1
|
Damian-Buda AC, Matei DM, Ciobanu L, Damian-Buda DZ, Pop RM, Buzoianu AD, Bocsan IC. Nesfatin-1: A Novel Diagnostic and Prognostic Biomarker in Digestive Diseases. Biomedicines 2024; 12:1913. [PMID: 39200377 PMCID: PMC11352118 DOI: 10.3390/biomedicines12081913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Nesfatin-1, deriving from a precursor protein, NUCB2, is a newly discovered molecule with anti-apoptotic, anti-inflammatory, antioxidant, and anorexigenic effects. It was initially identified in the central nervous system (CNS) and received increasing interest due to its energy-regulating properties. However, research showed that nesfatin-1 is also expressed in peripheral tissues, including the digestive system. The aim of this review is to give a résumé of the present state of knowledge regarding its structure, immunolocalization, and potential implications in diseases with inflammatory components. The main objective was to focus on its clinical importance as a diagnostic biomarker and potential therapeutic molecule in a variety of disorders, among which digestive disorders were of particular interest. Previous studies have shown that nesfatin-1 regulates the balance between pro- and antioxidant agents, which makes nesfatin-1 a promising therapeutic agent. Further in-depth research regarding the underlying mechanisms of action is needed for a better understanding of its effects.
Collapse
Affiliation(s)
- Adriana-Cezara Damian-Buda
- Pharmacology, Toxicology and Clinical Pharmacology Laboratory, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Daniela Maria Matei
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Lidia Ciobanu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | | | - Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Ioana Corina Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| |
Collapse
|
2
|
Yu H, Liu Q, Xie M, Fan J, Luo J, Huang J, Chen L. Nesfatin-1 inhibits cerebral aneurysms by activating Nrf2 and inhibiting NF-κB signaling. CNS Neurosci Ther 2024; 30:e14864. [PMID: 39097921 PMCID: PMC11298201 DOI: 10.1111/cns.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
AIMS Cerebral aneurysm (CA) has been considered one of the most common cerebrovascular diseases, affecting millions of people worldwide. A therapeutic agent is currently missing for the treatment of CA. Nesfatin-1 (Nes-1) is an 82-amino acid adipokine which possesses a wide range of biological functions. However, the physiological function of Nes-1 in CA is still unknown. Here, we aimed to assess the preventive effects of Nes-1 in the pathological development of CA and elucidate the mechanisms behind this. METHODS We used an elastase-induced CA model, accompanied by a high-salt diet to induce hypertension. Additionally, diverse experimental techniques, including Verhoeff-Van Gieson staining, real time PCR, enzyme-linked immuno sorbent assay (ELISA), and immunofluorescence staining, were employed to assess CA formation, gene and protein expression, as well as the macrophage infiltration. RESULTS Our results indicate that administration of Nes-1 significantly decreased the aneurysm size. Additionally, Nes-1 prevented inflammatory response by inhibiting the expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein 1 (MCP-1) at both the mRNA and protein levels in the Circle of Willis (COW) region. Also, the increased levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in the COW region were reduced by Nes-1. We found that Nes-1 administration suppressed the invasion of macrophages. Mechanistically, Nes-1 activated Nrf-2 by promoting its nuclear translocation but prevented the activation of the IκBα/NF-κB signaling pathway. CONCLUSION These findings suggest that Nes-1 might be used as a promising agent for the prevention of CA.
Collapse
Affiliation(s)
- Huimin Yu
- Department of Neurology, The First Dongguan Affiliated HospitalGuangdong Medical UniversityDongguanChina
| | - Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
| | - Minghong Xie
- Department of Neurosurgery, The First Dongguan Affiliated HospitalGuangdong Medical UniversityDongguanChina
| | - Junquan Fan
- Department of Neurosurgery, The First Dongguan Affiliated HospitalGuangdong Medical UniversityDongguanChina
| | - Jiajia Luo
- Department of Neurosurgery, The First Dongguan Affiliated HospitalGuangdong Medical UniversityDongguanChina
| | - Junping Huang
- Department of NeurosurgeryMinzu Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Lei Chen
- Department of Neurosurgery, The First Dongguan Affiliated HospitalGuangdong Medical UniversityDongguanChina
| |
Collapse
|
3
|
Osiak-Wicha C, Kras K, Tomaszewska E, Muszyński S, Arciszewski MB. Examining the Potential Applicability of Orexigenic and Anorexigenic Peptides in Veterinary Medicine for the Management of Obesity in Companion Animals. Curr Issues Mol Biol 2024; 46:6725-6745. [PMID: 39057043 PMCID: PMC11275339 DOI: 10.3390/cimb46070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
This review article comprehensively explores the role of orexigenic and anorexigenic peptides in the management of obesity in companion animals, with a focus on clinical applications. Obesity in domestic animals, particularly dogs and cats, is prevalent, with significant implications for their health and well-being. Factors contributing to obesity include overfeeding, poor-quality diet, lack of physical activity, and genetic predispositions. Despite the seriousness of this condition, it is often underestimated, with societal perceptions sometimes reinforcing unhealthy behaviors. Understanding the regulation of food intake and identifying factors affecting the function of food intake-related proteins are crucial in combating obesity. Dysregulations in these proteins, whether due to genetic mutations, enzymatic dysfunctions, or receptor abnormalities, can have profound health consequences. Molecular biology techniques play a pivotal role in elucidating these mechanisms, offering insights into potential therapeutic interventions. The review categorizes food intake-related proteins into anorexigenic peptides (inhibitors of food intake) and orexigenic peptides (enhancers of food intake). It thoroughly examines current research on regulating energy balance in companion animals, emphasizing the clinical application of various peptides, including ghrelin, phoenixin (PNX), asprosin, glucagon-like peptide 1 (GLP-1), leptin, and nesfatin-1, in veterinary obesity management. This comprehensive review aims to provide valuable insights into the complex interplay between peptides, energy balance regulation, and obesity in companion animals. It underscores the importance of targeted interventions and highlights the potential of peptide-based therapies in improving the health outcomes of obese pets.
Collapse
Affiliation(s)
- Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Ewa Tomaszewska
- Department of Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| |
Collapse
|
4
|
Yoon JW, Baek SE, Yang JY, Yeom E. NUCB1 is required for proper insulin signaling to control longevity in Drosophila. Geriatr Gerontol Int 2024; 24:486-492. [PMID: 38509017 DOI: 10.1111/ggi.14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
AIM We examined the novel role of NUCB1(Nucleobindin-1) associated with longevity in Drosophila melanogaster. METHODS We measured the lifespan, metabolic phenotypes, and mRNA levels of Drosophila insulin-like peptides (Dilps), the protein level of phosphorylated AKT, and the localization of FOXO and its target gene expressions in the NUCB1 knockdown condition. RESULTS NUCB1 knockdown flies show an extended lifespan and metabolic phenotypes such as increased circulating glucose level and starvation resistance. The mRNA expression levels of Dilps and the protein level of phosphorylated AKT, a downstream component of insulin signaling, were decreased in NUCB1 knockdown flies compared with the control flies. Also, the nuclear localization of FOXO and its target gene expressions, such as d4E-BP and InR, were elevated. CONCLUSIONS The results show that NUCB1 knockdown flies exhibits an extended lifespan. These findings suggest that NUCB1 modulates longevity through insulin signaling in Drosophila. Geriatr Gerontol Int 2024; 24: 486-492.
Collapse
Affiliation(s)
- Jong-Won Yoon
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Si-Eun Baek
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Jae-Yoon Yang
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Eunbyul Yeom
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| |
Collapse
|
5
|
Patil JD, Fredericks S. The role of adipokines in osteoporosis management: a mini review. Front Endocrinol (Lausanne) 2024; 15:1336543. [PMID: 38516409 PMCID: PMC10956128 DOI: 10.3389/fendo.2024.1336543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
The prevalence of osteoporosis has been on the rise globally. With ageing populations, research has sought therapeutic solutions in novel areas. One such area is that of the adipokines. Current literature points to an important role for these chemical mediators in relation to bone metabolism. Well-established adipokines have been broadly reported upon. These include adiponectin and leptin. However, other novel adipokines such as visfatin, nesfatin-1, meteorin-like protein (Metrnl), apelin and lipocalin-2 are starting to be addressed pre-clinically and clinically. Adipokines hold pro-inflammatory and anti-inflammatory properties that influence the pathophysiology of various bone diseases. Omentin-1 and vaspin, two novel adipokines, share cardioprotective effects and play essential roles in bone metabolism. Studies have reported bone-protective effects of omentin-1, whilst others report negative associations between omentin-1 and bone mineral density. Lipocalin-2 is linked to poor bone microarchitecture in mice and is even suggested to mediate osteoporosis development from prolonged disuse. Nesfatin-1, an anorexigenic adipokine, has been known to preserve bone density. Animal studies have demonstrated that nesfatin-1 treatment limits bone loss and increases bone strength, suggesting exogenous use as a potential treatment for osteopenic disorders. Pre-clinical studies have shown adipokine apelin to have a role in bone metabolism, mediated by the enhancement of osteoblast genesis and the inhibition of programmed cell death. Although many investigations have reported conflicting findings, sufficient literature supports the notion that adipokines have a significant influence on the metabolism of bone. This review aims at highlighting the role of novel adipokines in osteoporosis while also discussing their potential for treating osteoporosis.
