1
|
Korn LL, Kutyavin VI, Bachtel ND, Medzhitov R. Adverse Food Reactions: Physiological and Ecological Perspectives. Annu Rev Nutr 2024; 44:155-178. [PMID: 38724028 DOI: 10.1146/annurev-nutr-061021-022909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
While food is essential for survival, it can also cause a variety of harmful effects, ranging from intolerance to specific nutrients to celiac disease and food allergies. In addition to nutrients, foods contain myriads of substances that can have either beneficial or detrimental effects on the animals consuming them. Consequently, all animals evolved defense mechanisms that protect them from harmful food components. These "antitoxin" defenses have some parallels with antimicrobial defenses and operate at a cost to the animal's fitness. These costs outweigh benefits when defense responses are exaggerated or mistargeted, resulting in adverse reactions to foods. Additionally, pathological effects of foods can stem from insufficient defenses, due to unabated toxicity of harmful food components. We discuss the structure of antitoxin defenses and how their failures can lead to a variety of adverse food reactions.
Collapse
Affiliation(s)
- Lisa L Korn
- Department of Medicine, Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Vassily I Kutyavin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Nathaniel D Bachtel
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
2
|
Bercu JP, Ponting DJ, Ripp SL, Dobo KL, Totah RA, Bolleddula J. A Case to Support the Continued Use of Rifampin in Clinical Drug-Drug Interaction Studies. Clin Pharmacol Ther 2024; 116:34-37. [PMID: 38494918 DOI: 10.1002/cpt.3256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Joel P Bercu
- Gilead Sciences, Inc., Nonclinical Safety and Pathobiology (NSP), Foster City, California, USA
| | | | - Sharon L Ripp
- Pharmacokinetics, Dynamics & Metabolism, Pfizer Research & Development, Groton, Connecticut, USA
| | - Krista L Dobo
- Drug Safety Research and Development, Pfizer Research & Development, Groton, Connecticut, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Jayaprakasam Bolleddula
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA
| |
Collapse
|
3
|
Mao K, Liu C, Tang Z, Rao Z, Wen J. Advances in drug resistance of osteosarcoma caused by pregnane X receptor. Drug Metab Rev 2024:1-14. [PMID: 38872275 DOI: 10.1080/03602532.2024.2366948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Osteosarcoma (OS) is a prevalent malignancy among adolescents, commonly manifesting during childhood and adolescence. It exhibits a high degree of malignancy, propensity for metastasis, rapid progression, and poses challenges in clinical management. Chemotherapy represents an efficacious therapeutic modality for OS treatment. However, chemotherapy resistance of OS is a major problem in clinical treatment. In order to treat OS effectively, it is particularly important to explore the mechanism of chemotherapy resistance in OS.The Pregnane X receptor (PXR) is a nuclear receptor primarily involved in the metabolism, transport, and elimination of xenobiotics, including chemotherapeutic agents. PXR involves three stages of drug metabolism: stage I: drug metabolism enzymes; stage II: drug binding enzyme; stage III: drug transporter.PXR has been confirmed to be involved in the process of chemotherapy resistance in malignant tumors. The expression of PXR is increased in OS, which may be related to drug resistance of OS. Therefore, wereviewed in detail the role of PXR in chemotherapy drug resistance in OS.
Collapse
Affiliation(s)
- Kunhong Mao
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Physiology, Hunan Normal University School of Medicine, Changsha, China
| | - Can Liu
- Department of Anatomy, Hunan Normal University school of Medicine, Changsha, China
| | - Zhongwen Tang
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhouzhou Rao
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Physiology, Hunan Normal University School of Medicine, Changsha, China
| | - Jie Wen
- Department of Anatomy, Hunan Normal University school of Medicine, Changsha, China
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
4
|
Greenhalgh R, Klure DM, Orr TJ, Armstrong NM, Shapiro MD, Dearing MD. The desert woodrat (Neotoma lepida) induces a diversity of biotransformation genes in response to creosote bush resin. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109870. [PMID: 38428625 PMCID: PMC11006593 DOI: 10.1016/j.cbpc.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/26/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Liver biotransformation enzymes have long been thought to enable animals to feed on diets rich in xenobiotic compounds. However, despite decades of pharmacological research in humans and rodents, little is known about hepatic gene expression in specialized mammalian herbivores feeding on toxic diets. Leveraging a recently identified population of the desert woodrat (Neotoma lepida) found to be highly tolerant to toxic creosote bush (Larrea tridentata), we explored the expression changes of suites of biotransformation genes in response to diets enriched with varying amounts of creosote resin. Analysis of hepatic RNA-seq data indicated a dose-dependent response to these compounds, including the upregulation of several genes encoding transcription factors and numerous phase I, II, and III biotransformation families. Notably, elevated expression of five biotransformation families - carboxylesterases, cytochromes P450, aldo-keto reductases, epoxide hydrolases, and UDP-glucuronosyltransferases - corresponded to species-specific duplication events in the genome, suggesting that these genes play a prominent role in N. lepida's adaptation to creosote bush. Building on pharmaceutical studies in model rodents, we propose a hypothesis for how the differentially expressed genes are involved in the biotransformation of creosote xenobiotics. Our results provide some of the first details about how these processes likely operate in the liver of a specialized mammalian herbivore.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Dylan M Klure
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Teri J Orr
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Noah M Armstrong
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Michael D Shapiro
