1
|
Yang J, Zhi W, Wang L. Role of Tau Protein in Neurodegenerative Diseases and Development of Its Targeted Drugs: A Literature Review. Molecules 2024; 29:2812. [PMID: 38930877 PMCID: PMC11206543 DOI: 10.3390/molecules29122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Tau protein is a microtubule-associated protein that is widely distributed in the central nervous system and maintains and regulates neuronal morphology and function. Tau protein aggregates abnormally and forms neurofibrillary tangles in neurodegenerative diseases, disrupting the structure and function of neurons and leading to neuronal death, which triggers the initiation and progression of neurological disorders. The aggregation of tau protein in neurodegenerative diseases is associated with post-translational modifications, which may affect the hydrophilicity, spatial conformation, and stability of tau protein, promoting tau protein aggregation and the formation of neurofibrillary tangles. Therefore, studying the role of tau protein in neurodegenerative diseases and the mechanism of aberrant aggregation is important for understanding the mechanism of neurodegenerative diseases and finding therapeutic approaches. This review describes the possible mechanisms by which tau protein promotes neurodegenerative diseases, the post-translational modifications of tau protein and associated influencing factors, and the current status of drug discovery and development related to tau protein, which may contribute to the development of new therapeutic approaches to alleviate or treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiakai Yang
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Weijia Zhi
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Lifeng Wang
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
2
|
Yeh JY, Chao HC, Hong CL, Hung YC, Tzou FY, Hsiao CT, Li JL, Chen WJ, Chou CT, Tsai YS, Liao YC, Lin YC, Lin S, Huang SY, Kennerson M, Lee YC, Chan CC. A missense mutation in human INSC causes peripheral neuropathy. EMBO Mol Med 2024; 16:1091-1114. [PMID: 38589651 PMCID: PMC11099080 DOI: 10.1038/s44321-024-00062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
PAR3/INSC/LGN form an evolutionarily conserved complex required for asymmetric cell division in the developing brain, but its post-developmental function and disease relevance in the peripheral nervous system (PNS) remains unknown. We mapped a new locus for axonal Charcot-Marie-Tooth disease (CMT2) and identified a missense mutation c.209 T > G (p.Met70Arg) in the INSC gene. Modeling the INSCM70R variant in Drosophila, we showed that it caused proprioceptive defects in adult flies, leading to gait defects resembling those in CMT2 patients. Cellularly, PAR3/INSC/LGN dysfunction caused tubulin aggregation and necrotic neurodegeneration, with microtubule-stabilizing agents rescuing both morphological and functional defects of the INSCM70R mutation in the PNS. Our findings underscore the critical role of the PAR3/INSC/LGN machinery in the adult PNS and highlight a potential therapeutic target for INSC-associated CMT2.
Collapse
Affiliation(s)
- Jui-Yu Yeh
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Hua-Chuan Chao
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Neurology, Department of Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Cheng-Li Hong
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chien Hung
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Fei-Yang Tzou
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Tsung Hsiao
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeng-Lin Li
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital Jinshan Branch, New Taipei City, Taiwan
| | - Wen-Jie Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Tapiei, Taiwan
| | - Cheng-Ta Chou
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Shuen Tsai
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu, Taiwan
- Department of Medical Science, National Tsing Hua University, HsinChu, Taiwan
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney Local Health District, Concord, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia
| | - Yi-Chung Lee
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan.
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan.
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Trinh VH, Nguyen Huu T, Sah DK, Choi JM, Yoon HJ, Park SC, Jung YS, Lee SR. Redox Regulation of PTEN by Reactive Oxygen Species: Its Role in Physiological Processes. Antioxidants (Basel) 2024; 13:199. [PMID: 38397797 PMCID: PMC10886030 DOI: 10.3390/antiox13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumor suppressor due to its ability to regulate cell survival, growth, and proliferation by downregulating the PI3K/AKT signaling pathway. In addition, PTEN plays an essential role in other physiological events associated with cell growth demands, such as ischemia-reperfusion, nerve injury, and immune responsiveness. Therefore, recently, PTEN inhibition has emerged as a potential therapeutic intervention in these situations. Increasing evidence demonstrates that reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), are produced and required for the signaling in many important cellular processes under such physiological conditions. ROS have been shown to oxidize PTEN at the cysteine residue of its active site, consequently inhibiting its function. Herein, we provide an overview of studies that highlight the role of the oxidative inhibition of PTEN in physiological processes.
Collapse
Affiliation(s)
- Vu Hoang Trinh
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
- Department of Oncology, Department of Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea;
| | - Yu Seok Jung
- Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| |
Collapse
|
4
|
Diab R, Pilotto F, Saxena S. Autophagy and neurodegeneration: Unraveling the role of C9ORF72 in the regulation of autophagy and its relationship to ALS-FTD pathology. Front Cell Neurosci 2023; 17:1086895. [PMID: 37006471 PMCID: PMC10060823 DOI: 10.3389/fncel.2023.1086895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The proper functioning of the cell clearance machinery is critical for neuronal health within the central nervous system (CNS). In normal physiological conditions, the cell clearance machinery is actively involved in the elimination of misfolded and toxic proteins throughout the lifetime of an organism. The highly conserved and regulated pathway of autophagy is one of the important processes involved in preventing and neutralizing pathogenic buildup of toxic proteins that could eventually lead to the development of neurodegenerative diseases (NDs) such as Alzheimer’s disease or Amyotrophic lateral sclerosis (ALS). The most common genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide expansion consisting of GGGGCC (G4C2) repeats in the chromosome 9 open reading frame 72 gene (C9ORF72). These abnormally expanded repeats have been implicated in leading to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs). In this review, we discuss the normal physiological role of C9ORF72 in the autophagy-lysosome pathway (ALP), and present recent research deciphering how dysfunction of the ALP synergizes with C9ORF72 haploinsufficiency, which together with the gain of toxic mechanisms involving hexanucleotide repeat expansions and DPRs, drive the disease process. This review delves further into the interactions of C9ORF72 with RAB proteins involved in endosomal/lysosomal trafficking, and their role in regulating various steps in autophagy and lysosomal pathways. Lastly, the review aims to provide a framework for further investigations of neuronal autophagy in C9ORF72-linked ALS-FTD as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rim Diab
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Federica Pilotto
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Smita Saxena,
| |
Collapse
|
5
|
Sahara N, Yanai R. Limitations of human tau-expressing mouse models and novel approaches of mouse modeling for tauopathy. Front Neurosci 2023; 17:1149761. [PMID: 37152607 PMCID: PMC10157230 DOI: 10.3389/fnins.2023.1149761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein are primarily neuropathological features of a number of neurodegenerative diseases, collectively termed tauopathy. There is no disease-modifying drug available for tauopathy except anti-amyloid antibody therapies for Alzheimer's disease. For tau-targeting therapy, experimental models recapitulating human tau pathologies are indispensable. However, there are limited numbers of animal models that display intracellular filamentous tau aggregations. At present, several lines of P301L/S mutant tau-expressing transgenic mice successfully developed neurofibrillary pathology in the central nervous system, while most non-mutant tau-expressing transgenic mice rarely developed tau pathology. Importantly, recent studies have revealed that transgenes disrupt the coding sequence of endogenous genes, resulting in deletions and/or structural variations at the insertion site. Although any impact on the pathogenesis of tauopathy is unknown, gene disruptions may affect age-related neurodegeneration including tangle formation and brain atrophy. Moreover, some mouse lines show strain-dependent pathological features. These limitations (FTDP-17 mutations, insertion/deletion mutations, and genetic background) are a major hindrance to the establishment of a precise disease model of tauopathy. In this review, we noticed both the utility and the pitfalls of current P301L/S mutant tau-expressing transgenic mice, and we propose future strategies of mouse modeling to replicate human tauopathies.
Collapse
Affiliation(s)
- Naruhiko Sahara
- Department of Functional Brain Imaging, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Rin Yanai
- Department of Functional Brain Imaging, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
6
|
Selvarasu K, Singh AK, Iyaswamy A, Gopalkrishnashetty Sreenivasmurthy S, Krishnamoorthi S, Bera AK, Huang JD, Durairajan SSK. Reduction of kinesin I heavy chain decreases tau hyperphosphorylation, aggregation, and memory impairment in Alzheimer's disease and tauopathy models. Front Mol Biosci 2022; 9:1050768. [PMID: 36387285 PMCID: PMC9641281 DOI: 10.3389/fmolb.2022.1050768] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 08/29/2023] Open
Abstract
Many neurodegenerative diseases, such as Alzheimer's disease (AD) and frontotemporal dementia with Parkinsonism linked to chromosome 17, are characterized by tau pathology. Numerous motor proteins, many of which are involved in synaptic transmission, mediate transport in neurons. Dysfunction in motor protein-mediated neuronal transport mechanisms occurs in several neurodegenerative disorders but remains understudied in AD. Kinesins are the most important molecular motor proteins required for microtubule-dependent transport in neurons, and kinesin-1 is crucial for neuronal transport among all kinesins. Although kinesin-1 is required for normal neuronal functions, the dysfunction of these motor domains leading to neurodegenerative diseases is not fully understood. Here, we reported that the kinesin-I heavy chain (KIF5B), a key molecular motor protein, is involved in tau homeostasis in AD cells and animal models. We found that the levels of KIF5B in P301S tau mice are high. We also found that the knockdown and knockout (KO) of KIFf5B significantly decreased the tau stability, and overexpression of KIF5B in KIF5B-KO cells significantly increased the expression of phosphorylated and total tau levels. This suggested that KIF5B might prevent tau accumulation. By conducting experiments on P301S tau mice, we showed that partially reducing KIF5B levels can reduce hyperphosphorylation of the human tau protein, formation of insoluble aggregates, and memory impairment. Collectively, our results suggested that decreasing KIF5B levels is sufficient to prevent and/or slow down abnormal tau behavior of AD and other tauopathies.
