1
|
Wu W, Sui W, Chen S, Guo Z, Jing X, Wang X, Wang Q, Yu X, Xiong W, Ji J, Yang L, Zhang Y, Jiang W, Yu G, Liu S, Tao W, Zhao C, Zhang Y, Chen Y, Zhang C, Cao Y. Sweetener aspartame aggravates atherosclerosis through insulin-triggered inflammation. Cell Metab 2025:S1550-4131(25)00006-3. [PMID: 39978336 DOI: 10.1016/j.cmet.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/23/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025]
Abstract
Consumption of artificial sweeteners (ASWs) in various foods and beverages has been linked to an increased risk of cardiovascular diseases (CVDs). However, molecular mechanisms underlying ASW-associated CVD remain unknown. Here, we show that consumption of 0.15% aspartame (APM) markedly increased insulin secretion in mice and monkeys. Bilateral subdiaphragmatic vagotomy (SDV) obliterated APM-elevated blood insulin levels, demonstrating crucial roles of parasympathetic activation in regulation of insulin secretion. Incessant APM feeding of ApoE-/- mice aggravated atherosclerotic plaque formation and growth via an insulin-dependent mechanism. Implantation of an insulin-slow-release pump in ApoE-/- mice exacerbated atherosclerosis. Whole-genome expression profiling discovered that CX3CL1 chemokine was the most upregulated gene in the insulin-stimulated arterial endothelial cells. Specific deletion of a CX3CL1 receptor, Cx3cr1 gene, in monocytes/macrophages completely abrogated the APM-exacerbated atherosclerosis. Our findings uncover a novel mechanism of APM-associated atherosclerosis and therapeutic targeting of the endothelial CX3CL1-macrophage CX3CR1 signaling axis provides an approach for treating atherosclerotic CVD.
Collapse
Affiliation(s)
- Weijie Wu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Chinese Academy of Medical Sciences and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China; Department of Microbiology, Tumor and Cell Biology, Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Wenhai Sui
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Chinese Academy of Medical Sciences and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China; Department of Microbiology, Tumor and Cell Biology, Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Sizhe Chen
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Chinese Academy of Medical Sciences and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China; Department of Microbiology, Tumor and Cell Biology, Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Xiaolu Wang
- Department of Microbiology, Tumor and Cell Biology, Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Qun Wang
- Department of Microbiology, Tumor and Cell Biology, Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Xinshuang Yu
- Department of Microbiology, Tumor and Cell Biology, Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Wenjing Xiong
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Chinese Academy of Medical Sciences and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China; Department of Microbiology, Tumor and Cell Biology, Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, Lishui 323000, China
| | - Libo Yang
- Department of Endocrinology, The Affiliated Taian City Central Hospital of Qingdao University, Taian City, Shandong Province, China
| | - Yuan Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Chinese Academy of Medical Sciences and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Wenjing Jiang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Chinese Academy of Medical Sciences and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Guohua Yu
- Clinical Oncology Department, Weifang People's Hospital, Kuiwen, Weifang, China
| | - Shuzhen Liu
- Clinical Oncology Department, Weifang People's Hospital, Kuiwen, Weifang, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Zhao
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Chinese Academy of Medical Sciences and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Yuguo Chen
- Department Nuclear Medicine, Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China.
| | - Cheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Chinese Academy of Medical Sciences and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Karolinska Institute, 171 65 Stockholm, Sweden; Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
2
|
Bandesh K, Motakis E, Nargund S, Kursawe R, Selvam V, Bhuiyan RM, Eryilmaz GN, Krishnan SN, Spracklen CN, Ucar D, Stitzel ML. Single-cell decoding of human islet cell type-specific alterations in type 2 diabetes reveals converging genetic- and state-driven β -cell gene expression defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633590. [PMID: 39896672 PMCID: PMC11785113 DOI: 10.1101/2025.01.17.633590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pancreatic islets maintain glucose homeostasis through coordinated action of their constituent endocrine and affiliate cell types and are central to type 2 diabetes (T2D) genetics and pathophysiology. Our understanding of robust human islet cell type-specific alterations in T2D remains limited. Here, we report comprehensive single cell transcriptome profiling of 245,878 human islet cells from a 48-donor cohort spanning non-diabetic (ND), pre-diabetic (PD), and T2D states, identifying 14 distinct cell types detected in every donor from each glycemic state. Cohort analysis reveals ~25-30% loss of functional beta cell mass in T2D vs. ND or PD donors resulting from (1) reduced total beta cell numbers/proportions and (2) reciprocal loss of 'high function' and gain of senescent β -cell subpopulations. We identify in T2D β -cells 511 differentially expressed genes (DEGs), including new (66.5%) and validated genes (e.g., FXYD2, SLC2A2, SYT1), and significant neuronal transmission and vitamin A metabolism pathway alterations. Importantly, we demonstrate newly identified DEG roles in human β -cell viability and/or insulin secretion and link 47 DEGs to diabetes-relevant phenotypes in knockout mice, implicating them as potential causal islet dysfunction genes. Additionally, we nominate as candidate T2D causal genes and therapeutic targets 27 DEGs for which T2D genetic risk variants (GWAS SNPs) and pathophysiology (T2D vs. ND) exert concordant expression effects. We provide this freely accessible atlas for data exploration, analysis, and hypothesis testing. Together, this study provides new genomic resources for and insights into T2D pathophysiology and human islet dysfunction.
Collapse
Affiliation(s)
- Khushdeep Bandesh
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Efthymios Motakis
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Siddhi Nargund
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Vijay Selvam
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Redwan M Bhuiyan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06032 USA
| | - Giray Naim Eryilmaz
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Sai Nivedita Krishnan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06032 USA
| | - Cassandra N. Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06032 USA
- Institute for Systems Genomics, UConn, Farmington, CT 06032 USA
| | - Michael L. Stitzel
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06032 USA
- Institute for Systems Genomics, UConn, Farmington, CT 06032 USA
| |
Collapse
|
3
|
Tahiri A, Youssef A, Inoue R, Moon S, Alsarkhi L, Berroug L, Nguyen XTA, Wang L, Kwon H, Pang ZP, Zhao JY, Shirakawa J, Ulloa L, El Ouaamari A. Vagal sensory neuron-derived FGF3 controls insulin secretion. Dev Cell 2025; 60:51-61.e4. [PMID: 39413782 PMCID: PMC11706709 DOI: 10.1016/j.devcel.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/28/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Vagal nerve stimulation has emerged as a promising modality for treating a wide range of chronic conditions, including metabolic disorders. However, the cellular and molecular pathways driving these clinical benefits remain largely obscure. Here, we demonstrate that fibroblast growth factor 3 (Fgf3) mRNA is upregulated in the mouse vagal ganglia under acute metabolic stress. Systemic and vagal sensory overexpression of Fgf3 enhanced glucose-stimulated insulin secretion (GSIS), improved glucose excursion, and increased energy expenditure and physical activity. Fgf3-elicited insulinotropic and glucose-lowering responses were recapitulated when overexpression of Fgf3 was restricted to the pancreas-projecting vagal sensory neurons. Genetic ablation of Fgf3 in pancreatic vagal afferents exacerbated high-fat diet-induced glucose intolerance and blunted GSIS. Finally, electrostimulation of the vagal afferents enhanced GSIS and glucose clearance independently of efferent outputs. Collectively, we demonstrate a direct role for the vagal afferent signaling in GSIS and identify Fgf3 as a vagal sensory-derived metabolic factor that controls pancreatic β-cell activity.
Collapse
Affiliation(s)
- Azeddine Tahiri
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Ayman Youssef
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Lamyaa Alsarkhi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Laila Berroug
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Xuan Thi Anh Nguyen
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Le Wang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Hyokjoon Kwon
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Abdelfattah El Ouaamari
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
4
|
Breuil-Marsal Z, Godek C, Lotti A, Feiereisen P, Marçal IR, Rehder-Santos P, Milan-Mattos JC, de Abreu RM. Acute and chronic effects of inspiratory muscle training in patients with type 2 diabetes mellitus: a systematic review of randomized controlled trials. Front Sports Act Living 2024; 6:1423308. [PMID: 39722739 PMCID: PMC11668605 DOI: 10.3389/fspor.2024.1423308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
Objectives To conduct a systematic review to determine the acute and chronic effects of inspiratory muscle training (IMT) in type 2 diabetes mellitus (T2DM) patients on cardiac autonomic function, glucose variability, inspiratory muscle strength and endurance, hemodynamic variables, and exercise capacity. Methods A search was carried out according to a specific search strategy, following the PRISMA statement, and three independent reviewers have undertaken the article selection process. Searches were carried out in June 2023, on the following electronic databases: EMBASE, MEDLINE (PubMed), SCOPUS (Elsevier), and Web of Science. The methodological quality of the studies was assessed using the PEDro scale. The search was limited to English-language, randomized controlled trials (RCTs), involving T2DM patients (>18 years old, with or without autonomic neuropathy, and/or inspiratory muscle weakness) following an acute or chronic intervention protocol based on IMT. Exclusion criteria were reviews, clinical trials, case studies, theses, dissertations, scientific conference abstracts, subjects with other chronic respiratory/neurological/cardiovascular diseases, and studies addressing other breathing exercises. Results The search strategy identified 1,352 studies, of which eight (two involving acute and six involving chronic IMT effects) were included. A total of 214 adults aged 52-63 years (51/49 male/female ratio), with BMI ranging from 27 to 36.8 kg/m², were included. The results demonstrated that after IMT, acute effects were reported, such as reduced glucose levels and an increase in the parasympathetic pathway, but also chronic effects including improved inspiratory muscle strength, endurance, and exercise capacity. Conclusion Although some methodological differences among the studies were found, IMT may have beneficial effects on cardiac autonomic function, glucose level control, inspiratory muscle strength/endurance as well as exercise capacity. However, further studies are necessary to confirm these benefits.
Collapse
Affiliation(s)
- Zoé Breuil-Marsal
- Department of Health, LUNEX University of Applied Sciences, Differdange, Luxembourg
| | - Clémence Godek
- Department of Health, LUNEX University of Applied Sciences, Differdange, Luxembourg
| | - Amandine Lotti
- Department of Health, LUNEX University of Applied Sciences, Differdange, Luxembourg
| | - Patrick Feiereisen
- Department of Cardiology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Isabela Roque Marçal
- Exercise Physiology and Cardiovascular Health Lab, Division of Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Patricia Rehder-Santos
- Dr. Washington Antônio de Barros Teaching Hospital (HU UNIVASF), Brazilian Hospital Services Company (EBSERH), Petrolina, Brazil
| | | | - Raphael Martins de Abreu
- Department of Health, LUNEX University of Applied Sciences, Differdange, Luxembourg
- Department of Health, LUNEX ASBL Luxembourg Health & Sport Sciences Research Institute, Differdange, Luxembourg
| |
Collapse
|
5
|
Nagai M, Rommel KP, Po SS, Dasari TW. Autonomic neuromodulation for cardiomyopathy associated with metabolic syndrome - Prevention of precursors for heart failure with preserved ejection fraction. Hypertens Res 2024; 47:3318-3329. [PMID: 39261699 DOI: 10.1038/s41440-024-01886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Metabolic syndrome (MetS) induces a systemic inflammatory state which can lead to cardiomyopathy, manifesting clinically as heart failure (HF) with preserved ejection fraction (HFpEF). MetS components are intricately linked to the pathophysiologic processes of myocardial remodeling. Increased sympathetic nervous system activity, which is noted as an upstream factor of MetS, has been linked to adverse myocardial structural changes. Since renal denervation and vagus nerve stimulation have a sympathoinhibitory effect, attention has been paid to the cardioprotective effects of autonomic neuromodulation. In this review, the pathophysiology underlying the relationship between MetS and HF is elucidated, and the evidence regarding autonomic neuromodulation in HFpEF is summarized.
Collapse
Affiliation(s)
- Michiaki Nagai
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA.