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Jadav T, Rajput N, Kumar H, Behera SK, Sengupta P. Induction effect of antiretroviral bictegravir on the expression of Abcb1, Abcg2 and Abcc1 genes associated with P-gp, BCRP and MRP1 transporters present in rat peripheral blood mononuclear cells. Expert Opin Drug Metab Toxicol 2024; 20:529-539. [PMID: 38712502 DOI: 10.1080/17425255.2024.2352462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Antiretrovirals have the potential to cause drug interactions leading to inefficacy or toxicity via induction of efflux transporters through nuclear receptors, altering drug concentrations at their target sites. RESEARCH DESIGN AND METHODS This study used molecular dynamic simulations and qRT-PCR to investigate bictegravir's interactions with nuclear receptors PXR and CAR, and its effects on efflux transporters (P-gp, BCRP, MRP1) in rat PBMCs. PBMC/plasma drug concentrations were measured using LC-MS/MS to assess the functional impact of transporter expression. RESULTS Bictegravir significantly increased the expression of ABC transporters, with Car identified as a key mediator. This suggests that bictegravir's influence on nuclear receptors could affect drug transport and efficacy at the cellular level. CONCLUSIONS Bictegravir activates nuclear receptors enhancing efflux transporter expression. Understanding these interactions is crucial for preventing drug-drug interactions and reducing toxicity in clinical use. Combining CAR antagonists with bictegravir may prevent drug resistance and toxicity. However, these findings are based on preclinical data and necessitate further clinical trials to confirm their applicability in clinical settings.
Collapse
MESH Headings
- Animals
- Rats
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/drug effects
- Drug Interactions
- Male
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Heterocyclic Compounds, 4 or More Rings/pharmacokinetics
- Tandem Mass Spectrometry
- Heterocyclic Compounds, 3-Ring/pharmacology
- Heterocyclic Compounds, 3-Ring/pharmacokinetics
- Heterocyclic Compounds, 3-Ring/administration & dosage
- Piperazines/pharmacology
- Pregnane X Receptor/genetics
- Pregnane X Receptor/metabolism
- Molecular Dynamics Simulation
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Gene Expression Regulation/drug effects
- Constitutive Androstane Receptor
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Chromatography, Liquid/methods
- Rats, Sprague-Dawley
- Dioxolanes/pharmacology
- Dioxolanes/pharmacokinetics
- Dioxolanes/administration & dosage
- Amides
- Pyridones
Collapse
Affiliation(s)
- Tarang Jadav
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Niraj Rajput
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Santosh Kumar Behera
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
6
|
Hoang SH, Tveter KM, Mezhibovsky E, Roopchand DE. Proanthocyanidin B2 derived metabolites may be ligands for bile acid receptors S1PR2, PXR and CAR: an in silico approach. J Biomol Struct Dyn 2024; 42:4249-4262. [PMID: 37340688 PMCID: PMC10730774 DOI: 10.1080/07391102.2023.2224886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Bile acids (BAs) act as signaling molecules via their interactions with various nuclear (FXR, VDR, PXR and CAR) and G-protein coupled (TGR5, M3R, S1PR2) BA receptors. Stimulation of these BA receptors influences several processes, including inflammatory responses and glucose and xenobiotic metabolism. BA profiles and BA receptor activity are deregulated in cardiometabolic diseases; however, dietary polyphenols were shown to alter BA profile and signaling in association with improved metabolic phenotypes. We previously reported that supplementing mice with a proanthocyanidin (PAC)-rich grape polyphenol (GP) extract attenuated symptoms of glucose intolerance in association with changes to BA profiles, BA receptor gene expression, and/or downstream markers of BA receptor activity. Exact mechanisms by which polyphenols modulate BA signaling are not known, but some hypotheses include modulation of the BA profile via changes to gut bacteria, or alteration of ligand-availability via BA sequestration. Herein, we used an in silico approach to investigate putative binding affinities of proanthocyanidin B2 (PACB2) and PACB2 metabolites to nuclear and G-protein coupled BA receptors. Molecular docking and dynamics simulations revealed that certain PACB2 metabolites had stable binding affinities to S1PR2, PXR and CAR, comparable to that of known natural and synthetic BA ligands. These findings suggest PACB2 metabolites may be novel ligands of S1PR2, CAR, and PXR receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Skyler H. Hoang
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Kevin M. Tveter
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
| | - Esther Mezhibovsky
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Diana E. Roopchand
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
| |
Collapse
|
7
|
Siqueira JS, Garcia JL, Ferron AJT, Moreto F, Sormani LE, Costa MR, Palacio TLN, Nai GA, Aldini G, Francisqueti-Ferron FV, Correa CR, D'Amato A. Proteomic study of gamma-oryzanol preventive effect on a diet-induced non-alcoholic fatty liver disease model. J Nutr Biochem 2024; 127:109607. [PMID: 38432453 DOI: 10.1016/j.jnutbio.2024.109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease associated with obesity and diabetes prevalence. The use of natural compounds has become an attractive approach to prevent NAFLD and its progression. Gamma-oryzanol (Orz) is a natural compound whose beneficial effects on chronic metabolic diseases have been reported. Therefore, we aimed to investigate the preventive effect of Orz on the hepatic proteome in a diet induced NAFLD model. Wistar rats were randomly distributed into three experimental groups (n=6/group) according to the diet received for 30 weeks: Control group, high sugar-fat (HSF) group, and HSF+Orz group. The isolated Orz was added to the chow at the dose of 0.5% (w/w). We evaluated the nutritional profile, characterized the presence of steatosis through histological analysis, triglyceride content in liver tissue and hepatic inflammation. Next, we performed label-free quantitative proteomics of hepatic tissue. Network analysis was performed to describe involved protein pathways. NAFLD induction was characterized by the presence of hepatic steatosis. Orz prevented lipid accumulation. The compound prevented alterations of the hepatic proteome, highlighted by the modulation of lipid metabolism, inflammation, oxidative stress, xenobiotic metabolism, and the sirtuin signaling pathway. It was possible to identify key altered pathways of NAFLD pathophysiology modulated by Orz which may provide insights into NAFLD treatment targets.