Collapse
Affiliation(s)
- Karthikeyan Selvarasu
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashok Iyaswamy
- Mr. and Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | | | - Senthilkumar Krishnamoorthi
- Centre for Trans-Disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Chennai, India
| | - Amal Kanti Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
7
|
Teixeira JMC, Liu ZH, Namini A, Li J, Vernon RM, Krzeminski M, Shamandy AA, Zhang O, Haghighatlari M, Yu L, Head-Gordon T, Forman-Kay JD. IDPConformerGenerator: A Flexible Software Suite for Sampling the Conformational Space of Disordered Protein States. J Phys Chem A 2022; 126:5985-6003. [PMID: 36030416 PMCID: PMC9465686 DOI: 10.1021/acs.jpca.2c03726] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/08/2022] [Indexed: 11/29/2022]
Abstract
The power of structural information for informing biological mechanisms is clear for stable folded macromolecules, but similar structure-function insight is more difficult to obtain for highly dynamic systems such as intrinsically disordered proteins (IDPs) which must be described as structural ensembles. Here, we present IDPConformerGenerator, a flexible, modular open-source software platform for generating large and diverse ensembles of disordered protein states that builds conformers that obey geometric, steric, and other physical restraints on the input sequence. IDPConformerGenerator samples backbone phi (φ), psi (ψ), and omega (ω) torsion angles of relevant sequence fragments from loops and secondary structure elements extracted from folded protein structures in the RCSB Protein Data Bank and builds side chains from robust Monte Carlo algorithms using expanded rotamer libraries. IDPConformerGenerator has many user-defined options enabling variable fractional sampling of secondary structures, supports Bayesian models for assessing the agreement of IDP ensembles for consistency with experimental data, and introduces a machine learning approach to transform between internal and Cartesian coordinates with reduced error. IDPConformerGenerator will facilitate the characterization of disordered proteins to ultimately provide structural insights into these states that have key biological functions.
Collapse
Affiliation(s)
- João M. C. Teixeira
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zi Hao Liu
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ashley Namini
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Jie Li
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Robert M. Vernon
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Mickaël Krzeminski
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Alaa A. Shamandy
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Oufan Zhang
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Mojtaba Haghighatlari
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Lei Yu
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Julie D. Forman-Kay
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
8
|
Reassessment of Neuronal Tau Distribution in Adult Human Brain and Implications for Tau Pathobiology. Acta Neuropathol Commun 2022; 10:94. [PMID: 35765058 PMCID: PMC9237980 DOI: 10.1186/s40478-022-01394-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Tau is a predominantly neuronal, soluble and natively unfolded protein that can bind and stabilize microtubules in the central nervous system. Tau has been extensively studied over several decades, especially in the context of neurodegenerative diseases where it can aberrantly aggregate to form a spectrum of pathological inclusions. The presence of tau inclusions in the form of neurofibrillary tangles, neuropil threads and dystrophic neurites within senile plaques are essential and defining features of Alzheimer’s disease. The current dogma favors the notion that tau is predominantly an axonal protein, and that in Alzheimer’s disease there is a redistribution of tau towards the neuronal soma that is associated with the formation of pathological inclusions such as neurofibrillary tangles and neuropil threads. Using novel as well as previously established highly specific tau antibodies, we demonstrate that contrary to this overwhelmingly accepted fact, as asserted in numerous articles and reviews, in adult human brain, tau is more abundant in cortical gray matter that is enriched in neuronal soma and dendrites compared to white matter that is predominantly rich in neuronal axons. Additionally, in Alzheimer’s disease tau pathology is significantly more abundant in the brain cortical gray matter of affected brain regions compared to the adjacent white matter regions. These findings have important implications for the biological function of tau as well as the mechanisms involved in the progressive spread of tau associated with the insidious nature of Alzheimer’s disease.
Collapse
|
9
|
Wang KK, Munoz Pareja JC, Mondello S, Diaz-Arrastia R, Wellington C, Kenney K, Puccio AM, Hutchison J, McKinnon N, Okonkwo DO, Yang Z, Kobeissy F, Tyndall JA, Büki A, Czeiter E, Pareja Zabala MC, Gandham N, Berman R. Blood-based traumatic brain injury biomarkers - Clinical utilities and regulatory pathways in the United States, Europe and Canada. Expert Rev Mol Diagn 2021; 21:1303-1321. [PMID: 34783274 DOI: 10.1080/14737159.2021.2005583] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major global health issue, resulting in debilitating consequences to families, communities, and health-care systems. Prior research has found that biomarkers aid in the pathophysiological characterization and diagnosis of TBI. Significantly, the FDA has recently cleared both a bench-top assay and a rapid point-of-care assays of tandem biomarker (UCH-L1/GFAP)-based blood test to aid in the diagnosis mTBI patients. With the global necessity of TBI biomarkers research, several major consortium multicenter observational studies with biosample collection and biomarker analysis have been created in the USA, Europe, and Canada. As each geographical region regulates its data and findings, the International Initiative for Traumatic Brain Injury Research (InTBIR) was formed to facilitate data integration and dissemination across these consortia. AREAS COVERED This paper covers heavily investigated TBI biomarkers and emerging non-protein markers. Finally, we analyze the regulatory pathways for converting promising TBI biomarkers into approved in-vitro diagnostic tests in the United States, European Union, and Canada. EXPERT OPINION TBI biomarker research has significantly advanced in the last decade. The recent approval of an iSTAT point of care test to detect mild TBI has paved the way for future biomarker clearance and appropriate clinical use across the globe.
Collapse
Affiliation(s)
- Kevin K Wang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Jennifer C Munoz Pareja
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cheryl Wellington
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Kimbra Kenney
- Department of Neurology, Uniformed Service University, Bethesda, Maryland, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamie Hutchison
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nicole McKinnon
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - J Adrian Tyndall
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Endre Czeiter
- Department of Neurosurgery, Pecs University, Pecs, Hungary
| | | | - Nithya Gandham
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rebecca Berman
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | | |
Collapse
|
10
|
Sapin V, Gaulmin R, Aubin R, Walrand S, Coste A, Abbot M. Blood biomarkers of mild traumatic brain injury: State of art. Neurochirurgie 2021; 67:249-254. [PMID: 33482234 DOI: 10.1016/j.neuchi.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/26/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) is one of the most common causes of emergency department visits around the world. Up to 90% of injuries are classified as mTBI. Cranial computed tomography (CCT) is a standard diagnosis tool to identify intracranial complications in adults with mTBI. Alternatively, children can be admitted for inpatient observation with CCT scans performed only on those with clinical deterioration. The use of blood biomarkers is a supplementary tool for identifying patients at risk of intracerebral lesions who may need imaging. METHOD We realised a bibliographic state of art providing a contemporary clinical and laboratory framework for blood biomarker testing in mTBI management. RESULTS The S100B protein is the only biomarker that can be used today in the clinical routine for management of mTBI with appropriate evidence-based medicine. Due to its excellent negative predictive value, S100B protein is an alternative choice to CCT scanning for mTBI management with considered, consensual and pragmatic use. In this state of art, we propose points to help clinicians and clinical pathologists use serum S100B protein in the clinical routine. A state of art on the different biomarkers (GFAP, UCH-L1, NF [H or L], tau, H-FABP, SNTF, NSE, miRNAs, MBP) is also conducted. Some of these other biomarkers, used alone (GFAP, UCH-L1) or in combination (GFAP+H-FABP±S100B±IL10) can improve the specificity of S100B. CONCLUSION Using a bibliographic state of art, we highlighted the added values of the blood biomarkers for the clinical management of mTBI.
Collapse
Affiliation(s)
- V Sapin
- Biochemistry and molecular biology department, CHU Gabriel-Montpied, Clermont-Ferrand, France.
| | - R Gaulmin
- ASM Clermont Auvergne, service médical, 63028 Clermont-Ferrand cedex 2, France
| | - R Aubin
- ASM Clermont Auvergne, service médical, 63028 Clermont-Ferrand cedex 2, France
| | - S Walrand
- Service de nutrition clinique, université Clermont Auvergne, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - A Coste
- Service de neurochirurgie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - M Abbot
- ASM Clermont Auvergne, service médical, 63028 Clermont-Ferrand cedex 2, France; Service de médecine du sport, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Interest of blood biomarkers to predict lesions in medical imaging in the context of mild traumatic brain injury. Clin Biochem 2020; 85:5-11. [PMID: 32781055 DOI: 10.1016/j.clinbiochem.2020.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the common causes of emergency department visits around the world. Up to 90% of injuries are classified as mTBI. Cranial computed tomography (CCT) is a standard diagnostic tool for adults with mTBI. Alternatively, children can be admitted for inpatient observation with CCT scans performed only on those with clinical deterioration. The use of blood biomarkers is a supplementary tool for identifying patients at risk of intracerebral lesions who may need imaging. This review provides a contemporary clinical and laboratory framework for blood biomarker testing in mTBI management. The S100B protein is used routinely in the management of mTBI in Europe together with clinical guidelines. Due to its excellent negative predictive value, S100B protein is an alternative choice to CCT scanning for mTBI management under considered, consensual and pragmatic use. In this review, we propose points to help clinicians and clinical pathologists use serum S100B protein in the clinical routine. A review of the literature on the different biomarkers (GFAP, UCH-L1, NF [H or L], tau, H-FABP, SNTF, NSE, miRNAs, MBP, β trace protein) is also conducted. Some of these other blood biomarkers, used alone (GFAP, UCH-L1) or in combination (GFAP + H-FABP ± S100B ± IL10) can improve the specificity of S100B.
