28/2022]
|
41
|
Effect of CYP3A4*22 and PPAR-α Genetic Variants on Platelet Reactivity in Patients Treated with Clopidogrel and Lipid-Lowering Drugs Undergoing Elective Percutaneous Coronary Intervention. Genes (Basel) 2020; 11:genes11091068. [PMID: 32932966 PMCID: PMC7564055 DOI: 10.3390/genes11091068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/27/2022] Open
Abstract
This study aims to determine whether genetic variants that influence CYP3A4 expression are associated with platelet reactivity in clopidogrel-treated patients undergoing elective percutaneous coronary intervention (PCI), and to evaluate the influence of statin/fibrate co-medication on these associations. A study cohort was used containing 1124 consecutive elective PCI patients in whom CYP3A4*22 and PPAR-α (G209A and A208G) SNPs were genotyped and the VerifyNow P2Y12 platelet reactivity test was performed. Minor allele frequencies were 0.4% for CYP3A4*22/*22, 6.8% for PPAR-α G209A AA, and 7.0% for PPAR-α A208G GG. CYP3A4*22 was not associated with platelet reactivity. The PPAR-α genetic variants were significantly associated with platelet reactivity (G209A AA: −24.6 PRU [−44.7, −4.6], p = 0.016; A208G GG: −24.6 PRU [−44.3, −4.8], p = 0.015). Validation of these PPAR-α results in two external cohorts, containing 716 and 882 patients, respectively, showed the same direction of effect, although not statistically significant. Subsequently, meta-analysis of all three cohorts showed statistical significance of both variants in statin/fibrate users (p = 0.04 for PPAR-a G209A and p = 0.03 for A208G), with no difference in statin/fibrate non-users. In conclusion, PPAR-α G209A and A208G were associated with lower platelet reactivity in patients undergoing elective PCI who were treated with clopidogrel and statin/fibrate co-medication. Further research is necessary to confirm these findings.
Collapse
|
42
|
Degraeve AL, Moudio S, Haufroid V, Chaib Eddour D, Mourad M, Bindels LB, Elens L. Predictors of tacrolimus pharmacokinetic variability: current evidences and future perspectives. Expert Opin Drug Metab Toxicol 2020; 16:769-782. [PMID: 32721175 DOI: 10.1080/17425255.2020.1803277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In kidney transplantation, tacrolimus (TAC) is at the cornerstone of current immunosuppressive strategies. Though because of its narrow therapeutic index, it is critical to ensure that TAC levels are maintained within this sharp window through reactive adjustments. This would allow maximizing efficiency while limiting drug-associated toxicity. However, TAC high intra- and inter-patient pharmacokinetic (PK) variability makes it more laborious to accurately predict the appropriate dosage required for a given patient. AREAS COVERED This review summarizes the state-of-the-art knowledge regarding drug interactions, demographic and pharmacogenetics factors as predictors of TAC PK. We provide a scoring index for each association to grade its relevance and we present practical recommendations, when possible for clinical practice. EXPERT OPINION The management of TAC concentration in transplanted kidney patients is as critical as it is challenging. Recommendations based on rigorous scientific evidences are lacking as knowledge of potential predictors remains limited outside of DDIs. Awareness of these limitations should pave the way for studies looking at demographic and pharmacogenetic factors as well as gut microbiota composition in order to promote tailored treatment plans. Therapeutic approaches considering patients' clinical singularities may help allowing to maintain appropriate concentration of TAC.
