1
|
Deis T, Goetze JP, Kistorp C, Gustafsson F. Gut Hormones in Heart Failure. Circ Heart Fail 2024; 17:e011813. [PMID: 39498569 DOI: 10.1161/circheartfailure.124.011813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
Heart failure (HF) is a syndrome affecting all organ systems. While some organ interactions have been studied intensively in HF (such as the cardiorenal interaction), the endocrine gut has to some degree been overlooked. However, there is growing evidence of direct cardiac effects of several hormones secreted from the gastrointestinal tract. For instance, GLP-1 (glucagon-like peptide-1), an incretin hormone secreted from the distal intestine following food intake, has notable effects on the heart, impacting heart rate and contractility. GLP-1 may even possess cardioprotective abilities, such as inhibition of myocardial ischemia and cardiac remodeling. While other gut hormones have been less studied, there is evidence suggesting cardiostimulatory properties of several hormones. Moreover, it has been reported that patients with HF have altered bioavailability of numerous gastrointestinal hormones, which may have prognostic implications. This might indicate an important role of gut hormones in cardiac physiology and pathology, which may be of particular importance in the failing heart. We present an overview of the current knowledge on gut hormones in HF, focusing on HF with reduced ejection fraction, and discuss how these hormones may be regulators of cardiac function and central hemodynamics. Potential therapeutic perspectives are discussed, and knowledge gaps are highlighted herein.
Collapse
Affiliation(s)
- Tania Deis
- Department of Cardiology (T.D., F.G.), Rigshospitalet, Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry (J.P.G.), Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences (J.P.G.), University of Copenhagen, Denmark
| | - Caroline Kistorp
- Department of Endocrinology (C.K.), Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine (C.K., F.G.), University of Copenhagen, Denmark
| | - Finn Gustafsson
- Department of Cardiology (T.D., F.G.), Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine (C.K., F.G.), University of Copenhagen, Denmark
| |
Collapse
|
2
|
Jensen EL, Israelsen M, Krag A. Transforming steatotic liver disease management: The emerging role of GLP-1 receptor agonists. Hepatol Commun 2024; 8:e0561. [PMID: 39392766 PMCID: PMC11469819 DOI: 10.1097/hc9.0000000000000561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024] Open
Abstract
Chronic liver disease is a major cause of mortality, with approximately 2 million deaths worldwide each year, and it poses a significant economic burden. The most common cause of chronic liver disease in the United States and Europe is steatotic liver disease (SLD), which includes metabolic dysfunction-associated SLD, metabolic dysfunction and alcohol-associated SLD, and alcohol-associated liver disease (ALD). Effective treatment of these conditions is essential to reduce the liver disease burden, with promising approaches including treating cardiometabolic risk factors and excessive alcohol intake. Glucagon-like peptide 1 receptor agonists, both as monotherapy and in combination with other drugs, are gaining attention for their beneficial impact on cardiometabolic risk factors and excessive alcohol intake. In this review, we examine the molecular and clinical effects of glucagon-like peptide 1 receptor agonists, focusing on their direct hepatic steatohepatitis and liver fibrosis but also the indirect influence on cardiometabolic risk factors and excessive alcohol intake as key features of SLD. We also explore the future implications of glucagon-like peptide 1 receptor agonists for treating metabolic dysfunction-associated SLD, metabolic dysfunction and alcohol-associated SLD, alcohol-associated liver disease, and the potential challenges.
Collapse
Affiliation(s)
- Ellen L. Jensen
- Department of Gastroenterology and Hepatology, Odense C, Denmark
- Institute of Clinical Research, Faculty of Health Sciences, Odense University Hospital, University of Southern Denmark, Winsløvsparken, Odense C, Denmark
| | - Mads Israelsen
- Department of Gastroenterology and Hepatology, Odense C, Denmark
- Institute of Clinical Research, Faculty of Health Sciences, Odense University Hospital, University of Southern Denmark, Winsløvsparken, Odense C, Denmark
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense C, Denmark
- Institute of Clinical Research, Faculty of Health Sciences, Odense University Hospital, University of Southern Denmark, Winsløvsparken, Odense C, Denmark
| |
Collapse
|
3
|
Hinrichs GR, Hovind P, Asmar A. The GLP-1-mediated gut-kidney cross talk in humans: mechanistic insight. Am J Physiol Cell Physiol 2024; 326:C567-C572. [PMID: 38105752 PMCID: PMC11193450 DOI: 10.1152/ajpcell.00476.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Incretin-based therapy is an antidiabetic and antiobesity approach mimicking glucagon-like peptide-1 (GLP-1) with additional end-organ protection. This review solely focuses on randomized, controlled mechanistic human studies, investigating the renal effects of GLP-1. There is no consensus about the localization of GLP-1 receptors (GLP-1Rs) in human kidneys. Rodent and primate data suggest GLP-1R distribution in smooth muscle cells in the preglomerular vasculature. Native GLP-1 and GLP-1R agonists elicit renal effects. Independently of renal plasma flow and glomerular filtration rate, GLP-1 has a natriuretic effect but only during volume expansion. This is associated with high renal extraction of GLP-1, suppression of angiotensin II, and increased medullary as well as cortical perfusion. These observations may potentially indicate that impaired GLP-1 sensing could establish a connection between salt sensitivity and insulin resistance. It is concluded that a functional GLP-1 kidney axis exists in humans, which may play a role in renoprotection.
Collapse
Affiliation(s)
- Gitte R Hinrichs
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Peter Hovind
- Department of Clinical Physiology & Nuclear Medicine, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ali Asmar
- Department of Clinical Physiology & Nuclear Medicine, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Physiology & Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Abstract
Incretin hormones (glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide-1 [GLP-1]) play a role in the pathophysiology of type 2 diabetes. Along with their derivatives they have shown therapeutic success in type 2 diabetes, with the potential for further improvements in glycaemic, cardiorenal and body weight-related outcomes. In type 2 diabetes, the incretin effect (greater insulin secretory response after oral glucose than with 'isoglycaemic' i.v. glucose, i.e. with an identical glycaemic stimulus) is markedly reduced or absent. This appears to be because of a reduced ability of GIP to stimulate insulin secretion, related either to an overall impairment of beta cell function or to specific defects in the GIP signalling pathway. It is likely that a reduced incretin effect impacts on postprandial glycaemic excursions and, thus, may play a role in the deterioration of glycaemic control. In contrast, the insulinotropic potency of GLP-1 appears to be much less impaired, such that exogenous GLP-1 can stimulate insulin secretion, suppress glucagon secretion and reduce plasma glucose concentrations in the fasting and postprandial states. This has led to the development of incretin-based glucose-lowering medications (selective GLP-1 receptor agonists or, more recently, co-agonists, e.g. that stimulate GIP and GLP-1 receptors). Tirzepatide (a GIP/GLP-1 receptor co-agonist), for example, reduces HbA1c and body weight in individuals with type 2 diabetes more effectively than selective GLP-1 receptor agonists (e.g. semaglutide). The mechanisms by which GIP receptor agonism may contribute to better glycaemic control and weight loss after long-term exposure to tirzepatide are a matter of active research and may change the pessimistic view that developed after the disappointing lack of insulinotropic activity in people with type 2 diabetes when exposed to GIP in short-term experiments. Future medications that stimulate incretin hormone and other receptors simultaneously may have the potential to further increase the ability to control plasma glucose concentrations and induce weight loss.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes, Endocrinology, Metabolism Section, Medical Department I, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
5
|
Pepin XJH, Grant I, Wood JM. SubQ-Sim: A Subcutaneous Physiologically Based Biopharmaceutics Model. Part 1: The Injection and System Parameters. Pharm Res 2023; 40:2195-2214. [PMID: 37634241 PMCID: PMC10547635 DOI: 10.1007/s11095-023-03567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE To construct a detailed mechanistic and physiologically based biopharmaceutics model capable of predicting 1) device-formulation-tissue interaction during the injection process and 2) binding, degradation, local distribution, diffusion, and drug absorption, following subcutaneous injection. This paper is part of a series and focusses on the first aspect. METHODS A mathematical model, SubQ-Sim, was developed incorporating the details of the various substructures within the subcutaneous environment together with the calculation of dynamic drug disposition towards the lymph ducts and venous capillaries. Literature was searched to derive key model parameters in healthy and diseased subjects. External factors such as body temperature, exercise, body position, food or stress provide a means to calculate the impact of "life events" on the pharmacokinetics of subcutaneously administered drugs. RESULTS The model predicts the tissue backpressure time profile during the injection as a function of injection rate, volume injected, solution viscosity, and interstitial fluid viscosity. The shape of the depot and the concentrations of the formulation and proteins in the depot are described. The model enables prediction of formulation backflow following premature needle removal and the resulting formulation losses. Finally, the effect of disease (type 2 diabetes) or the presence of recombinant human hyaluronidase in the formulation on the injection pressure, are explored. CONCLUSIONS This novel model can successfully predict tissue back pressure, depot dimensions, drug and protein concentration and formulation losses due to incorrect injection, which are all important starting conditions for predicting drug absorption from a subcutaneous dose. The next article will describe the absorption model and validation against clinical data.