Collapse
|
12
|
Nag TC, Kathpalia P, Wadhwa S. Microtubule alterations may destabilize photoreceptor integrity: Age-related microtubule changes and pattern of expression of MAP-2, Tau and hyperphosphorylated Tau in aging human photoreceptor cells. Exp Eye Res 2020; 198:108153. [PMID: 32710889 DOI: 10.1016/j.exer.2020.108153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022]
Abstract
Photoreceptor cells undergo changes with aging. It is unknown if their microtubules are stable or not with aging. This study examined photoreceptor cell ultrastructure from 18 human donor retinas (32 eyes; age: 45-94 years) and quantified the photoreceptors with altered microtubules over six to ninth decades in four defined retinal regions. In addition, immunoreactivity (IR) to microtubule-associated protein-2 (MAP-2), tau and hyperphophorylated tau was performed in retinal sections from companion eyes. In young donor retinas below 75 years of age, microtubules appeared straight in photoreceptor inner segments and axons. With age, they appeared bent or misaligned in macular and mid-peripheral photoreceptors. In addition, dense granular materials were present in photoreceptor axons and synaptic terminals in advanced ages. In all decades, rod microtubules were affected more than their cone counterparts (28% vs 15%, p < 0.005). Both rods and cones were significantly affected in mid-peripheral retina (5-8 mm outside the macular border) in eighth decade, compared to other decades or retinal regions (parafoveal, perifoveal and nasal) examined (p < 0.005). IR showed a steady expression of MAP-2 in inner segments, and tau in inner segments to axons below 75 years of age, but was absent for both markers in scattered macular and mid-peripheral photoreceptors in advanced ages (>75 years). IR to hyperphosphorylated tau was present mainly in inner retina and increased with aging. Markers of oxidative stress, e.g., lipid peroxidation (4-hydroxy 2-nonenal) and nitrosative stress (nitrotyrosine) were immunopositive in aged photoreceptors. The sporadic loss of MAP-2 and tau-IR in photoreceptors may be due to microtubule changes; all these changes may affect intracellular transport and be partly responsible for photoreceptor death in aged human retina.
Collapse
Affiliation(s)
- Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | - Poorti Kathpalia
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Gao G, He J, Luo Y, Sun Y, Zhou Y, Zhang J, Xing Y, Dai J. Axonopathy Likely Initiates Neuropathological Processes Via a Mechanism of Axonal Leakage in Alzheimer's Mouse Models. Curr Mol Med 2020; 19:183-195. [PMID: 30961496 DOI: 10.2174/1566524019666190405174908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The formation of hyperphosphorylated tau and the production of β-amyloid are thought to be critical steps contributing to the pathological mechanisms in Alzheimer's disease (AD). However, there has been a long-lasting debate over their importance in the onset of AD. Recent studies have demonstrated that axonopathy is considered as an early neuropathological change of AD. However, the exact relationship between the development of axonopathy and the classic neuropathological changes such as senile plaques (SPs) and neurofibrillary tangles (NFTs) is unclear. OBJECTIVE The aim of this study was to investigate whether the formation of SPs and NFTs is associated with the development of axonal leakage. METHOD AND RESULTS Here we show that the formation and development of axonal leakage - a novel axonopathy is an age-dependent process, accompanied by swellings of axons and varicosities and associated with chronic oxidative stress induced by thiamine deficient (TD) diet in Kunming mice. In an APP/PS1 transgenic mouse model of AD, axonal leakage appears at 3 months, becomes more obvious at 6 months and severe, beyond 1 year. We also show that slight axonal leakage is related to the formation of hyperphosphorylated tau, but not plaques, and that only severe axonal leakage accompanied by the extensive swollen axons and varicosities, and overproduction of β-amyloid leads to the formation of SPs and hyperphosphorylated tau. CONCLUSION These data provide an explanation of the common origin and development of SPs and NFTs, and suggest that axonal leakage might be a key event in the development of the neuropathological processes in AD.
Collapse
Affiliation(s)
- Ge Gao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing He
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China.,Clinical Laboratory of the Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Luo
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China.,Clinical Laboratory of Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China.,The College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Yanping Zhou
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China.,Department of Pathophysiology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Junxia Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Department of Anatomy, Histology and Embryology, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Ying Xing
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China.,The College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| |
Collapse
|
14
|
Cong Y, Han X, Wang Y, Chen Z, Lu Y, Liu T, Wu Z, Jin Y, Luo Y, Zhang X. Drug Toxicity Evaluation Based on Organ-on-a-chip Technology: A Review. MICROMACHINES 2020; 11:E381. [PMID: 32260191 PMCID: PMC7230535 DOI: 10.3390/mi11040381] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Organ-on-a-chip academic research is in its blossom. Drug toxicity evaluation is a promising area in which organ-on-a-chip technology can apply. A unique advantage of organ-on-a-chip is the ability to integrate drug metabolism and drug toxic processes in a single device, which facilitates evaluation of toxicity of drug metabolites. Human organ-on-a-chip has been fabricated and used to assess drug toxicity with data correlation with the clinical trial. In this review, we introduced the microfluidic chip models of liver, kidney, heart, nerve, and other organs and multiple organs, highlighting the application of these models in drug toxicity detection. Some biomarkers of toxic injury that have been used in organ chip platforms or have potential for use on organ chip platforms are summarized. Finally, we discussed the goals and future directions for drug toxicity evaluation based on organ-on-a-chip technology.
Collapse
Affiliation(s)
- Ye Cong
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian 116023, China;
| | - Xiahe Han
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; (X.H.); (Y.W.)
| | - Youping Wang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; (X.H.); (Y.W.)
| | - Zongzheng Chen
- Health Science Center, Shenzhen University, Shenzhen 518060, China; (Z.C.); (Z.W.); (Y.J.)
| | - Yao Lu
- Biotechnologhy Division, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Tingjiao Liu
- College of Stomatology, Dalian Medical University, Dalian 116011, China;
| | - Zhengzhi Wu
- Health Science Center, Shenzhen University, Shenzhen 518060, China; (Z.C.); (Z.W.); (Y.J.)
| | - Yu Jin
- Health Science Center, Shenzhen University, Shenzhen 518060, China; (Z.C.); (Z.W.); (Y.J.)
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian 116023, China;
| | - Xiuli Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; (X.H.); (Y.W.)
| |
Collapse
|
15
|
Perini G, Ciasca G, Minelli E, Papi M, Palmieri V, Maulucci G, Nardini M, Latina V, Corsetti V, Florenzano F, Calissano P, De Spirito M, Amadoro G. Dynamic structural determinants underlie the neurotoxicity of the N-terminal tau 26-44 peptide in Alzheimer's disease and other human tauopathies. Int J Biol Macromol 2019; 141:278-289. [PMID: 31470053 DOI: 10.1016/j.ijbiomac.2019.08.220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/10/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
The intrinsically disordered tau protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) and other human tauopathies. Abnormal post-translational modifications of tau, such as truncation, are causally involved in the onset/development of these neurodegenerative diseases. In this context, the AD-relevant N-terminal fragment mapping between 26 and 44 amino acids of protein (tau26-44) is interesting, being endowed with potent neurotoxic effects in vitro and in vivo. However, the understanding of the mechanism(s) of tau26-44 toxicity is a challenging task because, similarly to the full-length tau, it does not have a unique 3D structure but exists as dynamic ensemble of conformations. Here we use Atomic Force Spectroscopy, Small Angle X-ray Scattering and Molecular Dynamics simulation to gather structural and functional information on the tau26-44. We highlight the presence, the type and the location of its temporary secondary structures and we unveil the occurrence of relevant transient tertiary conformations that could contribute to tau26-44 toxicity. Data are compared with those obtained on the biologically-inactive, reverse-sequence (tau44-26 peptide) which has the same mass, charge, aminoacidic composition as well as the same overall unfolded character of tau26-44.
Collapse
Affiliation(s)
- Giordano Perini
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Gabriele Ciasca
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy.
| | - Eleonora Minelli
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Massimiliano Papi
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Valentina Palmieri
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Giuseppe Maulucci
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Matteo Nardini
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Veronica Corsetti
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Fulvio Florenzano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Marco De Spirito
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| |
Collapse
|
16
|
Wang S, He B, Hang W, Wu N, Xia L, Wang X, Zhang Q, Zhou X, Feng Z, Chen Q, Chen J. Berberine Alleviates Tau Hyperphosphorylation and Axonopathy-Associated with Diabetic Encephalopathy via Restoring PI3K/Akt/GSK3β Pathway. J Alzheimers Dis 2019; 65:1385-1400. [PMID: 30175975 DOI: 10.3233/jad-180497] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Axonopathy is closely linked to the development of diabetic encephalopathy induced by type II diabetes (T2D). Berberine has been shown to cross the blood-brain barrier and holds promising effect for neuronal damage in diabetes. OBJECTIVE The present study investigated the protective effect and the underlying mechanism of berberine on neuronal axonopathy in both in vitro and in vivo models. METHODS High glucose/high fat diet and streptozotocin injection-induced T2D rat model was used. Berberine was administered p.o. to T2D rat model for 10 weeks. Morris water maze test, in vivo neuronal tracing, immunohistochemistry, and western blot analysis were performed to evaluate the protective effects of berberine in T2D-induced diabetic encephalopathy rats. Primary cultured neurons were used to further explore the underlying mechanisms in vitro. RESULTS Berberine dramatically reduced blood glucose and serum insulin levels and alleviated insulin resistance. Berberine significantly attenuated memory impairment, axonopathy, and tau hyperphosphorylation, and also restored PI3K/Akt/GSK3β signaling pathway in T2D rats. In vitro, berberine induced an increase in the phosphorylation of PI3K/Akt as well as GSK3β in high glucose-treated primary neurons. Furthermore, berberine-induced PI3K/Akt activation also resulted in the dephosphorylation of tau protein, which could improve axonal transport impairment in high glucose-treated primary neurons. Pretreated neurons with LY294002, an inhibitor of PI3K, partially blocked berberine-inhibited tau phosphorylation and berberine-activated PI3K/Akt signaling pathway. CONCLUSIONS Berberine exerts the protective effect against cognitive deficits by improving tau hyperphosphorylation and the axonal damage through restoring PI3K/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, Hubei, China
| | - Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - NingHua Wu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Liangtao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinwen Zhou
