1
|
Margolis LM, Wilson MA, Drummer DJ, Carrigan CT, Murphy NE, Allen JT, Dawson MA, Mantzoros CS, Young AJ, Pasiakos SM. Pioglitazone does not enhance exogenous glucose oxidation or metabolic clearance rate during aerobic exercise in men under acute high-altitude exposure. Am J Physiol Regul Integr Comp Physiol 2024; 327:R25-R34. [PMID: 38682243 PMCID: PMC11381008 DOI: 10.1152/ajpregu.00064.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Insulin insensitivity decreases exogenous glucose oxidation and metabolic clearance rate (MCR) during aerobic exercise in unacclimatized lowlanders at high altitude (HA). Whether use of an oral insulin sensitizer before acute HA exposure enhances exogenous glucose oxidation is unclear. This study investigated the impact of pioglitazone (PIO) on exogenous glucose oxidation and glucose turnover compared with placebo (PLA) during aerobic exercise at HA. With the use of a randomized crossover design, native lowlanders (n = 7 males, means ± SD, age: 23 ± 6 yr, body mass: 84 ± 11 kg) consumed 145 g (1.8 g/min) of glucose while performing 80 min of steady-state (1.43 ± 0.16 V̇o2 L/min) treadmill exercise at HA (460 mmHg; [Formula: see text] 96.6 mmHg) following short-term (5 days) use of PIO (15 mg oral dose per day) or PLA (microcrystalline cellulose pill). Substrate oxidation and glucose turnover were determined using indirect calorimetry and stable isotopes ([13C]glucose and 6,6-[2H2]glucose). Exogenous glucose oxidation was not different between PIO (0.31 ± 0.03 g/min) and PLA (0.32 ± 0.09 g/min). Total carbohydrate oxidation (PIO: 1.65 ± 0.22 g/min, PLA: 1.68 ± 0.32 g/min) or fat oxidation (PIO: 0.10 ± 0.0.08 g/min, PLA: 0.09 ± 0.07 g/min) was not different between treatments. There was no treatment effect on glucose rate of appearance (PIO: 2.46 ± 0.27, PLA: 2.43 ± 0.27 mg/kg/min), disappearance (PIO: 2.19 ± 0.17, PLA: 2.20 ± 0.22 mg/kg/min), or MCR (PIO: 1.63 ± 0.37, PLA: 1.73 ± 0.40 mL/kg/min). Results from this study indicate that PIO is not an effective intervention to enhance exogenous glucose oxidation or MCR during acute HA exposure. Lack of effect with PIO suggests that the etiology of glucose metabolism dysregulation during acute HA exposure may not result from insulin resistance in peripheral tissues.NEW & NOTEWORTHY Short-term (5 days) use of the oral insulin sensitizer pioglitazone does not alter circulating glucose or insulin responses to enhance exogenous glucose oxidation during steady-state aerobic exercise in young healthy men under simulated acute (8 h) high-altitude (460 mmHg) conditions. These results indicate that dysregulations in glucose metabolism in native lowlanders sojourning at high altitude may not be due to insulin resistance at peripheral tissue.
Collapse
Affiliation(s)
- Lee M Margolis
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Marques A Wilson
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Devin J Drummer
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, United States
| | - Christopher T Carrigan
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Nancy E Murphy
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Jillian T Allen
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - M Alan Dawson
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Christos S Mantzoros
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States
| | - Andrew J Young
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, United States
| | - Stefan M Pasiakos
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
2
|
Rothschild JA, Kilding AE, Stewart T, Plews DJ. Factors Influencing Substrate Oxidation During Submaximal Cycling: A Modelling Analysis. Sports Med 2022; 52:2775-2795. [PMID: 35829994 PMCID: PMC9585001 DOI: 10.1007/s40279-022-01727-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Multiple factors influence substrate oxidation during exercise including exercise duration and intensity, sex, and dietary intake before and during exercise. However, the relative influence and interaction between these factors is unclear. OBJECTIVES Our aim was to investigate factors influencing the respiratory exchange ratio (RER) during continuous exercise and formulate multivariable regression models to determine which factors best explain RER during exercise, as well as their relative influence. METHODS Data were extracted from 434 studies reporting RER during continuous cycling exercise. General linear mixed-effect models were used to determine relationships between RER and factors purported to influence RER (e.g., exercise duration and intensity, muscle glycogen, dietary intake, age, and sex), and to examine which factors influenced RER, with standardized coefficients used to assess their relative influence. RESULTS The RER decreases with exercise duration, dietary fat intake, age, VO2max, and percentage of type I muscle fibers, and increases with dietary carbohydrate intake, exercise intensity, male sex, and carbohydrate intake before and during exercise. The modelling could explain up to 59% of the variation in RER, and a model using exclusively easily modified factors (exercise duration and intensity, and dietary intake before and during exercise) could only explain 36% of the variation in RER. Variables with the largest effect on RER were sex, dietary intake, and exercise duration. Among the diet-related factors, daily fat and carbohydrate intake have a larger influence than carbohydrate ingestion during exercise. CONCLUSION Variability in RER during exercise cannot be fully accounted for by models incorporating a range of participant, diet, exercise, and physiological characteristics. To better understand what influences substrate oxidation during exercise further research is required on older subjects and females, and on other factors that could explain additional variability in RER.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
3
|
New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Med 2022; 52:5-23. [PMID: 36173597 PMCID: PMC9734239 DOI: 10.1007/s40279-022-01757-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
The importance of carbohydrate as a fuel source for exercise and athletic performance is well established. Equally well developed are dietary carbohydrate intake guidelines for endurance athletes seeking to optimize their performance. This narrative review provides a contemporary perspective on research into the role of, and application of, carbohydrate in the diet of endurance athletes. The review discusses how recommendations could become increasingly refined and what future research would further our understanding of how to optimize dietary carbohydrate intake to positively impact endurance performance. High carbohydrate availability for prolonged intense exercise and competition performance remains a priority. Recent advances have been made on the recommended type and quantity of carbohydrates to be ingested before, during and after intense exercise bouts. Whilst reducing carbohydrate availability around selected exercise bouts to augment metabolic adaptations to training is now widely recommended, a contemporary view of the so-called train-low approach based on the totality of the current evidence suggests limited utility for enhancing performance benefits from training. Nonetheless, such studies have focused importance on periodizing carbohydrate intake based on, among other factors, the goal and demand of training or competition. This calls for a much more personalized approach to carbohydrate recommendations that could be further supported through future research and technological innovation (e.g., continuous glucose monitoring). Despite more than a century of investigations into carbohydrate nutrition, exercise metabolism and endurance performance, there are numerous new important discoveries, both from an applied and mechanistic perspective, on the horizon.