Collapse
Affiliation(s)
| | - Iain Grant
- Innovation Strategy & External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Charter Way, Macclesfield, SK10 2NA, UK.
| | - J Matthew Wood
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
6
|
Haddock B, Kristensen KB, Tayyab M, Larsson HBW, Lindberg U, Vestergaard M, Francis S, Jensen BL, Andersen UB, Asmar A. GLP-1 Promotes Cortical and Medullary Perfusion in the Human Kidney and Maintains Renal Oxygenation During NaCl Loading. J Am Heart Assoc 2023; 12:e027712. [PMID: 36734354 PMCID: PMC9973647 DOI: 10.1161/jaha.122.027712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background GLP-1 (glucagon-like peptide-1) receptor agonists exert beneficial long-term effects on cardiovascular and renal outcomes. In humans, the natriuretic effect of GLP-1 depends on GLP-1 receptor interaction, is accompanied by suppression of angiotensin II, and is independent of changes in renal plasma flow. In rodents, angiotensin II constricts vasa recta and lowers medullary perfusion. The current randomized, controlled, crossover study was designed to test the hypothesis that GLP-1 increases renal medullary perfusion in healthy humans. Methods and Results Healthy male participants (n=10, aged 27±4 years) ingested a fixed sodium intake for 4 days and were examined twice during a 1-hour infusion of either GLP-1 (1.5 pmol/kg per minute) or placebo together with infusion of 0.9% NaCl (750 mL/h). Interleaved measurements of renal arterial blood flow, oxygenation (R2*), and perfusion were acquired in the renal cortex and medulla during infusions, using magnetic resonance imaging. GLP-1 infusion increased medullary perfusion (32±7%, P<0.001) and cortical perfusion (13±4%, P<0.001) compared with placebo. Here, NaCl infusion decreased medullary perfusion (-5±2%, P=0.007), whereas cortical perfusion remained unchanged. R2* values increased by 3±2% (P=0.025) in the medulla and 4±1% (P=0.008) in the cortex during placebo, indicative of decreased oxygenation, but remained unchanged during GLP-1. Blood flow in the renal artery was not altered significantly by either intervention. Conclusions GLP-1 increases predominantly medullary but also cortical perfusion in the healthy human kidney and maintains renal oxygenation during NaCl loading. In perspective, suppression of angiotensin II by GLP-1 may account for the increase in regional perfusion. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04337268.
Collapse
Affiliation(s)
- Bryan Haddock
- Department of Clinical Physiology and Nuclear Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Kasper B. Kristensen
- Department of Clinical Physiology and Nuclear Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Mahvish Tayyab
- Department of Clinical Physiology and Nuclear Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Henrik B. W. Larsson
- Department of Clinical Physiology and Nuclear Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Ulrich Lindberg
- Department of Clinical Physiology and Nuclear Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Mark Vestergaard
- Department of Clinical Physiology and Nuclear Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Susan Francis
- Sir Peter Mansfield Magnetic Resonance Centre School of Physics and AstronomyUniversity of NottinghamUnited Kingdom
| | - Boye L. Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Ulrik B. Andersen
- Department of Clinical Physiology and Nuclear Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Ali Asmar
- Department of Clinical Physiology and Nuclear Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg HospitalCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Bulum T. Nephroprotective Properties of the Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) Receptor Agonists. Biomedicines 2022; 10:biomedicines10102586. [PMID: 36289848 PMCID: PMC9599125 DOI: 10.3390/biomedicines10102586] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is the leading cause of chronic kidney disease, and about 30–40% of patients with diabetes will develop kidney disease. Incretin hormones have received attention during the past three decades not only as a pharmacotherapy for the treatment of type 2 diabetes, but also for their cardiorenometabolic effects. The main incretins are glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Additional to the pancreas, receptors for GLP-1 are widely distributed in various organs, causing positive effects on endothelial function and vascular atherogenesis. Along with glycemic control and weight reduction, GLP-1 receptor agonists also strongly improve cardiovascular and renal outcomes in patients with type 2 diabetes. Recently, a dual GIP and GLP-1 receptor agonist has been approved for the treatment of type 2 diabetes. Compared to GLP-1 receptor agonist semaglutide, dual GIP and GLP-1 receptor agonist tirzepatide showed a superior reduction in hemoglobin A1c and body weight. Preliminary results also suggest that tirzepatide improves kidney outcomes in adults with type 2 diabetes with increased cardiovascular risk. In this review, we present the nephroprotective properties of dual GIP and GLP-1 receptor agonists as a new drug to treat type 2 diabetes.
Collapse
Affiliation(s)
- Tomislav Bulum
- Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic Diseases, University Hospital Merkur, Dugi dol 4a, 10000 Zagreb, Croatia;
- Medical School, University of Zagreb, Šalata 2, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Madsbad S, Holst JJ. Cardiovascular effects of incretins - focus on GLP-1 receptor agonists. Cardiovasc Res 2022; 119:886-904. [PMID: 35925683 DOI: 10.1093/cvr/cvac112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
GLP-1 receptor agonists (GLP-1 RAs) have been used to treat patients with type 2 diabetes since 2005 and have become popular because of the efficacy and durability in relation to glycaemic control in combination with weight loss in most patients. Today in 2022, seven GLP-1 RAs, including oral semaglutide are available for treatment of type 2 diabetes. Since the efficacy in relation to reduction of HbA1c and body weight as well as tolerability and dosing frequency vary between agents, the GLP-1 RAs cannot be considered equal. The short acting lixisenatide showed no cardiovascular benefits, while once daily liraglutide and the weekly agonists, subcutaneous semaglutide, dulaglutide, and efpeglenatide, all lowered the incidence of cardiovascular events. Liraglutide, oral semaglutide and exenatide once weekly also reduced mortality. GLP-1 RAs reduce the progression of diabetic kidney disease. In the 2019 consensus report from EASD/ADA, GLP-1 RAs with demonstrated cardio-renal benefits (liraglutide, semaglutide and dulaglutide) are recommended after metformin to patients with established cardiovascular diseases or multiple cardiovascular risk factors. European Society of Cardiology (ESC) suggests starting with a SGLT-2 inhibitor or a GLP-1 RA in drug naïve patients with type 2 diabetes and atherosclerotic CVD or high CV Risk. However, the results from cardiovascular outcome trials (CVOT) are very heterogeneous suggesting that some GLP-1RA are more suitable to prevent CVD than others. The CVOTs provide a basis upon which individual treatment decisions for patients with T2D and CVD can be made.