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zuohua Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingjie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,New products of TCM Senile Diseases Co-Innovation Center of Hubei, Basic Medical Sciences College, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Endo H, Shimada H, Sahara N, Ono M, Koga S, Kitamura S, Niwa F, Hirano S, Kimura Y, Ichise M, Shinotoh H, Zhang MR, Kuwabara S, Dickson DW, Toda T, Suhara T, Higuchi M. In vivo binding of a tau imaging probe, [ 11 C]PBB3, in patients with progressive supranuclear palsy. Mov Disord 2019; 34:744-754. [PMID: 30892739 PMCID: PMC6593859 DOI: 10.1002/mds.27643] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/29/2018] [Accepted: 01/25/2019] [Indexed: 01/07/2023] Open
Abstract
Background [11C]pyridinyl‐butadienyl‐benzothiazole 3 is a PET imaging agent designed for capturing pathological tau aggregates in diverse neurodegenerative disorders, and would be of clinical utility for neuropathological investigations of PSP. Objectives To explore the usefulness of [11C]pyridinyl‐butadienyl‐benzothiazole 3/PET in assessing characteristic distributions of tau pathologies and their association with clinical symptoms in the brains of living PSP patients. Methods We assessed 13 PSP patients and 13 age‐matched healthy control subjects. Individuals negative for amyloid β PET with [11C]Pittsburgh compound B underwent clinical scoring, MR scans, and [11C]pyridinyl‐butadienyl‐benzothiazole 3/PET. Results There were significant differences in binding potential for [11C]pyridinyl‐butadienyl‐benzothiazole 3 between PSP patients and healthy control subjects (P = 0.02). PSP patients exhibited greater radioligand retention than healthy control subjects in multiple brain regions, including frontoparietal white matter, parietal gray matter, globus pallidus, STN, red nucleus, and cerebellar dentate nucleus. [11C]pyridinyl‐butadienyl‐benzothiazole 3 deposition in frontoparietal white matter, but not gray matter, was correlated with general severity of parkinsonian and PSP symptoms, whereas both gray matter and white matter [11C]pyridinyl‐butadienyl‐benzothiazole 3 accumulations in the frontoparietal cortices were associated with nonverbal cognitive impairments. Autoradiographic and fluorescence labeling with pyridinyl‐butadienyl‐benzothiazole 3 was observed in gray matter and white matter of PSP motor cortex tissues. Conclusions Our findings support the in vivo detectability of tau fibrils characteristic of PSP by [11C]pyridinyl‐butadienyl‐benzothiazole 3/PET, and imply distinct and synergistic contributions of gray matter and white matte tau pathologies to clinical symptoms. [11C]pyridinyl‐butadienyl‐benzothiazole 3/PET potentially provides a neuroimaging‐based index for the evolution of PSP tau pathologies promoting the deterioration of motor and cognitive functions. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hironobu Endo
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan.,Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Soichiro Kitamura
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan.,Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Fumitoshi Niwa
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan.,Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeki Hirano
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuyuki Kimura
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan.,Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Masanori Ichise
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| | - Hitoshi Shinotoh
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan.,Neurology Chiba Clinic, Chiba, Japan
| | - Ming Rong Zhang
- Department of Radiopharmaceuticals Development, Clinical Research Cluster, NIRS, QST, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Tatsushi Toda
- Department of Neurology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| |
Collapse
|
18
|
Tomar GS, Singh GP, Lahkar D, Sengar K, Nigam R, Mohan M, Anindya R. New biomarkers in brain trauma. Clin Chim Acta 2018; 487:325-329. [PMID: 30342876 DOI: 10.1016/j.cca.2018.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Abstract
Brain-specific biomolecules are being increasingly investigated as a viable alternative to the clinical scores and radiological features, on which we still rely upon for stratification, therapy and predicting outcome in traumatic brain injury (TBI). TBI generally leads to release of various chemical compound within the cerebrospinal fluid (CSF) or blood depending on the severity of injury, which were studied variedly in last decades. However, most of these compounds being non-specific to brain, their applicability was challenged further. This review encompasses the novel and promising biomarkers being studied in the present decade, with encouraging results in laboratory and animal or human models.
Collapse
Affiliation(s)
- Gaurav S Tomar
- Department of Neuroanaesthesiology and Critical Care, JPNA Trauma Centre, All IndiaInstitute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Gyaninder P Singh
- Department of Neuroanaesthesiology and Critical Care, JPNA Trauma Centre, All IndiaInstitute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Dhruba Lahkar
- Department of Neurocritical care and Neuroanesthesia, Medanta-The Medicity Hospital, Gurugram, Haryana, India
| | - Kangana Sengar
- Department of Laboratory Medicine, JPNA Trauma Centre, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Richa Nigam
- Department of Biotechnology, Indian Institute of Technology (IIT) Hyderabad, Sangareddy 502285, Telangana, India
| | - Monisha Mohan
- Department of Biotechnology, Indian Institute of Technology (IIT) Hyderabad, Sangareddy 502285, Telangana, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology (IIT) Hyderabad, Sangareddy 502285, Telangana, India.
| |
Collapse
|
19
|
Madsen JB, Folke J, Pakkenberg B. Stereological Quantification of Plaques and Tangles in Neocortex from Alzheimer’s Disease Patients. J Alzheimers Dis 2018; 64:723-734. [DOI: 10.3233/jad-180105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jes Buster Madsen
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Denmark
| | - Jonas Folke
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Denmark
- Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, Denmark
| |
Collapse
|
20
|
|
21
|
Ni R, Ji B, Ono M, Sahara N, Zhang MR, Aoki I, Nordberg A, Suhara T, Higuchi M. Comparative In Vitro and In Vivo Quantifications of Pathologic Tau Deposits and Their Association with Neurodegeneration in Tauopathy Mouse Models. J Nucl Med 2018; 59:960-966. [PMID: 29419480 DOI: 10.2967/jnumed.117.201632] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/09/2018] [Indexed: 11/16/2022] Open
Abstract
Fibrillary tau aggregates in Alzheimer disease and allied neurodegenerative disorders have been visualized in vivo by PET, whereas mechanistic links between PET-detectable tau deposits and neurotoxicity remain elusive. Here, we took advantage of transgenic mouse models of tauopathies to evaluate associations between PET and postmortem measures of tau probe binding and their relation to neuronal loss. Methods: PET with a tau probe, 11C-PBB3 (2-((1E,3E)-4-(6-(11C-methylamino)pyridine-3-yl)buta-1,3-dienyl)benzo[d]thiazol-6-ol), and volumetric MRI were performed for transgenic rTg4510 mice and nontransgenic mice. Binding of 11C-PBB3 and its blockade by another tau binding compound, AV-1451 (-(6-fluoropyridine-3-yl)-5H-pyrido[4,3-b]indole), in homogenized brains of tauopathy patients and rTg4510 and PS19 mice were quantified, and 11C-PBB3-positive and phosphorylated tau lesions in sectioned brains of these mice were assessed. Results: In vivo 11C-PBB3 binding to the rTg4510 neocortex/hippocampus was increased relative to controls and correlated with local atrophy. In vitro 11C-PBB3 binding in the neocortex/hippocampus also correlated well with in vivo radioligand binding and regional atrophy in the same individual rTg4510 mice. By contrast, in vitro 11C-PBB3 binding was elevated in the brain stem but not hippocampus of PS19 mice, despite a pronounced loss of neurons in the hippocampus rather than brain stem. Finally, 11C-PBB3 and AV-1451 showed similar binding properties between mouse models and tauopathy patients. Conclusion: The present findings support the distinct utilities of 11C-PBB3 PET and MRI in rTg4510 and PS19 mice for quantitatively pursuing mechanisms connecting PET-detectable and PET-undetectable tau aggregations to neuronal death, which recapitulate 2 different modes of tau-provoked neurotoxicity.
Collapse
Affiliation(s)
- Ruiqing Ni
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba 263-8555, Japan.,Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden; and.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Bin Ji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba 263-8555, Japan
| | - Maiko Ono
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba 263-8555, Japan
| | - Naruhiko Sahara
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba 263-8555, Japan
| | - Ichio Aoki
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba 263-8555, Japan
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden; and.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Tetsuya Suhara
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba 263-8555, Japan
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba 263-8555, Japan
| |
Collapse
|
22
|
Levy Nogueira M, Hamraz M, Abolhassani M, Bigan E, Lafitte O, Steyaert J, Dubois B, Schwartz L. Mechanical stress increases brain amyloid β, tau, and α‐synuclein concentrations in wild‐type mice. Alzheimers Dement 2017; 14:444-453. [DOI: 10.1016/j.jalz.2017.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/19/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Marcel Levy Nogueira
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie Hôpital de la Pitié‐Salpêtrière, AP‐HP Paris France
- Institut de Recherche Translationnelle en Neurosciences (IHU‐A‐ICM) Institut du Cerveau et de la Moelle Epinière (ICM) Paris France
| | | | | | - Erwan Bigan
- Laboratoire d'informatique (LIX), UMR 7161, École Polytechnique Université Paris‐Saclay Palaiseau France
| | - Olivier Lafitte
- LAGA, UMR 7539 Université Paris 13, Sorbonne Paris Cité Villetaneuse France
| | - Jean‐Marc Steyaert
- Laboratoire d'informatique (LIX), UMR 7161, École Polytechnique Université Paris‐Saclay Palaiseau France
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie Hôpital de la Pitié‐Salpêtrière, AP‐HP Paris France
- Institut de Recherche Translationnelle en Neurosciences (IHU‐A‐ICM) Institut du Cerveau et de la Moelle Epinière (ICM) Paris France
- INSERM, CNRS, UMR‐S975 Institut du Cerveau et de la Moelle Epinière (ICM) Paris France
| | | |
Collapse
|
23
|
Kneynsberg A, Combs B, Christensen K, Morfini G, Kanaan NM. Axonal Degeneration in Tauopathies: Disease Relevance and Underlying Mechanisms. Front Neurosci 2017; 11:572. [PMID: 29089864 PMCID: PMC5651019 DOI: 10.3389/fnins.2017.00572] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/29/2017] [Indexed: 12/14/2022] Open
Abstract
Tauopathies are a diverse group of diseases featuring progressive dying-back neurodegeneration of specific neuronal populations in association with accumulation of abnormal forms of the microtubule-associated protein tau. It is well-established that the clinical symptoms characteristic of tauopathies correlate with deficits in synaptic function and neuritic connectivity early in the course of disease, but mechanisms underlying these critical pathogenic events are not fully understood. Biochemical in vitro evidence fueled the widespread notion that microtubule stabilization represents tau's primary biological role and that the marked atrophy of neurites observed in tauopathies results from loss of microtubule stability. However, this notion contrasts with the mild phenotype associated with tau deletion. Instead, an analysis of cellular hallmarks common to different tauopathies, including aberrant patterns of protein phosphorylation and early degeneration of axons, suggests that alterations in kinase-based signaling pathways and deficits in axonal transport (AT) associated with such alterations contribute to the loss of neuronal connectivity triggered by pathogenic forms of tau. Here, we review a body of literature providing evidence that axonal pathology represents an early and common pathogenic event among human tauopathies. Observations of axonal degeneration in animal models of specific tauopathies are discussed and similarities to human disease highlighted. Finally, we discuss potential mechanistic pathways other than microtubule destabilization by which disease-related forms of tau may promote axonopathy.