Collapse
Affiliation(s)
- Alexandra L Degraeve
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Serge Moudio
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium.,Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Djamila Chaib Eddour
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Michel Mourad
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| |
Collapse
|
43
|
Influence of CYP3A polymorphisms on tacrolimus pharmacokinetics in kidney transplant recipients. THE PHARMACOGENOMICS JOURNAL 2020; 21:69-77. [PMID: 32843687 DOI: 10.1038/s41397-020-00179-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/27/2018] [Revised: 05/11/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
Abstract
Tacrolimus is characterized by a highly variable pharmacokinetics (PK) and a small therapeutic window. It is metabolized specifically by the CYP3A isoenzymes. This study aimed to determine, in kidney transplant patients, the influence of different genotypic clusters involving these SNPs CYP3A4*1B, CYP3A4*22, and CYP3A5*3 on Tacrolimus bioavailability during the first (PTP1) and the second (PTP2) posttransplant phase (PT). We included kidney transplant patients who received Tacrolimus and underwent drug monitoring by C0 monitoring. CYP3A4 and CYP3A5 genotyping were performed using PCR-RFLP. We classified the patients into four groups: Slow, Intermediate, rapid, and ultra-rapid metabolizers. We included 80 patients. The Tacrolimus dose-normalized C0 (C0/D ratio) was significantly decreased in intermediate, rapid, and ultra-rapid comparing with slow metabolisers. During PTP1 only CYP3A5*3 and CYP3A4*22 polymorphisms correlate significantly with C0/D ratio. Regardless of the PT phase and during the late one, only the CYP3A4 polymorphisms correlate significantly with the C0/D ratio. We identified that these SNPs are all associated independently with Tacrolimus exposure in different PT phases. Moreover, we are the first to define a genotypic cluster including the three CYP3A SNPs.
Collapse
|
44
|
van Gelder T, Meziyerh S, Swen JJ, de Vries APJ, Moes DJAR. The Clinical Impact of the C 0/D Ratio and the CYP3A5 Genotype on Outcome in Tacrolimus Treated Kidney Transplant Recipients. Front Pharmacol 2020; 11:1142. [PMID: 32848756 PMCID: PMC7411304 DOI: 10.3389/fphar.2020.01142] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Tacrolimus is metabolized by CYP3A4 and CYP3A5 enzymes. Patients expressing CYP3A5 (in Caucasian patients about 15% of the population but more frequent in African Americans and Asians) have a dose requirement that is around 50% higher than non-expressers to reach the target concentration. CYP3A5 expressers can be considered fast metabolizers. The trough concentration/dose (C0/D) ratio of tacrolimus has recently been proposed as a prognostic marker for poor outcome after kidney transplantation. Patients with a low C0/D ratio (also referred to as fast metabolizers) seem to have more tacrolimus-related nephrotoxicity, more BK-viremia, and a lower graft survival. At first sight, the expression of CYP3A5 and a low C0/D ratio seem to be overlapping factors, both pointing towards patients in whom a higher tacrolimus dose is needed to reach the tacrolimus target concentration. However, there are important differences, and these differences may explain why the impact of the C0/D ratio on long term outcome is stronger than for CYP3A5 genotype status. Patients with a low C0/D ratio require a high tacrolimus dose and are exposed to high tacrolimus peak concentrations. The higher peak exposure to tacrolimus (and/or its metabolites) may explain the higher incidence of nephrotoxicity, BK-viremia and graft loss. A potential confounder is the concurrent maintenance treatment of corticosteroids, as steroids are sometimes continued in patients at high immunological risk. Steroids induce the metabolism of tacrolimus via pregnane X receptor mediated increased CYP3A4 expression, resulting in lower tacrolimus C0/D ratio in high risk patients. Also non-adherence may result in lower C0/D ratio which is also associated with poor outcome. The C0/D ratio of tacrolimus does seem to identify a group of patients with increased risk of poor outcome after kidney transplantation. Our recommendation is to monitor tacrolimus peak concentrations in these patients, and if these are high then target slightly lower pre-dose concentrations. Another possibility would be to switch to a prolonged release formulation or to dose the drug more frequently, in smaller doses, to avoid high peak concentrations.