Collapse
|
4
|
Lahav R, Haim Y, Bhandarkar NS, Levin L, Chalifa-Caspi V, Sarver D, Sahagun A, Maixner N, Kovesh B, Wong GW, Rudich A. CTRP6 rapidly responds to acute nutritional changes, regulating adipose tissue expansion and inflammation in mice. Am J Physiol Endocrinol Metab 2021; 321:E702-E713. [PMID: 34632797 PMCID: PMC8799396 DOI: 10.1152/ajpendo.00299.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In chronic obesity, activated adipose tissue proinflammatory cascades are tightly linked to metabolic dysfunction. Yet, close temporal analyses of the responses to obesogenic environment such as high-fat feeding (HFF) in susceptible mouse strains question the causal relationship between inflammation and metabolic dysfunction, and/or raises the possibility that certain inflammatory cascades play adaptive/homeostatic, rather than pathogenic roles. Here, we hypothesized that CTRP6, a C1QTNF family member, may constitute an early responder to acute nutritional changes in adipose tissue, with potential physiological roles. Both 3-days high-fat feeding (3dHFF) and acute obesity reversal [2-wk switch to low-fat diet after 8-wk HFF (8wHFF)] already induced marked changes in whole body fuel utilization. Although adipose tissue expression of classical proinflammatory cytokines (Tnf-α, Ccl2, and Il1b) exhibited no, or only minor, change, C1qtnf6 uniquely increased, and decreased, in response to 3dHFF and acute obesity reversal, respectively. CTRP6 knockout (KO) mouse embryonic fibroblasts (MEFs) exhibited increased adipogenic gene expression (Pparg, Fabp4, and Adipoq) and markedly reduced inflammatory genes (Tnf-α, Ccl2, and Il6) compared with wild-type MEFs, and recombinant CTRP6 induced the opposite gene expression signature, as assessed by RNA sequencing. Consistently, 3dHFF of CTRP6-KO mice induced a greater whole body and adipose tissue weight gain compared with wild-type littermates. Collectively, we propose CTRP6 as a gene that rapidly responds to acute changes in caloric intake, acting in acute overnutrition to induce a "physiological inflammatory response" that limits adipose tissue expansion.NEW & NOTEWORTHY CTRP6 (C1qTNF6), a member of adiponectin gene family, regulates inflammation and metabolism in established obesity. Here, short-term high-fat feeding in mice is shown to increase adipose tissue expression of CTRP6 before changes in the expression of classical inflammatory genes occur. Conversely, CTRP6 expression in adipose tissue decreases early in the course of obesity reversal. Gain- and loss-of-function models suggest CTRP6 as a positive regulator of inflammatory cascades, and a negative regulator of adipogenesis and adipose tissue expansion.
Collapse
Affiliation(s)
- Rotem Lahav
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nikhil S Bhandarkar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Liron Levin
- Bioinformatics Core Facility, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dylan Sarver
- Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ageline Sahagun
- Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nitzan Maixner
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Barr Kovesh
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
5
|
Pasiakos SM, Karl JP, Margolis LM. Challenging traditional carbohydrate intake recommendations for optimizing performance at high altitude. Curr Opin Clin Nutr Metab Care 2021; 24:483-489. [PMID: 34284412 DOI: 10.1097/mco.0000000000000782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To highlight emerging evidence challenging traditional recommendations to increase carbohydrate intake to optimize performance at high altitude. RECENT FINDINGS Several studies have now clearly demonstrated that, compared with sea level, exogenous carbohydrate oxidation during aerobic exercise is blunted in lowlanders during initial exposure to high altitude. There is also no apparent ergogenic effect of ingesting carbohydrate during aerobic exercise on subsequent performance at high altitude, either initially after arriving or even after up to 22 days of acclimatization. The inability to oxidize and functionally benefit from exogenous carbohydrate intake during exercise after arriving at high altitude coincides with hyperinsulinemia, accelerated glycogenolysis, and reduced peripheral glucose uptake. Collectively, these responses are consistent with a hypoxia-mediated metabolic dysregulation reflective of insulin resistance. Parallel lines of evidence have also recently demonstrated roles for the gut microbiome in host metabolism, bioenergetics, and physiologic responses to high altitude, implicating the gut microbiome as one potential mediator of hypoxia-mediated metabolic dysregulation. SUMMARY Identification of novel and well tolerated nutrition and/or pharmacological approaches for alleviating hypoxia-mediated metabolic dysregulation and enhancing exogenous carbohydrate oxidation may be more effective for optimizing performance of lowlanders newly arrived at high altitude than traditional carbohydrate recommendations.