Collapse
Affiliation(s)
- Andrew Kneynsberg
- Neuroscience Program, Michigan State University, East Lansing, MI, United States.,Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Benjamin Combs
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Kyle Christensen
- Neuroscience Program, Michigan State University, East Lansing, MI, United States.,Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Nicholas M Kanaan
- Neuroscience Program, Michigan State University, East Lansing, MI, United States.,Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, United States
| |
Collapse
|
24
|
De Conti L, Borroni B, Baralle M. New routes in frontotemporal dementia drug discovery. Expert Opin Drug Discov 2017; 12:659-671. [DOI: 10.1080/17460441.2017.1329294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Laura De Conti
- Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders - Neurology Unit, University of Brescia, Brescia, Italy
| | - Marco Baralle
- Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
25
|
Abstract
Mounting research in the field of sports concussion biomarkers has led to a greater understanding of the effects of brain injury from sports. A recent systematic review of clinical studies examining biomarkers of brain injury following sports-related concussion established that almost all studies have been published either in or after the year 2000. In an effort to prevent chronic traumatic encephalopathy and long-term consequences of concussion, early diagnostic and prognostic tools are becoming increasingly important; particularly in sports and in military personnel, where concussions are common occurrences. Early and tailored management of athletes following a concussion with biomarkers could provide them with the best opportunity to avoid further injury. Should blood-based biomarkers for concussion be validated and become widely available, they could have many roles. For instance, a point-of-care test could be used on the field by trained sport medicine professionals to help detect a concussion. In the clinic or hospital setting, it could be used by clinicians to determine the severity of concussion and be used to screen players for neuroimaging (computed tomography and/or magnetic resonance imaging) and further neuropsychological testing. Furthermore, biomarkers could have a role in monitoring progression of injury and recovery and in managing patients at high risk of repeated injury by being incorporated into guidelines for return to duty, work, or sports activities. There may even be a role for biomarkers as surrogate measures of efficacy in the assessment of new treatments and therapies for concussion.
Collapse
|
26
|
Pandey S, Singh K, Sharma V, Pandey D, Jha RP, Rai SK, Chauhan RS, Singh R. A prospective pilot study on serum cleaved tau protein as a neurological marker in severe traumatic brain injury. Br J Neurosurg 2017; 31:356-363. [PMID: 28293977 DOI: 10.1080/02688697.2017.1297378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Neurotrauma has been labelled as a "silent epidemic" affecting both the developed and the developing nations. To date, no single brain-specific biomarker has been unanimously accepted for routine clinical use in TBI. Our study aims to determine the correlation of "cleaved-tau protein" in severe traumatic brain injury (TBI) with Glasgow Coma Scale (GCS) at the time of admission, mode of injury, CT findings and outcome at discharge. METHODS The study has been approved by the institutional ethical committee. 40 cases with severe TBI and 40 randomly selected healthy controls were included in this prospective study. Venous blood samples were collected and serum cleaved tau protein levels were measured and correlated with gender, mode of injury, CT findings GCS score and GOS score at discharge. RESULTS In the severe TBI group, the mean serum cleaved tau protein levels in males were 91.65 ± 41.34 pg/ml (mean ± S.D.), and females were 104.43 ± 53.08 pg/ml (mean ± S.D.), (p = 0.27). Mean serum C-tau level in study group was 95.48 ± 44.87 pg/ml (range 36.44-192.34), 95% C.I. (81.13-109.83) and in controls was 33.82 ± 13.65 pg/ml (range 2.48-66.54), 95% C.I. (29.46-38.19) (p < 0.001). The distribution of serum C-tau was in severe TBI group varied in all categories of GCS at 0th day (p < 0.001). Serum cleaved tau protein levels in the good outcome group were 74.26 ± 25.43 pg/ml (mean ± S.D.), range 36.44-144.54, 95% C.I. (63.52-85.00) and the poor-outcome group were 127.32 ± 49.40 pg/ml, range 66.65-192.34, 95% C.I. (100.99-153.64) (p = 0.001). CONCLUSION In severe TBI, serum cleaved tau protein levels were significantly higher as compared to the controls in this prospective study. However, results of this study are preliminary in nature and there is a need to undertake larger prospective studies to reach a definitive conclusion.
Collapse
Affiliation(s)
- Sharad Pandey
- a Department of Neuro Surgery , Sir Sunder Lal Hospital, IMS, BHU , Varanasi , Uttar Pradesh , India
| | - Kulwant Singh
- a Department of Neuro Surgery , Sir Sunder Lal Hospital, IMS, BHU , Varanasi , Uttar Pradesh , India
| | - Vivek Sharma
- a Department of Neuro Surgery , Sir Sunder Lal Hospital, IMS, BHU , Varanasi , Uttar Pradesh , India
| | - Deepa Pandey
- b Department of Clinical Microbiology , Central Hospital DLW , Varanasi , Uttar Pradesh , India
| | - Ravi Prakash Jha
- c Department of Community Medicine, Division of Biostatics , Sir Sunder Lal Hospital, IMS BHU , Varanasi , Uttar Pradesh , India
| | - Sunil Kumar Rai
- d Department of Anatomy , Sir Sunder Lal Hospital, IMS BHU , Varanasi , Uttar Pradesh , India
| | - Richa Singh Chauhan
- e Department of Radio diagnosis , Sir Sunder Lal Hospital, IMS BHU , Varanasi , Uttar Pradesh , India
| | - Royana Singh
- d Department of Anatomy , Sir Sunder Lal Hospital, IMS BHU , Varanasi , Uttar Pradesh , India
| |
Collapse
|
27
|
Abstract
Alzheimer's disease (AD) is the most common form of adult neurode-generation and is characterised by progressive loss of cognitive function leading to death. The neuropathological hallmarks include extracellular amyloid plaque accumulation in affected regions of the brain, formation of intraneuronal neurofibrillary tangles, chronic neuroinflammation, oxidative stress, and abnormal biometal homeostasis. Of the latter, major changes in copper (Cu) levels and localisation have been identified in AD brain, with accumulation of Cu in amyloid deposits, together with deficiency of Cu in some brain regions. The amyloid precursor protein (APP) and the amyloid beta (Aβ) peptide both have Cu binding sites, and interaction with Cu can lead to potentially neurotoxic outcomes through generation of reactive oxygen species. In addition, AD patients have systemic changes to Cu metabolism, and altered Cu may also affect neuroinflammatory outcomes in AD. Although we still have much to learn about Cu homeostasis in AD patients and its role in disease aetiopathology, therapeutic approaches for regulating Cu levels and interactions with Cu-binding proteins in the brain are currently being developed. This review will examine how Cu is associated with pathological changes in the AD brain and how these may be targeted for therapeutic intervention.
Collapse
|
28
|
Association between Aβ and tau accumulations and their influence on clinical features in aging and Alzheimer's disease spectrum brains: A [ 11C]PBB3-PET study. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2016; 6:11-20. [PMID: 28138509 PMCID: PMC5257028 DOI: 10.1016/j.dadm.2016.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction Amyloid-β (Aβ) and tau accumulations may occur independently and concurrently as exemplified by primary age-related tauopathy and Alzheimer's disease (AD), respectively. Interactions between Aβ and tau accumulations and their influence on clinical features, however, are still unclear. Methods Associations among clinical symptoms, gray-matter volume, regional tau, and Aβ deposition assessed by positron emission tomography with [11C]pyridinyl-butadienyl-benzothiazole 3 (PBB3) and [11C]Pittsburgh compound-B (PiB), were evaluated in 17 AD, 9 mild cognitive impairment due to AD, and 28 PiB(−)-cognitive healthy controls (HCs). Results High tau burden was associated with aging and low-level education in PiB(−)-HC and AD-spectrum groups, and with high Aβ burden and low-level education in all subjects. It was not Aβ but tau accumulation that showed significant associations with cognitive performance even in PiB(−)-HC. Discussion The present study indicated aging and low-level education after Aβ would be enhancers for tau pathology, associated with neurodegeneration and cognitive impairment in healthy and diseased elderly individuals.
Collapse
|
29
|
Back to the tubule: microtubule dynamics in Parkinson's disease. Cell Mol Life Sci 2016; 74:409-434. [PMID: 27600680 PMCID: PMC5241350 DOI: 10.1007/s00018-016-2351-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
Abstract
Cytoskeletal homeostasis is essential for the development, survival and maintenance of an efficient nervous system. Microtubules are highly dynamic polymers important for neuronal growth, morphology, migration and polarity. In cooperation with several classes of binding proteins, microtubules regulate long-distance intracellular cargo trafficking along axons and dendrites. The importance of a delicate interplay between cytoskeletal components is reflected in several human neurodegenerative disorders linked to abnormal microtubule dynamics, including Parkinson’s disease (PD). Mounting evidence now suggests PD pathogenesis might be underlined by early cytoskeletal dysfunction. Advances in genetics have identified PD-associated mutations and variants in genes encoding various proteins affecting microtubule function including the microtubule-associated protein tau. In this review, we highlight the role of microtubules, their major posttranslational modifications and microtubule associated proteins in neuronal function. We then present key evidence on the contribution of microtubule dysfunction to PD. Finally, we discuss how regulation of microtubule dynamics with microtubule-targeting agents and deacetylase inhibitors represents a promising strategy for innovative therapeutic development.