Collapse
Affiliation(s)
- Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Saari T, Koffert J, Honka H, Kauhanen S, U-Din M, Wierup N, Lindqvist A, Groop L, Virtanen KA, Nuutila P. Obesity-associated Blunted Subcutaneous Adipose Tissue Blood Flow After Meal Improves After Bariatric Surgery. J Clin Endocrinol Metab 2022; 107:1930-1938. [PMID: 35363252 PMCID: PMC9202692 DOI: 10.1210/clinem/dgac191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Glucose-dependent insulinotropic peptide (GIP) and meal ingestion increase subcutaneous adipose tissue (SAT) perfusion in healthy individuals. The effects of GIP and a meal on visceral adipose tissue (VAT) perfusion are unclear. OBJECTIVE Our aim was to investigate the effects of meal and GIP on VAT and SAT perfusion in obese individuals with type 2 diabetes mellitus (T2DM) before and after bariatric surgery. METHODS We recruited 10 obese individuals with T2DM scheduled for bariatric surgery and 10 control individuals. Participants were studied under 2 stimulations: meal ingestion and GIP infusion. SAT and VAT perfusion was measured using 15O-H2O positron emission tomography-magnetic resonance imaging at 3 time points: baseline, 20 minutes, and 50 minutes after the start of stimulation. Obese individuals were studied before and after bariatric surgery. RESULTS Before bariatric surgery the responses of SAT perfusion to meal (P = .04) and GIP-infusion (P = .002) were blunted in the obese participants compared to controls. VAT perfusion response did not differ between obese and control individuals after a meal or GIP infusion. After bariatric surgery SAT perfusion response to a meal was similar to that of controls. SAT perfusion response to GIP administration remained lower in the operated-on than control participants. There was no change in VAT perfusion response after bariatric surgery. CONCLUSION The vasodilating effects of GIP and meal are blunted in SAT but not in VAT in obese individuals with T2DM. Bariatric surgery improves the effects of a meal on SAT perfusion, but not the effects of GIP. Postprandial increase in SAT perfusion after bariatric surgery seems to be regulated in a GIP-independent manner.
Collapse
Affiliation(s)
- Teemu Saari
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Turku PET Centre, Turku University Hospital, 20520 Turku, Finland
| | - Jukka Koffert
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Department of Gastroenterology, Turku University Hospital, 20520 Turku, Finland
| | - Henri Honka
- Turku PET Centre, University of Turku, 20520 Turku, Finland
| | - Saila Kauhanen
- Division of Digestive Surgery and Urology, Turku University Hospital, 20520 Turku, Finland
| | - Mueez U-Din
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Turku PET Centre, Turku University Hospital, 20520 Turku, Finland
| | - Nils Wierup
- Department of Clinical Sciences, Lund University Diabetes Centre, 20213 Malmö, Sweden
| | - Andreas Lindqvist
- Department of Clinical Sciences, Lund University Diabetes Centre, 20213 Malmö, Sweden
| | - Leif Groop
- Department of Clinical Sciences, Lund University Diabetes Centre, 20213 Malmö, Sweden
| | - Kirsi A Virtanen
- Correspondence: Kirsi A. Virtanen, MD, PhD, Turku PET Centre, University of Turku, Department of Endocrinology, Kiinamyllynkatu 4-8, 2052 Turku, Finland. ,
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Turku PET Centre, Turku University Hospital, 20520 Turku, Finland
- Department of Endocrinology, Turku University Hospital, 20520 Turku, Finland
| |
Collapse
|
10
|
Vukajlovic T, Sailer CO, Asmar A, Jensen BL, Vogt DR, Christ-Crain M, Winzeler B. Effect of a 3-Week Treatment with GLP-1 Receptor Agonists on Vasoactive Hormones in Euvolemic Participants. J Clin Endocrinol Metab 2022; 107:e2581-e2589. [PMID: 35134170 DOI: 10.1210/clinem/dgac063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Glucagon-like-peptide-1 receptor agonists (GLP-1 RAs) exert cardiovascular benefits by reducing plasma glucose, body weight, and blood pressure. The blood pressure-lowering effect may be mediated by angiotensin II (ANG II) suppression and consecutive natriuresis. However, the role of ANG II and other vasoactive hormones on GLP-1 RA treatment has not been clearly defined. OBJECTIVE This work aimed to investigate the effect of a 3-week treatment with the GLP-1 RA dulaglutide on vasoactive hormones, that is, renin, ANG II, aldosterone, mid-regional proatrial natriuretic peptide (MP-proANP), and natriuresis in euvolemic participants. METHODS Randomized, double-blinded, placebo-controlled, crossover trials were conducted at University Hospital Basel, Switzerland. A total of 54 euvolemic participants, including 20 healthy individuals and 34 patients with primary polydipsia, received a subcutaneous injection of dulaglutide (Trulicity) 1.5 mg and placebo (0.9% sodium chloride) once weekly over a 3-week treatment phase. RESULTS After a 3-week treatment phase, dulaglutide showed no effect on plasma renin, plasma ANG II, or plasma aldosterone levels in comparison to placebo. Natriuresis remained unchanged or decreased on dulaglutide depending on the measured parameter. Dulaglutide significantly decreased plasma MR-proANP levels (treatment effect: 10.60 pmol/L; 95% CI, -14.70 to -7.90; P < .001) and systolic blood pressure (median: 3 mm Hg; 95% CI, -5 to 0; P = .036), whereas heart rate increased (median: 5 bpm; 95% CI, 3-11; P < .001). CONCLUSION In euvolemic participants, a 3-week treatment of dulaglutide reduced systolic blood pressure independently of plasma renin, ANG II, or aldosterone levels and urinary sodium excretion. The reduction in MR-proANP might be secondary to reduced arterial pulse pressure.
Collapse
Affiliation(s)
- Tanja Vukajlovic
- Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| | - Clara O Sailer
- Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| | - Ali Asmar
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Deborah R Vogt
- Clinical Trial Unit, Department of Clinical Research, University of Basel and University Hospital Basel, 4056 Basel, Switzerland
| | - Mirjam Christ-Crain
- Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| | - Bettina Winzeler
- Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Holst JJ. Glucagon-like peptide-1: Are its roles as endogenous hormone and therapeutic wizard congruent? J Intern Med 2022; 291:557-573. [PMID: 34982496 DOI: 10.1111/joim.13433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a peptide derived from differential processing of the precursor for the hormone glucagon. It is secreted predominantly by endocrine cells in the gut epithelium in response to nutrient stimulation. Studies from the last 35 years have given us an idea about its physiological functions. On the basis of some of its many actions, it has also been developed into a pharmaceutical agent for the treatment of obesity and type 2 diabetes (T2DM). It is currently positioned as the most effective anti-obesity agent available and is recommended in both national and international guidelines as an effective second-in line treatment for T2DM, in particular in patients with increased cardiovascular risk. In this review, I first discuss whether the processing of proglucagon may also result in GLP-1 formation in the pancreas and in glucagon in the gut. Next, I discuss the relationship between the physiological actions of GLP-1 and the therapeutic effects of the GLP-1 receptor agonists, which are far from being congruent and generally poorly understood. These relationships illustrate both the difficulties and the benefits of bridging results obtained in the laboratory with those emerging from the clinic.