Collapse
Affiliation(s)
- Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | | | | |
Collapse
|
6
|
Bhandarkar NS, Lahav R, Maixner N, Haim Y, Wong GW, Rudich A, Yoel U. Adaptation of fuel selection to acute decrease in voluntary energy expenditure is governed by dietary macronutrient composition in mice. Physiol Rep 2021; 9:e15044. [PMID: 34553504 PMCID: PMC8459030 DOI: 10.14814/phy2.15044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 01/06/2023] Open
Abstract
In humans, exercise-induced thermogenesis is a markedly variable component of total energy expenditure, which had been acutely affected worldwide by COVID-19 pandemic-related lockdowns. We hypothesized that dietary macronutrient composition may affect metabolic adaptation/fuel selection in response to an acute decrease in voluntary activity. Using mice fed short-term high-fat diet (HFD) compared to low-fat diet (LFD)-fed mice, we evaluated whole-body fuel utilization by metabolic cages before and 3 days after omitting a voluntary running wheel in the cage. Short-term (24-48 h) HFD was sufficient to increase energy intake, fat oxidation, and decrease carbohydrate oxidation. Running wheel omission did not change energy intake, but resulted in a significant 50% decrease in total activity and a ~20% in energy expenditure in the active phase (night-time), compared to the period with wheel, irrespective of the dietary composition, resulting in significant weight gain. Yet, while in LFD wheel omission significantly decreased active phase fat oxidation, thereby trending to increase respiratory exchange ratio (RER), in HFD it diminished active phase carbohydrate oxidation. In conclusion, acute decrease in voluntary activity resulted in positive energy balance in mice on both diets, and decreased oxidation of the minor energy (macronutrient) fuel source, demonstrating that dietary macronutrient composition determines fuel utilization choices under conditions of acute changes in energetic demand.
Collapse
Affiliation(s)
- Nikhil S. Bhandarkar
- Department of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Rotem Lahav
- Department of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Nitzan Maixner
- Department of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Yulia Haim
- Department of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - G. William Wong
- Department of PhysiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Assaf Rudich
- Department of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Uri Yoel
- Department of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
- Soroka University Medical CenterBeer‐ShevaIsrael
| |
Collapse
|
7
|
Moore DR, Sygo J, Morton JP. Fuelling the female athlete: Carbohydrate and protein recommendations. Eur J Sport Sci 2021; 22:684-696. [PMID: 34015236 DOI: 10.1080/17461391.2021.1922508] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Optimal carbohydrate and protein intakes are vital for modulating training adaptation, recovery, and exercise performance. However, the research base underpinning contemporary sport nutrition guidelines has largely been conducted in male populations with a lack of consensus on whether the menstrual phase and associated changes in sex hormones allow broad application of these principles to female athletes. The present review will summarise our current understanding of carbohydrate and protein requirements in female athletes across the menstrual cycle and provide a critical analysis on how they compare to male athletes. On the basis of current evidence, we consider it premature to conclude that female athletes require sex specific guidelines in relation to CHO or protein requirements provided energy needs are met. However, there is a need for further research using sport-specific competition and training related exercise protocols that rigorously control for prior exercise, CHO/energy intake, contraceptive use and phase of menstrual cycle. Our overarching recommendation is to use current recommendations as a basis for adopting an individualised approach that takes into account athlete specific training and competition goals whilst also considering personal symptoms associated with the menstrual cycle.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | | | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Mores University, Liverpool, United Kingdom
| |
Collapse
|
8
|
Margolis LM, Karl JP, Wilson MA, Coleman JL, Ferrando AA, Young AJ, Pasiakos SM. Metabolomic profiles are reflective of hypoxia-induced insulin resistance during exercise in healthy young adult males. Am J Physiol Regul Integr Comp Physiol 2021; 321:R1-R11. [PMID: 33949213 PMCID: PMC8321788 DOI: 10.1152/ajpregu.00076.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypoxia-induced insulin resistance appears to suppress exogenous glucose oxidation during metabolically matched aerobic exercise during acute (<8 h) high-altitude (HA) exposure. However, a better understanding of this metabolic dysregulation is needed to identify interventions to mitigate these effects. The objective of this study was to determine if differences in metabolomic profiles during exercise at sea level (SL) and HA are reflective of hypoxia-induced insulin resistance. Native lowlanders (n = 8 males) consumed 145 g (1.8 g/min) of glucose while performing 80-min of metabolically matched treadmill exercise at SL (757 mmHg) and HA (460 mmHg) after 5-h exposure. Exogenous glucose oxidation and glucose turnover were determined using indirect calorimetry and dual tracer technique ([13C]glucose and [6,6-2H2]glucose). Metabolite profiles were analyzed in serum as change (Δ), calculated by subtracting postprandial/exercised state SL (ΔSL) and HA (ΔHA) from fasted, rested conditions at SL. Compared with SL, exogenous glucose oxidation, glucose rate of disappearance, and glucose metabolic clearance rate (MCR) were lower (P < 0.05) during exercise at HA. One hundred and eighteen metabolites differed between ΔSL and ΔHA (P < 0.05, Q < 0.10). Differences in metabolites indicated increased glycolysis, tricarboxylic acid cycle, amino acid catabolism, oxidative stress, and fatty acid storage, and decreased fatty acid mobilization for ΔHA. Branched-chain amino acids and oxidative stress metabolites, Δ3-methyl-2-oxobutyrate (r = -0.738) and Δγ-glutamylalanine (r = -0.810), were inversely associated (P < 0.05) with Δexogenous glucose oxidation. Δ3-Hydroxyisobutyrate (r = -0.762) and Δ2-hydroxybutyrate/2-hydroxyisobutyrate (r = -0.738) were inversely associated (P < 0.05) with glucose MCR. Coupling global metabolomics and glucose kinetic data suggest that the underlying cause for diminished exogenous glucose oxidative capacity during aerobic exercise is acute hypoxia-mediated peripheral insulin resistance.