Collapse
|
30
|
Graham EM, Burd I, Everett AD, Northington FJ. Blood Biomarkers for Evaluation of Perinatal Encephalopathy. Front Pharmacol 2016; 7:196. [PMID: 27468268 PMCID: PMC4942457 DOI: 10.3389/fphar.2016.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
Recent research in identification of brain injury after trauma shows many possible blood biomarkers that may help identify the fetus and neonate with encephalopathy. Traumatic brain injury shares many common features with perinatal hypoxic-ischemic encephalopathy. Trauma has a hypoxic component, and one of the 1st physiologic consequences of moderate-severe traumatic brain injury is apnea. Trauma and hypoxia-ischemia initiate an excitotoxic cascade and free radical injury followed by the inflammatory cascade, producing injury in neurons, glial cells and white matter. Increased excitatory amino acids, lipid peroxidation products, and alteration in microRNAs and inflammatory markers are common to both traumatic brain injury and perinatal encephalopathy. The blood-brain barrier is disrupted in both leading to egress of substances normally only found in the central nervous system. Brain exosomes may represent ideal biomarker containers, as RNA and protein transported within the vesicles are protected from enzymatic degradation. Evaluation of fetal or neonatal brain derived exosomes that cross the blood-brain barrier and circulate peripherally has been referred to as the "liquid brain biopsy." A multiplex of serum biomarkers could improve upon the current imprecise methods of identifying fetal and neonatal brain injury such as fetal heart rate abnormalities, meconium, cord gases at delivery, and Apgar scores. Quantitative biomarker measurements of perinatal brain injury and recovery could lead to operative delivery only in the presence of significant fetal risk, triage to appropriate therapy after birth and measure the effectiveness of treatment.
Collapse
Affiliation(s)
- Ernest M. Graham
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Irina Burd
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Allen D. Everett
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Frances J. Northington
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
31
|
Tsai RM, Boxer AL. Therapy and clinical trials in frontotemporal dementia: past, present, and future. J Neurochem 2016; 138 Suppl 1:211-21. [PMID: 27306957 DOI: 10.1111/jnc.13640] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a common form of dementia with heterogeneous clinical presentations and distinct clinical syndromes. This article will review currently available therapies for FTD, its related disorders and their clinical evidence. It will also discuss recent advancements in FTD pathophysiology, treatment development, biomarker advancement and their relation to recently completed or currently ongoing clinical trials as well as future implications. Frontotemporal dementia (FTD) is a type of dementia with distinct clinical syndromes. Current treatments involve off-label use of medications for symptomatic management and cannot modify disease course. Advancements in FTD pathophysiology, genetics, and biomarkers have led to development of small molecules targeting the underlying pathology in hopes of achieving a disease-modifying effect. This article will review current therapies for FTD, discuss advancements in FTD pathophysiology, therapy development, biomarker advancement, their relation to recent clinical trials and future implications. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Richard M Tsai
- Assistant Adjunct Professor of Neurology, University of California San Francisco Department of Neurology, San Francisco, California, USA
| | - Adam L Boxer
- Associate Professor of Neurology, University of California San Francisco Department of Neurology, San Francisco, California, USA
| |
Collapse
|
32
|
Lowe VJ, Curran G, Fang P, Liesinger AM, Josephs KA, Parisi JE, Kantarci K, Boeve BF, Pandey MK, Bruinsma T, Knopman DS, Jones DT, Petrucelli L, Cook CN, Graff-Radford NR, Dickson DW, Petersen RC, Jack CR, Murray ME. An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun 2016; 4:58. [PMID: 27296779 PMCID: PMC4906968 DOI: 10.1186/s40478-016-0315-6] [Citation(s) in RCA: 360] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022] Open
Abstract
Background It is essential to determine the specificity of AV-1451 PET for tau in brain imaging by using pathological comparisons. We performed autoradiography in autopsy-confirmed Alzheimer disease and other neurodegenerative disorders to evaluate the specificity of AV-1451 binding for tau aggregates. Methods Tissue samples were selected that had a variety of dementia-related neuropathologies including Alzheimer disease, primary age-related tauopathy, tangle predominant dementia, non-Alzheimer disease tauopathies, frontotemporal dementia, parkinsonism, Lewy body disease and multiple system atrophy (n = 38). Brain tissue sections were stained for tau, TAR DNA-binding protein-43, and α-synuclein and compared to AV-1451 autoradiography on adjacent sections. Results AV-1451 preferentially localized to neurofibrillary tangles, with less binding to areas enriched in neuritic pathology and less mature tau. The strength of AV-1451 binding with respect to tau isoforms in various neurodegenerative disorders was: 3R + 4R tau (e.g., AD) > 3R tau (e.g., Pick disease) or 4R tau. Only minimal binding of AV-1451 to TAR DNA-binding protein-43 positive regions was detected. No binding of AV-1451 to α-synuclein was detected. “Off-target” binding was seen in vessels, iron-associated regions, substantia nigra, calcifications in the choroid plexus, and leptomeningeal melanin. Conclusions Reduced AV-1451 binding in neuritic pathology compared to neurofibrillary tangles suggests that the maturity of tau pathology may affect AV-1451 binding and suggests complexity in AV-1451 binding. Poor association of AV-1451 with tauopathies that have preferential accumulation of either 4R tau or 3R tau suggests limited clinical utility in detecting these pathologies. In contrast, for disorders associated with 3R + 4R tau, such as Alzheimer disease, AV-1451 binds tau avidly but does not completely reflect the early stage tau progression suggested by Braak neurofibrillary tangle staging. AV-1451 binding to TAR DNA-binding protein-43 or TAR DNA-binding protein-43 positive regions can be weakly positive. Clinical use of AV-1451 will require a familiarity with distinct types of “off-target” binding. Electronic supplementary material The online version of this article (doi:10.1186/s40478-016-0315-6) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Musiek ES, Xiong DD, Patel T, Sasaki Y, Wang Y, Bauer AQ, Singh R, Finn SL, Culver JP, Milbrandt J, Holtzman DM. Nmnat1 protects neuronal function without altering phospho-tau pathology in a mouse model of tauopathy. Ann Clin Transl Neurol 2016; 3:434-42. [PMID: 27547771 PMCID: PMC4891997 DOI: 10.1002/acn3.308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/25/2022] Open
Abstract
Objective The nicotinamide‐nucleotide adenylyltransferase protein Nmnat1 is a potent inhibitor of axonal degeneration in models of acute axonal injury. Hyperphosphorylation and aggregation of the microtubule‐associated protein Tau are associated with neurodegeneration in Alzheimer's Disease and other disorders. Previous studies have demonstrated that other Nmnat isoforms can act both as axonoprotective agents and have protein chaperone function, exerting protective effects in drosophila and mouse models of tauopathy. Nmnat1 targeted to the cytoplasm (cytNmnat1) is neuroprotective in a mouse model of neonatal hypoxia‐ischemia, but the effect of cytNmnat1 on tauopathy remains unknown. Methods We examined the impact of overexpression of cytNmnat1 on tau pathology, neurodegeneration, and brain functional connectivity in the P301S mouse model of chronic tauopathy. Results Overexpression of cytNmnat1 preserved cortical neuron functional connectivity in P301S mice in vivo. However, whereas Nmnat1 overexpression decreased the accumulation of detergent‐insoluble tau aggregates in the cerebral cortex, it exerted no effect on immunohistochemical evidence of pathologic tau phosphorylation and misfolding, hippocampal atrophy, or inflammatory markers in P301S mice. Interpretation Our results demonstrate that cytNmnat1 partially preserves neuronal function and decreases biochemically insoluble tau in a mouse model of chronic tauopathy without preventing tau phosphorylation, formation of soluble aggregates, or tau‐induced inflammation and atrophy. Nmnat1 might thus represent a therapeutic target for tauopathies.
Collapse
Affiliation(s)
- Erik S Musiek
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| | - David D Xiong
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| | - Tirth Patel
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| | - Yo Sasaki
- Genetics Washington University School of Medicine St. Louis Missouri
| | - Yinong Wang
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| | - Adam Q Bauer
- Radiology Washington University School of Medicine St. Louis Missouri
| | - Risham Singh
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| | - Samantha L Finn
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| | - Joseph P Culver
- Radiology Washington University School of Medicine St. Louis Missouri
| | - Jeffrey Milbrandt
- Genetics Washington University School of Medicine St. Louis Missouri
| | - David M Holtzman
- Departments of Neurology Washington University School of Medicine St. Louis Missouri; Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri; Knight Alzheimer's Disease Research Center Washington University School of Medicine St. Louis Missouri
| |
Collapse
|
34
|
Surgucheva I, He S, Rich MC, Sharma R, Ninkina NN, Stahel PF, Surguchov A. Role of synucleins in traumatic brain injury — an experimental in vitro and in vivo study in mice. Mol Cell Neurosci 2015; 63:114-23. [PMID: 25447944 DOI: 10.1016/j.mcn.2014.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/16/2014] [Accepted: 10/23/2014] [Indexed: 11/25/2022] Open
Abstract
Synucleins are small prone to aggregate proteins associated with several neurodegenerative diseases (NDDs), however their role in traumatic brain injury (TBI) is an emerging area of investigation. Using in vitro scratch injury model and in vivo mouse weight-drop model we have found that the injury causes alterations in the expression and localization of synucleins near the damaged area. Before injury, α-synuclein is diffused in the cytoplasm of neurons and γ-synuclein is both in the cytoplasm and nucleus of oligodendrocytes. After the scratch injury of the mixed neuronal and glial culture, α-synuclein forms punctate structures in the cytoplasm of neurons and γ-synuclein is almost completely localized to the nucleus of the oligodendrocytes. Furthermore, the amount of post-translationally modified Met38-oxidized γ-synuclein is increased 3.8 fold 24 h after the scratch. α- and γ-synuclein containing cells increased in the initially cell free scratch zone up to 24 h after the scratch.Intracellular expression and localization of synucleins are also changed in a mouse model of focal closed head injury, using a standardized weight drop device. γ-Synuclein goes from diffuse to punctate staining in a piriform cortex near the amygdala, which may reflect the first steps in the formation of deposits/inclusions. Surprisingly, oxidized γ-synuclein co-localizes with cofilin-actin rods in the thalamus, which are absent in all other regions of the brain. These structures reach their peak amounts 7 days after injury. The changes in γ-synuclein localization are accompanied by injury-induced alterations in the morphology of both astrocytes and neurons.