Collapse
Affiliation(s)
| | - Salim Fredericks
- The Royal College of Surgeons in Ireland – Medical University of Bahrain, Al Sayh, Bahrain
| |
Collapse
|
6
|
Yang X, Jin Z, Wang X, Wu J, Yu W, Yao S, Zhang L, Gan C. Nesfatin-1 alleviates hyperoxia-induced lung injury in newborn mice by inhibiting oxidative stress through regulating SIRT1/PGC-1α pathway. Cytokine 2023; 169:156239. [PMID: 37301191 DOI: 10.1016/j.cyto.2023.156239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a pulmonary disease commonly observed in premature infants and it is reported that oxidative stress is a critical induction factor in BPD and is considered as a promising target for treating BPD. Nesfatin-1 is a brain-gut peptide with inhibitory effects on food intake, which is recently evidenced to show suppressive effect on oxidative stress. The present study aims to explore the therapeutic effect and mechanism of Nesfatin-1 in BPD mice. AECIIs were extracted from newborn rats and exposed to hyperoxia for 24 h, followed by treatment with 5 and 10 nM Nesfatin-1. Declined cell viability, increased apoptotic rate, upregulated Bax, downregulated Bcl-2, increased release of ROS and MDA, and suppressed SOD activity were observed in hyperoxia-treated AECIIs, which were extremely reversed by Nesfatin-1. Newborn rats were exposed to hyperoxia, followed by treated with 10 μg/kg Nesfatin-1 and 20 μg/kg Nesfatin-1. Severe pathological changes, elevated MDA level, and declined SOD activity were observed in lung tissues of BPD mice, which were rescued by Nesfatin-1. Furthermore, the protective effect of Nesfatin-1 on hyperoxia-challenged AECIIs was abolished by silencing SIRT1. Collectively, Nesfatin-1 alleviated hyperoxia-induced lung injury in newborn mice by inhibiting oxidative stress through regulating SIRT1/PGC-1α pathway.
Collapse
Affiliation(s)
- Xiaoting Yang
- School of Medicine, Quzhou College of Technology, Jiang Yuan Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Zhan Jin
- School of Medicine, Quzhou College of Technology, Jiang Yuan Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Xi Wang
- Department of Urology, Quzhou People's Hospital, Min Jiang Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Junmei Wu
- Department of Burns Surgery, Quzhou Hospital of Zhejiang Medical Health Group, Wen Chang Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Wenfu Yu
- School of Medicine, Quzhou College of Technology, Jiang Yuan Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Shuihong Yao
- School of Medicine, Quzhou College of Technology, Jiang Yuan Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Lixin Zhang
- School of Medicine, Quzhou College of Technology, Jiang Yuan Road, Ke Chen District, Quzhou, Zhejiang 324000, China
| | - Chunchun Gan
- School of Medicine, Quzhou College of Technology, Jiang Yuan Road, Ke Chen District, Quzhou, Zhejiang 324000, China.
| |
Collapse
|
7
|
Vignesh R, Aradhyam GK. Calnuc-derived nesfatin-1-like peptide is an activator of tumor cell proliferation and migration. FEBS Lett 2023; 597:2288-2300. [PMID: 37539786 DOI: 10.1002/1873-3468.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
Calnuc (nucleobindin-1, nucb1) is a Ca2+ -binding protein involved in the etiology of many human diseases. To understand the functions of calnuc, we have identified a nesfatin-1-like peptide (NLP) in its N terminus that is proteolyzed by a convertase enzyme in the secretory granules of cells. Mutational studies confirm the presence of a proteolytic cleavage site for proprotein convertase subtilisin/kexin type 1 (PCSK1). We demonstrate that NLP regulates Gαq-mediated intracellular Ca2+ dynamics, likely via a G-protein-coupled receptor. NLP treatment to carcinoma cell lines (SCC131 cells) promotes the expression of regulators of cell cycle, proliferation, and clonogenicity by the AKT/mTOR pathway. NLP is causative of augmented migration and epithelial-mesenchymal transition (EMT), illustrating its metastatic propensity and establishing its tumor promotion ability.
Collapse
Affiliation(s)
- Ravichandran Vignesh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Caroleo M, Carbone EA, Arcidiacono B, Greco M, Primerano A, Mirabelli M, Fazia G, Rania M, Hribal ML, Gallelli L, Foti DP, De Fazio P, Segura-Garcia C, Brunetti A. Does NUCB2/Nesfatin-1 Influence Eating Behaviors in Obese Patients with Binge Eating Disorder? Toward a Neurobiological Pathway. Nutrients 2023; 15:nu15020348. [PMID: 36678225 PMCID: PMC9864089 DOI: 10.3390/nu15020348] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Nesfatin-1 is a new anorexigenic neuropeptide involved in the regulation of hunger/satiety, eating, and affective disorders. We aimed to investigate nesfatin-1 secretion in vitro, in murine adipose cells, and in human adipose fat samples, as well as to assess the link between circulating nesfatin-1 levels, NUCB2 and Fat Mass and Obesity Gene (FTO) polymorphisms, BMI, Eating Disorders (EDs), and pathological behaviors. Nesfatin-1 secretion was evaluated both in normoxic fully differentiated 3T3-L1 mouse adipocytes and after incubation under hypoxic conditions for 24 h. Omental Visceral Adipose tissue (VAT) specimens of 11 obese subjects, and nesfatin-1 serum levels' evaluation, eating behaviors, NUCB2 rs757081, and FTO rs9939609 polymorphisms of 71 outpatients seeking treatment for EDs with different Body Mass Index (BMI) were studied. Significantly higher levels of nesfatin-1 were detected in hypoxic 3T3-L1 cultured adipocytes compared to normoxic ones. Nesfatin-1 was highly detectable in the VAT of obese compared to normal-weight subjects. Nesfatin-1 serum levels did not vary according to BMI, sex, and EDs diagnosis, but correlations with grazing; emotional, sweet, and binge eating; hyperphagia; social eating; childhood obesity were evident. Obese subjects with CG genotype NUCB2 rs757081 and AT genotype FTO rs9939609 polymorphisms had higher nesfatin-1 levels. It could represent a new biomarker of EDs comorbidity among obese patients.
Collapse
Affiliation(s)
- Mariarita Caroleo
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Elvira Anna Carbone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Greco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | | | - Maria Mirabelli
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Gilda Fazia
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Marianna Rania
- University Hospital Mater Domini of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela Patrizia Foti
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Pasquale De Fazio
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Segura-Garcia
- University Hospital Mater Domini of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-096-171-2408; Fax: +39-096-171-2393
| | - Antonio Brunetti
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
9
|
Lenda R, Padjasek M, Krężel A, Ożyhar A, Bystranowska D. Does one plus one always equal two? Structural differences between nesfatin-1, -2, and nesfatin-1/2. Cell Commun Signal 2022; 20:163. [PMID: 36280843 PMCID: PMC9590162 DOI: 10.1186/s12964-022-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
Nesfatin-1 and -2 are produced from a reaction in which the N-terminus of human Nucleobindin-2 undergoes proteolytical processing. To date, Nucleobindin-2 and/or nesfatin-1 have only been shown to act as peptide hormones. On the other hand, the purpose of nesfatin-2 remains unknown. Since Nucleobindin-2/nesfatin-1 is thought impact the control of a wide range of physiological processes, including energy homeostasis, neurodegenerative processes and carcinogenesis, its ligands/interactions deserve special studies and attention. However, there are no reports about the molecular properties of the proteolytical products of human Nucleobindin-2 in the literature. Hence, this study aimed to analyze the effect of Zn(II) and Ca(II) on human nesfatin-1, -2, and -1/2 structures. Herein, we report that human nesfatin-1 is a member of the intrinsically disordered protein family, as indicated by circular dichroism and analytical ultracentrifugation experiments. In contrast, we found that the human nesfatin-2 and nesfatin-1/2 structures were globular with intrinsically disordered regions. Under Zn(II) treatment, we observed concentration-dependent structurization and compaction of intrinsically disordered nesfatin-1 and its propensity for oligomerization, as well as destabilization of both nesfatin-2 and nesfatin-1/2. Furthermore, dissociation constants for Zn(II) binding by nesfatin-1, nesfatin-2, and nesfatin-1/2 were also reported. Moreover, structurally distinct nesfatin-1 and -2 seem to be interdependent when linked together, as indicated by the observed molecular properties of nesfatin-1/2, which in turn are not a simple sum of the properties exhibited by the former peptides. Thus, herein, we shed new light on the molecular behavior of human nesfatins, which might help to elucidate the complex function of those peptides. Video abstract.
Collapse
Affiliation(s)
- Rafał Lenda
- grid.7005.20000 0000 9805 3178Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Michał Padjasek
- grid.8505.80000 0001 1010 5103Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- grid.8505.80000 0001 1010 5103Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Andrzej Ożyhar
- grid.7005.20000 0000 9805 3178Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- grid.7005.20000 0000 9805 3178Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
10
|
Demirci Ş, Gün C. Zinc Supplementation Improved Neuropeptide Y, Nesfatin-1, Leptin, C-reactive protein, and HOMA-IR of Diet-Induced Obese Rats. Biol Trace Elem Res 2022; 200:3996-4006. [PMID: 34708332 DOI: 10.1007/s12011-021-02987-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022]
Abstract
Obesity is a mild chronic inflammation that causes many metabolic diseases. It was aimed to investigate some parameters affective on the energy metabolism by adding zinc (Zn, ZnSO4) to drinking water of diet-induced obese rats. Five-week aged, male Sprague Dawley rats divided into as control group, consuming standard rat diet, and high-fat diet (HFD) group. After obesity induced by feeding HFD for 8 weeks, the obese rats were divided into Zn-supplemented obese group (HFD + obese + Zn; 150 mg Zn/L (for 6 weeks), 235 mg Zn/L (7th week), 250 mg Zn/L (8th week) in drinking water) and obese group (HFD + obese). Mean body weight, serum concentrations of C-reactive protein, neuropeptide-Y, leptin, insulin fasting blood glucose, and HOMA-IR were statistically decreased by given Zn in HFD + obese + Zn group compared to HFD + obese rats. It was observed that the total cholesterol, LDL, and HDL cholesterol levels of HFD + obese + Zn group became closer to the control group level, and Zn supplementation caused a statistically significant decrease in cholesterol profile than HFD + obese rats. Also, increased mean serum nesfatin-1 level, an effective protein for the formation of satiety, was analyzed in HFD + obese + Zn group when compared to HFD + obese ones. Serum triglyceride concentration tended to decrease with the effect of Zn in obese rats. In conclusion, it can be said that oral use of Zn could improve energy balance and prevent the occurrence of metabolic diseases related to obesity depending on the anti-inflammatory effect of Zn.