Collapse
Affiliation(s)
- Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Soufian Meziyerh
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Aiko P J de Vries
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
45
|
Pallio G, Irrera N, Bitto A, Mannino F, Minutoli L, Rottura M, Pallio S, Altavilla D, Alibrandi A, Marciano MC, Righi M, Mannucci C, Arcoraci V, Squadrito F. Failure of Achieving Tacrolimus Target Blood Concentration Might Be Avoided by a Wide Genotyping of Transplanted Patients: Evidence from a Retrospective Study. J Pers Med 2020; 10:jpm10020047. [PMID: 32492825 PMCID: PMC7354451 DOI: 10.3390/jpm10020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
Precise tacrolimus treatment in transplanted patients is achieved in the clinical setting by performing therapeutic drug monitoring (TDM) and consequently adjusting therapy. The aim of this study was to retrospectively analyze the variability in tacrolimus blood levels throughout 2 years of observation in 75 transplanted patients and to investigate if tacrolimus blood levels correlate with presence of genetic polymorphisms, thus modifying tacrolimus pharmacokinetics. CYP3A5*1 (G6986A), CYP3A4*1B (A392G), CYP3A4*22, ABCB1 (C3435T; C1236T; G2677A/T), SLCO1B1 (T521C), polymorphisms were analyzed. Based on the effect of their genotypes, patients were stratified into 5 groups: (1) reduced tacrolimus metabolism (RM), (2) increased metabolism (IM), (3) transporters polymorphisms (TM), (4) metabolism and transporter polymorphisms (AM) and (5) no mutations (Wild Type, WT). The percentage of the samples out of therapeutic range was significantly higher in the IM group than in the WT group (p = 0.001), as well as compared to the TM group (p = 0.004). Only IM pattern (p = 0.015) resulted as an independent predictor of number of tacrolimus blood levels out of therapeutic range. RM pattern (p = 0.006) was inversely related to the administered dose. Therefore, genotyping could become a standard practice before tacrolimus prescription thus decreasing side effects, increasing efficacy and reducing the economic burden for the national health system.
Collapse
Affiliation(s)
- Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (A.B.); (F.M.); (L.M.); (M.R.); (S.P.); (F.S.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (A.B.); (F.M.); (L.M.); (M.R.); (S.P.); (F.S.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (A.B.); (F.M.); (L.M.); (M.R.); (S.P.); (F.S.)
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (A.B.); (F.M.); (L.M.); (M.R.); (S.P.); (F.S.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (A.B.); (F.M.); (L.M.); (M.R.); (S.P.); (F.S.)
| | - Michelangelo Rottura
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (A.B.); (F.M.); (L.M.); (M.R.); (S.P.); (F.S.)
| | - Socrate Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (A.B.); (F.M.); (L.M.); (M.R.); (S.P.); (F.S.)
| | - Domenica Altavilla
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria, 98125 Messina, Italy; (D.A.); (M.R.); (C.M.)
| | - Angela Alibrandi
- Department of Economics Section of Statistical and Mathematical Sciences, University of Messina, Via dei Verdi, 98122 Messina, Italy;
| | - Maria Concetta Marciano
- Grande Ospedale Metropolitano: “Bianchi-Melacrino-Morelli”, Via Giuseppe Melacrino, 89124 Reggio Calabria, Italy;
| | - Maria Righi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria, 98125 Messina, Italy; (D.A.); (M.R.); (C.M.)
| | - Carmen Mannucci
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria, 98125 Messina, Italy; (D.A.); (M.R.); (C.M.)
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (A.B.); (F.M.); (L.M.); (M.R.); (S.P.); (F.S.)
- Correspondence:
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (A.B.); (F.M.); (L.M.); (M.R.); (S.P.); (F.S.)
| |
Collapse
|
46
|
Hannachi I, Ben Fredj N, Chadli Z, Ben Fadhel N, Ben Romdhane H, Touitou Y, Boughattas NA, Chaabane A, Aouam K. Effect of CYP3A4*22 and CYP3A4*1B but not CYP3A5*3 polymorphisms on tacrolimus pharmacokinetic model in Tunisian kidney transplant. Toxicol Appl Pharmacol 2020; 396:115000. [DOI: 10.1016/j.taap.2020.115000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2019] [Revised: 03/18/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022]
|
47
|
Salvadori M, Tsalouchos A. Pharmacogenetics of immunosuppressant drugs: A new aspect for individualized therapy. World J Transplant 2020; 10:90-103. [PMID: 32864355 PMCID: PMC7428791 DOI: 10.5500/wjt.v10.i5.90] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, pharmacogenetics has emerged as an important tool for choosing the right immunosuppressant drug and its appropriate dose. Indeed, pharmacogenetics may exert its action on immunosuppressant drugs at three levels. Pharmacogenetics identifies and studies the genes involved in encoding the proteins involved in drug pharmacokinetics and in encoding the enzymes involved in drug degradation. Pharmacogenetics is also relevant in encoding the enzymes and proteins involved in codifying the transmembrane proteins involved in transmembrane passage favoring the absorption and intracellular action of several immunosuppressants. Pharmacogenetics concern the variability of genes encoding the proteins involved as immunosuppressant triggers in the pharmacodynamic pathways. Of course, not all genes have been discovered and studied, but some of them have been clearly examined and their relevance together with other factors such as age and race has been defined. Other genes on the basis of relevant studies have been proposed as good candidates for future studies. Unfortunately, to date, clear conclusions may be drawn only for those drugs that are metabolized by CYP3A5 and its genotyping before kidney, heart and lung transplantation is recommended. The conclusions of the studies on the recommended candidate genes, together with the development of omics techniques could in the future allow us to choose the right dose of the right immunosuppressant for the right patient.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Nephrology and Dialysis Unit, Saints Cosmas and Damian Hospital, Pescia 51017, Italy