Collapse
Affiliation(s)
- Jens J Holst
- NovoNordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Ghanizada H, Christensen RH, Al-Karagholi MAM, Elbahi FA, Coskun H, Ashina M. Arterial responses to infusion of glucagon-like peptide-1 in humans: A randomized trial study. Peptides 2022; 150:170736. [PMID: 35017010 DOI: 10.1016/j.peptides.2022.170736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/19/2022]
Abstract
Glucagon-like-peptide-1 (GLP-1) is an incretin hormone implicated in several metabolic and neurological disorders. GLP-1 induces vasodilation and increases blood flow in the peripheral circulation. Whether GLP-1 alters cerebral hemodynamics in humans is yet to be elucidated. In a crossover, double-blind, placebo-controlled, and randomized design, 21 healthy volunteers were assigned to receive intravenous GLP-1 infusion (2.5 pmol/kg/min) or placebo over 20 min on two different days separated by at least one week. We used a noninvasive, well-validated transcranial doppler (TCD) and ultrasound dermascan to reveal the effect of GLP-1 on intra- and extracerebral arteries. The mean blood flow velocity in the middle cerebral artery (VMCA), the diameter of the superficial temporal artery (STA) and radial artery (RA), and facial skin blood flow were measured. In addition, we documented headache and its associated symptoms during and after infusion. Twenty participants were included in the final analysis. We found no difference in the VMCA (P = 0.227), diameter of the STA (P = 0.096) and the RA (P = 0.221) and facial blood flow (P = 0.814) after GLP-1 compared to placebo. There were no differences in HR, SAT, EtCO2, or RF (P > 0.05) on the GLP-1 day compared to the placebo day. We found no differences in the incidence of headache after GLP-1 (n = 10) compared to placebo (n = 7) (P = 0.250). GLP-1 infusion did not affect cerebral hemodynamics and induce headache in humans. Further preclinical studies with validated methods are required to determine if intra - and extracerebral vasculature express GLP-1Rs in humans.
Collapse
Affiliation(s)
- Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Rune Häckert Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Fatima Azzahra Elbahi
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hande Coskun
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Danish Headache Knowledge Center, Rigshospitalet-Glostrup, Valdemar Hansens Vej 5, Glostrup, Denmark.
| |
Collapse
|
13
|
Przezak A, Bielka W, Pawlik A. Incretins in the Therapy of Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms222212312. [PMID: 34830194 PMCID: PMC8617946 DOI: 10.3390/ijms222212312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic kidney disease is a microvascular complication that occurs in patients with diabetes. It is strongly associated with increased risk of kidney replacement therapy and all-cause mortality. Incretins are peptide hormones derived from the gastrointestinal tract, that besides causing enhancement of insulin secretion after oral glucose intake, participate in many other metabolic processes. Antidiabetic drug classes, such as dipeptidyl peptidase 4 inhibitors and glucagon-like peptide receptor agonists, which way of action is based on incretins facility, not only show glucose-lowering properties but also have nephroprotective functions. The aim of this article is to present the latest information about incretin-based therapy and its influence on diabetic kidney disease appearance and progression, point its potential mechanisms of kidney protection and focus on future therapeutic possibilities bound with these two antidiabetic drug classes.
Collapse
|
14
|
Tanday N, Flatt PR, Irwin N. Metabolic responses and benefits of glucagon-like peptide-1 (GLP-1) receptor ligands. Br J Pharmacol 2021; 179:526-541. [PMID: 33822370 PMCID: PMC8820187 DOI: 10.1111/bph.15485] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that has undergone a revolutionary turnaround from discovery to clinically approved therapeutic. Rapid progress in drug design and formulation has led from initial development of short- and long-acting drugs suitable for daily or weekly parenteral administration, respectively, through to the most recent approval of an orally active GLP-1 agent. The current review outlines the biological action profile of GLP-1 including the various beneficial metabolic responses in pancreatic and extra-pancreatic tissues, including the gastrointestinal tract, liver, bone and kidney as well as the reproductive cardiovascular and CNS. We then briefly consider clinically approved GLP-1 receptor ligands and recent advances in this field. Given the sustained evolution in the area of GLP-1 drug development and excellent safety profile, as well as the plethora of metabolic benefits, clinical approval for use in diseases beyond diabetes and obesity is very much conceivable.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Group, Ulster University, Coleraine, UK
| | - Peter R Flatt
- Diabetes Research Group, Ulster University, Coleraine, UK
| | - Nigel Irwin
- Diabetes Research Group, Ulster University, Coleraine, UK
| |
Collapse
|
15
|
Gradel AKJ, Kildegaard J, Porsgaard T, Lykkesfeldt J, Refsgaard HHF. Food intake rather than blood glucose levels affects the pharmacokinetic profile of insulin aspart in pigs. Basic Clin Pharmacol Toxicol 2021; 128:783-794. [PMID: 33626236 DOI: 10.1111/bcpt.13574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
In humans, food intake and glucose infusion have been reported to increase subcutaneous blood flow. Since local blood flow influences the rate of insulin absorption from the subcutaneous tissue, we hypothesised that an increase in blood glucose levels-occurring as the result of glucose infusion or food intake-could modulate the pharmacokinetic properties of subcutaneously administered insulin. The pharmacokinetic profile of insulin aspart was assessed in 29 domestic pigs that were examined in a fed and fasted state or included in hyperinsulinaemic clamp studies of 4 vs. 10 mmol/L glucose prior to subcutaneous (30 nmol) or intravenous (0.1 nmol/kg) insulin administration. Results showed that food intake compared to fasting accelerated absorption and decreased clearance of insulin aspart (P < 0.05). Furthermore, higher c-peptide but also glucagon levels were observed in fed compared to fasted pigs (P < 0.05). The pharmacokinetic profile of insulin aspart did not differ between pigs clamped at 4 vs. 10 mmol/L glucose. Hence, food intake rather than blood glucose levels within normal range modulates the pharmacokinetic properties of insulin aspart upon subcutaneous and intravenous administration in pigs.
Collapse
Affiliation(s)
- Anna Katrina Jógvansdóttir Gradel
- Section for Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health & Medical Sciences, University of Copenhagen, Frederiksberg, Copenhagen, Denmark.,Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | | | | | - Jens Lykkesfeldt
- Section for Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health & Medical Sciences, University of Copenhagen, Frederiksberg, Copenhagen, Denmark
| | | |
Collapse
|
16
|
Rosendo-Silva D, Matafome P. Gut-adipose tissue crosstalk: A bridge to novel therapeutic targets in metabolic syndrome? Obes Rev 2021; 22:e13130. [PMID: 32815267 DOI: 10.1111/obr.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
The gut is one of the main endocrine organs in our body, producing hormones acknowledged to play determinant roles in controlling appetite, energy balance and glucose homeostasis. One of the targets of such hormones is the adipose tissue, a major energetic reservoir, which governs overall metabolism through the secretion of adipokines. Disturbances either in nutrient and metabolic sensing and consequent miscommunication between these organs constitute a key driver to the metabolic complications clustered in metabolic syndrome. Thus, it is essential to understand how the disruption of this crosstalk might trigger adipose tissue dysfunction, a strong characteristic of obesity and insulin resistance. The beneficial effects of metabolic surgery in the amelioration of glucose homeostasis and body weight reduction allowed to understand the potential of gut signals modulation as a treatment for metabolic syndrome-related obesity and type 2 diabetes. In this review, we cover the effects of gut hormones in the modulation of adipose tissue metabolic and endocrine functions, as well as their impact in tissue plasticity. Furthermore, we discuss how the modulation of gut secretome, either through surgical procedures or pharmacological approaches, might improve adipose tissue function in obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| |
Collapse
|
17
|
Asmar A, Cramon PK, Asmar M, Simonsen L, Sorensen CM, Madsbad S, Hartmann B, Holst JJ, Hovind P, Jensen BL, Bülow J. The Renal Extraction and the Natriuretic Action of GLP-1 in Humans Depend on Interaction With the GLP-1 Receptor. J Clin Endocrinol Metab 2021; 106:e11-e19. [PMID: 32927478 DOI: 10.1210/clinem/dgaa643] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/11/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE The natriuretic effect of glucagon-like peptide-1 (GLP-1) in humans is independent of changes in renal plasma flow (RPF) and glomerular filtration rate (GFR) but may involve suppression of angiotensin II (ANG II) and a significant (~45%) renal extraction of GLP-1. The current study was designed to investigate the consequences for the renal extraction and the natriuretic effect of blocking GLP-1 receptors with the specific GLP-1 receptor antagonist, Exendin 9-39 (Ex 9-39). METHODS Under fixed sodium intake for 4 days before each study day, 6 healthy male participants were recruited from our recent study where GLP-1 or vehicle was infused (1). In the present new experiments, participants were examined during a 3-hour infusion of GLP-1 (1.5 pmol/kg/min) together with a 3.5-hour infusion of Ex 9-39 (900 pmol/kg/min). Timed urine collections were conducted throughout the experiments. Renal extraction of GLP-1 as well as RPF and GFR were measured via Fick's principle after catheterization of a renal vein. Arterial plasma renin, ANG II, and aldosterone concentrations were measured. RESULTS Co-infusion of Ex 9-39 significantly reduced renal extraction of GLP-1 to ~25% compared with GLP-1 infusion alone (~45%). Urinary sodium excretions remained at baseline levels during co-infusion of Ex 9-39 as well as vehicle. By contrast, GLP-1 infusion alone resulted in a 2-fold increase in natriuresis. Ex 9-39 abolished the GLP-1-induced decrease in arterial ANG II concentrations. RPF and GFR remained unchanged during all experiments. CONCLUSIONS Renal extraction of GLP-1 and its effect on natriuresis are both dependent on GLP-1 receptor activation in healthy humans.