Collapse
Affiliation(s)
- Şule Demirci
- Physiology Department, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Campus, Burdur, Turkey.
| | | |
Collapse
|
11
|
Tuzimski T, Szubartowski M. Application of solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) and comparison of both detection techniques (DAD and FLD) to analyse nesfatin-1 in fetal bovine serum samples. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
In this study, we propose a simple, cost-effective, and sensitive high-performance liquid chromatography with both detection techniques such as diode-array detection and fluorescence detection (HPLC-DAD-FLD) for the determination of nesfatin-1 in fetal bovine serum samples. The limit of detection (LOD) and limit of quantification (LOQ) for nesfatin-1 were set at satisfactory values in the range 0.22–0.35 mg mL−1 and in the range 0.67–1.05 mg mL−1, respectively (at two different wavelengths (DAD) and at four different wavelengths (FLD)). Analyte concentrations were determined as the average value from fetal bovine serum matrix samples. The preliminary results show that the SPE procedure on Isolute Si-TsOH (SCX-3) could be used for further nesfatin-1 analyses in human serum samples. Both the SPE technique, chromatographic analysis with gradient elution mode and detection technique are fast and convenient.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Michał Szubartowski
- Student Research Group at the Department of Physical Chemistry, Chair of Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| |
Collapse
|
12
|
Piwowarczyk-Nowak A, Pałasz A, Suszka-Świtek A, Della Vecchia A, Grajoszek A, Krzystanek M, Worthington JJ. Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling. Pharmacol Rep 2022; 74:637-653. [PMID: 35653031 DOI: 10.1007/s43440-022-00374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular relationships between the anxiolytic activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of novel stress-related neuropeptides action. The present work therefore focused on gene expression of novel stress neuropeptides in the rat brain after acute treatment with escitalopram and in combination with neuropeptide S receptor (NPSR) blockade. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental rats treated with escitalopram (at single dose 10 mg/kg daily), escitalopram and SHA-68, a selective NPSR antagonist (at a single dose of 40 mg/kg), SHA-68 alone and corresponding vehicle (solvent SHA-68) control. To measure anxiety-like behavior and locomotor activity the open field test was performed. All individuals were killed under anaesthesia and the whole brain was excised. Total mRNA was isolated from homogenized samples of the amygdala, hippocampus, hypothalamus, thalamus, cerebellum, and brainstem. Real-time PCR was used for estimation of related NPS, NPSR, neuromedin U (NMU), NMU receptor 2 (NMUR2) and nesfatin-1 precursor nucleobindin-2 (NUCB2) gene expression. RESULTS Acute escitalopram administration affects the local expression of the examined neuropeptides mRNA in a varied manner depending on brain location. An increase in NPSR and NUCB2 mRNA expression in the hypothalamus and brainstem was abolished by SHA-68 coadministration, while NMU mRNA expression was upregulated after NPSR blockade in the hippocampus and cerebellum. CONCLUSIONS The pharmacological effects of escitalopram may be connected with local NPSR-related alterations in NPS/NMU/NMUR2 and nesfatin-1 gene expression at the level of selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.
Collapse
Affiliation(s)
- Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Alessandra Della Vecchia
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, 67, Via Roma, 56100, Pisa, Italy
| | - Aniela Grajoszek
- Department for Experimental Medicine, Medical University of Silesia, ul. Medyków 4, 40-752, Katowice, Poland
| | - Marek Krzystanek
- Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences in Katowice, Clinic of Psychiatric Rehabilitation, Medical University of Silesia, ul. Ziolowa 45/47, 40-635, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
13
|
Chen X, Dong J, Jiao Q, Du X, Bi M, Jiang H. "Sibling" battle or harmony: crosstalk between nesfatin-1 and ghrelin. Cell Mol Life Sci 2022; 79:169. [PMID: 35239020 PMCID: PMC11072372 DOI: 10.1007/s00018-022-04193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Ghrelin was first identified as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) in 1999, with the function of stimulating the release of growth hormone (GH), while nesfatin-1 was identified in 2006. Both peptides are secreted by the same kind of endocrine cells, X/A-like cells in the stomach. Compared with ghrelin, nesfatin-1 exerts opposite effects on energy metabolism, glucose metabolism, gastrointestinal functions and regulation of blood pressure, but exerts similar effects on anti-inflammation and neuroprotection. Up to now, nesfatin-1 remains as an orphan ligand because its receptor has not been identified. Several studies have shown the effects of nesfatin-1 are dependent on the receptor of ghrelin. We herein compare the effects of nesfatin-1 and ghrelin in several aspects and explore the possibility of their interactions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Jing Dong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
14
|
The Effect of Curcumin Supplementation on Anthropometric Measures among Overweight or Obese Adults. Nutrients 2021; 13:nu13020680. [PMID: 33672680 PMCID: PMC7924377 DOI: 10.3390/nu13020680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past decades, the worldwide prevalence of obesity has dramatically increased, thus posing a serious public health threat. Obesity is associated with the development of comorbid conditions and psychological disorders. Several lifestyle interventions have been proposed to tackle obesity; however, long-term maintenance of these interventions often proves challenging. In addition, among the different types of diets there is still a debate about the optimal macronutrient composition that will achieve the best results in weight loss. Recently, several commonly used spices such as pepper, ginger, and curcumin have been shown to play a beneficial role in obesity management. Therefore, exploring the effects of certain herbs or dietary spices on obesity may be promising. Among these spices, curcumin, which is the primary component of the spice turmeric, has gained great interest for its multiple health benefits. Several randomized controlled trials have investigated the potential favorable effects of curcumin supplementation on anthropometric measures. The aim of this review is to evaluate the effect of curcumin supplementation on the anthropometric indices among overweight or obese adults.
Collapse
|
15
|
Kim SG, Lee JS. Multiscale pore contained carbon nanofiber-based field-effect transistor biosensors for nesfatin-1 detection. J Mater Chem B 2021; 9:6076-6083. [PMID: 34286811 DOI: 10.1039/d1tb00582k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nesfatin-1 (NES1) is a potential biomarker found in serum and saliva that indicates hyperpolarization and depolarization in the hypothalamic ventricle nucleus as well as an increase in epileptic conditions. However, real-time investigations have not been carried out to detect changes in the concentration of NES1. In this study, we develop a multiscale pore contained carbon nanofiber-based field-effect transistor (FET) biosensor to detect NES1. The activated multiscale pore contained carbon nanofiber (a-MPCNF) is generated using a single-nozzle co-electrospinning method and a subsequent steam-activation process to obtain a signal transducer and template for immobilization of bioreceptors. The prepared biosensor exhibits a high sensitivity to NES1. It can detect levels as low as 0.1 fM of NES1, even in the presence of other interfering biomolecules. Furthermore, the a-MPCNF-based FET sensor has significant potential for practical applications in non-invasive real-time diagnosis, as indicated by its sensing performance in artificial saliva.
Collapse
Affiliation(s)
- Sung Gun Kim
- Samsung Electronics, San #16 Banwol-Dong, Hwasung, Gyeonggi-Do18448, South Korea
| | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
16
|
Rupp SK, Wölk E, Stengel A. Nesfatin-1 Receptor: Distribution, Signaling and Increasing Evidence for a G Protein-Coupled Receptor - A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:740174. [PMID: 34566899 PMCID: PMC8461182 DOI: 10.3389/fendo.2021.740174] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Nesfatin-1 is an 82-amino acid polypeptide, cleaved from the 396-amino acid precursor protein nucleobindin-2 (NUCB2) and discovered in 2006 in the rat hypothalamus. In contrast to the growing body of evidence for the pleiotropic effects of the peptide, the receptor mediating these effects and the exact signaling cascades remain still unknown. METHODS This systematic review was conducted using a search in the Embase, PubMed, and Web of Science databases. The keywords "nesfatin-1" combined with "receptor", "signaling", "distribution", "pathway", g- protein coupled receptor", and "binding" were used to identify all relevant articles reporting about potential nesfatin-1 signaling and the assumed mediation via a Gi protein-coupled receptor. RESULTS Finally, 1,147 articles were found, of which 1,077 were excluded in several steps of screening, 70 articles were included in this systematic review. Inclusion criteria were studies investigating nesfatin-1's putative receptor or signaling cascade, observational preclinical and clinical studies, experimental studies, registry-based studies, cohort studies, population-based studies, and studies in English language. After screening for eligibility, the studies were assigned to the following subtopics and discussed regarding intracellular signaling of nesfatin-1 including the potential receptor mediating these effects and downstream signaling of the peptide. CONCLUSION The present review sheds light on the various effects of nesfatin-1 by influencing several intracellular signaling pathways and downstream cascades, including the peptide's influence on various hormones and their receptors. These data point towards mediation via a Gi protein-coupled receptor. Nonetheless, the identification of the nesfatin-1 receptor will enable us to better investigate the exact mediating mechanisms underlying the different effects of the peptide along with the development of agonists and antagonists.