| |
Collapse
|
48
|
Abstract
Pharmacogenetics is a key component of precision medicine. Genetic variation in drug metabolism enzymes can lead to variable exposure to drugs and metabolites, potentially leading to inefficacy and drug toxicity. Although the evidence for pharmacogenetic associations in children is not as extensive as for adults, there are several drugs across diverse therapeutic areas with robust pediatric data indicating important, and relatively common, drug-gene interactions. Guidelines to assist gene-based dose optimization are available for codeine, thiopurine drugs, selective serotonin reuptake inhibitors, atomoxetine, tacrolimus, and voriconazole. For each of these drugs, there is an opportunity to clinically implement precision medicine approaches with children for whom genetic test results are known or are obtained at the time of prescribing. For many more drugs that are commonly used in pediatric patients, additional investigation is needed to determine the genetic factors influencing appropriate dose.
Collapse
Affiliation(s)
- Laura B Ramsey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
- Divisions of Research in Patient Services and Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Jacob T Brown
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota College of Pharmacy, Duluth, Minnesota 55812, USA
| | - Susan I Vear
- Department of Hematology & Oncology, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, and Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Sara L Van Driest
- Departments of Pediatrics and Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA;
| |
Collapse
|
49
|
Wu B, Tong J, Ran Z. Tacrolimus Therapy in Steroid-Refractory Ulcerative Colitis: A Review. Inflamm Bowel Dis 2020; 26:24-32. [PMID: 30980713 DOI: 10.1093/ibd/izz068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/10/2019] [Indexed: 12/25/2022]
Abstract
Inflammatory bowel diseases are known for a chronic inflammatory process of the gastrointestinal tract and include Crohn's disease and ulcerative colitis (UC). Patients who are dependent on or resistant to corticosteroids account for about 20% of severe UC patients. Tacrolimus is a calcineurin inhibitor that has recently been used in the treatment of steroid-refractory ulcerative colitis. Tacrolimus has been demonstrated to have remarkable therapeutic efficacy in UC patients, without increased risk of severe adverse effects such as induction of remission and maintenance therapy. This article reviews the mechanism of action, pharmacogenetics, efficacy, and safety of tacrolimus for patients with steroid-refractory ulcerative colitis.
Collapse
Affiliation(s)
- Biyu Wu
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Jinglu Tong
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Zhihua Ran
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
50
|
de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet 2019. [PMID: 29520731 PMCID: PMC6132501 DOI: 10.1007/s40262-018-0644-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Since its clinical introduction in 1998, the topoisomerase I inhibitor irinotecan has been widely used in the treatment of solid tumors, including colorectal, pancreatic, and lung cancer. Irinotecan therapy is characterized by several dose-limiting toxicities and large interindividual pharmacokinetic variability. Irinotecan has a highly complex metabolism, including hydrolyzation by carboxylesterases to its active metabolite SN-38, which is 100- to 1000-fold more active compared with irinotecan itself. Several phase I and II enzymes, including cytochrome P450 (CYP) 3A4 and uridine diphosphate glucuronosyltransferase (UGT) 1A, are involved in the formation of inactive metabolites, making its metabolism prone to environmental and genetic influences. Genetic variants in the DNA of these enzymes and transporters could predict a part of the drug-related toxicity and efficacy of treatment, which has been shown in retrospective and prospective trials and meta-analyses. Patient characteristics, lifestyle and comedication also influence irinotecan pharmacokinetics. Other factors, including dietary restriction, are currently being studied. Meanwhile, a more tailored approach to prevent excessive toxicity and optimize efficacy is warranted. This review provides an updated overview on today’s literature on irinotecan pharmacokinetics, pharmacodynamics, and pharmacogenetics.
Collapse
Affiliation(s)
- Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Andrew K L Goey
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands.
| |
Collapse
|