Collapse
Affiliation(s)
- Lee M Margolis
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - J Philip Karl
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Marques A Wilson
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Julie L Coleman
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Arny A Ferrando
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Andrew J Young
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Stefan M Pasiakos
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
9
|
Griffiths A, Deighton K, Boos CJ, Rowe J, Morrison DJ, Preston T, King R, O'Hara JP. Carbohydrate Supplementation and the Influence of Breakfast on Fuel Use in Hypoxia. Med Sci Sports Exerc 2021; 53:785-795. [PMID: 33044437 DOI: 10.1249/mss.0000000000002536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE This study investigated the effect of carbohydrate supplementation on substrate oxidation during exercise in hypoxia after preexercise breakfast consumption and omission. METHODS Eleven men walked in normobaric hypoxia (FiO2 ~11.7%) for 90 min at 50% of hypoxic V˙O2max. Participants were supplemented with a carbohydrate beverage (1.2 g·min-1 glucose) and a placebo beverage (both enriched with U-13C6 D-glucose) after breakfast consumption and after omission. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate carbohydrate (exogenous and endogenous [muscle and liver]) and fat oxidation. RESULTS In the first 60 min of exercise, there was no significant change in relative substrate oxidation in the carbohydrate compared with placebo trial after breakfast consumption or omission (both P = 0.99). In the last 30 min of exercise, increased relative carbohydrate oxidation occurred in the carbohydrate compared with placebo trial after breakfast omission (44.0 ± 8.8 vs 28.0 ± 12.3, P < 0.01) but not consumption (51.7 ± 12.3 vs 44.2 ± 10.4, P = 0.38). In the same period, a reduction in relative liver (but not muscle) glucose oxidation was observed in the carbohydrate compared with placebo trials after breakfast consumption (liver, 7.7% ± 1.6% vs 14.8% ± 2.3%, P < 0.01; muscle, 25.4% ± 9.4% vs 29.4% ± 11.1%, P = 0.99) and omission (liver, 3.8% ± 0.8% vs 8.7% ± 2.8%, P < 0.01; muscle, 19.4% ± 7.5% vs 19.2% ± 12.2%, P = 0.99). No significant difference in relative exogenous carbohydrate oxidation was observed between breakfast consumption and omission trials (P = 0.14). CONCLUSION In acute normobaric hypoxia, carbohydrate supplementation increased relative carbohydrate oxidation during exercise (>60 min) after breakfast omission, but not consumption.
Collapse
Affiliation(s)
- Alex Griffiths
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - Kevin Deighton
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | | | - Joshua Rowe
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - Douglas J Morrison
- Stable Isotope Biochemistry Laboratory, SUERC, University of Glasgow. East Kilbride, Scotland, UNITED KINGDOM
| | - Tom Preston
- Stable Isotope Biochemistry Laboratory, SUERC, University of Glasgow. East Kilbride, Scotland, UNITED KINGDOM
| | - Roderick King
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - John P O'Hara
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| |
Collapse
|
10
|
Margolis LM, O’Hara JP, Griffiths A, Wolfe RW, Young AJ, Pasiakos SM. Isotope tracer assessment of exogenous glucose oxidation during aerobic exercise in hypoxia. Physiol Rep 2020; 8:e14594. [PMID: 32959522 PMCID: PMC7507501 DOI: 10.14814/phy2.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Lee M. Margolis
- U.S. Army Research Institute of Environmental MedicineNatickMAUSA
| | | | | | - Robert W. Wolfe
- Department of GeriatricsCenter for Translational Research in Aging and LongevityDonald W. Reynolds Institute on AgingUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Andrew J. Young
- U.S. Army Research Institute of Environmental MedicineNatickMAUSA
| | | |
Collapse
|
11
|
Pasiakos SM. Nutritional Requirements for Sustaining Health and Performance During Exposure to Extreme Environments. Annu Rev Nutr 2020; 40:221-245. [PMID: 32530730 DOI: 10.1146/annurev-nutr-011720-122637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary guidelines are formulated to meet minimum nutrient requirements, which prevent deficiencies and maintain health, growth, development, and function. These guidelines can be inadequate and contribute to disrupted homeostasis, lean body mass loss, and deteriorated performance in individuals who are working long, arduous hours with limited access to food in environmentally challenging locations. Environmental extremes can elicit physiological adjustments that alone alter nutrition requirements by upregulating energy expenditure, altering substrate metabolism, and accelerating body water and muscle protein loss. The mechanisms by which the environment, including high-altitude, heat, and cold exposure, alters nutrition requirements have been studied extensively. This contemporary review discusses physiological adjustments to environmental extremes, particularly when those adjustments alter dietary requirements.