Collapse
|
35
|
Villamil-Ortiz JG, Cardona-Gomez GP. Comparative analysis of autophagy and tauopathy related markers in cerebral ischemia and Alzheimer's disease animal models. Front Aging Neurosci 2015; 7:84. [PMID: 26042033 PMCID: PMC4436888 DOI: 10.3389/fnagi.2015.00084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) and cerebral ischemia (CI) are neuropathologies that are characterized by aggregates of tau protein, a hallmark of cognitive disorder and dementia. Protein accumulation can be induced by autophagic failure. Autophagy is a metabolic pathway involved in the homeostatic recycling of cellular components. However, the role of autophagy in those tauopathies remains unclear. In this study, we performed a comparative analysis to identify autophagy related markers in tauopathy generated by AD and CI during short-term, intermediate, and long-term progression using the 3xTg-AD mouse model (aged 6,12, and 18 months) and the global CI 2-VO (2-Vessel Occlusion) rat model (1,15, and 30 days post-ischemia). Our findings confirmed neuronal loss and hyperphosphorylated tau aggregation in the somatosensory cortex (SS-Cx) of the 3xTg-AD mice in the late stage (aged 18 months), which was supported by a failure in autophagy. These results were in contrast to those obtained in the SS-Cx of the CI rats, in which we detected neuronal loss and tauopathy at 1 and 15 days post-ischemia, and this phenomenon was reversed at 30 days. We proposed that this phenomenon was associated with autophagy induction in the late stage, since the data showed a decrease in p-mTOR activity, an association of Beclin-1 and Vps34, a progressive reduction in PHF-1, an increase in LC3B puncta and autophago-lysosomes formation were observed. Furthermore, the survival pathways remained unaffected. Together, our comparative study suggest that autophagy could ameliorates tauopathy in CI but not in AD, suggesting a differential temporal approach to the induction of neuroprotection and the prevention of neurodegeneration.
Collapse
Affiliation(s)
| | - Gloria P. Cardona-Gomez
- *Correspondence: Gloria P. Cardona-Gomez, Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Calle 62 #52–59, Torre 1, Piso 4, Laboratorio 412, Antioquia, Medellín, Colombia
| |
Collapse
|
36
|
Comparative Meta-Analysis of Transcriptomics Data during Cellular Senescence and In Vivo Tissue Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:732914. [PMID: 25977747 PMCID: PMC4419258 DOI: 10.1155/2015/732914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Several studies have employed DNA microarrays to identify gene expression signatures that mark human ageing; yet the features underlying this complicated phenomenon remain elusive. We thus conducted a bioinformatics meta-analysis on transcriptomics data from human cell- and biopsy-based microarrays experiments studying cellular senescence or in vivo tissue ageing, respectively. We report that coregulated genes in the postmitotic muscle and nervous tissues are classified into pathways involved in cancer, focal adhesion, actin cytoskeleton, MAPK signalling, and metabolism regulation. Genes that are differentially regulated during cellular senescence refer to pathways involved in neurodegeneration, focal adhesion, actin cytoskeleton, proteasome, cell cycle, DNA replication, and oxidative phosphorylation. Finally, we revealed genes and pathways (referring to cancer, Huntington's disease, MAPK signalling, focal adhesion, actin cytoskeleton, oxidative phosphorylation, and metabolic signalling) that are coregulated during cellular senescence and in vivo tissue ageing. The molecular commonalities between cellular senescence and tissue ageing are also highlighted by the fact that pathways that were overrepresented exclusively in the biopsy- or cell-based datasets are modules either of the same reference pathway (e.g., metabolism) or of closely interrelated pathways (e.g., thyroid cancer and melanoma). Our reported meta-analysis has revealed novel age-related genes, setting thus the basis for more detailed future functional studies.
Collapse
|
37
|
Integrating retrogenesis theory to Alzheimer's disease pathology: insight from DTI-TBSS investigation of the white matter microstructural integrity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:291658. [PMID: 25685779 PMCID: PMC4320890 DOI: 10.1155/2015/291658] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/14/2014] [Accepted: 11/01/2014] [Indexed: 11/17/2022]
Abstract
Microstructural abnormalities in white matter (WM) are often reported in Alzheimer's disease (AD) and may reflect primary or secondary circuitry degeneration (i.e., due to cortical atrophy). The interpretation of diffusion tensor imaging (DTI) eigenvectors, known as multiple indices, may provide new insights into the main pathological models supporting primary or secondary patterns of WM disruption in AD, the retrogenesis, and Wallerian degeneration models, respectively. The aim of this review is to analyze the current literature on the contribution of DTI multiple indices to the understanding of AD neuropathology, taking the retrogenesis model as a reference for discussion. A systematic review using MEDLINE, EMBASE, and PUBMED was performed. Evidence suggests that AD evolves through distinct patterns of WM disruption, in which retrogenesis or, alternatively, the Wallerian degeneration may prevail. Distinct patterns of WM atrophy may be influenced by complex interactions which comprise disease status and progression, fiber localization, concurrent risk factors (i.e., vascular disease, gender), and cognitive reserve. The use of DTI multiple indices in addition to other standard multimodal methods in dementia research may help to determine the contribution of retrogenesis hypothesis to the understanding of neuropathological hallmarks that lead to AD.
Collapse
|
38
|
Abstract
Localized protein synthesis is a mechanism by which morphologically polarized cells react in a spatially confined and temporally acute manner to changes in their environment. During the development of the nervous system intra-axonal protein synthesis is crucial for the establishment of neuronal connections. In contrast, mature axons have long been considered as translationally inactive but upon nerve injury or under neurodegenerative conditions specific subsets of mRNAs are recruited into axons and locally translated. Intra-axonally synthesized proteins can have pathogenic or restorative and regenerative functions, and thus targeting the axonal translatome might have therapeutic value, for example in the treatment of spinal cord injury or Alzheimer's disease. In the case of Alzheimer's disease the local synthesis of the stress response transcription factor activating transcription factor 4 mediates the long-range retrograde spread of pathology across the brain, and inhibition of local Atf4 translation downstream of the integrated stress response might interfere with this spread. Several molecular tools and approaches have been developed to target specifically the axonal translatome by either overexposing proteins locally in axons or, conversely, knocking down selectively axonally localized mRNAs. Many questions about axonal translation remain to be answered, especially with regard to the mechanisms establishing specificity but, nevertheless, targeting the axonal translatome is a promising novel avenue to pursue in the development for future therapies for various neurological conditions.
Collapse
Affiliation(s)
- Jimena Baleriola
- />The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, 650 W. 168th St., New York, NY USA
| | - Ulrich Hengst
- />The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, 650 W. 168th St., New York, NY USA
- />Department of Pathology and Cell Biology, Columbia University, 650 W. 168th St., New York, NY USA
| |
Collapse
|
39
|
Ren Y, Sahara N, Giasson B, Lewis J. Tauopathy Mouse Models. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
40
|
Lu SS, Gong FF, Feng F, Hu CY, Qian ZZ, Wu YL, Yang HY, Sun YH. Association of microtubule associated protein tau/Saitohin (MAPT/STH) MAPT_238bp/STH Q7R polymorphisms and Parkinson’s disease: A meta-analysis. Biochem Biophys Res Commun 2014; 453:653-61. [DOI: 10.1016/j.bbrc.2014.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 10/03/2014] [Indexed: 01/14/2023]
|
41
|
Tsai RM, Boxer AL. Clinical trials: past, current, and future for atypical Parkinsonian syndromes. Semin Neurol 2014; 34:225-34. [PMID: 24963682 DOI: 10.1055/s-0034-1381739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are currently no effective Food and Drug Administration-approved treatments for atypical parkinsonian disorders such as progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies, or multiple system atrophy. Previous treatment trials for these disorders were focused on symptomatic support and did not affect disease progression. Recent breakthroughs in neuropathology and pathophysiology have allowed a new understanding of these disorders and investigation into potentially disease modifying therapies. Randomized, placebo-controlled clinical trials of these disorders will be reviewed here. Suggestions for future therapeutic targets and clinical trial design (with a focus on progressive supranuclear palsy) will also be provided.
Collapse
Affiliation(s)
- Richard M Tsai
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Adam L Boxer
- Department of Neurology, University of California San Francisco, San Francisco, California
| |
Collapse
|
42
|
Deák F. Neuronal vesicular trafficking and release in age-related cognitive impairment. J Gerontol A Biol Sci Med Sci 2014; 69:1325-30. [PMID: 24809352 DOI: 10.1093/gerona/glu061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aging is a common major risk factor for many neurological disorders resulting in cognitive impairment and neurodegeneration including Parkinson's and Alzheimer's diseases. Novel results from the fields of molecular neuroscience and aging research provide evidence for a link between decline of various cognitive, executive functions and changes in neuronal mechanisms of intracellular trafficking and regulated vesicle release processes in the aging nervous system. In this Perspective, we review these recent findings and formulate a hypothesis on how cargo delivery to the synapses and the release of neurotrophic factors may be involved in maintaining learning and memory capabilities during healthy aging and present examples on how defects of those disrupt normal cognition. We provide an overview of emerging new concepts and approaches that will significantly advance our understanding of the aging brain and pathophysiology of dementia. This knowledge will be instrumental in defining drug targets and designing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ferenc Deák
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center.
| |
Collapse
|
43
|
Mot AI, Wedd AG, Sinclair L, Brown DR, Collins SJ, Brazier MW. Metal attenuating therapies in neurodegenerative disease. Expert Rev Neurother 2014; 11:1717-45. [DOI: 10.1586/ern.11.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Grossman GH, Beight CD, Ebke LA, Pauer GJT, Hagstrom SA. Interaction of tubby-like protein-1 (Tulp1) and microtubule-associated protein (MAP) 1A and MAP1B in the mouse retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:511-8. [PMID: 24664738 DOI: 10.1007/978-1-4614-3209-8_65] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tubby-like protein-1 (Tulp1) is a photoreceptor-specific protein involved in the transport of specific proteins from the inner segment (IS) to the outer segment (OS) in photoreceptor cells. Mutations in the human TULP1 gene cause an early onset form of retinitis pigmentosa. Our previous work has shown an association between Tulp1 and the microtubule-associated protein, MAP1B. An allele of Mtap1a, which encodes the MAP1A protein, significantly delays photoreceptor degeneration in Tulp1 mutant mice. MAP1 proteins are important in stabilizing microtubules in neuronal cells, but their role in photoreceptors remains obscure. To investigate the relationship between Tulp1 and MAP1 proteins, we performed western blots, immunoprecipitations (IP), immunohistochemistry and proximity ligand assays (PLA) in wild-type and tulp1-/- mouse retinas. Our IP experiments provide evidence that Tulp1 and MAP1B interact while PLA experiments localize their interaction to the outer nuclear layer and IS of photoreceptors. Although MAP1A and MAP1B protein levels are not affected in the tulp1-/- retina, they are no longer localized to the OS of photoreceptors. This may be the cause for disorganized OSs in tulp1-/- mice, and indicate that their transport to the OS is Tulp1-dependent.