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan.
| | - Karl-Philipp Rommel
- Department of Cardiology, University Medical Center Mainz and German Center for Cardiovascular Research, Mainz, Germany
| | - Sunny S Po
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA
| | - Tarun W Dasari
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA.
| |
Collapse
|
6
|
Kawana Y, Imai J, Morizawa YM, Ikoma Y, Kohata M, Komamura H, Sato T, Izumi T, Yamamoto J, Endo A, Sugawara H, Kubo H, Hosaka S, Munakata Y, Asai Y, Kodama S, Takahashi K, Kaneko K, Sawada S, Yamada T, Ito A, Niizuma K, Tominaga T, Yamanaka A, Matsui K, Katagiri H. Optogenetic stimulation of vagal nerves for enhanced glucose-stimulated insulin secretion and β cell proliferation. Nat Biomed Eng 2024; 8:808-822. [PMID: 37945752 PMCID: PMC11310082 DOI: 10.1038/s41551-023-01113-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
The enhancement of insulin secretion and of the proliferation of pancreatic β cells are promising therapeutic options for diabetes. Signals from the vagal nerve regulate both processes, yet the effectiveness of stimulating the nerve is unclear, owing to a lack of techniques for doing it so selectively and prolongedly. Here we report two optogenetic methods for vagal-nerve stimulation that led to enhanced glucose-stimulated insulin secretion and to β cell proliferation in mice expressing choline acetyltransferase-channelrhodopsin 2. One method involves subdiaphragmatic implantation of an optical fibre for the photostimulation of cholinergic neurons expressing a blue-light-sensitive opsin. The other method, which suppressed streptozotocin-induced hyperglycaemia in the mice, involves the selective activation of vagal fibres by placing blue-light-emitting lanthanide microparticles in the pancreatic ducts of opsin-expressing mice, followed by near-infrared illumination. The two methods show that signals from the vagal nerve, especially from nerve fibres innervating the pancreas, are sufficient to regulate insulin secretion and β cell proliferation.
Collapse
Affiliation(s)
- Yohei Kawana
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yosuke M Morizawa
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Masato Kohata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Komamura
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshihiro Sato
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junpei Yamamoto
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Endo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroto Sugawara
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haremaru Kubo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Ito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Berthon A, Wernisch L, Stoukidi M, Thornton M, Tessier-Lariviere O, Fortier-Poisson P, Mamen J, Pinkney M, Lee S, Sarkans E, Annecchino L, Appleton B, Garsed P, Patterson B, Gonshaw S, Jakopec M, Shunmugam S, Edwards T, Tukiainen A, Jennings J, Lajoie G, Hewage E, Armitage O. Using neural biomarkers to personalize dosing of vagus nerve stimulation. Bioelectron Med 2024; 10:15. [PMID: 38880906 PMCID: PMC11181600 DOI: 10.1186/s42234-024-00147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) is an established therapy for treating a variety of chronic diseases, such as epilepsy, depression, obesity, and for stroke rehabilitation. However, lack of precision and side-effects have hindered its efficacy and extension to new conditions. Achieving a better understanding of the relationship between VNS parameters and neural and physiological responses is therefore necessary to enable the design of personalized dosing procedures and improve precision and efficacy of VNS therapies. METHODS We used biomarkers from recorded evoked fiber activity and short-term physiological responses (throat muscle, cardiac and respiratory activity) to understand the response to a wide range of VNS parameters in anaesthetised pigs. Using signal processing, Gaussian processes (GP) and parametric regression models we analyse the relationship between VNS parameters and neural and physiological responses. RESULTS Firstly, we illustrate how considering multiple stimulation parameters in VNS dosing can improve the efficacy and precision of VNS therapies. Secondly, we describe the relationship between different VNS parameters and the evoked fiber activity and show how spatially selective electrodes can be used to improve fiber recruitment. Thirdly, we provide a detailed exploration of the relationship between the activations of neural fiber types and different physiological effects. Finally, based on these results, we discuss how recordings of evoked fiber activity can help design VNS dosing procedures that optimize short-term physiological effects safely and efficiently. CONCLUSION Understanding of evoked fiber activity during VNS provide powerful biomarkers that could improve the precision, safety and efficacy of VNS therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Guillaume Lajoie
- Université de Montréal and Mila-Quebec AI Institute, Montréal, Canada
| | | | | |
Collapse
|
8
|
Rahmouni K. Neural Circuits Underlying Reciprocal Cardiometabolic Crosstalk: 2023 Arthur C. Corcoran Memorial Lecture. Hypertension 2024; 81:1233-1243. [PMID: 38533662 PMCID: PMC11096079 DOI: 10.1161/hypertensionaha.124.22066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The interplay of various body systems, encompassing those that govern cardiovascular and metabolic functions, has evolved alongside the development of multicellular organisms. This evolutionary process is essential for the coordination and maintenance of homeostasis and overall health by facilitating the adaptation of the organism to internal and external cues. Disruption of these complex interactions contributes to the development and progression of pathologies that involve multiple organs. Obesity-associated cardiovascular risks, such as hypertension, highlight the significant influence that metabolic processes exert on the cardiovascular system. This cardiometabolic communication is reciprocal, as indicated by substantial evidence pointing to the ability of the cardiovascular system to affect metabolic processes, with pathophysiological implications in disease conditions. In this review, I outline the bidirectional nature of the cardiometabolic interaction, with special emphasis on the impact that metabolic organs have on the cardiovascular system. I also discuss the contribution of the neural circuits and autonomic nervous system in mediating the crosstalk between cardiovascular and metabolic functions in health and disease, along with the molecular mechanisms involved.
Collapse
Affiliation(s)
- Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
9
|
Conde SV, Sacramento JF, Zinno C, Mazzoni A, Micera S, Guarino MP. Bioelectronic modulation of carotid sinus nerve to treat type 2 diabetes: current knowledge and future perspectives. Front Neurosci 2024; 18:1378473. [PMID: 38646610 PMCID: PMC11026613 DOI: 10.3389/fnins.2024.1378473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Bioelectronic medicine are an emerging class of treatments aiming to modulate body nervous activity to correct pathological conditions and restore health. Recently, it was shown that the high frequency electrical neuromodulation of the carotid sinus nerve (CSN), a small branch of the glossopharyngeal nerve that connects the carotid body (CB) to the brain, restores metabolic function in type 2 diabetes (T2D) animal models highlighting its potential as a new therapeutic modality to treat metabolic diseases in humans. In this manuscript, we review the current knowledge supporting the use of neuromodulation of the CSN to treat T2D and discuss the future perspectives for its clinical application. Firstly, we review in a concise manner the role of CB chemoreceptors and of CSN in the pathogenesis of metabolic diseases. Secondly, we describe the findings supporting the potential therapeutic use of the neuromodulation of CSN to treat T2D, as well as the feasibility and reversibility of this approach. A third section is devoted to point up the advances in the neural decoding of CSN activity, in particular in metabolic disease states, that will allow the development of closed-loop approaches to deliver personalized and adjustable treatments with minimal side effects. And finally, we discuss the findings supporting the assessment of CB activity in metabolic disease patients to screen the individuals that will benefit therapeutically from this bioelectronic approach in the future.
Collapse
Affiliation(s)
- Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Joana F. Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ciro Zinno
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Silvestro Micera
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Maria P. Guarino
- ciTechCare, School of Health Sciences Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
10
|
Borgmann D, Fenselau H. Vagal pathways for systemic regulation of glucose metabolism. Semin Cell Dev Biol 2024; 156:244-252. [PMID: 37500301 DOI: 10.1016/j.semcdb.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Maintaining blood glucose at an appropriate physiological level requires precise coordination of multiple organs and tissues. The vagus nerve bidirectionally connects the central nervous system with peripheral organs crucial to glucose mobilization, nutrient storage, and food absorption, thereby presenting a key pathway for the central control of blood glucose levels. However, the precise mechanisms by which vagal populations that target discrete tissues participate in glucoregulation are much less clear. Here we review recent advances unraveling the cellular identity, neuroanatomical organization, and functional contributions of both vagal efferents and vagal afferents in the control of systemic glucose metabolism. We focus on their involvement in relaying glucoregulatory cues from the brain to peripheral tissues, particularly the pancreatic islet, and by sensing and transmitting incoming signals from ingested food to the brain. These recent findings - largely driven by advances in viral approaches, RNA sequencing, and cell-type selective manipulations and tracings - have begun to clarify the precise vagal neuron populations involved in the central coordination of glucose levels, and raise interesting new possibilities for the treatment of glucose metabolism disorders such as diabetes.
Collapse
Affiliation(s)
- Diba Borgmann
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Physical Activity Research (CFAS), Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany.
| |
Collapse
|
11
|
Jelinek M, Lipkova J, Duris K. Vagus nerve stimulation as immunomodulatory therapy for stroke: A comprehensive review. Exp Neurol 2024; 372:114628. [PMID: 38042360 DOI: 10.1016/j.expneurol.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Stroke is a devastating cerebrovascular pathology with high morbidity and mortality. Inflammation plays a central role in the pathophysiology of stroke. Vagus nerve stimulation (VNS) is a promising immunomodulatory method that has shown positive effects in stroke treatment, including neuroprotection, anti-apoptosis, anti-inflammation, antioxidation, reduced infarct volume, improved neurological scores, and promotion of M2 microglial polarization. In this review, we summarize the current knowledge about the vagus nerve's immunomodulatory effects through the cholinergic anti-inflammatory pathway (CAP) and provide a comprehensive assessment of the available experimental literature focusing on the use of VNS in stroke treatment.
Collapse
Affiliation(s)
- Matyas Jelinek
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jolana Lipkova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamil Duris
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurosurgery, The University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
12
|
Cao M, Kuthiala S, Jean KJ, Liu HL, Courchesne M, Nygard K, Burns P, Desrochers A, Fecteau G, Faure C, Frasch MG. The Vagus Nerve Regulates Immunometabolic Homeostasis in the Ovine Fetus near Term: The Impact on Terminal Ileum. BIOLOGY 2024; 13:38. [PMID: 38248469 PMCID: PMC10812930 DOI: 10.3390/biology13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Glucosensing elements are widely distributed throughout the body and relay information about circulating glucose levels to the brain via the vagus nerve. However, while anatomical wiring has been established, little is known about the physiological role of the vagus nerve in glucosensing. The contribution of the vagus nerve to inflammation in the fetus is poorly understood. Increased glucose levels and inflammation act synergistically when causing organ injury, but their interplay remains incompletely understood. We hypothesized that vagotomy (Vx) will trigger a rise in systemic glucose levels and this will be enhanced during systemic and organ-specific inflammation. Efferent vagus nerve stimulation (VNS) should reverse this phenotype. METHODS Near-term fetal sheep (n = 57) were surgically prepared using vascular catheters and ECG electrodes as the control and treatment groups (lipopolysaccharide (LPS), Vx + LPS, Vx + LPS + selective efferent VNS). The experiment was started 72 h postoperatively to allow for post-surgical recovery. Inflammation was induced with LPS bolus intravenously (LPS group, 400 ng/fetus/day for 2 days; n = 23). For the Vx + LPS group (n = 11), a bilateral cervical vagotomy was performed during surgery; of these n = 5 received double the LPS dose, LPS800. The Vx + LPS + efferent VNS group (n = 8) received cervical VNS probes bilaterally distal from Vx in eight animals. Efferent VNS was administered for 20 min on days 1 and 2 +/10 min around the LPS bolus. Fetal arterial blood samples were drawn on each postoperative day of recovery (-72 h, -48 h, and -24 h) as well as at the baseline and seven selected time points (3-54 h) to profile inflammation (ELISA IL-6, pg/mL), insulin (ELISA), blood gas, and metabolism (glucose). At 54 h post-LPS, a necropsy was performed, and the terminal ileum macrophages' CD11c (M1 phenotype) immunofluorescence was quantified to detect inflammation. The results are reported for p < 0.05 and for Spearman R2 > 0.1. The results are presented as the median (IQR). RESULTS Across the treatment groups, blood gas and cardiovascular changes indicated mild septicemia. At 3 h in the LPS group, IL-6 peaked. That peak was decreased in the Vx + LPS400 group and doubled in the Vx + LPS800 group. The efferent VNS sped up the reduction in the inflammatory response profile over 54 h. The M1 macrophage activity was increased in the LPS and Vx + LPS800 groups only. The glucose and insulin concentrations in the Vx + LPS group were, respectively, 1.3-fold (throughout the experiment) and 2.3-fold higher vs. control (at 3 h). The efferent VNS normalized the glucose concentrations. CONCLUSIONS The complete withdrawal of vagal innervation resulted in a 72-h delayed onset of a sustained increase in glucose for at least 54 h and intermittent hyperinsulinemia. Under the conditions of moderate fetal inflammation, this was related to higher levels of gut inflammation. The efferent VNS reduced the systemic inflammatory response as well as restored both the concentrations of glucose and the degree of terminal ileum inflammation, but not the insulin concentrations. Supporting our hypothesis, these findings revealed a novel regulatory, hormetic, role of the vagus nerve in the immunometabolic response to endotoxin in near-term fetuses.