Collapse
Affiliation(s)
- Ali Asmar
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Per K Cramon
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Meena Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Lene Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sorensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University Hospital of Copenhagen, Hvidovre, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Peter Hovind
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Højfeldt G, Bülow J, Agergaard J, Asmar A, Schjerling P, Simonsen L, Bülow J, van Hall G, Holm L. Impact of habituated dietary protein intake on fasting and postprandial whole-body protein turnover and splanchnic amino acid metabolism in elderly men: a randomized, controlled, crossover trial. Am J Clin Nutr 2020; 112:1468-1484. [PMID: 32710741 DOI: 10.1093/ajcn/nqaa201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Efficacy of protein absorption and subsequent amino acid utilization may be reduced in the elderly. Higher protein intakes have been suggested to counteract this. OBJECTIVES We aimed to elucidate how habituated amounts of protein intake affect the fasted state of, and the stimulatory effect of a protein-rich meal on, protein absorption, whole-body protein turnover, and splanchnic amino acid metabolism. METHODS Twelve men (65-70 y) were included in a double-blinded crossover intervention study, consisting of a 20-d habituation period to a protein intake at the RDA or a high amount [1.1 g · kg lean body mass (LBM)-1 · d-1 or >2.1 g · kg LBM-1 · d-1, respectively], each followed by an experimental trial with a primed, constant infusion of D8-phenylalanine and D2-tyrosine. Arterial and hepatic venous blood samples were obtained after an overnight fast and repeatedly 4 h after a standardized meal including intrinsically labeled whey protein concentrate and calcium-caseinate proteins. Blood was analyzed for amino acid concentrations and phenylalanine and tyrosine tracer enrichments from which whole-body and splanchnic amino acid and protein kinetics were calculated. RESULTS High (compared with the recommended amount of) protein intake resulted in a higher fasting whole-body protein turnover with a resultant mean ± SEM 0.03 ± 0.01 μmol · kg LBM-1 · min-1 lower net balance (P < 0.05), which was not rescued by the intake of a protein-dense meal. The mean ± SEM plasma protein fractional synthesis rate was 0.13 ± 0.06%/h lower (P < 0.05) after habituation to high protein. Furthermore, higher fasting and postprandial amino acid removal were observed after habituation to high protein, yielding higher urea excretion and increased phenylalanine oxidation rates (P < 0.01). CONCLUSIONS Three weeks of habituation to high protein intake (>2.1 g protein · kg LBM-1 · d-1) led to a significantly higher net protein loss in the fasted state. This was not compensated for in the 4-h postprandial period after intake of a meal high in protein.This trial was registered at clinicaltrials.gov as NCT02587156.
Collapse
Affiliation(s)
- Grith Højfeldt
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M81, Bispebjerg Hospital, Copenhagen, Denmark
| | - Jacob Bülow
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M81, Bispebjerg Hospital, Copenhagen, Denmark
| | - Jakob Agergaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M81, Bispebjerg Hospital, Copenhagen, Denmark
| | - Ali Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M81, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lene Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lars Holm
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M81, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
19
|
Heuvelman VD, Van Raalte DH, Smits MM. Cardiovascular effects of glucagon-like peptide 1 receptor agonists: from mechanistic studies in humans to clinical outcomes. Cardiovasc Res 2020; 116:916-930. [PMID: 31825468 DOI: 10.1093/cvr/cvz323] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/11/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is currently one of the most prevalent diseases, with as many as 415 million patients worldwide. T2DM is characterized by elevated blood glucose levels and is often accompanied by several comorbidities, such as cardiovascular disease. Treatment of T2DM is focused on reducing glucose levels by either lifestyle changes or medical treatment. One treatment option for T2DM is based on the gut-derived hormone glucagon-like peptide 1 (GLP-1). GLP-1 reduces blood glucose levels by stimulating insulin secretion, however, it is rapidly degraded, and thereby losing its glycaemic effect. GLP-1 receptor agonists (GLP-1RAs) are immune to degradation, prolonging the glycaemic effect. Lately, GLP-1RAs have spiked the interest of researchers and clinicians due to their beneficial effects on cardiovascular disease. Preclinical and clinical data have demonstrated that GLP-1 receptors are abundantly present in the heart and that stimulation of these receptors by GLP-1 has several effects. In this review, we will discuss the effects of GLP-1RA on heart rate, blood pressure, microvascular function, lipids, and inflammation, as measured in human mechanistic studies, and suggest how these effects may translate into the improved cardiovascular outcomes as demonstrated in several trials.
Collapse
Affiliation(s)
- Valerie D Heuvelman
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Location VUmc, De Boelelaan 1117, Room ZH 4A72, 1081 HV Amsterdam, The Netherlands
| | - Daniël H Van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Location VUmc, De Boelelaan 1117, Room ZH 4A72, 1081 HV Amsterdam, The Netherlands
| | - Mark M Smits
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Location VUmc, De Boelelaan 1117, Room ZH 4A72, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
20
|
Hviid AVR, Sørensen CM. Glucagon-like peptide-1 receptors in the kidney: impact on renal autoregulation. Am J Physiol Renal Physiol 2020; 318:F443-F454. [DOI: 10.1152/ajprenal.00280.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and strategies based on this blood sugar-reducing and appetite-suppressing hormone are used to treat obesity and type 2 diabetes. However, the GLP-1 receptor (GLP-1R) is also present in the kidney, where it influences renal function. The effect of GLP-1 on the kidney varies between humans and rodents. The effect of GLP-1 on kidney function also seems to vary depending on its concentration and the physiological or pathological state of the kidney. In studies with rodents or humans, acute infusion of pharmacological doses of GLP-1 stimulates natriuresis and diuresis. However, the effect on the renal vasculature is less clear. In rodents, GLP-1 infusion increases renal plasma flow and glomerular filtration rate, suggesting renal vasodilation. In humans, only a subset of the study participants exhibits increased renal plasma flow and glomerular filtration rate. Differential status of kidney function and changes in renal vascular resistance of the preglomerular arterioles may account for the different responses of the human study participants. Because renal function in patients with type 2 diabetes is already at risk or compromised, understanding the effects of GLP-1R activation on kidney function in these patients is particularly important. This review examines the distribution of GLP-1R in the kidney and the effects elicited by GLP-1 or GLP-1R agonists. By integrating results from acute and chronic studies in healthy individuals and patients with type 2 diabetes along with those from rodent studies, we provide insight into how GLP-1R activation affects renal function and autoregulation.