Collapse
Affiliation(s)
- Sophia Kristina Rupp
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Ellen Wölk
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Andreas Stengel,
| |
Collapse
|
17
|
Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front Physiol 2020; 11:578966. [PMID: 33192583 PMCID: PMC7662468 DOI: 10.3389/fphys.2020.578966] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Besides its role as an energy storage organ, adipose tissue can be viewed as a dynamic and complex endocrine organ, which produces and secretes several adipokines, including hormones, cytokines, extracellular matrix (ECM) proteins, and growth and vasoactive factors. A wide body of evidence showed that adipokines play a critical role in various biological and physiological functions, among which feeding modulation, inflammatory and immune function, glucose and lipid metabolism, and blood pressure control. The aim of this review is to summarize the effects of several adipokines, including leptin, diponectin, resistin, chemerin, lipocalin-2 (LCN2), vaspin, omentin, follistatin-like 1 (FSTL1), secreted protein acidic and rich in cysteine (SPARC), secreted frizzled-related protein 5 (SFRP5), C1q/TNF-related proteins (CTRPs), family with sequence similarity to 19 member A5 (FAM19A5), wingless-type inducible signaling pathway protein-1 (WISP1), progranulin (PGRN), nesfatin-1 (nesfatin), visfatin/PBEF/NAMPT, apelin, retinol binding protein 4 (RPB4), and plasminogen activator inhibitor-1 (PAI-1) in the regulation of insulin resistance and vascular function, as well as many aspects of inflammation and immunity and their potential role in managing obesity-associated diseases, including metabolic, osteoarticular, and cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Brunetti
- Department of Pharmacy, Gabriele d’Annunzio University, Chieti, Italy
| | | |
Collapse
|
18
|
Jafari-Maskouni S, Shahraki M, Daneshi-Maskooni M, Dashipour A, Shamsi-Goushki A, Mortazavi Z. Metabolic and clinical responses to Bunium Persicum (black caraway) supplementation in overweight and obese patients with type 2 diabetes: a double-blind, randomized placebo-controlled clinical trial. Nutr Metab (Lond) 2020; 17:74. [PMID: 32863846 PMCID: PMC7449003 DOI: 10.1186/s12986-020-00494-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Diabetes mellitus is the most common metabolic disorder worldwide. We aimed to determine the metabolic and clinical responses to Bunium Persicum (Black Caraway) supplementation in overweight and obese patients with T2DM. Methods Participant recruitment took place in the diabetic clinic of Bu-Ali hospital in Zahedan. Due to the eligibility criteria, 60 participants were randomly placed into two groups, namely placebo (n = 30) and BP (n = 30). The supplementation was considered one 1000 mg capsule 2 times /day BP by meals (lunch and dinner) for 8 weeks. Physical activity levels, dietary intakes, anthropometric measurements [weight, height, and waist circumference], glycemic indices [fasting blood glucose (FBG) and insulin (FBI)], blood lipids [triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c)], and serum nesfatin-1 level were determined. Homeostasis model assessment-insulin resistance (HOMA-IR), Quantitative insulin sensitivity checks index (QUICKI), and Body Mass Index (BMI) were computed. Results In comparison with placebo, BP significantly decreased FBG, HOMA-IR, and BMI (P < 0.05). The differences in the FBI, QUICKI, TG, TC, LDL, HDL, WC, and Nesfatin-1 were not significant (P > 0.05). Conclusion BP supplementation improved serum glucose indices and BMI among overweight and obese T2DM patients. Further trials are needed to confirm results. Trial registration Iranian Registry of Clinical Trials (IRCT), IRCT20181207041876N1, Registered 18/01/2019, https://irct.ir/trial/35752
Collapse
Affiliation(s)
- Saber Jafari-Maskouni
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansour Shahraki
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Daneshi-Maskooni
- Department of Nutrition, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Alireza Dashipour
- Department of Food Science and Nutrition, Cellular and Molecular Research Center, Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Shamsi-Goushki
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zinat Mortazavi
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
19
|
Schenk M, Reichmann R, Koelman L, Pfeiffer AFH, Rudovich NN, Aleksandrova K. Intra-individual reproducibility of galectin-1, haptoglobin, and nesfatin-1 as promising new biomarkers of immunometabolism. Metabol Open 2020; 6:100034. [PMID: 32812932 PMCID: PMC7424788 DOI: 10.1016/j.metop.2020.100034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 11/16/2022] Open
Abstract
Background Galectin-1, haptoglobin, and nesfatin-1 have recently emerged as promising biomarkers implicated in immunometabolism. However, whether single blood measurements of these analytes could be suitable for large-scale human studies has not yet been evaluated. Methods The concentrations of galectin-1, haptoglobin, and nesfatin-1 were measured over a 4-month period in 207 healthy adults with median age of 56.7 years. Biomarker intra-individual reproducibility was assessed based on calculation of intraclass correlation coefficients (ICCs) and examining Bland-Altman plots. Results The overall ICCs were excellent for nesfatin-1 (ICC: 0.89 (95% CI: 0.86, 0.92), and good for galectin-1 and haptoglobin (ICCs: 0.70 (95% CI: 0.61, 0.77) and 0.67 (95% CI: 0.57, 0.74), respectively). Bland-Altman plots supported a high level of agreement between repeated biomarker measurements. Conclusions Assay measurements of galectin-1, haptoglobin, and nesfatin-1 showed good to excellent within-subject reproducibility over a 4-month period, indicating that they may serve as feasible and reliable biomarkers for assessing metabolic inflammation in population research.
Collapse
Affiliation(s)
- Matthew Schenk
- Senior Scientist Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Robin Reichmann
- Senior Scientist Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| | - Liselot Koelman
- Senior Scientist Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| | - Andreas F H Pfeiffer
- German Centre for Diabetes Research, Germany.,Research Group Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| | - Natalia N Rudovich
- German Centre for Diabetes Research, Germany.,Division of Endocrinology and Diabetes, Department of Internal Medicine, Spital Bülach, Bülach, Switzerland
| | - Krasimira Aleksandrova
- Senior Scientist Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| |
Collapse
|
20
|
Ranjan A, Choubey M, Yada T, Krishna A. Nesfatin-1 ameliorates type-2 diabetes-associated reproductive dysfunction in male mice. J Endocrinol Invest 2020; 43:515-528. [PMID: 31691259 DOI: 10.1007/s40618-019-01136-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE The present study was aimed to demonstrate the recuperative effect of nesfatin-1 on testicular dysfunction in the high-fat diet (HFD)/streptozotocin (STZ)-induced type-2 diabetes mellitus (T2DM) mice. METHOD AND RESULTS Three experimental groups were formed: (1) vehicle control (VC), (2) T2DM mice, (3) T2DM + nesf-1. The mice with blood glucose level higher than 300 mg/dL following HFD and a single dose of STZ were used for the experiment. The T2DM mice showed increases in body mass, blood glucose and insulin levels, reductions in spermatogenesis and steroidogenesis, production of antioxidative enzymes, and disturbed lipid profile. These alterations were all ameliorated by administration of nesfatin-1 at 20 μg/Kg BW for 15 days. Nesfatin-1 treatment also increased the production of testosterone (T), improved insulin sensitivity, and effectively ameliorated the testicular aberrations, and increased spermatogenesis and steroidogenesis. In addition, nesfatin-1 treatment upregulated the PCNA and Bcl2 expression and inhibited the caspase-3 and prohibitin expression in T2DM mice. Nesfatin-1 increased insulin receptor (IR) and GLUT8 expressions, and lactate production, the changes that further substantiate the increase of energy influx to the testis. CONCLUSION Altogether, the results suggest the ameliorative effect of nesfatin-1 against T2DM-associated testicular dysfunctions and improved insulin sensitivity along with promoting T production and fertility in T2DM mice.
Collapse
Affiliation(s)
- A Ranjan
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - M Choubey
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - T Yada
- Division of Integrative Physiology, Kansai Electric Power Medical Research Institute, Kobe, 650-0047, Japan
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - A Krishna
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
21
|
Ranjan A, Choubey M, Yada T, Krishna A. Immunohistochemical localization and possible functions of nesfatin-1 in the testis of mice during pubertal development and sexual maturation. J Mol Histol 2019; 50:533-549. [DOI: 10.1007/s10735-019-09846-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022]
|
22
|
Yang Y, Zhang B, Nakata M, Nakae J, Mori M, Yada T. Islet β-cell-produced NUCB2/nesfatin-1 maintains insulin secretion and glycemia along with suppressing UCP-2 in β-cells. J Physiol Sci 2019; 69:733-739. [PMID: 31228099 PMCID: PMC10717817 DOI: 10.1007/s12576-019-00689-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/11/2019] [Indexed: 01/29/2023]
Abstract
Nesfatin-1 is a hypothalamic anorexigenic peptide processed from nucleobindin 2 (NUCB2). Central and peripheral administration of NUCB2/nesfatin-1 enhances glucose metabolism and insulin release. NUCB2/nesfatin-1 is also localized in pancreatic islets, while its function remains unknown. To explore the role of pancreatic β-cell-produced NUCB2/nesfatin-1, we developed pancreatic β-cell-specific NUCB2 knockout (βNUCB2 KO) mice and NUCB2 gene knockdown (shNUCB2) MIN6 β-cell line. In βNUCB2 KO mice, casual blood glucose was elevated from 12 weeks of age. In a glucose tolerance test at 12 weeks, insulin secretion at 15 min was reduced and blood glucose at 2 h increased in βNUCB2 KO mice fasted 8 h. In islets isolated from βNUCB2 KO mice, high glucose-stimulated insulin secretion (GSIS) was impaired. In shNUCB2 MIN6 cells, GSIS was reduced and UCP-2 mRNA expression was elevated. These results show impaired GSIS possibly associated with UCP-2 overexpression in NUCB2-silenced β-cells, suggesting that β-cell-produced NUCB2/nesfatin-1 maintains GSIS and thereby glycemia.
Collapse
Affiliation(s)
- Yifei Yang
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
- Division of Integrative Physiology, Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuou-ku, Kobe, 650-0047, Japan
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Boyang Zhang
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - Masanori Nakata
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - Jun Nakae
- Center for Medical Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, 324-8501, Japan
| | - Masatomo Mori
- Kitakanto Molecular Novel Research Institute for Obesity and Metabolism, Midori, Gunma, 379-2311, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan.
- Division of Integrative Physiology, Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuou-ku, Kobe, 650-0047, Japan.