Collapse
Affiliation(s)
- Mingju Cao
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
| | - Shikha Kuthiala
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
| | - Keven Jason Jean
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
| | - Hai Lun Liu
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
| | - Marc Courchesne
- Biotron Microscopy, Western University, London, ON N6A 3K7, Canada
| | - Karen Nygard
- Biotron Microscopy, Western University, London, ON N6A 3K7, Canada
| | - Patrick Burns
- Clinical Sciences, CHUV, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada (A.D.)
| | - André Desrochers
- Clinical Sciences, CHUV, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada (A.D.)
| | - Gilles Fecteau
- Clinical Sciences, CHUV, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada (A.D.)
| | - Christophe Faure
- Department of Pediatrics, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Martin G. Frasch
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
- Centre de Recherche en Reproduction Animale, l’Université de Montréal, St-Hyacinthe, QC H3T 1J4, Canada
- Department of Obstetrics and Gynecology and Institute on Human Development and Disability, School of Medicine, University of Washington, 1959 NE Pacific St Box 356460, Seattle, WA 98195, USA
| |
Collapse
|
13
|
刘 洪, 王 卫. [Research advances in neuromodulation techniques for blood glucose regulation and diabetes intervention]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:1227-1234. [PMID: 38151947 PMCID: PMC10753312 DOI: 10.7507/1001-5515.202307019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/03/2023] [Indexed: 12/29/2023]
Abstract
Diabetes and its complications that seriously threaten the health and life of human, has become a public health problem of global concern. Glycemic control remains a major focus in the treatment and management of patients with diabetes. The traditional lifestyle interventions, drug therapies, and surgeries have benefited many patients with diabetes. However, due to problems such as poor patient compliance, drug side effects, and limited surgical indications, there are still patients who fail to effectively control their blood glucose levels. With the development of bioelectronic medicine, neuromodulation techniques have shown great potential in the field of glycemic control and diabetes intervention with its unique advantages. This paper mainly reviewed the research advances and latest achievements of neuromodulation technologies such as peripheral nerve electrical stimulation, ultrasound neuromodulation, and optogenetics in blood glucose regulation and diabetes intervention, analyzed the existing problems and presented prospects for the future development trend to promote clinical research and application of neuromodulation technologies in the treatment of diabetes.
Collapse
Affiliation(s)
- 洪运 刘
- 中国人民解放军总医院 医学创新研究部 生物工程研究中心(北京 100853)Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing 100853, P. R. China
- 工业和信息化部生物医学工程与转化医学重点实验室(北京 100853)Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing 100853, P. R. China
| | - 卫东 王
- 中国人民解放军总医院 医学创新研究部 生物工程研究中心(北京 100853)Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing 100853, P. R. China
- 工业和信息化部生物医学工程与转化医学重点实验室(北京 100853)Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing 100853, P. R. China
| |
Collapse
|
14
|
Sha B, Zhao S, Gu M, Khodagholy D, Wang L, Bi GQ, Du Z. Doping-induced assembly interface for noninvasive in vivo local and systemic immunomodulation. Proc Natl Acad Sci U S A 2023; 120:e2306777120. [PMID: 38032937 PMCID: PMC10710085 DOI: 10.1073/pnas.2306777120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Peripheral neural interfaces, potent in modulating local and systemic immune responses for disease treatment, face significant challenges due to the peripheral nerves' broad distribution in tissues like the fascia, periosteum, and skin. The incongruity between static electronic components and the dynamic, complex organization of the peripheral nervous system often leads to interface failure, stalling circuit research and clinical applications. To overcome these, we developed a self-assembling, tissue-adaptive electrode composed of a single-component cocktail nanosheet colloid, including dopants, conducting polymers, stabilizers, and an MXene catalyst. Delivered via a jet injector to designated nerve terminals, this assembly utilizes reactive oxygen species to catalytically dope poly (3,4-ethylenedioxythiophene), enhancing π-π interactions between nanosheets, and yielding a conductive, biodegradable interface. This interface effectively regulates local immune activity and promotes sensory and motor nerve functional restoration in nerve-injured mice, while engaging the vagal-adrenal axis in freely moving mice, eliciting catecholamine neurotransmitter release, and suppressing systemic cytokine storms. This innovative strategy specifically targets nerve substructures, bolstering local and systemic immune modulation, and paving the way for the development of self-adaptive dynamic neural interfaces.
Collapse
Affiliation(s)
- Baoning Sha
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Department of Biomedical Engineering, Columbia University, New York, NY10027
- Department of Electrical Engineering, Columbia University, New York, NY10027
| | - Shengzhuo Zhao
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou215123, China
| | - Minling Gu
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY10027
| | - Liping Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Guo-Qiang Bi
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei230026, China
| | - Zhanhong Du
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
15
|
Hoornenborg C, van Dijk T, Bruggink J, van Beek A, van Dijk G. Acute sub-diaphragmatic anterior vagus nerve stimulation increases peripheral glucose uptake in anaesthetized rats. IBRO Neurosci Rep 2023; 15:50-56. [PMID: 37415729 PMCID: PMC10320406 DOI: 10.1016/j.ibneur.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
The sub-diaphragmatic vagus innervates various organs involved in the control of glucose homeostasis including the liver, pancreas and the intestines. In the current study, we investigated the effect of acute electrical stimulation of the anterior trunk of the sub-diaphragmatic vagus on glucose fluxes in anaesthetized adult male rats. After overnight fast, rats underwent either vagus nerve stimulation (VNS+, n = 11; rectangular pulses at 5 Hz, 1.5 mA, 1 msec pulse width) or sham stimulation (VNS-; n = 11) for 120 min under isoflurane anesthesia. Before stimulation, the rats received an i.v. bolus of 1 mL/kg of a sterilized aqueous solution containing 125 mg/mL of D-[6,6-2H2] glucose. Endogenous glucose production (EGP) and glucose clearance rate (GCR) were calculated by kinetic analysis from the wash-out of injected D-[6,6-2H2]glucose from the circulation. VNS+ resulted in lower glucose levels compared to the VNS- group (p < 0.05), with similar insulin levels. EGP was similar in both groups, but the GCR was higher in the VNS+ group compared to the VNS- group (p < 0.001). Circulating levels of the sympathetic transmitter norepinephrine were reduced by VNS+ relative to VNS- treatment (p < 0.01). It is concluded that acute anterior sub-diaphragmatic VNS causes stimulation of peripheral glucose uptake, while plasma insulin levels remained similar, and this is associated with lower activity of the sympathetic nervous system.
Collapse
Affiliation(s)
- C.W. Hoornenborg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Behavioral Neuroscience, University of Groningen, Groningen, the Netherlands
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - T.H. van Dijk
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - J.E. Bruggink
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Behavioral Neuroscience, University of Groningen, Groningen, the Netherlands
| | - A.P. van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - G. van Dijk
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Behavioral Neuroscience, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
16
|
Güemes Gonzalez A, Carnicer-Lombarte A, Hilton S, Malliaras G. A multivariate physiological model of vagus nerve signalling during metabolic challenges in anaesthetised rats for diabetes treatment. J Neural Eng 2023; 20:056033. [PMID: 37757803 DOI: 10.1088/1741-2552/acfdcd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Objective.This study aims to develop a comprehensive decoding framework to create a multivariate physiological model of vagus nerve transmission that reveals the complex interactions between the nervous and metabolic systems.Approach.Vagus nerve activity was recorded in female Sprague-Dawley rats using gold hook microwires implanted around the left cervical vagus nerve. The rats were divided into three experimental cohorts (intact nerve, ligation nerve for recording afferent activation, and ligation for recording efferent activation) and metabolic challenges were administered to change glucose levels while recording the nerve activity. The decoding methodology involved various techniques, including continuous wavelet transformation, extraction of breathing rate (BR), and correlation of neural metrics with physiological signals.Main results.Decrease in glucose level was consistently negatively correlated with an increase in the firing activity of the intact vagus nerve that was found to be conveyed by both afferent and efferent pathways, with the afferent response being more similar to the one on the intact nerve. A larger variability was observed in the sensory and motor responses to hyperglycaemia. A novel strategy to extract the BR over time based on inter-burst-interval is also presented. The vagus afferent was found to encode breathing information through amplitude and firing rate modulation. Modulations of the signal amplitude were also observed due to changes in heart rate in the intact and efferent recordings, highlighting the parasympathetic control of the heart.Significance.The analytical framework presented in this study provides an integrative understanding that considers the relationship between metabolic, cardiac, and breathing signals and contributes to the development of a multivariable physiological model for the transmission of vagus nerve signals. This work progresses toward the development of closed-loop neuro-metabolic therapeutic systems for diabetes.
Collapse
Affiliation(s)
- Amparo Güemes Gonzalez
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - Alejandro Carnicer-Lombarte
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - Sam Hilton
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - George Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| |
Collapse
|
17
|
Waataja JJ, Asp AJ, Billington CJ. Combining Celiac and Hepatic Vagus Nerve Neuromodulation Reverses Glucose Intolerance and Improves Glycemic Control in Pre- and Overt-Type 2 Diabetes Mellitus. Biomedicines 2023; 11:2452. [PMID: 37760895 PMCID: PMC10525327 DOI: 10.3390/biomedicines11092452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Neurological disorders and type 2 diabetes mellitus (T2DM) are deeply intertwined. For example, autonomic neuropathy contributes to the development of T2DM and continued unmanaged T2DM causes further progression of nerve damage. Increasing glycemic control has been shown to prevent the onset and progression of diabetic autonomic neuropathies. Neuromodulation consisting of combined stimulation of celiac vagal fibers innervating the pancreas with concurrent electrical blockade of neuronal hepatic vagal fibers innervating the liver has been shown to increase glycemic control in animal models of T2DM. The present study demonstrated that the neuromodulation reversed glucose intolerance in alloxan-treated swine in both pre- and overt stages of T2DM. This was demonstrated by improved performance on oral glucose tolerance tests (OGTTs), as assessed by area under the curve (AUC). In prediabetic swine (fasting plasma glucose (FPG) range: 101-119 mg/dL) the median AUC decreased from 31.9 AUs (IQR = 28.6, 35.5) to 15.9 AUs (IQR = 15.1, 18.3) p = 0.004. In diabetic swine (FPG range: 133-207 mg/dL) the median AUC decreased from 54.2 AUs (IQR = 41.5, 56.6) to 16.0 AUs (IQR = 15.4, 21.5) p = 0.003. This neuromodulation technique may offer a new treatment for T2DM and reverse glycemic dysregulation at multiple states of T2DM involved in diabetic neuropathy including at its development and during progression.