Collapse
Affiliation(s)
- Aleksander Vauvert R. Hviid
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Clarke SJ, Giblett JP, Yang LL, Hubsch A, Zhao T, Aetesam-Ur-Rahman M, West NEJ, O'Sullivan M, Figg N, Bennett M, Wewer Albrechtsen NJ, Deacon CF, Cheriyan J, Hoole SP. GLP-1 Is a Coronary Artery Vasodilator in Humans. J Am Heart Assoc 2019; 7:e010321. [PMID: 30571482 PMCID: PMC6404441 DOI: 10.1161/jaha.118.010321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The mechanism underlying the beneficial cardiovascular effects of the incretin GLP‐1 (glucagon‐like peptide 1) and its analogues in humans is elusive. We hypothesized that activating receptors located on vascular smooth muscle cells to induce either peripheral or coronary vasodilatation mediates the cardiovascular effect of GLP‐1. Methods and Results Ten stable patients with angina awaiting left anterior descending artery stenting underwent forearm blood flow measurement using forearm plethysmography and post–percutaneous coronary intervention coronary blood flow measurement using a pressure‐flow wire before and after peripheral GLP‐1 administration. Coronary sinus and artery bloods were sampled for GLP‐1 levels. A further 11 control patients received saline rather than GLP‐1 in the coronary blood flow protocol. GLP‐1 receptor (GLP‐1R) expression was assessed by immunohistochemistry using a specific GLP‐1R monoclonal antibody in human tissue to inform the physiological studies. There was no effect of GLP‐1 on absolute forearm blood flow or forearm blood flow ratio after GLP‐1, systemic hemodynamics were not affected, and no binding of GLP‐1R monoclonal antibody was detected in vascular tissue. GLP‐1 reduced resting coronary transit time (mean [SD], 0.87 [0.39] versus 0.63 [0.27] seconds; P=0.02) and basal microcirculatory resistance (mean [SD], 76.3 [37.9] versus 55.4 [30.4] mm Hg/s; P=0.02), whereas in controls, there was an increase in transit time (mean [SD], 0.48 [0.24] versus 0.83 [0.41] seconds; P<0.001) and basal microcirculatory resistance (mean [SD], 45.9 [34.7] versus 66.7 [37.2] mm Hg/s; P=0.02). GLP‐1R monoclonal antibody binding was confirmed in ventricular tissue but not in vascular tissue, and transmyocardial GLP‐1 extraction was observed. Conclusions GLP‐1 causes coronary microvascular dilation and increased flow but does not influence peripheral tone. GLP‐1R immunohistochemistry suggests that GLP‐1 coronary vasodilatation is indirectly mediated by ventricular‐coronary cross talk.
Collapse
Affiliation(s)
- Sophie J Clarke
- 1 Division of Cardiovascular Medicine University of Cambridge United Kingdom
| | - Joel P Giblett
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Lucy L Yang
- 2 Division of Experimental Medicine and Immunotherapeutics University of Cambridge United Kingdom
| | - Annette Hubsch
- 2 Division of Experimental Medicine and Immunotherapeutics University of Cambridge United Kingdom
| | - Tian Zhao
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Muhammad Aetesam-Ur-Rahman
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Nick E J West
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Michael O'Sullivan
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Nichola Figg
- 1 Division of Cardiovascular Medicine University of Cambridge United Kingdom
| | - Martin Bennett
- 1 Division of Cardiovascular Medicine University of Cambridge United Kingdom
| | - Nicolai J Wewer Albrechtsen
- 4 Department of Biomedical Sciences NNF Centre for Basic Metabolic Research University of Copenhagen Denmark.,5 Department of Clinical Biochemistry, Rigshospitalet University of Copenhagen Denmark
| | - Carolyn F Deacon
- 4 Department of Biomedical Sciences NNF Centre for Basic Metabolic Research University of Copenhagen Denmark
| | - Joseph Cheriyan
- 2 Division of Experimental Medicine and Immunotherapeutics University of Cambridge United Kingdom
| | - Stephen P Hoole
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| |
Collapse
|
22
|
Chen YC, Smith HA, Hengist A, Chrzanowski-Smith OJ, Mikkelsen UR, Carroll HA, Betts JA, Thompson D, Saunders J, Gonzalez JT. Co-ingestion of whey protein hydrolysate with milk minerals rich in calcium potently stimulates glucagon-like peptide-1 secretion: an RCT in healthy adults. Eur J Nutr 2019; 59:2449-2462. [PMID: 31531707 PMCID: PMC7413905 DOI: 10.1007/s00394-019-02092-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/11/2019] [Indexed: 11/26/2022]
Abstract
Purpose To examine whether calcium type and co-ingestion with protein alter gut hormone availability. Methods Healthy adults aged 26 ± 7 years (mean ± SD) completed three randomized, double-blind, crossover studies. In all studies, arterialized blood was sampled postprandially over 120 min to determine GLP-1, GIP and PYY responses, alongside appetite ratings, energy expenditure and blood pressure. In study 1 (n = 20), three treatments matched for total calcium content (1058 mg) were compared: calcium citrate (CALCITR); milk minerals rich in calcium (MILK MINERALS); and milk minerals rich in calcium plus co-ingestion of 50 g whey protein hydrolysate (MILK MINERALS + PROTEIN). In study 2 (n = 6), 50 g whey protein hydrolysate (PROTEIN) was compared to MILK MINERALS + PROTEIN. In study 3 (n = 6), MILK MINERALS was compared to the vehicle of ingestion (water plus sucralose; CONTROL). Results MILK MINERALS + PROTEIN increased GLP-1 incremental area under the curve (iAUC) by ~ ninefold (43.7 ± 11.1 pmol L−1 120 min; p < 0.001) versus both CALCITR and MILK MINERALS, with no difference detected between CALCITR (6.6 ± 3.7 pmol L−1 120 min) and MILK MINERALS (5.3 ± 3.5 pmol L−1 120 min; p > 0.999). MILK MINERALS + PROTEIN produced a GLP-1 iAUC ~ 25% greater than PROTEIN (p = 0.024; mean difference: 9.1 ± 6.9 pmol L−1 120 min), whereas the difference between MILK MINERALS versus CONTROL was small and non-significant (p = 0.098; mean difference: 4.2 ± 5.1 pmol L−1 120 min). Conclusions When ingested alone, milk minerals rich in calcium do not increase GLP-1 secretion compared to calcium citrate. Co-ingesting high-dose whey protein hydrolysate with milk minerals rich in calcium increases postprandial GLP-1 concentrations to some of the highest physiological levels ever reported. Registered at ClinicalTrials.gov: NCT03232034, NCT03370484, NCT03370497. Electronic supplementary material The online version of this article (10.1007/s00394-019-02092-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yung-Chih Chen
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | - Harry A Smith
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Aaron Hengist
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | | | | | - Harriet A Carroll
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - James A Betts
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - John Saunders
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | | |
Collapse
|
23
|
Asmar A, Cramon PK, Simonsen L, Asmar M, Sorensen CM, Madsbad S, Moro C, Hartmann B, Jensen BL, Holst JJ, Bülow J. Extracellular Fluid Volume Expansion Uncovers a Natriuretic Action of GLP-1: A Functional GLP-1-Renal Axis in Man. J Clin Endocrinol Metab 2019; 104:2509-2519. [PMID: 30835273 DOI: 10.1210/jc.2019-00004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE We have previously demonstrated that glucagon-like peptide-1 (GLP-1) does not affect renal hemodynamics or function under baseline conditions in healthy participants and in patients with type 2 diabetes mellitus. However, it is possible that GLP-1 promotes natriuresis under conditions with addition of salt and water to the extracellular fluid. The current study was designed to investigate a possible GLP-1-renal axis, inducing natriuresis in healthy, volume-loaded participants. METHODS Under fixed sodium intake, eight healthy men were examined twice in random order during a 3-hour infusion of either GLP-1 (1.5 pmol/kg/min) or vehicle together with an intravenous infusion of 0.9% NaCl. Timed urine collections were conducted throughout the experiments. Renal plasma flow (RPF), glomerular filtration rate (GFR), and uptake and release of hormones and ions were measured via Fick's principle. RESULTS During GLP-1 infusion, urinary sodium and osmolar excretions increased significantly compared with vehicle. Plasma renin levels decreased similarly on both days, whereas angiotensin II (ANG II) levels decreased significantly only during GLP-1 infusion. RPF and GFR remained unchanged on both days. CONCLUSIONS In volume-loaded participants, GLP-1 induces natriuresis, probably brought about via a tubular mechanism secondary to suppression of ANG II, independent of renal hemodynamics, supporting the existence of a GLP-1-renal axis.