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
23
|
Idrizaj E, Garella R, Squecco R, Baccari MC. Adipocytes-released Peptides Involved in the Control of Gastrointestinal Motility. Curr Protein Pept Sci 2019; 20:614-629. [PMID: 30663565 DOI: 10.2174/1389203720666190121115356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The present review focuses on adipocytes-released peptides known to be involved in the control of gastrointestinal motility, acting both centrally and peripherally. Thus, four peptides have been taken into account: leptin, adiponectin, nesfatin-1, and apelin. The discussion of the related physiological or pathophysiological roles, based on the most recent findings, is intended to underlie the close interactions among adipose tissue, central nervous system, and gastrointestinal tract. The better understanding of this complex network, as gastrointestinal motor responses represent peripheral signals involved in the regulation of food intake through the gut-brain axis, may also furnish a cue for the development of either novel therapeutic approaches in the treatment of obesity and eating disorders or potential diagnostic tools.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| |
Collapse
|
24
|
Guillebaud F, Roussel G, Félix B, Troadec JD, Dallaporta M, Abysique A. Interaction between nesfatin-1 and oxytocin in the modulation of the swallowing reflex. Brain Res 2019; 1711:173-182. [DOI: 10.1016/j.brainres.2019.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
|
25
|
Kuyumcu A, Kuyumcu MS, Ozbay MB, Ertem AG, Samur G. Nesfatin-1: A novel regulatory peptide associated with acute myocardial infarction and Mediterranean diet. Peptides 2019; 114:10-16. [PMID: 30959145 DOI: 10.1016/j.peptides.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 11/24/2022]
Abstract
We evaluated the relationship between nesfatin-1 and acute myocardial infarction (AMI) and Mediterranean diet scores. 67 patients with AMI and 33 patients with normal coronary arteries (control group) were included in the study. The patients with AMI were divided into 2 groups based on low (<32) (n = 33) and high values of the synergy between percutaneous coronary intervention with Taxus and cardiac surgery (SYNTAX) scores (≥34) (n = 35). Mediterranean diet score, serum nesfatin-1 concentrations and all other data were compared between the groups. Serum nesfatin-1 concentrations were significantly lower in 67 AMI patients (both the high and low SYNTAX groups) than in the control group (p < 0.001). Moreover, serum nesfatin-1 concentrations were lower in the high SYNTAX group than those in the low SYNTAX group (p < 0.001). There were positive correlations between the serum nesfatin-1 concentrations and Mediterranean diet scores in both the AMI patients and the control subjects, and there was a negative correlation between the serum nesfatin-1 concentrations and SYNTAX scores in the AMI patients. This study has shown that serum nesfatin-1 concentrations are closely related to the severity of AMI and Mediterranean diet scores.
Collapse
Affiliation(s)
- Aliye Kuyumcu
- Ankara Numune Education and Research Hospital, Department of Nutrition and Dietetics, Ankara, Turkey.
| | - Mevlut Serdar Kuyumcu
- Türkiye Yüksek İhtisas Education and Research Hospital, Department of Cardiology, Ankara, Turkey.
| | - Mustafa Bilal Ozbay
- Türkiye Yüksek İhtisas Education and Research Hospital, Department of Cardiology, Ankara, Turkey.
| | - Ahmet Goktug Ertem
- Türkiye Yüksek İhtisas Education and Research Hospital, Department of Cardiology, Ankara, Turkey.
| | - Gulhan Samur
- Hacettepe University Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey.
| |
Collapse
|
26
|
Ranjan A, Choubey M, Yada T, Krishna A. Direct effects of neuropeptide nesfatin-1 on testicular spermatogenesis and steroidogenesis of the adult mice. Gen Comp Endocrinol 2019; 271:49-60. [PMID: 30391240 DOI: 10.1016/j.ygcen.2018.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 11/25/2022]
Abstract
Recent studies have revealed nesfatin-1 as a hypothalamic neuropeptide, regulating food intake, energy expenditure and reproduction primarily by acting on the hypothalamic-pituitary-gonadal axis. Nesfatin-1 is also localized in several peripheral tissues including testes. However, functional significance of nesfatin-1 in testicular activities is not yet well documented in mammals. Therefore, this study was aimed to elucidate the direct effects of nesfatin-1 on testicular markers for steroid productions, spermatogenesis, metabolic changes and oxidative stress. The results revealed the expression of both protein and mRNA of nesfatin-1 in the testes of adult mice. The testes treated in vitro with nesfatin-1 showed significant increase in testosterone production, which correlated significantly with increased expression of steroidogenic markers and insulin receptor proteins in the testes. Furthermore, the in vitro treatment with nesfatin-1 showed stimulatory effects on spermatogenesis by promoting cell proliferation (PCNA) and survival (Bcl2), while inhibiting apoptosis (caspase-3) in the testes. The nesfatin-1 treatment in vitro further increased the expression of insulin receptor and GLUT8 proteins, in parallel with increase in the intra-testicular transport of glucose and production of lactate. This nesfatin-1 induced enhanced transport of energy substrate (glucose and lactate) may be responsible for promoting spermatogenesis and steroidogenesis. Nesfatin-1 significantly reduced oxidative stress and nitric oxide, which may also be responsible for stimulatory effects on testicular activities. The present finding suggests that nesfatin-1 acts via paracrine manner to increase sperm count and fertility, thus promoting the testicular function.
Collapse
Affiliation(s)
- Ashutosh Ranjan
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mayank Choubey
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Toshihiko Yada
- Division of Integrative Physiology, Kansai Electric Power Medical Research Institute, Kobe 650-0047, Japan
| | - Amitabh Krishna
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
27
|
Wang Y, Sun M, Wang X, Cheng YY. Changes in ghrelin and nesfatin-1 in children with growth hormone deficiency treated by recombinant human growth hormone. EUR J INFLAMM 2019. [DOI: 10.1177/2058739218824236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aims to investigate the effects of recombinant human growth hormone (rhGH) on serum nesfatin-1 and ghrelin in children with growth hormone deficiency (GHD), in order to provide a reliable basis for the effectiveness and safety of applying rhGH in treating GHD children in the clinic. A total of 30 GHD pediatric patients were selected as the observation group. According to the peak of GH, these patients were divided into two subgroups: complete absence of growth hormone (CGHD) group and partial absence of growth hormone (PGHD) group. At the same time, 20 healthy children of normal height with matching age and gender were randomly selected as a normal control group. Serum ghrelin and nesfatin-1 levels were detected in children in the control group and observation group before rhGH treatment, and at 3 and 6 months after treatment. After 3 and 6 months of treatment, the height and growth rate of children in the PGHD and CGHD groups significantly increased ( P < 0.05), but their body weights did not significantly change ( P > 0.05), compared with those before treatment. Before treatment, ghrelin was higher in the PGHD group than in the control group, while ghrelin was lower in the CGHD group than in the control group. In addition, nesfatin-1 was higher in these two subgroups, compared with that in the control group. At pretreatment, and after 3 and 6 months of treatment, ghrelin and nesfatin-1 both decreased in the PGHD group, while ghrelin increased and nesfatin-1 decreased in the CGHD group. It was confirmed that ghrelin and nesfatin-1 were closely correlated with GHD. Furthermore, rhGH has a significant effect on children with GHD, and can significantly accelerate the annual growth rate.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pediatrics, Affiliated Hospital of Hebei University, Baoding, China
| | - Meng Sun
- Department of Pediatrics, Hebei General Hospital, Shijiazhuang, China
| | - Xin Wang
- Department of Pediatrics, Hebei General Hospital, Shijiazhuang, China
| | - Ya-Ying Cheng
- Department of Pediatrics, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
28
|
Phoenixin participated in regulation of food intake and growth in spotted scat, Scatophagus argus. Comp Biochem Physiol B Biochem Mol Biol 2018; 226:36-44. [DOI: 10.1016/j.cbpb.2018.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
|
29
|
Wang M, Chen HP, Zhai Y, Jiang DN, Liu JY, Tian CX, Wu TL, Zhu CH, Deng SP, Li GL. Phoenixin: Expression at different ovarian development stages and effects on genes ralated to reproduction in spotted scat, Scatophagus argus. Comp Biochem Physiol B Biochem Mol Biol 2018; 228:17-25. [PMID: 30423433 DOI: 10.1016/j.cbpb.2018.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/23/2022]
Abstract
Phoenixin (Pnx), a recently discovered neuropeptide, has been implicated in reproduction. Pnx mainly exists in two active isoforms, phoenixin-14 (Pnx-14) and phoenixin-20 (Pnx-20). However, little is known about the functions of Pnx in teleosts. To determine the roles of Pnx in the regulation of reproduction in Scatophagus argus, the physiological characterization of the Pnx was analyzed. During ovary development, the expression of pnx in phase IV was higher than in phase II and III in the hypothalamus. In the pituitary, pnx expression was highest in phase IV, moderate in phase III, and lowest in phase II. When hypothalamus and pituitary fragments were cultured in vitro with Pnx-14 and Pnx-20 (10 nM and 100 nM) for 6 h, the expression of GnRHR (gonadotropin releasing hormone receptor), lh (luteinizing hormone) and fsh (follicular stimulating hormone) in the pituitary increased significantly, except GnRH (gonadotropin releasing hormone) in the hypothalamus. Similarly, the expression of GnRHR, lh and fsh in the pituitary increased significantly after injecting S. argus with Pnx-14 and Pnx-20 (10 ng/g and 100 ng/g body weight (bw)), except GnRHR and fsh treated with 10 ng/gbw Pnx-20 in the pituitary and GnRHs in the hypothalamus. These results indicate that Pnx may not only stimulate the reproduction of the S. argus through the hypothalamic-pituitary-gonadal (HPG) axis, but also directly through the pituitary.