Collapse
Affiliation(s)
| | - Anders J. Asp
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55605, USA
| | | |
Collapse
|
18
|
Villalobos J, Payne SC, Ward GM, Andrikopoulos S, Hyakumura T, MacIsaac RJ, Fallon JB. Stimulation parameters for directional vagus nerve stimulation. Bioelectron Med 2023; 9:16. [PMID: 37464423 DOI: 10.1186/s42234-023-00117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Autonomic nerve stimulation is used as a treatment for a growing number of diseases. We have previously demonstrated that application of efferent vagus nerve stimulation (eVNS) has promising glucose lowering effects in a rat model of type 2 diabetes. This paradigm combines high frequency pulsatile stimulation to block nerve activation in the afferent direction with low frequency stimulation to activate the efferent nerve section. In this study we explored the effects of the parameters for nerve blocking on the ability to inhibit nerve activation in the afferent direction. The overarching aim is to establish a blocking stimulation strategy that could be applied using commercially available implantable pulse generators used in the clinic. METHODS Male rats (n = 20) had the anterior abdominal vagus nerve implanted with a multi-electrode cuff. Evoked compound action potentials (ECAP) were recorded at the proximal end of the electrode cuff. The efficacy of high frequency stimulation to block the afferent ECAP was assessed by changes in the threshold and saturation level of the response. Blocking frequency and duty cycle of the blocking pulses were varied while maintaining a constant 4 mA current amplitude. RESULTS During application of blocking at lower frequencies (≤ 4 kHz), the ECAP threshold increased (ANOVA, p < 0.001) and saturation level decreased (p < 0.001). Application of higher duty cycles (> 70%) led to an increase in evoked neural response threshold (p < 0.001) and a decrease in saturation level (p < 0.001). During the application of a constant pulse width and frequency (1 or 1.6 kHz, > 70% duty cycle), the charge delivered per pulse had a significant influence on the magnitude of the block (ANOVA, p = 0.003), and was focal (< 2 mm range). CONCLUSIONS This study has determined the range of frequencies, duty cycles and currents of high frequency stimulation that generate an efficacious, focal axonal block of a predominantly C-fiber tract. These findings could have potential application for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Joel Villalobos
- Bionics Institute, East Melbourne, Vic, Australia
- Department of Medical Bionics, University of Melbourne, Parkville, Vic, Australia
| | - Sophie C Payne
- Bionics Institute, East Melbourne, Vic, Australia
- Department of Medical Bionics, University of Melbourne, Parkville, Vic, Australia
| | - Glenn M Ward
- Bionics Institute, East Melbourne, Vic, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Vic, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Vic, Australia
| | - Sofianos Andrikopoulos
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Parkville, Australia
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Vic, Australia
| | - Tomoko Hyakumura
- Bionics Institute, East Melbourne, Vic, Australia
- Department of Medical Bionics, University of Melbourne, Parkville, Vic, Australia
| | - Richard J MacIsaac
- Bionics Institute, East Melbourne, Vic, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Vic, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Vic, Australia
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Parkville, Australia
| | - James B Fallon
- Bionics Institute, East Melbourne, Vic, Australia.
- Department of Medical Bionics, University of Melbourne, Parkville, Vic, Australia.
- Australian Diabetes Society, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Dirr EW, Patel Y, Johnson RD, Otto KJ. The effects of targeted vagus nerve stimulation on glucose homeostasis in STZ-induced diabetic rodents. Front Neurosci 2023; 17:1179276. [PMID: 37397461 PMCID: PMC10309008 DOI: 10.3389/fnins.2023.1179276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
During type 1 diabetes, an autoimmune attack destroys pancreatic β-cells leading to the inability to maintain glucose homeostasis. These β-cells are neuroresponsive endocrine cells which normally secrete insulin partially in response to input from the vagus nerve. This neural pathway can be utilized as a point of therapeutic intervention by delivering exogenous stimulation to drive increased insulin secretion. In this study, a cuff electrode was implanted on the pancreatic branch of the vagus nerve just prior to pancreatic insertion in rats, and a continuous glucose meter was implanted into the descending aorta. Streptozotocin (STZ) was used to induce a diabetic state, and changes in blood glucose were assessed using various stimulation parameters. Stimulation driven changes in hormone secretion, pancreatic blood flow, and islet cell populations were assessed. We found increased changes in the rate of blood glucose change during stimulation which subsided after stimulation ended paired with increased concentration of circulating insulin. We did not observe increased pancreatic perfusion, which suggests that the modulation of blood glucose was due to the activation of b-cells rather than changes in the extra-organ transport of insulin. Pancreatic neuromodulation showed potentially protective effects by reducing deficits in islet diameter, and ameliorating insulin loss after STZ treatment.
Collapse
Affiliation(s)
- Elliott W. Dirr
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Yogi Patel
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Richard D. Johnson
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Kevin J. Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
20
|
Park S, Zhang T, Kang S. Fecal Microbiota Composition, Their Interactions, and Metagenome Function in US Adults with Type 2 Diabetes According to Enterotypes. Int J Mol Sci 2023; 24:ijms24119533. [PMID: 37298483 DOI: 10.3390/ijms24119533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
T2DM etiology differs among Asians and Caucasians and may be associated with gut microbiota influenced by different diet patterns. However, the association between fecal bacterial composition, enterotypes, and T2DM susceptibility remained controversial. We investigated the fecal bacterial composition, co-abundance network, and metagenome function in US adults with T2DM compared to healthy adults based on enterotypes. We analyzed 1911 fecal bacterial files of 1039 T2DM and 872 healthy US adults from the Human Microbiome Projects. Operational taxonomic units were obtained after filtering and cleaning the files using Qiime2 tools. Machine learning and network analysis identified primary bacteria and their interactions influencing T2DM incidence, clustered into enterotypes, Bacteroidaceae (ET-B), Lachnospiraceae (ET-L), and Prevotellaceae (ET-P). ET-B showed higher T2DM incidence. Alpha-diversity was significantly lower in T2DM in ET-L and ET-P (p < 0.0001), but not in ET-B. Beta-diversity revealed a distinct separation between T2DM and healthy groups across all enterotypes (p < 0.0001). The XGBoost model exhibited high accuracy and sensitivity. Enterocloster bolteae, Facalicatena fissicatena, Clostridium symbiosum, and Facalibacterium prausnitizii were more abundant in the T2DM group than in the healthy group. Bacteroides koreensis, Oscillibacter ruminantium, Bacteroides uniformis, and Blautia wexlerae were lower in the T2DM than in the healthy group regardless of the enterotypes in the XGBoost model (p < 0.0001). However, the patterns of microbial interactions varied among different enterotypes affecting T2DM risk. The interaction between fecal bacteria was more tightly regulated in the ET-L than in the ET-B and ET-P groups (p < 0.001). Metagenomic analysis revealed an inverse association between bacteria abundance in T2DM, energy utility, butanoate and propanoate metabolism, and the insulin signaling pathway (p < 0.0001). In conclusion, fecal bacteria play a role in T2DM pathogenesis, particularly within different enterotypes, providing valuable insights into the link between gut microbiota and T2DM in the US population.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, Asan 31499, Republic of Korea
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea
| | - Ting Zhang
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea
| | - Suna Kang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, Asan 31499, Republic of Korea
| |
Collapse
|
21
|
Zhang S, He H, Wang Y, Wang X, Liu X. Transcutaneous auricular vagus nerve stimulation as a potential novel treatment for polycystic ovary syndrome. Sci Rep 2023; 13:7721. [PMID: 37173458 PMCID: PMC10182028 DOI: 10.1038/s41598-023-34746-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of childbearing age. The etiology of PCOS is multifactorial, and current treatments for PCOS are far from satisfactory. Recently, an imbalanced autonomic nervous system (ANS) with sympathetic hyperactivity and reduced parasympathetic nerve activity (vagal tone) has aroused increasing attention in the pathogenesis of PCOS. In this paper, we review an innovative therapy for the treatment of PCOS and related co-morbidities by targeting parasympathetic modulation based on non-invasive transcutaneous auricular vagal nerve stimulation (ta-VNS). In this work, we present the role of the ANS in the development of PCOS and describe a large number of experimental and clinical reports that support the favorable effects of VNS/ta-VNS in treating a variety of symptoms, including obesity, insulin resistance, type 2 diabetes mellitus, inflammation, microbiome dysregulation, cardiovascular disease, and depression, all of which are also commonly present in PCOS patients. We propose a model focusing on ta-VNS that may treat PCOS by (1) regulating energy metabolism via bidirectional vagal signaling; (2) reversing insulin resistance via its antidiabetic effect; (3) activating anti-inflammatory pathways; (4) restoring homeostasis of the microbiota-gut-brain axis; (5) restoring the sympatho-vagal balance to improve CVD outcomes; (6) and modulating mental disorders. ta-VNS is a safe clinical procedure and it might be a promising new treatment approach for PCOS, or at least a supplementary treatment for current therapeutics.
Collapse
Affiliation(s)
- Shike Zhang
- Southern University of Science and Technology Yantian Hospital, Shenzhen, 518081, China
- Shenzhen Yantian District People's Hospital, Shenzhen, 518081, China
| | - Hui He
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Yu Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiao Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaofang Liu
- Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| |
Collapse
|
22
|
Hiendlmeier L, Zurita F, Vogel J, Del Duca F, Al Boustani G, Peng H, Kopic I, Nikić M, F Teshima T, Wolfrum B. 4D-Printed Soft and Stretchable Self-Folding Cuff Electrodes for Small-Nerve Interfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210206. [PMID: 36594106 DOI: 10.1002/adma.202210206] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Peripheral nerve interfacing (PNI) has a high clinical potential for treating various diseases, such as obesity or diabetes. However, currently existing electrodes present challenges to the interfacing procedure, which limit their clinical application, in particular, when targeting small peripheral nerves (<200 µm). To improve the electrode handling and implantation, a nerve interface that can fold itself to a cuff around a small nerve, triggered by the body moisture during insertion, is fabricated. This folding is achieved by printing a bilayer of a flexible polyurethane printing resin and a highly swelling sodium acrylate hydrogel using photopolymerization. When immersed in an aqueous liquid, the hydrogel swells and folds the electrode softly around the nerve. Furthermore, the electrodes are robust, can be stretched (>20%), and bent to facilitate the implantation due to the use of soft and stretchable printing resins as substrates and a microcracked gold film as conductive layer. The straightforward implantation and extraction of the electrode as well as stimulation and recording capabilities on a small peripheral nerve in vivo are demonstrated. It is believed that such simple and robust to use self-folding electrodes will pave the way for bringing PNI to a broader clinical application.
Collapse
Affiliation(s)
- Lukas Hiendlmeier
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories, NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA, 94085, USA
| | - Francisco Zurita
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories, NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA, 94085, USA
| | - Jonas Vogel
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
| | - Fulvia Del Duca
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories, NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA, 94085, USA
| | - George Al Boustani
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories, NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA, 94085, USA
| | - Hu Peng
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
| | - Inola Kopic
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
| | - Marta Nikić
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
| | - Tetsuhiko F Teshima
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories, NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA, 94085, USA
| | - Bernhard Wolfrum
- Neuroelectronics, Munich Institute of Biomedical Engineering, School of Computation, Informatics and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748, Garching, Germany
- Medical & Health Informatics Laboratories, NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA, 94085, USA
| |
Collapse
|
23
|
A randomized trial on the effect of transcutaneous electrical nerve stimulator on glycemic control in patients with type 2 diabetes. Sci Rep 2023; 13:2662. [PMID: 36792682 PMCID: PMC9932095 DOI: 10.1038/s41598-023-29791-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Transcutaneous electrical nerve stimulator (TENS) has been demonstrated to be beneficial in glycemic control in animal models, but its application in humans has not been well studied. We randomly assigned 160 patients with type 2 diabetes on oral antidiabetic drugs 1:1 to the TENS study device (n = 81) and placebo (n = 79). 147 (92%) randomized participants (mean [SD] age 59 [10] years, 92 men [58%], mean [SD] baseline HbA1c level 8.1% [0.6%]) completed the trial. At week 20, HbA1c decreased from 8.1% to 7.9% in the TENS group (- 0.2% [95% CI - 0.4% to - 0.1%]) and from 8.1% to 7.8% in the placebo group (- 0.3% [95% CI - 0.5% to - 0.2%]) (P = 0.821). Glycemic variability, measured as mean amplitude of glycemic excursion (MAGE) at week 20 were significantly different in the TENS group vs. the placebo group (66 mg/dL [95% CI 58, 73] vs. 79 mg/dL [95% CI 72, 87]) (P = 0.009). Our study provides the clinical evidence for the first time in humans that TENS does not demonstrate a statistically significant HbA1c reduction. However, it is a safe complementary therapy to improve MAGE in patients with type 2 diabetes.