Collapse
Affiliation(s)
- Ali Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Per K Cramon
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Lene Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Meena Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sorensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University Hospital of Copenhagen, Hvidovre, Denmark
| | - Cedric Moro
- Institut National de la Santé et de la Recherche Médicale UMR 1048, Institute of Metabolic and Cardiovascular Diseases, and Paul Sabatier University, Toulouse, France
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Asmar M, Asmar A, Simonsen L, Dela F, Holst JJ, Bülow J. GIP-induced vasodilation in human adipose tissue involves capillary recruitment. Endocr Connect 2019; 8:806-813. [PMID: 31063975 PMCID: PMC6590203 DOI: 10.1530/ec-19-0144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) in combination with hyperinsulinemia increase blood flow and triglyceride clearance in subcutaneous abdominal adipose tissue in lean humans. The present experiments were performed to determine whether the increase involves capillary recruitment. Eight lean healthy volunteers were studied before and after 1 h infusion of GIP or saline during a hyperglycemic-hyperinsulinemic clamp, raising plasma glucose and insulin to postprandial levels. Subcutaneous abdominal adipose tissue blood flow (ATBF) was measured by the 133Xenon clearance technique, and microvascular blood volume was determined by contrast-enhanced ultrasound imaging. During infusion of saline and the clamp, both ATBF (2.7 ± 0.5 mL/min 100 g/tissue) and microvascular blood volume remained unchanged throughout the experiments. During GIP infusion and the clamp, ATBF increased ~fourfold to 11.4 ± 1.9 mL/min 100 g/tissue, P < 0.001. Likewise, the contrast-enhanced ultrasound signal intensity, a measure of the microvascular blood volume, increased significantly 1 h after infusion of GIP and the clamp (P = 0.003), but not in the control experiments. In conclusion, the increase in ATBF during GIP infusion involves recruitment of capillaries in healthy lean subjects, which probably increases the interaction of circulating lipoproteins with lipoprotein lipase, thus promoting adipose tissue lipid uptake.
Collapse
Affiliation(s)
- Meena Asmar
- Department of Endocrinology, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Correspondence should be addressed to M Asmar:
| | - Ali Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Lene Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Ageing, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Whyte MB, Shojaee-Moradie F, Sharaf SE, Jackson NC, Fielding B, Hovorka R, Mendis J, Russell-Jones D, Umpleby AM. Lixisenatide Reduces Chylomicron Triacylglycerol by Increased Clearance. J Clin Endocrinol Metab 2019; 104:359-368. [PMID: 30215735 PMCID: PMC6300412 DOI: 10.1210/jc.2018-01176] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
CONTEXT Glucagon-like peptide-1 (GLP-1) agonists control postprandial glucose and lipid excursion in type 2 diabetes; however, the mechanisms are unclear. OBJECTIVE To determine the mechanisms of postprandial lipid and glucose control with lixisenatide (GLP-1 analog) in type 2 diabetes. DESIGN Randomized, double-blind, cross-over study. SETTING Centre for Diabetes, Endocrinology, and Research, Royal Surrey County Hospital, Guildford, United Kingdom. PATIENTS Eight obese men with type 2 diabetes [age, 57.3 ± 1.9 years; body mass index, 30.3 ± 1.0 kg/m2; glycosylated hemoglobin, 66.5 ± 2.6 mmol/mol (8.2% ± 0.3%)]. INTERVENTIONS Two metabolic studies, 4 weeks after lixisenatide or placebo, with cross-over and repetition of studies. MAIN OUTCOME MEASURES Study one: very-low-density lipoprotein (VLDL) and chylomicron (CM) triacylglycerol (TAG) kinetics were measured with an IV bolus of [2H5]glycerol in a 12-hour study, with hourly feeding. Oral [13C]triolein, in a single meal, labeled enterally derived TAG. Study two: glucose kinetics were measured with [U-13C]glucose in a mixed-meal (plus acetaminophen to measure gastric emptying) and variable IV [6,6-2H2]glucose infusion. RESULTS Study one: CM-TAG (but not VLDL-TAG) pool-size was lower with lixisenatide (P = 0.046). Lixisenatide reduced CM [13C]oleate area under the curve (AUC)60-480min concentration (P = 0.048) and increased CM-TAG clearance, with no effect on CM-TAG production rate. Study two: postprandial glucose and insulin AUC0-240min were reduced with lixisenatide (P = 0.0051; P < 0.05). Total glucose production (P = 0.015), rate of glucose appearance from the meal (P = 0.0098), and acetaminophen AUC0-360min (P = 0.006) were lower with lixisenatide than with placebo. CONCLUSIONS Lixisenatide reduced [13C]oleate concentrations, derived from a single meal in CM-TAG and glucose rate of appearance from the meal through delayed gastric emptying. However, day-long CM production, measured with repeated meal feeding, was not reduced by lixisenatide and decreased CM-TAG concentration resulted from increased CM-TAG clearance.
Collapse
Affiliation(s)
- Martin B Whyte
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Correspondence and Reprint Requests: Martin B. Whyte, PhD, FRCP, Faculty of Health and Medical Sciences, University of Surrey, Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, United Kingdom. E-mail:
| | | | - Sharaf E Sharaf
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nicola C Jackson
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Barbara Fielding
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Roman Hovorka
- Diabetes Modelling Group, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Jeewaka Mendis
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - David Russell-Jones
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - A Margot Umpleby
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
26
|
Mroz PA, Finan B, Gelfanov V, Yang B, Tschöp MH, DiMarchi RD, Perez-Tilve D. Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism. Mol Metab 2019; 20:51-62. [PMID: 30578168 PMCID: PMC6358549 DOI: 10.1016/j.molmet.2018.12.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Structurally-improved GIP analogs were developed to determine precisely whether GIP receptor (GIPR) agonism or antagonism lowers body weight in obese mice. METHODS A series of peptide-based GIP analogs, including structurally diverse agonists and a long-acting antagonist, were generated and characterized in vitro using functional assays in cell systems overexpressing human and mouse derived receptors. These analogs were characterized in vivo in DIO mice following acute dosing for effects on glycemic control, and following chronic dosing for effects on body weight and food intake. Pair-feeding studies and indirect calorimetry were used to survey the mechanism for body weight lowering. Congenital Gipr-/- and Glp1r-/- DIO mice were used to investigate the selectivity of the agonists and to ascribe the pharmacology to effects mediated by the GIPR. RESULTS Non-acylated, Aib2 substituted analogs derived from human GIP sequence showed full in vitro potency at human GIPR and subtly reduced in vitro potency at mouse GIPR without cross-reactivity at GLP-1R. These GIPR agonists lowered acute blood glucose in wild-type and Glp1r-/- mice, and this effect was absent in Gipr-/- mice, which confirmed selectivity towards GIPR. Chronic treatment of DIO mice resulted in modest yet consistent, dose-dependent decreased body weight across many studies with diverse analogs. The mechanism for body weight lowering is due to reductions in food intake, not energy expenditure, as suggested by pair-feeding studies and indirect calorimetry assessment. The weight lowering effect was preserved in DIO Glp-1r-/- mice and absent in DIO Gipr-/- mice. The body weight lowering efficacy of GIPR agonists was enhanced with analogs that exhibit higher mouse GIPR potency, with increased frequency of administration, and with fatty-acylated peptides of extended duration of action. Additionally, a fatty-acylated, N-terminally truncated GIP analog was shown to have high in vitro antagonism potency for human and mouse GIPR without cross-reactive activity at mouse GLP-1R or mouse glucagon receptor (GcgR). This acylated antagonist sufficiently inhibited the acute effects of GIP to improve glucose tolerance in DIO mice. Chronic treatment of DIO mice with high doses of this acylated GIPR antagonist did not result in body weight change. Further, co-treatment of this acylated GIPR antagonist with liraglutide, an acylated GLP-1R agonist, to DIO mice did not result in increased body weight lowering relative to liraglutide-treated mice. Enhanced body weight lowering in DIO mice was evident however following co-treatment of long-acting selective individual agonists for GLP-1R and GIPR, consistent with previous data. CONCLUSIONS We conclude that peptide-based GIPR agonists, not peptide-based GIPR antagonists, that are suitably optimized for receptor selectivity, cross-species activity, and duration of action consistently lower body weight in DIO mice, although with moderate efficacy relative to GLP-1R agonists. These preclinical rodent pharmacology results, in accordance with recent clinical results, provide definitive proof that systemic GIPR agonism, not antagonism, is beneficial for body weight loss.