Collapse
Affiliation(s)
- Mei Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Hua-Pu Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Yi Zhai
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Dong-Neng Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Jian-Ye Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Chang-Xu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Tian-Li Wu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Chun-Hua Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Si-Ping Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China; Marine Ecology and Aquaculture Environment of Zhanjiang, Zhanjiang 524088, China.
| | - Guang-Li Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China.
| |
Collapse
|
30
|
Ueta Y. [Nutrient Sensing and Anorexia via Neuropeptides]. YAKUGAKU ZASSHI 2018; 138:1017-1024. [PMID: 30068841 DOI: 10.1248/yakushi.17-00048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Various neuropeptides play an essential role in the nutrient sensing mechanism and related homeostasis. Nesfatin-1 is a newly identified neuropeptide having anorectic activity, and nesfatin-1-containing neurons are widely distributed in the brain, including the hypothalamus and brain stem. Our previous study showed that dehydration-induced anorectic effects are mediated via the central nesfatin-1 pathway in rats. Our recent studies have also shown that peripheral anorectic peptides (cholecystokinin-8, glucagon-like peptide-1, and leptin) and an antineoplastic agent (cisplatin) caused inhibition of feeding via the central nesfatin-1 pathway in rats. Nesfatin-1-containing neurons in the central nervous system, in particular the hypothalamus and the brain stem, may mediate peripheral nutrient signals and regulate feeding behavior.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health
| |
Collapse
|
31
|
Ravussin A, Youm YH, Sander J, Ryu S, Nguyen K, Varela L, Shulman GI, Sidorov S, Horvath TL, Schultze JL, Dixit VD. Loss of Nucleobindin-2 Causes Insulin Resistance in Obesity without Impacting Satiety or Adiposity. Cell Rep 2018; 24:1085-1092.e6. [PMID: 30067966 PMCID: PMC6223120 DOI: 10.1016/j.celrep.2018.06.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/01/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
Abstract
Inducers of satiety are drug targets for weight loss to mitigate obesity-associated diseases. Nucleobindin-2 (Nucb2) is thought to be post-translationally processed into bioactive nesfatin-1 peptide, which reportedly induces satiety, causes weight loss, and thus improves insulin sensitivity. Here, we show that deletion of Nucb2 did not affect food intake or adiposity and, instead, caused insulin resistance in mice fed a high-fat diet. In addition, ablation of Nucb2 in orexigenic hypothalamic Agrp neurons did not affect food intake, and nesfatin-1 was detectable in serum, despite global deletion of Nucb2 protein. Upon high-fat diet feeding, the loss of Nucb2 exacerbated metabolic inflammation in adipose tissue macrophages in an NFκB-dependent manner without inducing classical M1 or alternative M2-like macrophage polarization. Furthermore, the loss of Nucb2 in myeloid cells but not in adipocytes mediated the insulin resistance in response to a high-fat diet. Our study reveals that Nucb2 links metabolic inflammation to insulin resistance without affecting weight gain and food intake.
Collapse
Affiliation(s)
- Anthony Ravussin
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yun-Hee Youm
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jil Sander
- Department of Genomics and Immunoregulation, LIMES Institute, University of Bonn, 53115 Bonn, Germany
| | - Seungjin Ryu
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kim Nguyen
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Luis Varela
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; The Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sviatoslav Sidorov
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joachim L Schultze
- Department of Genomics and Immunoregulation, LIMES Institute, University of Bonn, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics, University of Bonn and the German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Vishwa Deep Dixit
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
32
|
Bülbül M, Travagli RA. Novel transmitters in brain stem vagal neurocircuitry: new players on the pitch. Am J Physiol Gastrointest Liver Physiol 2018; 315:G20-G26. [PMID: 29597355 PMCID: PMC6109706 DOI: 10.1152/ajpgi.00059.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The last few decades have seen a major increase in the number of neurotransmitters and neuropeptides recognized as playing a role in brain stem neurocircuits, including those involved in homeostatic functions such as stress responsiveness, gastrointestinal motility, feeding, and/or arousal/wakefulness. This minireview will focus on the known physiological role of three of these novel neuropeptides, i.e., apelin, nesfatin-1, and neuropeptide-S, with a special emphasis on their hypothetical roles in vagal signaling related to gastrointestinal motor functions.
Collapse
Affiliation(s)
- Mehmet Bülbül
- 1Faculty of Medicine, Department of Physiology, Akdeniz UniversityAntalya, Turkey
| | - R. Alberto Travagli
- 2Department of Neural and Behavioral Neurosciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
33
|
Prinz P, Stengel A. Control of Food Intake by Gastrointestinal Peptides: Mechanisms of Action and Possible Modulation in the Treatment of Obesity. J Neurogastroenterol Motil 2017; 23:180-196. [PMID: 28096522 PMCID: PMC5383113 DOI: 10.5056/jnm16194] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
This review focuses on the control of appetite by food intake-regulatory peptides secreted from the gastrointestinal tract, namely cholecystokinin, glucagon-like peptide 1, peptide YY, ghrelin, and the recently discovered nesfatin-1 via the gut-brain axis. Additionally, we describe the impact of external factors such as intake of different nutrients or stress on the secretion of gastrointestinal peptides. Finally, we highlight possible conservative—physical activity and pharmacotherapy—treatment strategies for obesity as well as surgical techniques such as deep brain stimulation and bariatric surgery also altering these peptidergic pathways.
Collapse
Affiliation(s)
- Philip Prinz
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
Nesfatin-1 protects dopaminergic neurons against MPP +/MPTP-induced neurotoxicity through the C-Raf-ERK1/2-dependent anti-apoptotic pathway. Sci Rep 2017; 7:40961. [PMID: 28106099 PMCID: PMC5247731 DOI: 10.1038/srep40961] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/14/2016] [Indexed: 01/16/2023] Open
Abstract
Several brain-gut peptides have been reported to have a close relationship with the central dopaminergic system; one such brain-gut peptide is nesfatin-1. Nesfatin-1 is a satiety peptide that is predominantly secreted by X/A-like endocrine cells in the gastric glands, where ghrelin is also secreted. We previously reported that ghrelin exerted neuroprotective effects on nigral dopaminergic neurons, which implied a role for ghrelin in Parkinson’s disease (PD). In the present study, we aim to clarify whether nesfatin-1 has similar effects on dopaminergic neurons both in vivo and in vitro. We show that nesfatin-1 attenuates the loss of nigral dopaminergic neurons in the 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. In addition, nesfatin-1 antagonized 1-methyl-4-phenylpyridillium ion (MPP+)-induced toxicity by restoring mitochondrial function, inhibiting cytochrome C release and preventing caspase-3 activation in MPP+-treated MES23.5 dopaminergic cells. These neuroprotective effects could be abolished by selective inhibition of C-Raf and the extracellular signal-regulated protein kinase 1/2 (ERK1/2). Our data suggest that C-Raf-ERK1/2, which is involved in an anti-apoptotic pathway, is responsible for the neuroprotective effects of nesfatin-1 in the context of MPTP-induced toxicity. These results imply that nesfatin-1 might have therapeutic potential for PD.
Collapse
|
35
|
Dore R, Levata L, Lehnert H, Schulz C. Nesfatin-1: functions and physiology of a novel regulatory peptide. J Endocrinol 2017; 232:R45-R65. [PMID: 27754932 DOI: 10.1530/joe-16-0361] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022]
Abstract
Nesfatin-1 was identified in 2006 as a potent anorexigenic peptide involved in the regulation of homeostatic feeding. It is processed from the precursor-peptide NEFA/nucleobindin 2 (NUCB2), which is expressed both in the central nervous system as well as in the periphery, from where it can access the brain via non-saturable transmembrane diffusion. In hypothalamus and brainstem, nesfatin-1 recruits the oxytocin, the melancortin and other systems to relay its anorexigenic properties. NUCB2/nesfatin-1 peptide expression in reward-related areas suggests that nesfatin-1 might also be involved in hedonic feeding. Besides its initially discovered anorexigenic properties, over the last years, other important functions of nesfatin-1 have been discovered, many of them related to energy homeostasis, e.g. energy expenditure and glucose homeostasis. Nesfatin-1 is not only affecting these physiological processes but also the alterations of the metabolic state (e.g. fat mass, glycemic state) have an impact on the synthesis and release of NUCB2 and/or nesfatin-1. Furthermore, nesfatin-1 exerts pleiotropic actions at the level of cardiovascular and digestive systems, as well as plays a role in stress response, behavior, sleep and reproduction. Despite the recent advances in nesfatin-1 research, a putative receptor has not been identified and furthermore potentially distinct functions of nesfatin-1 and its precursor NUCB2 have not been dissected yet. To tackle these open questions will be the major objectives of future research to broaden our knowledge on NUCB2/nesfatin-1.
Collapse
Affiliation(s)
- Riccardo Dore
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Luka Levata
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Schulz
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
36
|
Feng H, Wang Q, Guo F, Han X, Pang M, Sun X, Gong Y, Xu L. Nesfatin-1 influences the excitability of gastric distension-responsive neurons in the ventromedial hypothalamic nucleus of rats. Physiol Res 2016; 66:335-344. [PMID: 27982684 DOI: 10.33549/physiolres.933347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The present study investigated the effects of nesfatin-1 on gastric distension (GD)-responsive neurons via an interaction with corticotropin-releasing factor (CRF) receptor signaling in the ventromedial hypothalamic nucleus (VMH), and the potential regulation of these effects by hippocampal projections to VMH. Extracellular single-unit discharges were recorded in VHM following administration of nesfatin-1. The projection of nerve fibers and expression of nesfatin-1 were assessed by retrograde tracing and fluoro-immunohistochemical staining, respectively. Results showed that there were GD-responsive neurons in VMH; Nesfatin-1 administration and electrical stimulation of hippocampal CA1 sub-region altered the firing rate of these neurons. These changes could be partially blocked by pretreatment with the non-selective CRF antagonist astressin-B or an antibody to NUCB2/nesfatin-1. Electrolytic lesion of CA1 hippocampus reduced the effects of nesfatin-1 on VMH GD-responsive neuronal activity. These studies suggest that nesfatin-1 plays an important role in GD-responsive neuronal activity through interactions with CRF signaling pathways in VMH. The hippocampus may participate in the modulation of nesfatin-1-mediated effects in VMH.
Collapse
Affiliation(s)
- Hongzhen Feng
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, Shandong, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mar’yanovich AT. Blood–brain barrier and evolution of peptide regulation of physiological functions. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093016040074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Feijóo-Bandín S, Rodríguez-Penas D, García-Rúa V, Mosquera-Leal A, González-Juanatey JR, Lago F. Nesfatin-1: a new energy-regulating peptide with pleiotropic functions. Implications at cardiovascular level. Endocrine 2016; 52:11-29. [PMID: 26662184 DOI: 10.1007/s12020-015-0819-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023]
Abstract
Nesfatin-1 is a new energy-regulating peptide widely expressed at both central and peripheral tissues with pleiotropic effects. In the last years, the study of nesfatin-1 actions and its possible implication in the development of different diseases has created a great interest among the scientific community. In this review, we will summarize nesfatin-1 main functions, focusing on its cardiovascular implications.