Collapse
Affiliation(s)
| | | | | | - Fernando Moreto
- Botucatu Medical School, São Paulo State University (Unesp), Botucatu, Brazil.
| | | | | | | | - Gisele Alborghetti Nai
- Department of Pathology, Medical School, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, Brazil.
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| | | | | | - Alfonsina D'Amato
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
8
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
9
|
Tang W, Xiang X, Wang H, Zhou W, He L, Yin Y, Li T. Zinc lactate alleviates oxidative stress by modulating crosstalk between constitutive androstane receptor signaling pathway and gut microbiota profile in weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:23-33. [PMID: 38131030 PMCID: PMC10730354 DOI: 10.1016/j.aninu.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 12/23/2023]
Abstract
This study aimed to determine the regulatory mechanism of dietary zinc lactate (ZL) supplementation on intestinal oxidative stress damage in a paraquat (PQ)-induced piglet model. Twenty-eight piglets (mean body weight 9.51 ± 0.23 kg) weaned at 28 d of age were randomly divided into control, ZL, PQ, and ZL + PQ groups (n = 7 in each group). The ZL-supplemented diet had little effect on growth performance under normal physiological conditions. However, under PQ challenge, ZL supplementation significantly improved average daily gain (P < 0.05) and reduced the frequency of diarrhea. ZL improved intestinal morphology and ultrastructure by significantly increasing the expression level of the jejunal tight junction protein, zonula occludens-1 (ZO-1) (P < 0.05), and intestinal zinc transport and absorption in PQ-induced piglets, which reduced intestinal permeability. ZL supplementation also enhanced the expression of antioxidant and anti-inflammatory factor-related genes and decreased inflammatory cytokine expression and secretion in PQ-induced piglets. Furthermore, ZL treatment significantly inhibited the activation of constitutive androstane receptor (CAR) signaling (P < 0.01) in PQ-induced piglets and altered the structure of the gut microbiota, especially by significantly increasing the abundance of beneficial gut microbes, including UCG_002, Ruminococcus, Rikenellaceae_RC9_gut_group, Christensenellaceae_R_7_group, Treponema, unclassified_Christensenellaceae, and unclassified_Erysipelotrichaceae (P < 0.05). These data reveal that pre-administration of ZL to piglets can suppress intestinal oxidative stress by improving antioxidant and anti-inflammatory capacity and regulating the crosstalk between CAR signaling and gut microbiota.
Collapse
Affiliation(s)
- Wenjie Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Sichuan Academy of Animal Sciences, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu 610000, China
| | - Xuan Xiang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houfu Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wentao Zhou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Chen J, Bearz A, Kim DW, Mamdani H, Bauman J, Chiari R, Ou SHI, Solomon BJ, Soo RA, Felip E, Shaw AT, Thurm H, Clancy JS, Lee K, O'Gorman M, Tanski C, Pithavala YK. Evaluation of the Effect of Lorlatinib on CYP2B6, CYP2C9, UGT, and P-Glycoprotein Substrates in Patients with Advanced Non-Small Cell Lung Cancer. Clin Pharmacokinet 2024; 63:171-182. [PMID: 38079095 PMCID: PMC10847213 DOI: 10.1007/s40262-023-01309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND AND OBJECTIVE Lorlatinib is a tyrosine kinase inhibitor approved for the treatment of advanced anaplastic lymphoma kinase-positive non-small cell lung cancer. This study assessed the effect of steady-state lorlatinib on the metabolic enzymes cytochrome P450 (CYP) 2B6, CYP2C9, and uridine 5'-diphospho-glucuronosyltransferase (UGT) and the P-glycoprotein (P-gp) transporter. METHODS Thirty-two patients received a single oral dose of a probe drug on Day - 2 to determine the pharmacokinetics of the probe drug alone. Starting on Day 1, patients received 100 mg oral lorlatinib daily. On Day 15, a single oral dose of the probe drug was administered concurrently with lorlatinib. Pharmacokinetic parameters for these probe substrates were assessed. RESULTS Plasma exposures of all probe substrates were reduced by lorlatinib compared with the probe alone. The greatest reduction in area under the plasma concentration-time curve from time zero to infinity (AUC∞) and maximum (peak) plasma drug concentration (Cmax) (67% and 63% decrease, respectively) was observed with the P-gp probe substrate fexofenadine. Lorlatinib coadministration also decreased the AUC∞ and Cmax of bupropion (CYP2B6 probe substrate) by 25% and 27%, tolbutamide (CYP2C9 probe substrate) by 43% and 15%, and acetaminophen (UGT probe substrate) by 45% and 28%, respectively. CONCLUSIONS Lorlatinib is a net moderate inducer of P-gp and a weak inducer of CYP2B6, CYP2C9, and UGT after steady state is achieved with daily dosing. Medications that are P-gp substrates with a narrow therapeutic window should be avoided in patients taking lorlatinib; no dose modifications are needed with substrates of CYP2B6, CYP2C9, or UGT. CLINICALTRIALS gov: NCT01970865.