Collapse
Affiliation(s)
- Gregory H Grossman
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA,
| | | | | | | | | |
Collapse
|
45
|
Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci U S A 2013; 111:510-4. [PMID: 24368848 DOI: 10.1073/pnas.1318807111] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by the deposition of extracellular amyloid-β plaques and intracellular aggregation of tau protein in neurofibrillary tangles (NFTs) (1, 2). Progression of NFT pathology is closely correlated with both increased neurodegeneration and cognitive decline in AD (3) and other tauopathies, such as frontotemporal dementia (4, 5). The assumption that mislocalization of tau into the somatodendritic compartment (6) and accumulation of fibrillar aggregates in NFTs mediates neurodegeneration underlies most current therapeutic strategies aimed at preventing NFT formation or disrupting existing NFTs (7, 8). Although several disease-associated mutations cause both aggregation of tau and neurodegeneration, whether NFTs per se contribute to neuronal and network dysfunction in vivo is unknown (9). Here we used awake in vivo two-photon calcium imaging to monitor neuronal function in adult rTg4510 mice that overexpress a human mutant form of tau (P301L) and develop cortical NFTs by the age of 7-8 mo (10). Unexpectedly, NFT-bearing neurons in the visual cortex appeared to be completely functionally intact, to be capable of integrating dendritic inputs and effectively encoding orientation and direction selectivity, and to have a stable baseline resting calcium level. These results suggest a reevaluation of the common assumption that insoluble tau aggregates are sufficient to disrupt neuronal function.
Collapse
|
46
|
Hoffmann NA, Dorostkar MM, Blumenstock S, Goedert M, Herms J. Impaired plasticity of cortical dendritic spines in P301S tau transgenic mice. Acta Neuropathol Commun 2013; 1:82. [PMID: 24344647 PMCID: PMC3880070 DOI: 10.1186/2051-5960-1-82] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 12/02/2022] Open
Abstract
Background Illuminating the role of the microtubule-associated protein tau in neurodegenerative diseases is of increasing importance, supported by recent studies establishing novel functions of tau in synaptic signalling and cytoskeletal organization. In severe dementias like Alzheimer’s disease (AD), synaptic failure and cognitive decline correlate best with the grade of tau-pathology. To address synaptic alterations in tauopathies, we analyzed the effects of mutant tau expression on excitatory postsynapses in vivo. Results Here we followed the fate of single dendritic spines in the neocortex of a tauopathy mouse model, expressing human P301S mutated tau, for a period of two weeks. We observed a continuous decrease in spine density during disease progression, which we could ascribe to a diminished fraction of gained spines. Remaining spines were enlarged and elongated, thus providing evidence for morphological reorganization in compensation for synaptic dysfunction. Remarkably, loss of dendritic spines in cortical pyramidal neurons occurred in the absence of neurofibrillary tangles (NFTs). Therefore, we consider prefibrillar tau species as causative for the observed impairment in spine plasticity. Conclusions Dendritic spine plasticity and morphology are altered in layer V cortical neurons of P301S tau transgenic mice in vivo. This does not coincide with the detection of hyperphosphorylated tau in dendritic spines.
Collapse
|
47
|
Cavallini A, Brewerton S, Bell A, Sargent S, Glover S, Hardy C, Moore R, Calley J, Ramachandran D, Poidinger M, Karran E, Davies P, Hutton M, Szekeres P, Bose S. An unbiased approach to identifying tau kinases that phosphorylate tau at sites associated with Alzheimer disease. J Biol Chem 2013; 288:23331-47. [PMID: 23798682 DOI: 10.1074/jbc.m113.463984] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurofibrillary tangles, one of the hallmarks of Alzheimer disease (AD), are composed of paired helical filaments of abnormally hyperphosphorylated tau. The accumulation of these proteinaceous aggregates in AD correlates with synaptic loss and severity of dementia. Identifying the kinases involved in the pathological phosphorylation of tau may identify novel targets for AD. We used an unbiased approach to study the effect of 352 human kinases on their ability to phosphorylate tau at epitopes associated with AD. The kinases were overexpressed together with the longest form of human tau in human neuroblastoma cells. Levels of total and phosphorylated tau (epitopes Ser(P)-202, Thr(P)-231, Ser(P)-235, and Ser(P)-396/404) were measured in cell lysates using AlphaScreen assays. GSK3α, GSK3β, and MAPK13 were found to be the most active tau kinases, phosphorylating tau at all four epitopes. We further dissected the effects of GSK3α and GSK3β using pharmacological and genetic tools in hTau primary cortical neurons. Pathway analysis of the kinases identified in the screen suggested mechanisms for regulation of total tau levels and tau phosphorylation; for example, kinases that affect total tau levels do so by inhibition or activation of translation. A network fishing approach with the kinase hits identified other key molecules putatively involved in tau phosphorylation pathways, including the G-protein signaling through the Ras family of GTPases (MAPK family) pathway. The findings identify novel tau kinases and novel pathways that may be relevant for AD and other tauopathies.
Collapse
Affiliation(s)
- Annalisa Cavallini
- Eli Lilly and Company Limited, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey GU20 6PH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2013; 1:a006189. [PMID: 22229116 DOI: 10.1101/cshperspect.a006189] [Citation(s) in RCA: 2103] [Impact Index Per Article: 191.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The neuropathological hallmarks of Alzheimer disease (AD) include "positive" lesions such as amyloid plaques and cerebral amyloid angiopathy, neurofibrillary tangles, and glial responses, and "negative" lesions such as neuronal and synaptic loss. Despite their inherently cross-sectional nature, postmortem studies have enabled the staging of the progression of both amyloid and tangle pathologies, and, consequently, the development of diagnostic criteria that are now used worldwide. In addition, clinicopathological correlation studies have been crucial to generate hypotheses about the pathophysiology of the disease, by establishing that there is a continuum between "normal" aging and AD dementia, and that the amyloid plaque build-up occurs primarily before the onset of cognitive deficits, while neurofibrillary tangles, neuron loss, and particularly synaptic loss, parallel the progression of cognitive decline. Importantly, these cross-sectional neuropathological data have been largely validated by longitudinal in vivo studies using modern imaging biomarkers such as amyloid PET and volumetric MRI.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Alzheimer Research Unit of the MassGeneral Institute for Neurodegenerative Disease, Department of Neurology of the Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA, 02129-4404
| | | | | | | |
Collapse
|
49
|
Papa L, Robinson G, Oli M, Pineda J, Demery J, Brophy G, Robicsek SA, Gabrielli A, Robertson CS, Wang KK, Hayes RL. Use of biomarkers for diagnosis and management of traumatic brain injury patients. ACTA ACUST UNITED AC 2013; 2:937-45. [PMID: 23495867 DOI: 10.1517/17530059.2.8.937] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Advances in the understanding of human biochemistry and physiology have provided insight into new pathways by which we can understand traumatic brain injury (TBI). Increased sophistication of laboratory techniques and developments in the field of proteomics has led to the discovery and rapid detection of new biomarkers not previously available. OBJECTIVE To review recent advances in biomarker research for traumatic brain injury, describe the features of the ideal biomarker and to explore the potential role of these biomarkers in improving clinical management of brain injured patients. METHODS Through a literature review of recent research on TBI biomarkers and through experience with TBI research, important elements of biomarker development are described together with potential applications to patient care. CONCLUSIONS TBI biomarkers could have a significant impact on patient care by assisting in the diagnosis, risk stratification and management of TBI. Biomarkers could provide major opportunities for the conduct of clinical research, including confirmation of injury mechanism(s) and drug target identification. Continuing studies by the authors' group are now being conducted to elucidate more fully the relationships between new biomarkers and severity of injury and clinical outcomes in all severities of TBI patients.
Collapse
Affiliation(s)
- Linda Papa
- Director of Academic Clinical Research Orlando Regional Medical Center, Department of Emergency Medicine, 86 W. Underwood (S-200), Orlando, FL 32806, USA +1 407 237 6329 ; +1 407 649 3083 ;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Saido TC. Metabolism of amyloid β peptide and pathogenesis of Alzheimer's disease. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2013; 89:321-39. [PMID: 23883611 PMCID: PMC3758963 DOI: 10.2183/pjab.89.321] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
The conversion of what has been interpreted as "normal brain aging" to Alzheimer's disease (AD) via transition states, i.e., preclinical AD and mild cognitive impairment, appears to be a continuous process caused primarily by aging-dependent accumulation of amyloid β peptide (Aβ) in the brain. This notion however gives us a hope that, by manipulating the Aβ levels in the brain, we may be able not only to prevent and cure the disease but also to partially control some very significant aspects of brain aging. Aβ is constantly produced from its precursor and immediately catabolized under normal conditions, whereas dysmetabolism of Aβ seems to lead to pathological deposition upon aging. We have focused our attention on elucidation of the unresolved mechanism of Aβ catabolism in the brain. In this review, I describe a new approach to prevent AD development by reducing Aβ burdens in aging brains through up-regulation of the catabolic mechanism involving neprilysin that can degrade both monomeric and oligomeric forms of Aβ. The strategy of combining presymptomatic diagnosis with preventive medicine seems to be the most pragmatic in both medical and socioeconomical terms.(Communicated by Kunihiko SUZUKI, M.J.A.).
Collapse
Affiliation(s)
- Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|