Collapse
|
24
|
Jimenez-Gonzalez M, Li R, Pomeranz LE, Alvarsson A, Marongiu R, Hampton RF, Kaplitt MG, Vasavada RC, Schwartz GJ, Stanley SA. Mapping and targeted viral activation of pancreatic nerves in mice reveal their roles in the regulation of glucose metabolism. Nat Biomed Eng 2022; 6:1298-1316. [PMID: 35835995 PMCID: PMC9669304 DOI: 10.1038/s41551-022-00909-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
A lack of comprehensive mapping of ganglionic inputs into the pancreas and of technology for the modulation of the activity of specific pancreatic nerves has hindered the study of how they regulate metabolic processes. Here we show that the pancreas-innervating neurons in sympathetic, parasympathetic and sensory ganglia can be mapped in detail by using tissue clearing and retrograde tracing (the tracing of neural connections from the synapse to the cell body), and that genetic payloads can be delivered via intrapancreatic injection to target sites in efferent pancreatic nerves in live mice through optimized adeno-associated viruses and neural-tissue-specific promoters. We also show that, in male mice, the targeted activation of parasympathetic cholinergic intrapancreatic ganglia and neurons doubled plasma-insulin levels and improved glucose tolerance, and that tolerance was impaired by stimulating pancreas-projecting sympathetic neurons. The ability to map the peripheral ganglia innervating the pancreas and to deliver transgenes to specific pancreas-projecting neurons will facilitate the examination of ganglionic inputs and the study of the roles of pancreatic efferent innervation in glucose metabolism.
Collapse
Affiliation(s)
- M Jimenez-Gonzalez
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Li
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L E Pomeranz
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, USA
| | - A Alvarsson
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - R F Hampton
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M G Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - R C Vasavada
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - G J Schwartz
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - S A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
Waataja JJ, Nihalani RK, Honda CN, Billington CJ. Use of a bio-electronic device comprising of targeted dual neuromodulation of the hepatic and celiac vagal branches demonstrated enhanced glycemic control in a type 2 diabetic rat model as well as in an Alloxan treated swine model. Front Neurosci 2022; 16:1005932. [PMID: 36389223 PMCID: PMC9640365 DOI: 10.3389/fnins.2022.1005932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background There is an unmet need for new type 2 diabetes treatments providing improved efficacy, durability and customized to improve patient’s compliance. Bio-electronic neuromodulation of Vagus nerve branches innervating organs that regulate plasma glucose, may be a method for treating type 2 diabetes. The pancreas has been shown to release insulin during Vagus stimulation. The hepatic vagal branch, innervating the liver, has been shown to decrease glucose release and decrease insulin resistance following ligation. However, standalone stimulation of the Vagus nerve has shown mixed results and Vagus nerve ligation has undesirable effects. Little is known; however, of the effect on plasma glucose with combined neuromodulation consisting of stimulation of the celiac branch innervating the pancreas with simultaneous high frequency alternating current (HFAC) blockade of the hepatic branch. This study tested the effects of this approach on increasing glycemic control in rat a model of type 2 diabetes and Alloxan treated swine. Materials and methods Zucker obese (fatty) male rats (ZDF fa/fa) were used as a model of type 2 diabetes as well as glucose intolerant Alloxan treated swine. In ZDF rat experiments glycemic control was accessed with an intravenous glucose tolerance test during HFAC-induced hepatic branch block with concurrent celiac stimulation (HFAC + stimulation). In swine experiments glycemic control was accessed by an oral glucose tolerance test during HFAC + stimulation. Insulin measurements were taken prior to and following swine experiments giving insight into beta cell exhaustion. Histopathology was conducted to determine safety of HFAC + stimulation on Vagal branches. Results Zucker rats demonstrated a significant improvement to an intravenous glucose tolerance test during HFAC + stimulation compared to sham. There was no significant difference from sham compared to hepatic vagotomy or celiac stimulation. In Alloxan treated swine, when subjected to HFAC + stimulation, there was a significant improvement in glycemic control as measured by an improvement on oral glucose tolerance tests and a decrease in fasting plasma glucose. Insulin responses were similar prior to and following HFAC + stimulation experiments. Histopathology demonstrated healthy swine Vagus nerves. Conclusion Electrical blockade of the hepatic Vagus branch with simultaneous stimulation of the celiac Vagus branch may be a novel, adjustable and localized approach for a treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Jonathan J. Waataja
- ReShape Lifesciences Inc., San Clemente, CA, United States
- *Correspondence: Jonathan J. Waataja,
| | | | - Chris N. Honda
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Charles J. Billington
- Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Minnesota Veterans’ Administration Medical Center, Minneapolis, MN, United States
| |
Collapse
|
26
|
Hampton RF, Jimenez-Gonzalez M, Stanley SA. Unravelling innervation of pancreatic islets. Diabetologia 2022; 65:1069-1084. [PMID: 35348820 PMCID: PMC9205575 DOI: 10.1007/s00125-022-05691-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
The central and peripheral nervous systems play critical roles in regulating pancreatic islet function and glucose metabolism. Over the last century, in vitro and in vivo studies along with examination of human pancreas samples have revealed the structure of islet innervation, investigated the contribution of sympathetic, parasympathetic and sensory neural pathways to glucose control, and begun to determine how the structure and function of pancreatic nerves are disrupted in metabolic disease. Now, state-of-the art techniques such as 3D imaging of pancreatic innervation and targeted in vivo neuromodulation provide further insights into the anatomy and physiological roles of islet innervation. Here, we provide a summary of the published work on the anatomy of pancreatic islet innervation, its roles, and evidence for disordered islet innervation in metabolic disease. Finally, we discuss the possibilities offered by new technologies to increase our knowledge of islet innervation and its contributions to metabolic regulation.
Collapse
Affiliation(s)
- Rollie F Hampton
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Jimenez-Gonzalez
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Zhang L, Koller J, Gopalasingam G, Qi Y, Herzog H. Central NPFF signalling is critical in the regulation of glucose homeostasis. Mol Metab 2022; 62:101525. [PMID: 35691527 PMCID: PMC9234230 DOI: 10.1016/j.molmet.2022.101525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVE Neuropeptide FF (NPFF) group peptides belong to the evolutionary conserved RF-amide peptide family. While they have been assigned a role as pain modulators, their roles in other aspects of physiology have received much less attention. NPFF peptides and their receptor NPFFR2 have strong and localized expression within the dorsal vagal complex that has emerged as the key centre for regulating glucose homeostasis. Therefore, we investigated the role of the NPFF system in the control of glucose metabolism and the histochemical and molecular identities of NPFF and NPFFR2 neurons. METHODS We examined glucose metabolism in Npff-/- and wild type (WT) mice using intraperitoneal (i.p.) glucose tolerance and insulin tolerance tests. Body composition and glucose tolerance was further examined in mice after 1-week and 3-week of high-fat diet (HFD). Using RNAScope double ISH, we investigated the neurochemical identity of NPFF and NPFFR2 neurons in the caudal brainstem, and the expression of receptors for peripheral factors in NPFF neurons. RESULTS Lack of NPFF signalling in mice leads to improved glucose tolerance without significant impact on insulin excursion after the i.p. glucose challenge. In response to an i.p. bolus of insulin, Npff-/- mice have lower glucose excursions than WT mice, indicating an enhanced insulin action. Moreover, while HFD has rapid and potent detrimental effects on glucose tolerance, this diet-induced glucose intolerance is ameliorated in mice lacking NPFF signalling. This occurs in the absence of any significant impact of NPFF deletion on lean or fat masses, suggesting a direct effect of NPFF signalling on glucose metabolism. We further reveal that NPFF neurons in the subpostrema area (SubP) co-express receptors for peripheral factors involved in glucose homeostasis regulation such as insulin and GLP1. Furthermore, Npffr2 is expressed in the glutamatergic NPFF neurons in the SubP, and in cholinergic neurons of the dorsal motor nucleus of the vagus (DMV), indicating that central NPFF signalling is likely modulating vagal output to innervated peripheral tissues including those important for glucose metabolic control. CONCLUSIONS NPFF signalling plays an important role in the regulation of glucose metabolism. NPFF neurons in the SubP are likely to receive peripheral signals and mediate the control of whole-body glucose homeostasis via centrally vagal pathways. Targeting NPFF and NPFFR2 signalling may provide a new avenue for treating type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia; St. Vincent's Clinical Campus, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, NSW Australia.
| | - Julia Koller
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia; St. Vincent's Clinical Campus, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, NSW Australia
| | - Gopana Gopalasingam
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia; St. Vincent's Clinical Campus, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, NSW Australia
| |
Collapse
|
28
|
Cotero V, Graf J, Miwa H, Hirschstein Z, Qanud K, Huerta TS, Tai N, Ding Y, Jimenez-Cowell K, Tomaio JN, Song W, Devarajan A, Tsaava T, Madhavan R, Wallace K, Loghin E, Morton C, Fan Y, Kao TJ, Akhtar K, Damaraju M, Barenboim L, Maietta T, Ashe J, Tracey KJ, Coleman TR, Di Carlo D, Shin D, Zanos S, Chavan SS, Herzog RI, Puleo C. Stimulation of the hepatoportal nerve plexus with focused ultrasound restores glucose homoeostasis in diabetic mice, rats and swine. Nat Biomed Eng 2022; 6:683-705. [PMID: 35361935 PMCID: PMC10127248 DOI: 10.1038/s41551-022-00870-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022]
Abstract
Peripheral neurons that sense glucose relay signals of glucose availability to integrative clusters of neurons in the brain. However, the roles of such signalling pathways in the maintenance of glucose homoeostasis and their contribution to disease are unknown. Here we show that the selective activation of the nerve plexus of the hepatic portal system via peripheral focused ultrasound stimulation (pFUS) improves glucose homoeostasis in mice and rats with insulin-resistant diabetes and in swine subject to hyperinsulinemic-euglycaemic clamps. pFUS modulated the activity of sensory projections to the hypothalamus, altered the concentrations of metabolism-regulating neurotransmitters, and enhanced glucose tolerance and utilization in the three species, whereas physical transection or chemical blocking of the liver-brain nerve pathway abolished the effect of pFUS on glucose tolerance. Longitudinal multi-omic profiling of metabolic tissues from the treated animals confirmed pFUS-induced modifications of key metabolic functions in liver, pancreas, muscle, adipose, kidney and intestinal tissues. Non-invasive ultrasound activation of afferent autonomic nerves may represent a non-pharmacologic therapy for the restoration of glucose homoeostasis in type-2 diabetes and other metabolic diseases.
Collapse
Affiliation(s)
- Victoria Cotero
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - John Graf
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Hiromi Miwa
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Khaled Qanud
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tomás S Huerta
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Yuyan Ding
- Yale School of Medicine, New Haven, CT, USA
| | - Kevin Jimenez-Cowell
- Yale School of Medicine, New Haven, CT, USA
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Weiguo Song
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Alex Devarajan
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tea Tsaava
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Radhika Madhavan
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Kirk Wallace
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Evelina Loghin
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Christine Morton
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Ying Fan
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Tzu-Jen Kao
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | | | | | | | | | - Jeffrey Ashe
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Dino Di Carlo
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Stavros Zanos
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | | | - Chris Puleo
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA.
| |
Collapse
|
29
|
Verberne AJM, Mussa BM. Neural control of pancreatic peptide hormone secretion. Peptides 2022; 152:170768. [PMID: 35189258 DOI: 10.1016/j.peptides.2022.170768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/20/2022]
Abstract
Pancreatic peptide hormone secretion is inextricably linked to maintenance of normal levels of blood glucose. In animals and man, pancreatic peptide hormone secretion is controlled, at least in part, by input from parasympathetic (vagal) premotor neurons that are found principally in the dorsal motor nucleus of the vagus (DMV). Iatrogenic (insulin-induced) hypoglycaemia evokes a homeostatic response commonly referred to as the glucose counter-regulatory response. This homeostatic response is of particular importance in Type 1 diabetes in which episodes of hypoglycaemia are common, debilitating and lead to suboptimal control of blood glucose. Glucagon is the principal counterregulatory hormone but for reasons unknown, its secretion during insulin-induced hypoglycaemia is impaired. Pancreatic parasympathetic neurons are distinguishable electrophysiologically from those that control other (e.g. gastric) functions and are controlled by supramedullary inputs from hypothalamic structures such as the perifornical region. During hypoglycaemia, glucose-sensitive, GABAergic neurons in the ventromedial hypothalamus are inhibited leading to disinhibition of perifornical orexin neurons with projections to the DMV which, in turn, leads to increased secretion of glucagon.