Collapse
Affiliation(s)
- Joseph Chen
- Pfizer, New York, NY, USA
- Genentech, South San Francisco, CA, USA
| | | | - Dong-Wan Kim
- Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Hirva Mamdani
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | - Rita Chiari
- Medical Oncology, AULSS6 Veneto, Padua, Italy
| | - Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, University of California at Irvine School of Medicine, Orange, CA, USA
| | | | - Ross A Soo
- National University Hospital Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee J, Beers JL, Geffert RM, Jackson KD. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules 2024; 14:99. [PMID: 38254699 PMCID: PMC10813492 DOI: 10.3390/biom14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Drug metabolism is a major determinant of drug concentrations in the body. Drug-drug interactions (DDIs) caused by the co-administration of multiple drugs can lead to alteration in the exposure of the victim drug, raising safety or effectiveness concerns. Assessment of the DDI potential starts with in vitro experiments to determine kinetic parameters and identify risks associated with the use of comedication that can inform future clinical studies. The diverse range of experimental models and techniques has significantly contributed to the examination of potential DDIs. Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of many drugs on the market, making them frequently implicated in drug metabolism and DDIs. Consequently, there has been a growing focus on the assessment of DDI risk for CYPs. This review article provides mechanistic insights underlying CYP inhibition/induction and an overview of the in vitro assessment of CYP-mediated DDIs.
Collapse
Affiliation(s)
- Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| | | | | | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| |
Collapse
|
12
|
Nenkov M, Shi Y, Ma Y, Gaßler N, Chen Y. Targeting Farnesoid X Receptor in Tumor and the Tumor Microenvironment: Implication for Therapy. Int J Mol Sci 2023; 25:6. [PMID: 38203175 PMCID: PMC10778939 DOI: 10.3390/ijms25010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The farnesoid-X receptor (FXR), a member of the nuclear hormone receptor superfamily, can be activated by bile acids (BAs). BAs binding to FXR activates BA signaling which is important for maintaining BA homeostasis. FXR is differentially expressed in human organs and exists in immune cells. The dysregulation of FXR is associated with a wide range of diseases including metabolic disorders, inflammatory diseases, immune disorders, and malignant neoplasm. Recent studies have demonstrated that FXR influences tumor cell progression and development through regulating oncogenic and tumor-suppressive pathways, and, moreover, it affects the tumor microenvironment (TME) by modulating TME components. These characteristics provide a new perspective on the FXR-targeted therapeutic strategy in cancer. In this review, we have summarized the recent research data on the functions of FXR in solid tumors and its influence on the TME, and discussed the mechanisms underlying the distinct function of FXR in various types of tumors. Additionally, the impacts on the TME by other BA receptors such as takeda G protein-coupled receptor 5 (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic receptors (CHRM2 and CHRM3), have been depicted. Finally, the effects of FXR agonists/antagonists in a combination therapy with PD1/PD-L1 immune checkpoint inhibitors and other anti-cancer drugs have been addressed.
Collapse
Affiliation(s)
- Miljana Nenkov
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Yihui Shi
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA;
| | - Yunxia Ma
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| |
Collapse
|
13
|
Miao X, Ye H, Cui X, Guo X, Su F. Resveratrol attenuates efavirenz-induced hepatic steatosis and hypercholesterolemia in mice by inhibiting pregnane X receptor activation and decreasing inflammation. Nutr Res 2023; 119:119-131. [PMID: 37826994 DOI: 10.1016/j.nutres.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Efavirenz (EFV), a widely prescribed antiviral medication, has been implicated in dyslipidemia and can activate the pregnane X receptor (PXR), leading to hepatic steatosis and hypercholesterolemia in mice. Resveratrol (RES) can ameliorate hepatic steatosis and functions as a partial PXR agonist, capable of mitigating PXR expression induced by other PXR agonists. Therefore, we hypothesized that RES could attenuate EFV-induced hepatic steatosis and hypercholesterolemia by downregulating PXR expression and suppressing inflammatory cytokine production. Here, we conducted an in vivo study involving 6-week-old male mice, which were divided into 4 groups for a 7-day intervention: control (carrier solution), EFV (80 mg/kg), RES (50 mg/kg), and RES + EFV groups. Serum and hepatic tissue samples were collected to assess cholesterol and triglyceride concentrations. Hepatic lipid accumulation was evaluated through hematoxylin-eosin and oil red O staining. Polymerase chain reaction and western blot were performed to quantify hepatic inflammatory factors, lipogenic gene, and PXR expression. Our results indicated that hepatic lipid droplet accumulation was reduced in the RES + EFV group compared with the EFV group. Similarly, the expressions of hepatic inflammatory factors were attenuated in the RES + EFV group relative to the EFV group. Furthermore, RES counteracted the upregulation of hepatic lipid-metabolizing enzymes induced by EFV at both the transcriptional and protein levels. Importantly, PXR expression was downregulated in the RES + EFV group compared with the EFV group. Conclusively, our findings suggest that RES effectively mitigates EFV-induced hepatic steatosis and hypercholesterolemia by inhibiting PXR activation and decreasing inflammation.