Collapse
Affiliation(s)
- Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760, USA;
| |
Collapse
|
12
|
Margolis LM, Young AJ, Pasiakos SM. Re: "High Carbohydrate Ingestion in High Altitude" by Pesta et al. High Alt Med Biol 2020; 21:213-214. [PMID: 32239974 DOI: 10.1089/ham.2020.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA
| | - Andrew J Young
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA.,Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA
| |
Collapse
|
13
|
Griffiths A, Deighton K, Shannon OM, Boos C, Rowe J, Matu J, King R, O'Hara JP. Appetite and energy intake responses to breakfast consumption and carbohydrate supplementation in hypoxia. Appetite 2020; 147:104564. [PMID: 31870935 DOI: 10.1016/j.appet.2019.104564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE The purpose of experiment one was to determine the appetite, acylated ghrelin and energy intake response to breakfast consumption and omission in hypoxia and normoxia. Experiment two aimed to determine the appetite, acylated ghrelin and energy intake response to carbohydrate supplementation after both breakfast consumption and omission in hypoxia. METHODS In experiment one, twelve participants rested and exercised once after breakfast consumption and once after omission in normobaric hypoxia (4300 m: FiO2 ~11.7%) and normoxia. In experiment two, eleven participants rested and exercised in normobaric hypoxia (4300 m: FiO2 ~11.7%), twice after consuming a high carbohydrate breakfast and twice after breakfast omission. Participants consumed both a carbohydrate (1.2g·min-1 glucose) and a placebo beverage after breakfast consumption and omission. Measures of appetite perceptions and acylated ghrelin were taken at regular intervals throughout both experiments and an ad-libitum meal was provided post-exercise to quantify energy intake. RESULTS Breakfast consumption had no significant effect on post exercise energy intake or acylated ghrelin concentrations, despite reductions in appetite perceptions. As such, breakfast consumption increased total trial energy intake compared with breakfast omission in hypoxia (7136 ± 2047 kJ vs. 5412 ± 1652 kJ; p = 0.02) and normoxia (9276 ± 3058 vs. 6654 ± 2091 kJ; p < 0.01). Carbohydrate supplementation had no effect on appetite perceptions or acylated ghrelin concentrations after breakfast consumption or omission. As such, carbohydrate supplementation increased total energy intake after breakfast consumption (10222 ± 2831 kJ vs. 7695 ± 1970 kJ p < 0.01) and omission (8058 ± 2574 kJ vs. 6174 ± 2222 kJ p = 0.02). CONCLUSION Both breakfast consumption and carbohydrate supplementation provide beneficial dietary interventions for increasing energy intake in hypoxic conditions.
Collapse
Affiliation(s)
- Alex Griffiths
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Kevin Deighton
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Oliver M Shannon
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK; Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Leech Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| | - Chris Boos
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK; Department of Cardiology, Poole Hospital NHS Trust, Poole, BH15 2JB, UK.
| | - Joshua Rowe
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Jamie Matu
- School of Clinical and Applied Science, Leeds Beckett University, Leeds, LS1 3HE, UK.
| | - Roderick King
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - John P O'Hara
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| |
Collapse
|
14
|
Hattersley J, Wilson AJ, Thake CD, Facer-Childs J, Stoten O, Imray C. Metabolic rate and substrate utilisation resilience in men undertaking polar expeditionary travel. PLoS One 2019; 14:e0221176. [PMID: 31415661 PMCID: PMC6695185 DOI: 10.1371/journal.pone.0221176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/31/2019] [Indexed: 11/24/2022] Open
Abstract
The energy expenditure and substrate utilisation were measured in 5 men pre- and post- a 67 day, 1750km unassisted Antarctic traverse from the Hercules Inlet to the Ross Sea Ice via the South pole pulling sledges weighing 120kg whilst experiencing temperatures as low as -57°C. A 36-hours protocol in a whole body calorimeter was employed to measure periods of rest, sleep and three periods of standardised stepping exercises at 80, 100 and 120 steps min-1; participants were fed isocalorically. Unlike previous expeditions where large weight loss was reported, only a modest loss of body weight (7%, P = 0.03) was found; fat tissue was reduced by 53% (P = 0.03) together with a small, but not statistically significant, increase in lean tissue weight (P = 0.18). This loss occurred despite a high-energy intake (6500 kcal/day) designed to match energy expenditure. An energy balance analysis suggested the loss in body weight could be due to the energy requirements of thermoregulation. Differences in energy expenditure [4.9 (0.1) vs 4.5 (0.1) kcal/min. P = 0.03], carbohydrate utilisation [450 (180) vs 569 (195) g/day; P = 0.03] and lipid utilisation [450 (61) vs 388 (127) g/day, P = 0.03] at low levels of exertion were different from pre-expedition values. Only carbohydrate utilisation remained statistically significant when normalised to body weight. The differences in energy expenditure and substrate utilisation between the pre- and post-expedition for other physiological states (sleeping, resting, higher levels of exercise, etc) were small and not statistically significant. Whilst inter-subject variability was large, there was a tendency for increased carbohydrate utilisation, post-expedition, when fasted that decreased upon feeding.