Collapse
Affiliation(s)
- Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain.
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| | - Vanessa García-Rúa
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| | - Ana Mosquera-Leal
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| |
Collapse
|
39
|
Zhang SQ, Tian ZB, Sun GR, Ding XL, Song W, Liu SL. Impact of Helicobacter pylori infection on serum and gastric tissue nucleobindin 2/nesfatin-1 levels. Shijie Huaren Xiaohua Zazhi 2016; 24:754-758. [DOI: 10.11569/wcjd.v24.i5.754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the impact of Helicobacter pylori (H. pylori) infection on serum and gastric tissue levels of nucleobindin2 (NUCB2)/nesfatin-1 in humans.
METHODS: Serum and mucosal samples were collected from 83 asymptomatic volunteers who received gastroscopy and had H. pylori infection confirmed by 13C breath test, rapid urease test and Warth-Starry staining. The subjects were divided into an H. pylori positive group and an H. pylori negative group. Serum NUCB2/nesfatin-1 concentration was measured by enzyme-linked immunosorbent assay (ELISA) and the expression of NUCB2 mRNA in gastric mucosa was detected by real-time quantitative polymerase chain reaction.
RESULTS: Serum NUCB2/nesfatin-1 concentrations in the H. pylori positive and negative groups did not differ significantly (2.298 ng/mL ± 0.275 ng/mL vs 2.267 ng/mL ± 0.201 ng/mL, P > 0.05). The expression level of NUCB2 mRNA in the H. pylori positive group was significantly higher than that in the H. pylori negative group (1.336 ± 0.324 vs 0.914 ± 0.171, P < 0.01).
CONCLUSION: H. pylori infection induces the upregulation of NUCB2 mRNA in the gastric mucosa, but has no effect on serum NUCB2/nesfatin-1 concentration.
Collapse
|
40
|
Ma S, Ge Y, Gai X, Xue M, Li N, Kang J, Wan J, Zhang J. Transgenic n-3 PUFAs enrichment leads to weight loss via modulating neuropeptides in hypothalamus. Neurosci Lett 2015; 611:28-32. [PMID: 26610903 DOI: 10.1016/j.neulet.2015.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022]
Abstract
Body weight is related to fat mass, which is associated with obesity. Our study explored the effect of fat-1 gene on body weight in fat-1 transgenic mice. In present study, we observed that the weight/length ratio of fat-1 transgenic mice was lower than that of wild-type mice. The serum levels of triglycerides (TG), cholesterol (CT), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c) and blood glucose (BG) in fat-1 transgenic mice were all decreased. The weights of peri-bowels fat, perirenal fat and peri-testicular fat in fat-1 transgenic mice were reduced. We hypothesized that increase of n-3 PUFAs might alter the expression of hypothalamic neuropeptide genes and lead to loss of body weight in fat-1 transgenic mice. Therefore, we measured mRNA levels of appetite neuropeptides, Neuropeptide Y (NPY), Agouti-related peptides (AgRP), Proopiomelanocortin (POMC), Cocaine and amphetamine regulated transcript (CART), ghrelin and nesfatin-1 in hypothalamus by real-time PCR. Compared with wild-type mice, the mRNA levels of CART, POMC and ghrelin were higher, while the mRNA levels of NPY, AgRP and nesfatin-1 were lower in fat-1 transgenic mice. The results indicate that fat-1 gene or n-3 PUFAs participates in regulation of body weight, and the mechanism of this phenomenon involves the expression of appetite neuropeptides and lipoproteins in fat-1 transgenic mice.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao University, Qingdao, Shandong 266021, PR China
| | - Yinlin Ge
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao University, Qingdao, Shandong 266021, PR China
| | - Xiaoying Gai
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao University, Qingdao, Shandong 266021, PR China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao University, Qingdao, Shandong 266021, PR China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao University, Qingdao, Shandong 266021, PR China
| | - Jingxuan Kang
- Mathazhusazhu General Hospital, Harvard Medical College, Boston, USA
| | - Jianbo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Jinyu Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao University, Qingdao, Shandong 266021, PR China.
| |
Collapse
|
41
|
Nesfatin-1, a potent anorexic agent, decreases exploration and induces anxiety-like behavior in rats without altering learning or memory. Brain Res 2015; 1629:171-81. [DOI: 10.1016/j.brainres.2015.10.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/13/2023]
|
42
|
Serin S, Bakacak M, Ercan Ö, Köstü B, Avci F, Arıkan D, Kıran G. The evaluation of Nesfatin-1 levels in patients with and without intrauterine growth restriction. J Matern Fetal Neonatal Med 2015; 29:1409-13. [PMID: 26043295 DOI: 10.3109/14767058.2015.1049524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To evaluate Nesfatin-1 levels in patients with and without intrauterine growth restriction and to analyze the correlation between Nesfatin-1 levels and fetal birth weights. METHODS This study comprised a total of 81 cases; 41 patients with IUGR and 40 healthy cases. Demographic data, pregnancy weeks, fetal birth weights and Nesfatin-1 levels were all recorded. The Nesfatin-1 levels were compared between the groups and the correlation between fetal birth weights and Nesfatin-1 levels was analyzed. RESULTS No statistical significant difference was determined between the groups in terms of demographic data (p > 0.05). Average birth weights were determined as 3420 ± 259 g in the control group and 2041 ± 350 g in the IUGR group, which was found to be statistically unequal (p = 0.001). The average Nesfatin levels in the control group were 0.069 ± 0.011 and 0.094 ± 0.042 in the IUGR group. This difference was statistically unequal (p = 0.001). While no correlation was determined between Nesfatin levels and fetal birthweights in the control group (r = -0.034 versus p = 0.836), in the IUGR group and when all the cases were evaluated together, a statistically moderately significant negative correlation was determined (r = -0.469, p = 0.002 and r = -0.251, p = 0.024, respectively). CONCLUSIONS Although intrauterine growth is a multifactorial process, the effect mechanism has not yet been established. The results of this study offer some indications about the possible effect of Nesfatin 1 on fetal growth.
Collapse
Affiliation(s)
- Salih Serin
- a Department of Obstetrics and Gynecology , Tatvan State Hospital , Bitlis , Turkey
| | - Murat Bakacak
- b Department of Obstetrics and Gynecology , Kahramanmaras Sutcu Imam University, School of Medicine , Kahramanmaraş , Turkey , and
| | - Önder Ercan
- b Department of Obstetrics and Gynecology , Kahramanmaras Sutcu Imam University, School of Medicine , Kahramanmaraş , Turkey , and
| | - Bülent Köstü
- b Department of Obstetrics and Gynecology , Kahramanmaras Sutcu Imam University, School of Medicine , Kahramanmaraş , Turkey , and
| | - Fazıl Avci
- c Department of Obstetrics and Gynecology , Patnos State Hospital , Ağrı , Turkey
| | - Deniz Arıkan
- b Department of Obstetrics and Gynecology , Kahramanmaras Sutcu Imam University, School of Medicine , Kahramanmaraş , Turkey , and
| | - Gürkan Kıran
- b Department of Obstetrics and Gynecology , Kahramanmaras Sutcu Imam University, School of Medicine , Kahramanmaraş , Turkey , and
| |
Collapse
|
43
|
Rojczyk E, Pałasz A, Wiaderkiewicz R. Effect of short and long-term treatment with antipsychotics on orexigenic/anorexigenic neuropeptides expression in the rat hypothalamus. Neuropeptides 2015; 51:31-42. [PMID: 25888224 DOI: 10.1016/j.npep.2015.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
Among numerous side effects of antipsychotic drugs (neuroleptics), one of the leading problems is a significant weight gain caused by disturbances in energy homeostasis. The hypothalamus is considered an important target for neuroleptics and contains some neuronal circuits responsible for food intake regulation, so we decided to study which hypothalamic signaling pathways connected with energy balance control are modified by antipsychotic drugs of different generations. We created an expression profile of different neuropeptides after single-dose and chronic neuroleptic administration. Experiments were carried out on adult male Sprague-Dawley rats injected intraperitoneally for 1 day or for 28 days by three neuroleptics: olanzapine, chlorpromazine and haloperidol. Hypothalami were isolated in order to perform PCR reactions and also whole brains were sliced for immunohistochemical analysis. We assessed the expression of orexigenic/anorexigenic neuropeptides and their receptors--neuropeptide Y (NPY), NPY receptor type 1 (Y1R), preproorexin (PPOX), orexin A, orexin receptor type 1 (OX1R) and 2 (OX2R), nucleobindin 2 (NUCB2), nesfatin-1, proopiomelanocortin (POMC), alpha-melanotropin (α-MSH) and melanocortin receptor type 4 (MC4R)--both on the mRNA and protein levels. We have shown that antipsychotics of different generations administered chronically have the ability to upregulate PPOX, orexin A and Y1R expression with little or no effect on orexigenic receptors (OX1R, OX2R) and NPY. Interestingly, antipsychotics also increased the level of some anorexigenic factors (POMC, α-MSH and MC4R), but at the same time strongly downregulated NUCB2 and nesfatin-1 signaling--a newly discovered neuropeptide known as a food-intake inhibiting factor. Our results may contribute to a better understanding of mechanisms responsible for antipsychotics' side effects. They also underline the complex nature of interactions between classical monoamine receptors and hypothalamic peptidergic pathways, which has potential clinical applications.