Collapse
Affiliation(s)
- Xingguo Miao
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China; Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Hui Ye
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China
| | - Xiaoya Cui
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China
| | - Xiuxiu Guo
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China
| | - Feifei Su
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
14
|
Karami E, Goodarzi Z, Shahtaheri SJ, Kiani M, Faridan M, Ghazi-Khansari M. The aqueous extract of Artemisia Absinthium L. stimulates HO-1/MT-1/Cyp450 signaling pathway via oxidative stress regulation induced by aluminium oxide nanoparticles (α and γ) animal model. BMC Complement Med Ther 2023; 23:310. [PMID: 37670294 PMCID: PMC10478434 DOI: 10.1186/s12906-023-04121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND This research aimed to evaluate the protective effects of Artemisia Absinthium L. (Abs) against liver damage induced by aluminium oxide nanoparticles (Al2O3 NPs) in rats, including both structural and functional changes associated with hepatotoxicity. METHODS Thirty-six rats were randomly divided into six groups (n = 6). The first group received no treatment. The second group was orally administered Abs at a dose of 200 mg/kg/b.w. The third and fifth groups were injected intraperitoneally with γ-Al2O3 NPs and α-Al2O3 NPs, respectively, at a dose of 30 mg/kg/b.w. The fourth and sixth groups were pre-treated with oral Abs at a dose of 200 mg/kg/b.w. along with intraperitoneal injection of γ-Al2O3 NPs and α-Al2O3 NPs, respectively, at a dose of 30 mg/kg/b.w. RESULTS Treatment with γ-Al2O3 NPs resulted in a significant decrease (P < 0.05) in total body weight gain, relative liver weight to body weight, and liver weight in rats. However, co-administration of γ-Al2O3 NPs with Abs significantly increased body weight gain (P < 0.05). Rats treated with Al2O3 NPs (γ and α) exhibited elevated levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), alanine transaminase (ALT), and aspartate aminotransferase (AST). Conversely, treatment significantly reduced glutathione peroxidase (GPx), catalase (CAT), total superoxide dismutase (T-SOD), and total antioxidant capacity (TAC) levels compared to the control group. Furthermore, the expression of heme oxygenase-1 (HO-1) and metallothionein-1 (MT-1) mRNAs, cytochrome P450 (CYP P450) protein, and histopathological changes were significantly up-regulated in rats injected with Al2O3 NPs. Pre-treatment with Abs significantly reduced MDA, AST, HO-1, and CYP P450 levels in the liver, while increasing GPx and T-SOD levels compared to rats treated with Al2O3 NPs. CONCLUSION The results indicate that Abs has potential protective effects against oxidative stress, up-regulation of oxidative-related genes and proteins, and histopathological alterations induced by Al2O3 NPs. Notably, γ-Al2O3 NPs exhibited greater hepatotoxicity than α-Al2O3 NPs.
Collapse
Affiliation(s)
- Esmaeil Karami
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Goodarzi
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Jamaleddin Shahtaheri
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehrafarin Kiani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Faridan
- Department of Occupational Health and Safety at Work Engineering, Environmental Health Research CenterLorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
16
|
Dauwe Y, Mary L, Oliviero F, Grimaldi M, Balaguer P, Gayrard V, Mselli-Lakhal L. Steatosis and Metabolic Disorders Associated with Synergistic Activation of the CAR/RXR Heterodimer by Pesticides. Cells 2023; 12:cells12081201. [PMID: 37190111 DOI: 10.3390/cells12081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
The nuclear receptor, constitutive androstane receptor (CAR), which forms a heterodimer with the retinoid X receptor (RXR), was initially reported as a transcription factor that regulates hepatic genes involved in detoxication and energy metabolism. Different studies have shown that CAR activation results in metabolic disorders, including non-alcoholic fatty liver disease, by activating lipogenesis in the liver. Our objective was to determine whether synergistic activations of the CAR/RXR heterodimer could occur in vivo as described in vitro by other authors, and to assess the metabolic consequences. For this purpose, six pesticides, ligands of CAR, were selected, and Tri-butyl-tin (TBT) was used as an RXR agonist. In mice, CAR's synergic activation was induced by dieldrin associated with TBT, and combined effects were induced by propiconazole, bifenox, boscalid, and bupirimate. Moreover, a steatosis, characterized by increased triglycerides, was observed when TBT was combined with dieldrin, propiconazole, bifenox, boscalid, and bupirimate. Metabolic disruption appeared in the form of increased cholesterol and lowered free fatty acid plasma levels. An in-depth analysis revealed increased expression of genes involved in lipid synthesis and lipid import. These results contribute to the growing understanding of how environmental contaminants can influence nuclear receptor activity and associated health risks.