Collapse
Affiliation(s)
- Anthony J M Verberne
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia.
| | - Bashair M Mussa
- Basic Medical Science Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
30
|
Payne SC, Ward G, Fallon JB, Hyakumura T, Prins JB, Andrikopoulos S, MacIsaac RJ, Villalobos J. Blood glucose modulation and safety of efferent vagus nerve stimulation in a type 2 diabetic rat model. Physiol Rep 2022; 10:e15257. [PMID: 35439355 PMCID: PMC9017977 DOI: 10.14814/phy2.15257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
Vagus nerve stimulation is emerging as a promising treatment for type 2 diabetes. Here, we evaluated the ability of stimulation of the vagus nerve to reduce glycemia in awake, freely moving metabolically compromised rats. A model of type 2 diabetes (n = 10) was induced using a high‐fat diet and low doses of streptozotocin. Stimulation of the abdominal vagus nerve was achieved by pairing 15 Hz pulses on a distal pair of electrodes with high‐frequency blocking stimulation (26 kHz, 4 mA) on a proximal pair of electrodes to preferentially produce efferent conducting activity (eVNS). Stimulation was well tolerated in awake, freely moving rats. During 1 h of eVNS, glycemia decreased in 90% of subjects (−1.25 ± 1.25 mM h, p = 0.017), and 2 dB above neural threshold was established as the most effective “dose” of eVNS (p = 0.009). Following 5 weeks of implantation, eVNS was still effective, resulting in significantly decreased glycemia (−1.7 ± 0.6 mM h, p = 0.003) during 1 h of eVNS. There were no overt changes in fascicle area or signs of histopathological damage observed in implanted vagal nerve tissue following chronic implantation and stimulation. Demonstration of the biocompatibility and safety of eVNS in awake, metabolically compromised animals is a critical first step to establishing this therapy for clinical use. With further development, eVNS could be a promising novel therapy for treating type 2 diabetes.
Collapse
Affiliation(s)
- Sophie C Payne
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Medical Bionics, University of Melbourne, Parkville, Victoria, Australia
| | - Glenn Ward
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.,Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| | - James B Fallon
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Medical Bionics, University of Melbourne, Parkville, Victoria, Australia
| | - Tomoko Hyakumura
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Medical Bionics, University of Melbourne, Parkville, Victoria, Australia
| | - Johannes B Prins
- Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia.,Department of Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Melbourne, Australia
| | - Sofianos Andrikopoulos
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Melbourne, Australia.,Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia
| | - Richard J MacIsaac
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.,Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia.,Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Melbourne, Australia
| | - Joel Villalobos
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Medical Bionics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Kozorosky EM, Lee CH, Lee JG, Nunez Martinez V, Padayachee LE, Stauss HM. Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin. Physiol Rep 2022; 10:e15253. [PMID: 35441808 PMCID: PMC9020171 DOI: 10.14814/phy2.15253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/15/2023] Open
Abstract
Vagus nerve stimulation (VNS) facilitates weight loss in animals and patients treated with VNS for depression or epilepsy. Likewise, chronic transcutaneous auricular VNS (taVNS) reduces weight gain and improves glucose tolerance in Zucker diabetic fatty rats. If these metabolic effects of taVNS observed in rats translate to humans is unknown. Therefore, the hypothesis of this study was that acute application of taVNS affects glucotropic and orexigenic hormones which could potentially facilitate weight loss and improve glucose tolerance if taVNS were applied chronically. In two single-blinded randomized cross-over protocols, blood glucose levels, plasma concentrations of insulin, C-peptide, glucagon, leptin, and ghrelin, together with heart rate variability and baroreceptor-heart rate reflex sensitivity were determined before and after taVNS (left ear, 10 Hz, 300 µs, 2.0-2.5 mA, 30 min) or sham-taVNS (electrode attached to ear with the stimulator turned off). In a first protocol, subjects (n = 16) were fasted throughout the protocol and in a second protocol, subjects (n = 10) received a high-calorie beverage (220 kCal) after the first blood sample, just before initiation of taVNS or sham-taVNS. No significant effects of taVNS on heart rate variability and baroreceptor-heart rate reflex sensitivity and only minor effects on glucotropic hormones were observed. However, in the second protocol taVNS significantly lowered postprandial plasma ghrelin levels (taVNS: -115.5 ± 28.3 pg/ml vs. sham-taVNS: -51.2 ± 30.6 pg/ml, p < 0.05). This finding provides a rationale for follow-up studies testing the hypothesis that chronic application of taVNS may reduce food intake through inhibition of ghrelin and, therefore, may indirectly improve glucose tolerance through weight loss.
Collapse
Affiliation(s)
| | - Cristina H. Lee
- Burrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Jessica G. Lee
- Burrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | | | | | | |
Collapse
|
32
|
Yu Y, He X, Wang Y, Zhang J, Tang C, Rong P. Transcutaneous auricular vagal nerve stimulation inhibits limbic-regional P2X7R expression and reverses depressive-like behaviors in Zucker diabetic fatty rats. Neurosci Lett 2022; 775:136562. [PMID: 35245625 DOI: 10.1016/j.neulet.2022.136562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/29/2022]
Abstract
Zucker diabetic fatty (ZDF) rats develop type 2 diabetes (T2D) along with depressive-like behaviors. Transcutaneous auricular vagal nerve stimulation (taVNS) has antidiabetic and antidepressant-like effects in ZDF rats; however, the underlying antidepressant-like mechanisms are unclear. The purinergic receptor P2X7R, which is related to inflammation and depression, is upregulated in the limbic brain regions of depressed patients and rodents and is considered as a potential therapeutic target. Thus, this study aimed to provide preliminary evidence at the molecular level of taVNS antidepressant-like effect in ZDF rats through testing their limbic-regional P2X7R expression. ZDF rats were subjected to taVNS and transcutaneous non-vagal nerve stimulation (tnVNS). Body weight and blood glucose levels were monitored weekly. Depressive-like behaviors were evaluated with the open-field test (OFT) and forced swimming test (FST). Limbic-regional P2X7R expression was examined by western blotting (WB). P2X7R expressing cells were detected by immunohistochemistry (IHC). Compared to their lean littermates (ZL rats), ZDF rats developed obesity, hyperglycemia, and depressive-like behaviors with elevated limbic-regional P2X7R expression. taVNS but not tnVNS lowered body weight, reduced and stabilized blood glucose levels, suppressed limbic-regional P2X7R expression, and reversed the depressive-like behaviors. P2X7R was found primarily expressed in ZDF rats' limbic-regional astrocytes. In conclusion, taVNS inhibits ZDF rats' limbic-regional P2X7R expression, which may be one of the taVNS antidepressant-like mechanisms.
Collapse
Affiliation(s)
- Yutian Yu
- Acupuncture Department, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Ninth School of Clinical Medicine, Peking University, Beijing, China; Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xun He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinling Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunzhi Tang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
33
|
Mirzadeh Z, Faber CL, Schwartz MW. Central Nervous System Control of Glucose Homeostasis: A Therapeutic Target for Type 2 Diabetes? Annu Rev Pharmacol Toxicol 2022; 62:55-84. [PMID: 34990204 PMCID: PMC8900291 DOI: 10.1146/annurev-pharmtox-052220-010446] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Historically, pancreatic islet beta cells have been viewed as principal regulators of glycemia, with type 2 diabetes (T2D) resulting when insulin secretion fails to compensate for peripheral tissue insulin resistance. However, glycemia is also regulated by insulin-independent mechanisms that are dysregulated in T2D. Based on evidence supporting its role both in adaptive coupling of insulin secretion to changes in insulin sensitivity and in the regulation of insulin-independent glucose disposal, the central nervous system (CNS) has emerged as a fundamental player in glucose homeostasis. Here, we review and expand upon an integrative model wherein the CNS, together with the islet, establishes and maintains the defended level of glycemia. We discuss the implications of this model for understanding both normal glucose homeostasis and T2D pathogenesis and highlight centrally targeted therapeutic approaches with the potential to restore normoglycemia to patients with T2D.
Collapse
Affiliation(s)
- Zaman Mirzadeh
- Ivy Brain Tumor Center, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA;
| | - Chelsea L Faber
- Ivy Brain Tumor Center, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA;
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington 98109, USA;
| | - Michael W Schwartz
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington 98109, USA;
| |
Collapse
|
34
|
Yu Y, Ling J, Yu L, Liu P, Jiang M. Closed-Loop Transcutaneous Auricular Vagal Nerve Stimulation: Current Situation and Future Possibilities. Front Hum Neurosci 2022; 15:785620. [PMID: 35058766 PMCID: PMC8763674 DOI: 10.3389/fnhum.2021.785620] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Closed-loop (CL) transcutaneous auricular vagal nerve stimulation (taVNS) was officially proposed in 2020. This work firstly reviewed two existing CL-taVNS forms: motor-activated auricular vagus nerve stimulation (MAAVNS) and respiratory-gated auricular vagal afferent nerve stimulation (RAVANS), and then proposed three future CL-taVNS systems: electroencephalography (EEG)-gated CL-taVNS, electrocardiography (ECG)-gated CL-taVNS, and subcutaneous humoral signals (SHS)-gated CL-taVNS. We also highlighted the mechanisms, targets, technical issues, and patterns of CL-taVNS. By reviewing, proposing, and highlighting, this work might draw a preliminary blueprint for the development of CL-taVNS.
Collapse
Affiliation(s)
- Yutian Yu
- Acupuncture Department, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Ninth School of Clinical Medicine, Peking University, Beijing, China
- *Correspondence: Yutian Yu Min Jiang
| | - Jing Ling
- Department of Gynecology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Lingling Yu
- Department of Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Liu
- Ninth School of Clinical Medicine, Peking University, Beijing, China
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Min Jiang
- Acupuncture Department, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Ninth School of Clinical Medicine, Peking University, Beijing, China
- *Correspondence: Yutian Yu Min Jiang
| |
Collapse
|
35
|
Acute vagus nerve stimulation does not affect liking or wanting ratings of food in healthy participants. Appetite 2021; 169:105813. [PMID: 34798227 DOI: 10.1016/j.appet.2021.105813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
The vagus nerve plays a vital role in the regulation of food intake and vagal afferent signals may help regulate food cue reactivity by providing negative homeostatic feedback. Despite strong evidence from preclinical studies on vagal afferent "satiety" signals in guiding food intake, evidence from human studies is largely inconclusive to date. Here, we investigated the acute effects of left or right transcutaneous auricular vagus nerve stimulation (taVNS) on subjective ratings of wanting and liking of various food and non-food items in 82 healthy participants (46 women, MBMI = 23.1 kg/m2). In contrast to previous reports in patients with depression, we found moderate to anecdotal evidence supporting the absence of taVNS-induced changes in food ratings. To test whether the absence of taVNS effects on food ratings is due to heterogeneity in the sample, we conducted post hoc subgroup analyses by splitting the data according to stimulation side and sex (between-subject factors) as well as caloric density, perceived healthiness, and flavor (sweet vs. savory) of the food (within-subject factors). This multiverse analysis largely supported the absence of taVNS-induced changes since the strongest subgroup effects provided only anecdotal evidence in favor of taVNS-induced changes. We conclude that acute taVNS only has a marginal effect on subjective ratings of food, suggesting that it is an unlikely mechanism for the reported long-term effects of VNS on body weight. In light of an absence of acute taVNS effects on conscious food liking and wanting, our results call for future research on the correspondence between acute and chronic effects of vagal afferent stimulation.