Collapse
Affiliation(s)
- John Hattersley
- Coventry NIHR CRF Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- School of Engineering, University of Warwick, Coventry, United Kingdom
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
- * E-mail:
| | - Adrian J. Wilson
- Coventry NIHR CRF Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Department of Physics, University of Warwick, Coventry, United Kingdom
| | - C. Doug Thake
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Jamie Facer-Childs
- Institute of Child Health, University College London, London, United Kingdom
| | - Oliver Stoten
- Emergency Department, Royal Bournemouth Hospital, Bournemouth, Uinted Kingdom
| | - Chris Imray
- Coventry NIHR CRF Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
- Department of Vascular and Renal Transplant Surgery, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| |
Collapse
|
15
|
Young AJ, Margolis LM, Pasiakos SM. Commentary on the effects of hypoxia on energy substrate use during exercise. J Int Soc Sports Nutr 2019; 16:28. [PMID: 31299980 PMCID: PMC6624974 DOI: 10.1186/s12970-019-0295-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 11/23/2022] Open
Abstract
A recently published meta-analysis in this journal analyzed findings from studies comparing substrate use during exercise at the same relative intensity (i.e., % V̇O2max) in normoxic and hypoxic conditions. The primary conclusion was that hypoxia had no consistent effects on the contribution of carbohydrate oxidation to total energy expenditure. However, findings from studies comparing exercise at the same absolute intensity in normoxic as hypoxic conditions were not considered in the meta-analysis. Assessment of substrate oxidation using matched absolute intensity leads to different conclusions regarding hypoxic effects on fuel use during exercise, and that experimental model, (i.e., comparing responses to exercise at matched absolute intensity) has more practical application for developing nutritional recommendations for high-altitude sojourners. This commentary will discuss those differences.
Collapse
Affiliation(s)
- Andrew J Young
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg 42, Natick, MA, 01760, USA. .,Oak Ridge Institute for Science and Education, Belcamp, MD, 21017, USA.
| | - Lee M Margolis
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg 42, Natick, MA, 01760, USA
| | - Stefan M Pasiakos
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg 42, Natick, MA, 01760, USA
| |
Collapse
|
16
|
Griffiths A, Deighton K, Shannon OM, Matu J, King R, O'Hara JP. Substrate oxidation and the influence of breakfast in normobaric hypoxia and normoxia. Eur J Appl Physiol 2019; 119:1909-1920. [PMID: 31270614 PMCID: PMC6694084 DOI: 10.1007/s00421-019-04179-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/17/2019] [Indexed: 11/02/2022]
Abstract
PURPOSE Previous research has reported inconsistent effects of hypoxia on substrate oxidation, which may be due to differences in methodological design, such as pre-exercise nutritional status and exercise intensity. This study investigated the effect of breakfast consumption on substrate oxidation at varying exercise intensities in normobaric hypoxia compared with normoxia. METHODS Twelve participants rested and exercised once after breakfast consumption and once after omission in normobaric hypoxia (4300 m: FiO2 ~ 11.7%) and normoxia. Exercise consisted of walking for 20 min at 40%, 50% and 60% of altitude-specific [Formula: see text]O2max at 10-15% gradient with a 10 kg backpack. Indirect calorimetry was used to calculate carbohydrate and fat oxidation. RESULTS The relative contribution of carbohydrate oxidation to energy expenditure was significantly reduced in hypoxia compared with normoxia during exercise after breakfast omission at 40% (22.4 ± 17.5% vs. 38.5 ± 15.5%, p = 0.03) and 60% [Formula: see text]O2max (35.4 ± 12.4 vs. 50.1 ± 17.6%, p = 0.03), with a trend observed at 50% [Formula: see text]O2max (23.6 ± 17.9% vs. 38.1 ± 17.0%, p = 0.07). The relative contribution of carbohydrate oxidation to energy expenditure was not significantly different in hypoxia compared with normoxia during exercise after breakfast consumption at 40% (42.4 ± 15.7% vs. 48.5 ± 13.3%, p = 0.99), 50% (43.1 ± 11.7% vs. 47.1 ± 14.0%, p = 0.99) and 60% [Formula: see text]O2max (54.6 ± 17.8% vs. 55.1 ± 15.0%, p = 0.99). CONCLUSIONS Relative carbohydrate oxidation was significantly reduced in hypoxia compared with normoxia during exercise after breakfast omission but not during exercise after breakfast consumption. This response remained consistent with increasing exercise intensities. These findings may explain some of the disparity in the literature.
Collapse
Affiliation(s)
- Alex Griffiths
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Kevin Deighton
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Oliver M Shannon
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.,Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Leech Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jamie Matu
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Roderick King
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - John P O'Hara
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| |
Collapse
|
17
|
Hattersley J, Wilson AJ, Gifford RM, Cobb R, Thake CD, Reynolds RM, Woods DR, Imray CHE. Pre- to postexpedition changes in the energy usage of women undertaking sustained expeditionary polar travel. J Appl Physiol (1985) 2019; 126:681-690. [DOI: 10.1152/japplphysiol.00792.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This paper reports the metabolic energy changes in six women who made the first unsupported traverse of Antarctica, covering a distance of 1,700 km in 61 days, hauling sledges weighing up to 80 kg. Pre- and postexpedition, measurements of energy expenditure and substrate utilization were made on all six members of the expedition over a 36-h period in a whole body calorimeter. During the study, subjects were fed an isocaloric diet: 50% carbohydrate, 35% fat, and 15% protein. The experimental protocol contained pre- and postexpedition measurement, including periods of sleep, rest, and three periods of standardized stepping exercise at 80, 100, and 120 steps/min. A median (interquartile range) decrease in the lean and fat weight of the subjects of 1.4 (1.0) and 4.4 (1.8) kg, respectively (P < 0.05) was found, using air-displacement plethysmography. No statistically significant difference was found between pre- and postexpedition values for sleeping or resting metabolic rate, nor for diet-induced thermogenesis. A statistically significant difference was found in energy expenditure between the pre- and postexpedition values for exercise at 100 [4.7 (0.23) vs. 4.4 (0.29), P < 0.05] and 120 [5.7 (0.46) vs. 5.5 (0.43), P < 0.05] steps/min; a difference that disappeared when the metabolic rate values were normalized to body weight. The group was well matched for the measures studied. Whereas a physiological change in weight was seen, the lack of change in metabolic rate measures supports a view that women appropriately nourished and well prepared can undertake polar expeditions with a minimal metabolic energy consequence. NEW & NOTEWORTHY This is the first study on the metabolic energy consequences for women undertaking expeditionary polar travel. The results show that participant selection gave a “well-matched” group, particularly during exercise. Notwithstanding this, individual differences were observed and explored. The results show that appropriately selected, trained, and nourished women can undertake such expeditions with no change in their metabolic energy requirements during rest or while undertaking moderate exercise over a sustained period of time.