Collapse
Affiliation(s)
- Yannick Dauwe
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Lucile Mary
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-Université Montpellier-Institut régional du Cancer Montpellier, CEDEX 5, F-34298 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-Université Montpellier-Institut régional du Cancer Montpellier, CEDEX 5, F-34298 Montpellier, France
| | - Véronique Gayrard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Laïla Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| |
Collapse
|
17
|
Casey A, Köcher T, Caygill S, Champion C, Bonnot C, Dolan L. Transcriptome changes in chlorsulfuron-treated plants are caused by acetolactate synthase inhibition and not induction of a herbicide detoxification system in Marchantia polymorpha. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105370. [PMID: 36963939 DOI: 10.1016/j.pestbp.2023.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
A sensing mechanism in mammals perceives xenobiotics and induces the transcription of genes encoding proteins that detoxify these molecules. However, it is unclear if plants sense xenobiotics, and activate an analogous signalling system leading to their detoxification. Using the liverwort Marchantia polymorpha, we tested the hypothesis that there is a sensing system in plants that perceives herbicides resulting in the increased transcription of genes encoding proteins that detoxify these herbicides. Consistent with the hypothesis, we show that chlorsulfuron-treatment induces changes in the M. polymorpha transcriptome. However, these transcriptome changes do not occur in chlorsulfuron (CS)-treated target site resistant mutants, where the gene encoding the target carries a mutation that confers resistance to chlorsulfuron. Instead, we show that inactivation of the chlorsulfuron target, acetolactate synthase (ALS) (also known as acetohydroxyacid synthase (AHAS)), is required for the transcriptome response. These data demonstrate that the transcriptome changes in chlorsulfuron-treated plants are caused by disrupted amino acid synthesis and metabolism resulting from acetolactate synthase inhibition, and indicate that the transcriptome changes are not caused by a herbicide sensing mechanism.
Collapse
Affiliation(s)
- Alexandra Casey
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom; Gregor Mendel Institute, Dr. Bohr-Gasse, 3, Vienna 1030, Austria
| | - Thomas Köcher
- Vienna BioCenter Core Facilities GmbH, Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Samuel Caygill
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom; Gregor Mendel Institute, Dr. Bohr-Gasse, 3, Vienna 1030, Austria
| | - Clément Champion
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Clémence Bonnot
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Liam Dolan
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom; Gregor Mendel Institute, Dr. Bohr-Gasse, 3, Vienna 1030, Austria.
| |
Collapse
|
18
|
Luo J, Zhang M, Deng Y, Li H, Bu Q, Liu R, Yu J, Liu S, Zeng Z, Sun W, Gui G, Qian X, Li Y. Copper nanoparticles lead to reproductive dysfunction by affecting key enzymes of ovarian hormone synthesis and metabolism in female rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114704. [PMID: 36898311 DOI: 10.1016/j.ecoenv.2023.114704] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/07/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Studies on the general toxicity of copper nanoparticles (Cu NPs) have been conducted extensively, but their effects on reproductive toxicity remain unclear. In this study, we evaluated the toxic effect of Cu NPs on pregnant rats and their litter. The comparative in vivo toxicity of Cu ions, Cu NPs, and Cu microparticles (MPs) was studied in a 17-day repeated oral-dose experiment at the doses of 60, 120, and 180 mg/kg/day in pregnant rats. The pregnancy rate, mean live litter size, and number of dams decreased when exposed to Cu NPs. Moreover, Cu NPs caused a dose-dependent increase in ovarian Cu levels. The metabolomics results showed that Cu NPs caused reproductive dysfunction by altering sex hormones. In addition, in vivo and in vitro experiments showed that the ovarian cytochrome P450 enzymes (CYP450), responsible for hormone production, were significantly upregulated, whereas the enzymes responsible for hormone metabolism were significantly inhibited, resulting in a metabolic imbalance in some ovarian hormones. Furthermore, the results revealed that the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways significantly participated in the regulation of ovarian CYP enzyme expression. Overall, the results of the in vivo and in vitro toxicity experiments with Cu ions, Cu NPs, and Cu MPs suggested that toxicity from nanoscale Cu particles poses a more serious reproductive threat than microscale Cu as Cu NPs could directly damage the ovary and affect the metabolism of ovarian hormones.