Collapse
|
36
|
Impacts of electroacupuncture at auricular concha on gastrointestinal motility in the rats with type 2 diabetes. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2021. [DOI: 10.1016/j.wjam.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Lkhagvasuren B, Mee-Inta O, Zhao ZW, Hiramoto T, Boldbaatar D, Kuo YM. Pancreas-Brain Crosstalk. Front Neuroanat 2021; 15:691777. [PMID: 34354571 PMCID: PMC8329585 DOI: 10.3389/fnana.2021.691777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
The neural regulation of glucose homeostasis in normal and challenged conditions involves the modulation of pancreatic islet-cell function. Compromising the pancreas innervation causes islet autoimmunity in type 1 diabetes and islet cell dysfunction in type 2 diabetes. However, despite the richly innervated nature of the pancreas, islet innervation remains ill-defined. Here, we review the neuroanatomical and humoral basis of the cross-talk between the endocrine pancreas and autonomic and sensory neurons. Identifying the neurocircuitry and neurochemistry of the neuro-insular network would provide clues to neuromodulation-based approaches for the prevention and treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Battuvshin Lkhagvasuren
- Brain Science Institute, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Onanong Mee-Inta
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Zi-Wei Zhao
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Tetsuya Hiramoto
- Department of Psychosomatic Medicine, Fukuoka Hospital, National Hospital Organization, Fukuoka, Japan
| | - Damdindorj Boldbaatar
- Brain Science Institute, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan
| |
Collapse
|
38
|
Cho Y, Shin H, Park J, Lee S. Advanced Neural Interface toward Bioelectronic Medicine Enabled by Micro-Patterned Shape Memory Polymer. MICROMACHINES 2021; 12:mi12060720. [PMID: 34205260 PMCID: PMC8235721 DOI: 10.3390/mi12060720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
Recently, methods for the treatment of chronic diseases and disorders through the modulation of peripheral and autonomic nerves have been proposed. To investigate various treatment methods and results, experiments are being conducted on animals such as rabbits and rat. However the diameter of the targeted nerves is small (several hundred μm) and it is difficult to modulate small nerves. Therefore, a neural interface that is stable, easy to implant into small nerves, and is biocompatible is required. Here, to develop an advanced neural interface, a thiol-ene/acrylate-based shape memory polymer (SMP) was fabricated with a double clip design. This micro-patterned design is able to be implanted on a small branch of the sciatic nerve, as well as the parasympathetic pelvic nerve, using the shape memory effect (SME) near body temperature. Additionally, the IrO2 coated neural interface was implanted on the common peroneal nerve in order to perform electrical stimulation and electroneurography (ENG) recording. The results demonstrate that the proposed neural interface can be used for the modulation of the peripheral nerve, including the autonomic nerve, towards bioelectronic medicine.
Collapse
|
39
|
Espinoza L, Fedorchak S, Boychuk CR. Interplay Between Systemic Metabolic Cues and Autonomic Output: Connecting Cardiometabolic Function and Parasympathetic Circuits. Front Physiol 2021; 12:624595. [PMID: 33776789 PMCID: PMC7991741 DOI: 10.3389/fphys.2021.624595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
There is consensus that the heart is innervated by both the parasympathetic and sympathetic nervous system. However, the role of the parasympathetic nervous system in controlling cardiac function has received significantly less attention than the sympathetic nervous system. New neuromodulatory strategies have renewed interest in the potential of parasympathetic (or vagal) motor output to treat cardiovascular disease and poor cardiac function. This renewed interest emphasizes a critical need to better understand how vagal motor output is generated and regulated. With clear clinical links between cardiovascular and metabolic diseases, addressing this gap in knowledge is undeniably critical to our understanding of the interaction between metabolic cues and vagal motor output, notwithstanding the classical role of the parasympathetic nervous system in regulating gastrointestinal function and energy homeostasis. For this reason, this review focuses on the central, vagal circuits involved in sensing metabolic state(s) and enacting vagal motor output to influence cardiac function. It will review our current understanding of brainstem vagal circuits and their unique position to integrate metabolic signaling into cardiac activity. This will include an overview of not only how metabolic cues alter vagal brainstem circuits, but also how vagal motor output might influence overall systemic concentrations of metabolic cues known to act on the cardiac tissue. Overall, this review proposes that the vagal brainstem circuits provide an integrative network capable of regulating and responding to metabolic cues to control cardiac function.
Collapse
Affiliation(s)
- Liliana Espinoza
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Stephanie Fedorchak
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Carie R Boychuk
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
40
|
Fontaine AK, Ramirez DG, Littich SF, Piscopio RA, Kravets V, Schleicher WE, Mizoguchi N, Caldwell JH, Weir RFF, Benninger RKP. Optogenetic stimulation of cholinergic fibers for the modulation of insulin and glycemia. Sci Rep 2021; 11:3670. [PMID: 33574598 PMCID: PMC7878862 DOI: 10.1038/s41598-021-83361-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/01/2021] [Indexed: 01/12/2023] Open
Abstract
Previous studies have demonstrated stimulation of endocrine pancreas function by vagal nerve electrical stimulation. While this increases insulin secretion, expected concomitant reductions in circulating glucose do not occur. A complicating factor is the non-specific nature of electrical nerve stimulation. Optogenetic tools, however, provide the potential for cell-type specific neural stimulation using genetic targeting and/or spatially shaped excitation light. Here, we demonstrate light-activated stimulation of the endocrine pancreas by targeting parasympathetic (cholinergic) axons. In a mouse model expressing ChannelRhodopsin2 (ChR2) in cholinergic cells, serum insulin and glucose were measured in response to (1) ultrasound image-guided optical stimulation of axon terminals in the pancreas or (2) optical stimulation of axons of the cervical vagus nerve. Measurements were made in basal-glucose and glucose-stimulated conditions. Significant increases in plasma insulin occurred relative to controls under both pancreas and cervical vagal stimulation, while a rapid reduction in glycemic levels were observed under pancreatic stimulation. Additionally, ultrasound-based measurements of blood flow in the pancreas were increased under pancreatic stimulation. Together, these results demonstrate the utility of in-vivo optogenetics for studying the neural regulation of endocrine pancreas function and suggest its therapeutic potential for the control of insulin secretion and glucose homeostasis.
Collapse
Affiliation(s)
- Arjun K Fontaine
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Boulder, USA.
- Biomechatronics Development Laboratory, University of Colorado, Anschutz Medical Campus, Boulder, USA.
| | - David G Ramirez
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Boulder, USA
- Barbara Davis Center for Childhood Diabetes - Anschutz Medical Campus, Boulder, USA
| | - Samuel F Littich
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Boulder, USA
- Biomechatronics Development Laboratory, University of Colorado, Anschutz Medical Campus, Boulder, USA
| | - Robert A Piscopio
- Barbara Davis Center for Childhood Diabetes - Anschutz Medical Campus, Boulder, USA
| | - Vira Kravets
- Barbara Davis Center for Childhood Diabetes - Anschutz Medical Campus, Boulder, USA
| | | | - Naoko Mizoguchi
- Division of Pharmacology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - John H Caldwell
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Boulder, USA
| | - Richard F Ff Weir
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Boulder, USA
- Biomechatronics Development Laboratory, University of Colorado, Anschutz Medical Campus, Boulder, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Boulder, USA.
- Barbara Davis Center for Childhood Diabetes - Anschutz Medical Campus, Boulder, USA.
| |
Collapse
|
41
|
Akhtar K, Hirschstein Z, Stefanelli A, Iannilli E, Srinivasan A, Barenboim L, Balkaya M, Cunha A, Audil A, Kochman EM, Chua F, Ravi M, Mikkilineni S, Watkins H, O'Connor W, Fan Y, Cotero V, Ashe J, Puleo C, Kao TJ, Shin DS. Non-invasive peripheral focused ultrasound neuromodulation of the celiac plexus ameliorates symptoms in a rat model of inflammatory bowel disease. Exp Physiol 2021; 106:1038-1060. [PMID: 33512049 DOI: 10.1113/ep088848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/26/2021] [Indexed: 01/17/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does peripheral non-invasive focused ultrasound targeted to the celiac plexus improve inflammatory bowel disease? What is the main finding and its importance? Peripheral non-invasive focused ultrasound targeted to the celiac plexus in a rat model of ulcerative colitis improved stool consistency and reduced stool bloodiness, which coincided with a longer and healthier colon than in animals without focused ultrasound treatment. The findings suggest that this novel neuromodulatory technology could serve as a plausible therapeutic approach for improving symptoms of inflammatory bowel disease. ABSTRACT Individuals suffering from inflammatory bowel disease (IBD) experience significantly diminished quality of life. Here, we aim to stimulate the celiac plexus with non-invasive peripheral focused ultrasound (FUS) to modulate the enteric cholinergic anti-inflammatory pathway. This approach may have clinical utility as an efficacious IBD treatment given the non-invasive and targeted nature of this therapy. We employed the dextran sodium sulfate (DSS) model of colitis, administering lower (5%) and higher (7%) doses to rats in drinking water. FUS on the celiac plexus administered twice a day for 12 consecutive days to rats with severe IBD improved stool consistency scores from 2.2 ± 1 to 1.0 ± 0.0 with peak efficacy on day 5 and maximum reduction in gross bleeding scores from 1.8 ± 0.8 to 0.8 ± 0.8 on day 6. Similar improvements were seen in animals in the low dose DSS group, who received FUS only once daily for 12 days. Moreover, animals in the high dose DSS group receiving FUS twice daily maintained colon length (17.7 ± 2.5 cm), while rats drinking DSS without FUS exhibited marked damage and shortening of the colon (13.8 ± 0.6 cm) as expected. Inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-17, tumour necrosis factor-α and interferon-γ were reduced with DSS but coincided with control levels after FUS, which is plausibly due to a loss of colon crypts in the former and healthier crypts in the latter. Lastly, overall, these results suggest non-invasive FUS of peripheral ganglion can deliver precision therapy to improve IBD symptomology.
Collapse
Affiliation(s)
- Kainat Akhtar
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Zall Hirschstein
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Allison Stefanelli
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Emilia Iannilli
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Aditya Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Linda Barenboim
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Mustafa Balkaya
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Alexandra Cunha
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Aliyah Audil
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Eliyahu M Kochman
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Fuyee Chua
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Maya Ravi
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Saisree Mikkilineni
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Hanel Watkins
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - William O'Connor
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Ying Fan
- General Electric Global Research Center, Niskayuna, NY, USA
| | | | - Jeffrey Ashe
- General Electric Global Research Center, Niskayuna, NY, USA
| | | | - Tzu-Jen Kao
- General Electric Global Research Center, Niskayuna, NY, USA
| | - Damian S Shin
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA.,Department of Neurology, Albany Medical Center, Albany, NY, USA
| |
Collapse
|
42
|
Abstract
At the time of Ivan Pavlov, pancreatic innervation was studied by looking at pancreas secretions in response to electrical stimulation of nerves. Nowadays we have ways to visualize neuronal activity in real time thanks to advances in fluorescent reporters and imaging techniques. We also have very precise optogenetic and pharmacogenetic approaches that allow neuronal manipulations in a very specific manner. These technological advances have been extensively employed for studying the central nervous system and are just beginning to be incorporated for studying visceral innervation. Pancreatic innervation is complex, and the role it plays in physiology and pathophysiology of the organ is still not fully understood. In this review we highlight anatomical aspects of pancreatic innervation, techniques for pancreatic neuronal labeling, and approaches for imaging pancreatic innervation in vitro and in vivo.