Collapse
Affiliation(s)
- Ewa Rojczyk
- Department of Histology, Faculty of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland.
| | - Artur Pałasz
- Department of Histology, Faculty of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| | - Ryszard Wiaderkiewicz
- Department of Histology, Faculty of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| |
Collapse
|
44
|
Kim J, Yang H. Nesfatin-1 as a new potent regulator in reproductive system. Dev Reprod 2015; 16:253-64. [PMID: 25949098 PMCID: PMC4282246 DOI: 10.12717/dr.2012.16.4.253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023]
Abstract
Nesfatin-1 is a recently discovered anorexigenic peptide which is distributed in several brain areas implicated in the feeding and metabolic regulation. Recently, it has been reported that nesfatin-1 is expressed not only in brain, but also in peripheral organs such as digestive organs, adipose tissues, heart, and reproductive organs. Nesfatin-1 is markedly expressed in the pancreas, stomach and duodenum. Eventually, the nesfatin-1 expression in the digestive organs may be regulated by nutritional status, which suggests a regulatory role of peripheral nesfatin-1 in energy homeostasis. Nesfatin-1 is also detected in the adipose tissues of humans and rodents, indicating that nesfatin-1 expression in the fat may regulate food intake independently, rather than relying on leptin. In addition, nesfatin-1 is expressed in the heart as a cardiac peptide. It suggests that nesfatin-1 may regulate cardiac function and encourage clinical potential in the presence of nutrition-dependent physio-pathologic cardiovascular diseases. Currently, only a few studies demonstrate that nesfatin-1 is expressed in the reproductive system. However, it is not clear yet what function of nesfatin-1 is in the reproductive organs. Here, we summarize the expression of nesfatin-1 and its roles in brain and peripheral organs and discuss the possible roles of nesfatin-1 expressed in reproductive organs, including testis, epididymis, ovary, and uterus. We come to the conclusion that nesfatin-1 as a local regulator in male and female reproductive organs may regulate the steroidogenesis in the testis and ovary and the physiological activity in epididymis and uterus.
Collapse
Affiliation(s)
- Jinhee Kim
- Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University, Seoul 139-774, Korea
| | - Hyunwon Yang
- Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University, Seoul 139-774, Korea
| |
Collapse
|
45
|
The novel neuropeptide phoenixin is highly co-expressed with nesfatin-1 in the rat hypothalamus, an immunohistochemical study. Neurosci Lett 2015; 592:17-21. [DOI: 10.1016/j.neulet.2015.02.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 11/21/2022]
|
46
|
Tian ZB, Deng RJ, Sun GR, Wei LZ, Kong XJ, Ding XL, Jing X, Zhang CP, Ge YL. Expression of gastrointestinal nesfatin-1 and gastric emptying in ventromedial hypothalamic nucleus- and ventrolateral hypothalamic nucleus-lesioned rats. World J Gastroenterol 2014; 20:6897-6905. [PMID: 24944480 PMCID: PMC4051929 DOI: 10.3748/wjg.v20.i22.6897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/05/2014] [Accepted: 04/03/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To determine the expression levels of gastrointestinal nesfatin-1 in ventromedial hypothalamic nucleus (VMH)-lesioned (obese) and ventrolateral hypothalamic nucleus (VLH)-lesioned (lean) rats that exhibit an imbalance in their energy metabolism and gastric mobility.
METHODS: Male Wistar rats were randomly divided into a VMH-lesioned group, a VLH-lesioned group, and their respective sham-operated groups. The animals had free access to food and water, and their diets and weights were monitored after surgery. Reverse transcription-polymerase chain reaction and immunostaining were used to analyse the levels of NUCB2 mRNA and nesfatin-1 immunoreactive (IR) cells in the stomach, duodenum, small intestine, and colon, respectively. Gastric emptying was also assessed using a modified phenol red-methylcellulose recovery method.
RESULTS: The VMH-lesioned rats fed normal chow exhibited markedly greater food intake and body weight gain, whereas the VLH-lesioned rats exhibited markedly lower food intake and body weight gain. NUCB2/nesfatin-1 IR cells were localised in the lower third and middle portion of the gastric mucosal gland and in the submucous layer of the enteric tract. Compared with their respective controls, gastric emptying was enhanced in the VMH-lesioned rats (85.94% ± 2.27%), whereas the VLH lesions exhibited inhibitory effects on gastric emptying (29.12% ± 1.62%). In the VMH-lesioned rats, the levels of NUCB2 mRNA and nesfatin-1 protein were significantly increased in the stomach and duodenum and reduced in the small intestine. In addition, the levels of NUCB2 mRNA and nesfatin-1 protein in the VLH-lesioned rats were decreased in the stomach, duodenum, and small intestine.
CONCLUSION: Our study demonstrated that nesfatin-1 level in the stomach and duodenum is positively correlated with body mass. Additionally, there is a positive relationship between gastric emptying and body mass. The results of this study indicate that gastrointestinal nesfatin-1 may play a significant role in gastric mobility and energy homeostasis.
Collapse
|
47
|
Senejani AG, Gaupale TC, Unniappan S, Bhargava S. Nesfatin-1/nucleobindin-2 like immunoreactivity in the olfactory system, brain and pituitary of frog, Microhyla ornata. Gen Comp Endocrinol 2014; 202:8-14. [PMID: 24768694 DOI: 10.1016/j.ygcen.2014.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/24/2014] [Accepted: 04/06/2014] [Indexed: 11/27/2022]
Abstract
Nesfatin-1 is a recently discovered anorectic protein derived from the precursor nucleobindin-2 (NUCB2). While nesfatin-1 has been widely studied in mammals, and goldfish, there are no reports of nesfatin-1 in amphibians. Using immunohistochemistry and Western blot analysis, this study assessed the distribution of NUCB2/nesfatin-1 in the brain of frog Microhyla ornata. NUCB2/nesfatin-1 like immunoreactivity was found in the olfactory receptor neurons, Bowman's glands and in the olfactory epithelium of medial diverticulum. In the brain, immunoreactive perikarya were seen in the anterior preoptic area, magnocellular nucleus, suprachiasmatic nucleus, ventromedial thalamic nucleus, posterior thalamic nucleus, nucleus infundibularis ventralis and dorsalis, and the cerebellar nucleus. NUCB2/nesfatin-1like immunoreactivity was also detected in the pineal and pituitary glands of frog. The presence of NUCB2/nesfatin-1 in the key brain regions suggest possible roles for this protein in the regulation of physiological processes in frogs.
Collapse
Affiliation(s)
- A G Senejani
- Department of Zoology, University of Pune, Ganeshkhind Road, Pune 411007, India
| | - Tekchand C Gaupale
- Department of Zoology, University of Pune, Ganeshkhind Road, Pune 411007, India
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Shobha Bhargava
- Department of Zoology, University of Pune, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
48
|
Finelli C, Martelli G, Rossano R, Padula MC, La Sala N, Sommella L, Tarantino G. Nesfatin-1: role as possible new anti-obesity treatment. EXCLI JOURNAL 2014; 13:586-91. [PMID: 26417285 PMCID: PMC4464156 DOI: pmid/26417285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/08/2014] [Indexed: 02/07/2023]
Abstract
In this article, we review on the current concepts about Nesfatin-1 as a new anti-obesity treatment and evaluate the existing issues in the context of this knowledge and the available literature. The intent is to enable clinicians to know Nesfatin-1 as a new anti-obesity treatment and make rational decisions based on this perspective as possible clinical application. Future research should seek to clarify whether Nesfatin-1 would be beneficial in the management of obesity.
Collapse
Affiliation(s)
- Carmine Finelli
- Center of Obesity and Eating Disorders, Stella Maris Mediterraneum Foundation, Chiaromonte, Potenza, Italy
- *To whom correspondence should be addressed: Carmine Finelli, Center of Obesity and Eating Disorders, Stella Maris Mediterraneum Foundation, Chiaromonte, Potenza, Italy, E-mail:
| | - Giuseppe Martelli
- Department of Science, University of Basilicata, Potenza, Viale dell'Ateneo Lucano, 10, 85100, Italy
| | - Rocco Rossano
- Department of Science, University of Basilicata, Potenza, Viale dell'Ateneo Lucano, 10, 85100, Italy
| | - Maria Carmela Padula
- Department of Science, University of Basilicata, Potenza, Viale dell'Ateneo Lucano, 10, 85100, Italy
| | - Nicolina La Sala
- Center of Obesity and Eating Disorders, Stella Maris Mediterraneum Foundation, Chiaromonte, Potenza, Italy
| | - Luigi Sommella
- Unit of Surgery, S. Giovanni Hospital - Lagonegro, Potenza, Italy
| | - Giovanni Tarantino
- National Cancer Institute "Pascale Foundation" - IRCS- 83013 Mercogliano (Av), Italy
| |
Collapse
|
49
|
Abstract
Obesity and its associated metabolic disorders are growing health concerns in the US and worldwide. In the US alone, more than two-thirds of the adult population is classified as either overweight or obese [1], highlighting the need to develop new, effective treatments for these conditions. Whereas the hormone oxytocin is well known for its peripheral effects on uterine contraction during parturition and milk ejection during lactation, release of oxytocin from somatodendrites and axonal terminals within the central nervous system (CNS) is implicated in both the formation of prosocial behaviors and in the control of energy balance. Recent findings demonstrate that chronic administration of oxytocin reduces food intake and body weight in diet-induced obese (DIO) and genetically obese rodents with impaired or defective leptin signaling. Importantly, chronic systemic administration of oxytocin out to 6 weeks recapitulates the effects of central administration on body weight loss in DIO rodents at doses that do not result in the development of tolerance. Furthermore, these effects are coupled with induction of Fos (a marker of neuronal activation) in hindbrain areas (e.g. dorsal vagal complex (DVC)) linked to the control of meal size and forebrain areas (e.g. hypothalamus, amygdala) linked to the regulation of food intake and body weight. This review assesses the potential central and peripheral targets by which oxytocin may inhibit body weight gain, its regulation by anorexigenic and orexigenic signals, and its potential use as a therapy that can circumvent leptin resistance and reverse the behavioral and metabolic abnormalities associated with DIO and genetically obese models.
Collapse
Affiliation(s)
- James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, 98108, USA,
| | | |
Collapse
|
50
|
Nesfatin-1 could be a strong candidate obesity or diabetes medication, if blood pressure elevation can be controlled. Hypertens Res 2013; 37:98-9. [DOI: 10.1038/hr.2013.152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|