Collapse
Affiliation(s)
- John Hattersley
- Coventry National Institute for Health Research, Clinical Research Facility, Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire, National Health Service Trust, Coventry, United Kingdom
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Adrian J. Wilson
- Coventry National Institute for Health Research, Clinical Research Facility, Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire, National Health Service Trust, Coventry, United Kingdom
- Department of Physics, University of Warwick, Coventry, United Kingdom
| | - Robert M. Gifford
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, United Kingdom
| | - Rin Cobb
- Performance, Nutrition and Dietetic Consulting, Birmingham, United Kingdom
| | - C. Doug Thake
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Rebecca M. Reynolds
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David R. Woods
- Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, United Kingdom
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
- Northumbria and Newcastle National Health Service Trusts, Wansbeck General and Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Christopher H. E. Imray
- Coventry National Institute for Health Research, Clinical Research Facility, Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire, National Health Service Trust, Coventry, United Kingdom
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
- Department of Vascular and Renal Transplant Surgery, University Hospitals Coventry and Warwickshire, National Health Service Trust, Coventry, United Kingdom
| |
Collapse
|
18
|
Griffiths A, Shannon OM, Matu J, King R, Deighton K, O'Hara JP. The effects of environmental hypoxia on substrate utilisation during exercise: a meta-analysis. J Int Soc Sports Nutr 2019; 16:10. [PMID: 30813949 PMCID: PMC6391781 DOI: 10.1186/s12970-019-0277-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/13/2019] [Indexed: 02/08/2023] Open
Abstract
Background A better understanding of hypoxia-induced changes in substrate utilisation can facilitate the development of nutritional strategies for mountaineers, military personnel and athletes during exposure to altitude. However, reported metabolic responses are currently divergent. As such, this systematic review and meta-analysis aims to determine the changes in substrate utilisation during exercise in hypoxia compared with normoxia and identify study characteristics responsible for the heterogeneity in findings. Methods A total of six databases (PubMed, the Cochrane Library, MEDLINE, SPORTDiscus, PsychINFO, and CINAHL via EBSCOhost) were searched for published original studies, conference proceedings, abstracts, dissertations and theses. Studies were included if they evaluated respiratory exchange ratio (RER) and/or carbohydrate or fat oxidation during steady state exercise matched for relative intensities in normoxia and hypoxia (normobaric or hypobaric). A random-effects meta-analysis was performed on outcome variables. Meta-regression analysis was performed to investigate potential sources of heterogeneity. Results In total, 18 studies were included in the meta-analysis. There was no significant change in RER during exercise matched for relative exercise intensities in hypoxia, compared with normoxia (mean difference: 0.01, 95% CI: -0.02 to 0.05; n = 31, p = 0.45). Meta-regression analysis suggests that consumption of a pre-exercise meal (p < 0.01) and a higher exercise intensity (p = 0.04) when exposed to hypoxia may increase carbohydrate oxidation compared with normoxia. Conclusions Exposure to hypoxia did not induce a consistent change in the relative contribution of carbohydrate or fat to the total energy yield during exercise matched for relative intensities, compared with normoxia. The direction of these responses appears to be mediated by the consumption of a pre-exercise meal and exercise intensity. Electronic supplementary material The online version of this article (10.1186/s12970-019-0277-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alex Griffiths
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Oliver M Shannon
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.,Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Leech Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jamie Matu
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, 2nd floor Chapel Allerton Hospital, Chapeltown Road, Leeds, LS7 4SA, UK
| | - Roderick King
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Kevin Deighton
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - John P O'Hara
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| |
Collapse
|
19
|
HILL NEILE, DEIGHTON KEVIN, MATU JAMIE, MISRA SHIVANI, OLIVER NICKS, NEWMAN CARRIE, MELLOR ADRIAN, O’HARA JOHN, WOODS DAVID. Continuous Glucose Monitoring at High Altitude—Effects on Glucose Homeostasis. Med Sci Sports Exerc 2018; 50:1679-1686. [DOI: 10.1249/mss.0000000000001624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Young AJ, Berryman CE, Kenefick RW, Derosier AN, Margolis LM, Wilson MA, Carrigan CT, Murphy NE, Carbone JW, Rood JC, Pasiakos SM. Altitude Acclimatization Alleviates the Hypoxia-Induced Suppression of Exogenous Glucose Oxidation During Steady-State Aerobic Exercise. Front Physiol 2018; 9:830. [PMID: 30038576 PMCID: PMC6046468 DOI: 10.3389/fphys.2018.00830] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
This study investigated how high-altitude (HA, 4300 m) acclimatization affected exogenous glucose oxidation during aerobic exercise. Sea-level (SL) residents (n = 14 men) performed 80-min, metabolically matched exercise (V˙O2 ∼ 1.7 L/min) at SL and at HA < 5 h after arrival (acute HA, AHA) and following 22-d of HA acclimatization (chronic HA, CHA). During HA acclimatization, participants sustained a controlled negative energy balance (-40%) to simulate the “real world” conditions that lowlanders typically experience during HA sojourns. During exercise, participants consumed carbohydrate (CHO, n = 8, 65.25 g fructose + 79.75 g glucose, 1.8 g carbohydrate/min) or placebo (PLA, n = 6). Total carbohydrate oxidation was determined by indirect calorimetry and exogenous glucose oxidation by tracer technique with 13C. Participants lost (P ≤ 0.05, mean ± SD) 7.9 ± 1.9 kg body mass during the HA acclimatization and energy deficit period. In CHO, total exogenous glucose oxidized during the final 40 min of exercise was lower (P < 0.01) at AHA (7.4 ± 3.7 g) than SL (15.3 ± 2.2 g) and CHA (12.4 ± 2.3 g), but there were no differences between SL and CHA. Blood glucose and insulin increased (P ≤ 0.05) during the first 20 min of exercise in CHO, but not PLA. In CHO, glucose declined to pre-exercise concentrations as exercise continued at SL, but remained elevated (P ≤ 0.05) throughout exercise at AHA and CHA. Insulin increased during exercise in CHO, but the increase was greater (P ≤ 0.05) at AHA than at SL and CHA, which did not differ. Thus, while acute hypoxia suppressed exogenous glucose oxidation during steady-state aerobic exercise, that hypoxic suppression is alleviated following altitude acclimatization and concomitant negative energy balance.