Collapse
Affiliation(s)
- Jie Luo
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China; College of Agriculture, Tongren Polytechnic College, Tongren 554300, China; Engineering Research Center of Safe and Efficient Application of Guizhou Province Feed Forage, Tongren 554300, China
| | - Mingzhi Zhang
- Meishan Food and Drug Inspection and Testing Center, Meishan 611330, China
| | - Yang Deng
- Chengdu Animal Genetic Resources Protection Center, Chengdu 611130, China
| | - Haohuan Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinglong Bu
- Department of Pet Technology, Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
| | - Rui Liu
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China; College of Agriculture, Tongren Polytechnic College, Tongren 554300, China; Engineering Research Center of Safe and Efficient Application of Guizhou Province Feed Forage, Tongren 554300, China
| | - Jiansheng Yu
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China
| | - Shanshan Liu
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China; College of Agriculture, Tongren Polytechnic College, Tongren 554300, China
| | - Ze Zeng
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China; College of Agriculture, Tongren Polytechnic College, Tongren 554300, China; Engineering Research Center of the Medicinal Diet Industry, Tongren Polytechnic College, Tongren 554300, China
| | - Wei Sun
- College of Agriculture, Tongren Polytechnic College, Tongren 554300, China
| | - Ganbei Gui
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China; College of Agriculture, Tongren Polytechnic College, Tongren 554300, China; Department of Pet Technology, Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
| | - Xicheng Qian
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China; National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren Polytechnic College, Tongren 554300, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
19
|
Heritable Risk and Protective Genetic Components of Glaucoma Medication Non-Adherence. Int J Mol Sci 2023; 24:ijms24065636. [PMID: 36982708 PMCID: PMC10058353 DOI: 10.3390/ijms24065636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness, affecting 76 million globally. It is characterized by irreversible damage to the optic nerve. Pharmacotherapy manages intraocular pressure (IOP) and slows disease progression. However, non-adherence to glaucoma medications remains problematic, with 41–71% of patients being non-adherent to their prescribed medication. Despite substantial investment in research, clinical effort, and patient education protocols, non-adherence remains high. Therefore, we aimed to determine if there is a substantive genetic component behind patients’ glaucoma medication non-adherence. We assessed glaucoma medication non-adherence with prescription refill data from the Marshfield Clinic Healthcare System’s pharmacy dispensing database. Two standard measures were calculated: the medication possession ratio (MPR) and the proportion of days covered (PDC). Non-adherence on each metric was defined as less than 80% medication coverage over 12 months. Genotyping was done using the Illumina HumanCoreExome BeadChip in addition to exome sequencing on the 230 patients (1) to calculate the heritability of glaucoma medication non-adherence and (2) to identify SNPs and/or coding variants in genes associated with medication non-adherence. Ingenuity pathway analysis (IPA) was utilized to derive biological meaning from any significant genes in aggregate. Over 12 months, 59% of patients were found to be non-adherent as measured by the MPR80, and 67% were non-adherent as measured by the PDC80. Genome-wide complex trait analysis (GCTA) suggested that 57% (MPR80) and 48% (PDC80) of glaucoma medication non-adherence could be attributed to a genetic component. Missense mutations in TTC28, KIAA1731, ADAMTS5, OR2W3, OR10A6, SAXO2, KCTD18, CHCHD6, and UPK1A were all found to be significantly associated with glaucoma medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10−3) (PDC80). While missense mutations in TINAG, CHCHD6, GSTZ1, and SEMA4G were found to be significantly associated with medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10−3) (MPR80). The same coding SNP in CHCHD6 which functions in Alzheimer’s disease pathophysiology was significant by both measures and increased risk for glaucoma medication non-adherence by three-fold (95% CI, 1.62–5.8). Although our study was underpowered for genome-wide significance, SNP rs6474264 within ZMAT4 (p = 5.54 × 10–6) was found to be nominally significant, with a decreased risk for glaucoma medication non-adherence (OR, 0.22; 95% CI, 0.11–0.42)). IPA demonstrated significant overlap, utilizing, both standard measures including opioid signaling, drug metabolism, and synaptogenesis signaling. CREB signaling in neurons (which is associated with enhancing the baseline firing rate for the formation of long-term potentiation in nerve fibers) was shown to have protective associations. Our results suggest a substantial heritable genetic component to glaucoma medication non-adherence (47–58%). This finding is in line with genetic studies of other conditions with a psychiatric component (e.g., post-traumatic stress disorder (PTSD) or alcohol dependence). Our findings suggest both risk and protective statistically significant genes/pathways underlying glaucoma medication non-adherence for the first time. Further studies investigating more diverse populations with larger sample sizes are needed to validate these findings.
Collapse
|
20
|
Protein Abundance of Drug Metabolizing Enzymes in Human Hepatitis C Livers. Int J Mol Sci 2023; 24:ijms24054543. [PMID: 36901973 PMCID: PMC10002520 DOI: 10.3390/ijms24054543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Hepatic drug metabolizing enzymes (DMEs), whose activity may be affected by liver diseases, are major determinants of drug pharmacokinetics. Hepatitis C liver samples in different functional states, i.e., the Child-Pugh class A (n = 30), B (n = 21) and C (n = 7) were analyzed for protein abundances (LC-MS/MS) and mRNA levels (qRT-PCR) of 9 CYPs and 4 UGTs enzymes. The protein levels of CYP1A1, CYP2B6, CYP2C8, CYP2C9, and CYP2D6 were not affected by the disease. In the Child-Pugh class A livers, a significant up-regulation of UGT1A1 (to 163% of the controls) was observed. The Child-Pugh class B was associated with down-regulation of the protein abundance of CYP2C19 (to 38% of the controls), CYP2E1 (to 54%), CYP3A4 (to 33%), UGT1A3 (to 69%), and UGT2B7 (to 56%). In the Child-Pugh class C livers, CYP1A2 was found to be reduced (to 52%). A significant trend in down-regulation of the protein abundance was documented for CYP1A2, CYP2C9, CYP3A4, CYP2E1, UGT2B7, and UGT2B15. The results of the study demonstrate that DMEs protein abundances in the liver are affected by hepatitis C virus infection and depend on the severity of the disease.