Collapse
|
43
|
Conde SV, Sacramento JF, Martins FO. Immunity and the carotid body: implications for metabolic diseases. Bioelectron Med 2020; 6:24. [PMID: 33353562 PMCID: PMC7756955 DOI: 10.1186/s42234-020-00061-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Neuro-immune communication has gained enormous interest in recent years due to increasing knowledge of the way in which the brain coordinates functional alterations in inflammatory and autoimmune responses, and the mechanisms of neuron-immune cell interactions in the context of metabolic diseases such as obesity and type 2 diabetes. In this review, we will explain how this relationship between the nervous and immune system impacts the pro- and anti-inflammatory pathways with specific reference to the hypothalamus-pituitary-adrenal gland axis and the vagal reflex and will explore the possible involvement of the carotid body (CB) in the neural control of inflammation. We will also highlight the mechanisms of vagal anti-inflammatory reflex control of immunity and metabolism, and the consequences of functional disarrangement of this reflex in settlement and development of metabolic diseases, with special attention to obesity and type 2 diabetes. Additionally, the role of CB in the interplay between metabolism and immune responses will be discussed, with specific reference to the different stimuli that promote CB activation and the balance between sympathetic and parasympathetic in this context. In doing so, we clarify the multivarious neuronal reflexes that coordinate tissue-specific responses (gut, pancreas, adipose tissue and liver) critical to metabolic control, and metabolic disease settlement and development. In the final section, we will summarize how electrical modulation of the carotid sinus nerve may be utilized to adjust these reflex responses and thus control inflammation and metabolic diseases, envisioning new therapeutics horizons.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal.
| | - Joana F Sacramento
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| | - Fatima O Martins
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| |
Collapse
|
44
|
Tseng CT, Brougher J, Gaulding SJ, Hassan BS, Thorn CA. Vagus nerve stimulation promotes cortical reorganization and reduces task-dependent calorie intake in male and female rats. Brain Res 2020; 1748:147099. [DOI: 10.1016/j.brainres.2020.147099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022]
|
45
|
Ramadi KB, Srinivasan SS, Traverso G. Electroceuticals in the Gastrointestinal Tract. Trends Pharmacol Sci 2020; 41:960-976. [PMID: 33127099 PMCID: PMC8186669 DOI: 10.1016/j.tips.2020.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
The field of electroceuticals has attracted considerable attention over the past few decades as a novel therapeutic modality. The gastrointestinal (GI) tract (GIT) holds significant potential as a target for electroceuticals as the intersection of neural, endocrine, and immune systems. We review recent developments in electrical stimulation of various portions of the GIT (including esophagus, stomach, and small and large intestine) and nerves projecting to the GIT and supportive organs. This has been tested with varying degrees of success for several dysmotility, inflammatory, hormonal, and neurologic disorders. We outline a vision for the future of GI electroceuticals, building on advances in mechanistic understanding of GI physiology coupled with novel ingestible technologies. The next wave of electroceutical therapies will be minimally invasive and more targeted than current approaches, making them an indispensable tool in the clinical armamentarium.
Collapse
Affiliation(s)
- Khalil B Ramadi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shriya S Srinivasan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
46
|
Cho Y, Park J, Lee C, Lee S. Recent progress on peripheral neural interface technology towards bioelectronic medicine. Bioelectron Med 2020; 6:23. [PMID: 33292861 PMCID: PMC7706233 DOI: 10.1186/s42234-020-00059-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/05/2020] [Indexed: 11/23/2022] Open
Abstract
Modulation of the peripheral nervous system (PNS) has a great potential for therapeutic intervention as well as restore bodily functions. Recent interest has focused on autonomic nerves, as they regulate extensive functions implicated in organ physiology, chronic disease state and appear tractable to targeted modulation of discrete nerve units. Therapeutic interventions based on specific bioelectronic neuromodulation depend on reliable neural interface to stimulate and record autonomic nerves. Furthermore, the function of stimulation and recording requires energy which should be delivered to the interface. Due to the physiological and anatomical challenges of autonomic nerves, various forms of this active neural interface need to be developed to achieve next generation of neural interface for bioelectronic medicine. In this article, we present an overview of the state-of-the-art for peripheral neural interface technology in relation to autonomic nerves. Also, we reveal the current status of wireless neural interface for peripheral nerve applications. Recent studies of a novel concept of self-sustainable neural interface without battery and electronic components are presented. Finally, the recent results of non-invasive stimulation such as ultrasound and magnetic stimulation are covered and the perspective of the future research direction is provided.
Collapse
Affiliation(s)
- Youngjun Cho
- Daegu Geongbuk Institute of Science and Technology (DGIST), Daegu, 42899, Republic of Korea
| | - Jaeu Park
- Daegu Geongbuk Institute of Science and Technology (DGIST), Daegu, 42899, Republic of Korea
| | - Chengkuo Lee
- Electrical & Computer Engineering, National University of Singapore, Singapore, 117583, Singapore. .,Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore. .,NUS Graduate School for Integrated Science and Engineering (NGS), National University of Singapore, Singapore, 117456, Singapore.
| | - Sanghoon Lee
- Daegu Geongbuk Institute of Science and Technology (DGIST), Daegu, 42899, Republic of Korea.
| |
Collapse
|
47
|
Obesity and Related Type 2 Diabetes: A Failure of the Autonomic Nervous System Controlling Gastrointestinal Function? GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pandemic spread of obesity and type 2 diabetes is a serious health problem that cannot be contained with common therapies. At present, the most effective therapeutic tool is metabolic surgery, which substantially modifies the gastrointestinal anatomical structure. This review reflects the state of the art research in obesity and type 2 diabetes, describing the probable reason for their spread, how the various brain sectors are involved (with particular emphasis on the role of the vagal system controlling different digestive functions), and the possible mechanisms for the effectiveness of bariatric surgery. According to the writer’s interpretation, the identification of drugs that can modulate the activity of some receptor subunits of the vagal neurons and energy-controlling structures of the central nervous system (CNS), and/or specific physical treatment of cortical areas, could reproduce, non-surgically, the positive effects of metabolic surgery.
Collapse
|
48
|
Alvarsson A, Jimenez-Gonzalez M, Li R, Rosselot C, Tzavaras N, Wu Z, Stewart AF, Garcia-Ocaña A, Stanley SA. A 3D atlas of the dynamic and regional variation of pancreatic innervation in diabetes. SCIENCE ADVANCES 2020; 6:6/41/eaaz9124. [PMID: 33036983 PMCID: PMC7557000 DOI: 10.1126/sciadv.aaz9124] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/27/2020] [Indexed: 05/08/2023]
Abstract
Understanding the detailed anatomy of the endocrine pancreas, its innervation, and the remodeling that occurs in diabetes can provide new insights into metabolic disease. Using tissue clearing and whole-organ imaging, we identified the 3D associations between islets and innervation. This technique provided detailed quantification of α and β cell volumes and pancreatic nerve fibers, their distribution and heterogeneity in healthy tissue, canonical mouse models of diabetes, and samples from normal and diabetic human pancreata. Innervation was highly enriched in the mouse endocrine pancreas, with regional differences. Islet nerve density was increased in nonobese diabetic mice, in mice treated with streptozotocin, and in pancreata of human donors with type 2 diabetes. Nerve contacts with β cells were preserved in diabetic mice and humans. In summary, our whole-organ assessment allows comprehensive examination of islet characteristics and their innervation and reveals dynamic regulation of islet innervation in diabetes.
Collapse
Affiliation(s)
- Alexandra Alvarsson
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Jimenez-Gonzalez
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rosemary Li
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carolina Rosselot
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos Tzavaras
- The Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhuhao Wu
- Department of Cell, Developmental & Regenerative Biology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah A Stanley
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
49
|
Chang YC, Cracchiolo M, Ahmed U, Mughrabi I, Gabalski A, Daytz A, Rieth L, Becker L, Datta-Chaudhuri T, Al-Abed Y, Zanos TP, Zanos S. Quantitative estimation of nerve fiber engagement by vagus nerve stimulation using physiological markers. Brain Stimul 2020; 13:1617-1630. [PMID: 32956868 DOI: 10.1016/j.brs.2020.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cervical vagus nerve stimulation (VNS) is an emerging bioelectronic treatment for brain, metabolic, cardiovascular and immune disorders. Its desired and off-target effects are mediated by different nerve fiber populations and knowledge of their engagement could guide calibration and monitoring of VNS therapies. OBJECTIVE Stimulus-evoked compound action potentials (eCAPs) directly provide fiber engagement information but are currently not feasible in humans. A method to estimate fiber engagement through common, noninvasive physiological readouts could be used in place of eCAP measurements. METHODS In anesthetized rats, we recorded eCAPs while registering acute physiological response markers to VNS: cervical electromyography (EMG), changes in heart rate (ΔHR) and breathing interval (ΔBI). Quantitative models were established to capture the relationship between A-, B- and C-fiber type activation and those markers, and to quantitatively estimate fiber activation from physiological markers and stimulation parameters. RESULTS In bivariate analyses, we found that EMG correlates with A-fiber, ΔHR with B-fiber and ΔBI with C-fiber activation, in agreement with known physiological functions of the vagus. We compiled multivariate models for quantitative estimation of fiber engagement from these markers and stimulation parameters. Finally, we compiled frequency gain models that allow estimation of fiber engagement at a wide range of VNS frequencies. Our models, after calibration in humans, could provide noninvasive estimation of fiber engagement in current and future therapeutic applications of VNS.
Collapse
Affiliation(s)
- Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Marina Cracchiolo
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA; The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Ibrahim Mughrabi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Arielle Gabalski
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Anna Daytz
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Loren Rieth
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Lance Becker
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
| |
Collapse
|
50
|
Aydin MD, Aydin A, Caglar O, Aydin ME, Karadeniz E, Nalci KA, Demirtas R. New description of vagal nerve commanted intrapancreatic taste buds and blood glucose level: An experimental analysis. ACTA ACUST UNITED AC 2020; 11:181-185. [PMID: 34336606 PMCID: PMC8314032 DOI: 10.34172/bi.2021.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 11/17/2022]
Abstract
![]()
Introduction: There have been thousands of neurochemical mechanism about blood glucose level regulation, but intrapancreatic taste buds and their roles in blood glucose level has not been described. We aimed to investigate if there are taste buds cored neural networks in the pancreas, and there is any relationship between blood glucose levels. Methods: This examination was done on 32 chosen rats with their glucose levels. Animals are divided into owned blood glucose levels. If mean glucose levels were equal to 105 ± 10 mg/dL accepted as euglycemic (G-I; n = 14), 142 ± 18 mg/dL values accepted as hyperglycemic (G-II; n = 9) and 89 ± 9 mg/dL accepted as hypoglycemic (G-III; n = 9). After the experiment, animals were sacrificed under general anesthesia. Their pancreatic tissues were examined histological methods and numbers of newly described taste bud networks analyzed by Stereological methods. Results compared with Mann-Whitney U test P < 0.005 considered as significant. Results: The mean normal blood glucose level (mg/dL) and taste bud network densities of per cm3 were: 105 ± 10 mg/dL; 156±21 in G-I; 142 ± 18 mg/dL and 95 ± 14 in G-II and 89 ± 9 mg/dL and 232 ± 34 in G-III. P values as follows: P < 0.001 of G-II/G-I; P < 0.005 of G-III/G-I and P < 0.0001 of G-III/G-II. We detected periarterial located taste buds like cell clusters and peripherally located ganglia connected with Langerhans cells via thin nerve fibers. There was an inverse relationship between the number of taste buds networks and blood glucose level. Conclusion: Newly described intrapancreatic taste buds may have an important role in the regulation of blood glucose level.
Collapse
Affiliation(s)
- Mehmet Dumlu Aydin
- Department of Neurosurgery, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Aybike Aydin
- Medical Faculty of Cerrapasa, Istanbul University, Istanbul, Turkey
| | - Ozgur Caglar
- Department of Pediatric Surgery, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Muhammed Enes Aydin
- Department of Anesthesiology and Reanimation, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Erdem Karadeniz
- Department of General Surgery, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Kemal Alp Nalci
- Department of Pharmacology, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Rabia Demirtas
- Department of Pathology, Medical Faculty of Ataturk University, Erzurum, Turkey
| |
Collapse
|