Collapse
Affiliation(s)
- Andrew J Young
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States
| | - Claire E Berryman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States
| | - Robert W Kenefick
- Thermal Mountain and Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Allyson N Derosier
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States
| | - Marques A Wilson
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Christopher T Carrigan
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Nancy E Murphy
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - John W Carbone
- Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States.,School of Health Sciences, Eastern Michigan University, Ypsilanti, MI, United States
| | - Jennifer C Rood
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
21
|
O'Hara JP, Woods DR, Mellor A, Boos C, Gallagher L, Tsakirides C, Arjomandkhah NC, Holdsworth DA, Cooke CB, Morrison DJ, Preston T, King RF. A comparison of substrate oxidation during prolonged exercise in men at terrestrial altitude and normobaric normoxia following the coingestion of 13C glucose and 13C fructose. Physiol Rep 2017; 5:5/1/e13101. [PMID: 28082428 PMCID: PMC5256160 DOI: 10.14814/phy2.13101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 11/30/2016] [Accepted: 11/29/2016] [Indexed: 01/14/2023] Open
Abstract
This study compared the effects of coingesting glucose and fructose on exogenous and endogenous substrate oxidation during prolonged exercise at altitude and sea level, in men. Seven male British military personnel completed two bouts of cycling at the same relative workload (55% Wmax) for 120 min on acute exposure to altitude (3375 m) and at sea level (~113 m). In each trial, participants ingested 1.2 g·min−1 of glucose (enriched with 13C glucose) and 0.6 g·min−1 of fructose (enriched with 13C fructose) directly before and every 15 min during exercise. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate fat oxidation, total and exogenous carbohydrate oxidation, plasma glucose oxidation, and endogenous glucose oxidation derived from liver and muscle glycogen. Total carbohydrate oxidation during the exercise period was lower at altitude (157.7 ± 56.3 g) than sea level (286.5 ± 56.2 g, P = 0.006, ES = 2.28), whereas fat oxidation was higher at altitude (75.5 ± 26.8 g) than sea level (42.5 ± 21.3 g, P = 0.024, ES = 1.23). Peak exogenous carbohydrate oxidation was lower at altitude (1.13 ± 0.2 g·min−1) than sea level (1.42 ± 0.16 g·min−1, P = 0.034, ES = 1.33). There were no differences in rates, or absolute and relative contributions of plasma or liver glucose oxidation between conditions during the second hour of exercise. However, absolute and relative contributions of muscle glycogen during the second hour were lower at altitude (29.3 ± 28.9 g, 16.6 ± 15.2%) than sea level (78.7 ± 5.2 g (P = 0.008, ES = 1.71), 37.7 ± 13.0% (P = 0.016, ES = 1.45). Acute exposure to altitude reduces the reliance on muscle glycogen and increases fat oxidation during prolonged cycling in men compared with sea level.
Collapse
Affiliation(s)
- John P O'Hara
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - David R Woods
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom.,Royal Centre for Defence Medicine, Birmingham, United Kingdom.,Northumbria NHS Trust and Newcastle Trust, Newcastle, United Kingdom
| | - Adrian Mellor
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom.,Royal Centre for Defence Medicine, Birmingham, United Kingdom.,James Cook University Hospital, Middlesborough, United Kingdom
| | - Christopher Boos
- Department of Cardiology, Poole Hospital, Poole, Dorset, United Kingdom
| | - Liam Gallagher
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - Costas Tsakirides
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - Nicola C Arjomandkhah
- School of Social and Health Sciences, Leeds Trinity University, Leeds, United Kingdom
| | | | - Carlton B Cooke
- School of Social and Health Sciences, Leeds Trinity University, Leeds, United Kingdom
| | - Douglas J Morrison
- Scottish Universities Environmental Research Centre, Glasgow, United Kingdom
| | - Thomas Preston
- Scottish Universities Environmental Research Centre, Glasgow, United Kingdom
| | - Roderick Fgj King
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
22
|
Matu J, Deighton K, Ispoglou T, Shannon OM, Duckworth L. A high fat breakfast attenuates the suppression of appetite and acylated ghrelin during exercise at simulated altitude. Physiol Behav 2017; 179:353-360. [DOI: 10.1016/j.physbeh.2017.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
|