Collapse
Affiliation(s)
- Piotr A Mroz
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Munich-Neuherberg, Germany.
| | - Vasily Gelfanov
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Bin Yang
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Matthias H Tschöp
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Munich-Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Diego Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
27
|
Goltz FR, Thackray AE, King JA, Dorling JL, Atkinson G, Stensel DJ. Interindividual Responses of Appetite to Acute Exercise: A Replicated Crossover Study. Med Sci Sports Exerc 2019; 50:758-768. [PMID: 29240652 DOI: 10.1249/mss.0000000000001504] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Acute exercise transiently suppresses appetite, which coincides with alterations in appetite-regulatory hormone concentrations. Individual variability in these responses is suspected, but replicated trials are needed to quantify them robustly. We examined the reproducibility of appetite and appetite-regulatory hormone responses to acute exercise and quantified the individual differences in responses. METHODS Fifteen healthy, recreationally active men completed two control (60-min resting) and two exercise (60-min fasted treadmill running at 70% peak oxygen uptake) conditions in randomized sequences. Perceived appetite and circulating concentrations of acylated ghrelin and total peptide YY (PYY) were measured immediately before and after the interventions. Interindividual differences were explored by correlating the two sets of response differences between exercise and control conditions. Within-participant covariate-adjusted linear mixed models were used to quantify participant-condition interactions. RESULTS Compared with control, exercise suppressed mean acylated ghrelin concentrations and appetite perceptions (all ES = 0.62-1.47, P < 0.001) and elevated total PYY concentrations (ES = 1.49, P < 0.001). For all variables, the standard deviation of the change scores was substantially greater in the exercise versus control conditions. Moderate-to-large positive correlations were observed between the two sets of control-adjusted exercise responses for all variables (r = 0.54-0.82, P ≤ 0.036). After adjusting for baseline measurements, participant-condition interactions were present for all variables (P ≤ 0.053). CONCLUSIONS Our replicated crossover study allowed, for the first time, the interaction between participant and acute exercise response in appetite parameters to be quantified. Even after adjustment for individual baseline measurements, participants demonstrated individual differences in perceived appetite and hormone responses to acute exercise bouts beyond any random within-subject variability over time.
Collapse
Affiliation(s)
- Fernanda R Goltz
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM.,National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Alice E Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM.,National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM.,National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - James L Dorling
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM.,National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Greg Atkinson
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM.,National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| |
Collapse
|
28
|
Clarke SJ, Pettit S, Giblett JP, Zhao T, Kydd AC, Albrechtsen NJW, Deacon CF, Parameshwar J, Hoole SP. Effects of Acute GLP-1 Infusion on Pulmonary and Systemic Hemodynamics in Patients With Heart Failure: A Pilot Study. Clin Ther 2019; 41:118-127.e0. [PMID: 30598343 DOI: 10.1016/j.clinthera.2018.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE Cardiovascular-safety studies assessing glucagon-like peptide (GLP)-1 receptor agonists and dipeptidyl peptidase 4 inhibitors have provided inconsistent data on the risk for developing heart failure. Animal studies have shown that GLP-1 is a vasodilator; if confirmed in humans, this may ameliorate heart failure symptoms. METHODS In a single-center, observational pilot study, we recruited 10 patients with advanced heart failure undergoing right heart catheterization, and we recorded pulmonary hemodynamic measures, including cardiac output calculated by thermodilution and the indirect Fick method before and after a 15-minute continuous infusion of native GLP-1 (7-36) NH2. FINDINGS There was a neutral effect of GLP-1 on all pressure and hemodynamics indices as derived by cardiac output calculated by thermodilution. However, there was a small but consistent reduction in cardiac output as calculated by the indirect Fick method after GLP-1 infusion (baseline, 4.0 [1.1] L/min vs GLP-1, 3.6 [0.9] L/min; P = 0.003), driven by a consistent reduction in mixed venous oxygen saturation after GLP-1 infusion (baseline, 62.2% [7.0%] vs GLP-1, 59.3% [6.8%]; P < 0.001), whereas arterial saturation remained constant (baseline, 96.8% [3.3%] vs GLP-1, 97.0% [3.2%]; P = 0.34). This resulted in an increase in systemic vascular resistance by Fick (baseline, 1285 [228] dyn · s/cm5 vs GLP-1, 1562 [247] dyn · s/cm5; P = 0.001). IMPLICATIONS Acute infusion of GLP-1 has a neutral hemodynamic effect, when assessed by thermodilution, in patients with heart failure. However, GLP-1 reduces mixed venous oxygen saturation. ClinicalTrials.gov identifier: NCT02129179.
Collapse
Affiliation(s)
- Sophie J Clarke
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Pettit
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Joel P Giblett
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Tian Zhao
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Anna C Kydd
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Nicolai J W Albrechtsen
- Department of Biomedical Sciences and NNF Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences and NNF Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jayan Parameshwar
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Stephen P Hoole
- Department of Interventional Cardiology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom.
| |
Collapse
|
29
|
Chen YC, Edinburgh RM, Hengist A, Smith HA, Walhin JP, Betts JA, Thompson D, Gonzalez JT. Venous blood provides lower glucagon-like peptide-1 concentrations than arterialized blood in the postprandial but not the fasted state: Consequences of sampling methods. Exp Physiol 2018; 103:1200-1205. [DOI: 10.1113/ep087118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/25/2018] [Indexed: 01/21/2023]
|
30
|
Asmar A, Asmar M, Simonsen L, Madsbad S, Holst JJ, Hartmann B, Sorensen CM, Bülow J. Glucagon-like peptide-1 elicits vasodilation in adipose tissue and skeletal muscle in healthy men. Physiol Rep 2018; 5:5/3/e13073. [PMID: 28174344 PMCID: PMC5309569 DOI: 10.14814/phy2.13073] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/03/2016] [Accepted: 11/13/2016] [Indexed: 12/24/2022] Open
Abstract
In healthy subjects, we recently demonstrated that during acute administration of GLP-1, cardiac output increased significantly, whereas renal blood flow remained constant. We therefore hypothesize that GLP-1 induces vasodilation in other organs, for example, adipose tissue, skeletal muscle, and/or splanchnic tissues. Nine healthy men were examined twice in random order during a 2-hour infusion of either GLP-1 (1.5 pmol kg-1 min-1) or saline. Cardiac output was continuously estimated noninvasively concomitantly with measurement of intra-arterial blood pressure. Subcutaneous, abdominal adipose tissue blood flow (ATBF) was measured by the 133Xenon clearance technique. Leg and splanchnic blood flow were measured by Fick's Principle, using indocyanine green as indicator. In the GLP-1 study, cardiac output increased significantly together with a significant increase in arterial pulse pressure and heart rate compared with the saline study. Subcutaneous, abdominal ATBF and leg blood flow increased significantly during the GLP-1 infusion compared with saline, whereas splanchnic blood flow response did not differ between the studies. We conclude that in healthy subjects, GLP-1 increases cardiac output acutely due to a GLP-1-induced vasodilation in adipose tissue and skeletal muscle together with an increase in cardiac work.
Collapse
Affiliation(s)
- Ali Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Meena Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Lene Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sorensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|