Collapse
|
21
|
PPARα Induces the Expression of CAR That Works as a Negative Regulator of PPARα Functions in Mouse Livers. Int J Mol Sci 2023; 24:ijms24043953. [PMID: 36835365 PMCID: PMC9960678 DOI: 10.3390/ijms24043953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor α (PPARα) is a transcription factor that controls the transcription of genes responsible for fatty acid metabolism. We have recently reported a possible drug-drug interaction mechanism via the interaction of PPARα with the xenobiotic nuclear receptor constitutive androstane receptor (CAR). Drug-activated CAR competes with the transcriptional coactivator against PPARα and prevents PPARα-mediated lipid metabolism. In this study, to elucidate the crosstalk between CAR and PPARα, we focused on the influence of PPARα activation on CAR's gene expression and activation. Male C57BL/6N mice (8-12 weeks old, n = 4) were treated with PPARα and CAR activators (fenofibrate and phenobarbital, respectively), and hepatic mRNA levels were determined using quantitative reverse transcription PCR. Reporter assays using the mouse Car promoter were performed in HepG2 cells to determine the PPARα-dependent induction of CAR. CAR KO mice were treated with fenofibrate, and the hepatic mRNA levels of PPARα target genes were determined. Treatment of mice with a PPARα activator increased Car mRNA levels as well as genes related to fatty acid metabolism. In reporter assays, PPARα induced the promoter activity of the Car gene. Mutation of the putative PPARα-binding motif prevented PPARα-dependent induction of reporter activity. In electrophoresis mobility shift assay, PPARα bound to the DR1 motif of the Car promoter. Since CAR has been reported to attenuate PPARα-dependent transcription, CAR was considered a negative feedback protein for PPARα activation. Treatment with fenofibrate induced the mRNA levels of PPARα target genes in Car-null mice more than those in wild-type mice, suggesting that CAR functions as a negative feedback factor for PPARα.
Collapse
|
22
|
Men S, Wang H. Phenobarbital in Nuclear Receptor Activation: An Update. Drug Metab Dispos 2023; 51:210-218. [PMID: 36351837 PMCID: PMC9900862 DOI: 10.1124/dmd.122.000859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
Phenobarbital (PB) is a commonly prescribed anti-epileptic drug that can also benefit newborns from hyperbilirubinemia. Being the first drug demonstrating hepatic induction of cytochrome P450 (CYP), PB has since been broadly used as a model compound to study xenobiotic-induced drug metabolism and clearance. Mechanistically, PB-mediated CYP induction is linked to a number of nuclear receptors, such as the constitutive androstane receptor (CAR), pregnane X receptor (PXR), and estrogen receptor α, with CAR being the predominant regulator. Unlike prototypical agonistic ligands, PB-mediated activation of CAR does not involve direct binding with the receptor. Instead, dephosphorylation of threonine 38 in the DNA-binding domain of CAR was delineated as a key signaling event underlying PB-mediated indirect activation of CAR. Further studies revealed that such phosphorylation sites appear to be highly conserved among most human nuclear receptors. Interestingly, while PB is a pan-CAR activator in both animals and humans, PB activates human but not mouse PXR. The species-specific role of PB in gene regulation is a key determinant of its implication in xenobiotic metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In this review, we summarize the recent progress in our understanding of PB-provoked transactivation of nuclear receptors with a focus on CAR and PXR. SIGNIFICANCE STATEMENT: Extensive studies using PB as a research tool have significantly advanced our understanding of the molecular basis underlying nuclear receptor-mediated drug metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In particular, CAR has been established as a cell signaling-regulated nuclear receptor in addition to ligand-dependent functionality. This mini-review highlights the mechanisms by which PB transactivates CAR and PXR.
Collapse
Affiliation(s)
- Shuaiqian Men
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (S.M., H.W.)
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (S.M., H.W.)
| |
Collapse
|
23
|
Dietary-Induced Bacterial Metabolites Reduce Inflammation and Inflammation-Associated Cancer via Vitamin D Pathway. Int J Mol Sci 2023; 24:ijms24031864. [PMID: 36768196 PMCID: PMC9914969 DOI: 10.3390/ijms24031864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Environmental factors, including westernised diets and alterations to the gut microbiota, are considered risk factors for inflammatory bowel diseases (IBD). The mechanisms underpinning diet-microbiota-host interactions are poorly understood in IBD. We present evidence that feeding a lard-based high-fat (HF) diet can protect mice from developing DSS-induced acute and chronic colitis and colitis-associated cancer (CAC) by significantly reducing tumour burden/incidence, immune cell infiltration, cytokine profile, and cell proliferation. We show that HF protection was associated with increased gut microbial diversity and a significant reduction in Proteobacteria and an increase in Firmicutes and Clostridium cluster XIVa abundance. Microbial functionality was modulated in terms of signalling fatty acids and bile acids (BA). Faecal secondary BAs were significantly induced to include moieties that can activate the vitamin D receptor (VDR), a nuclear receptor richly represented in the intestine and colon. Indeed, colonic VDR downstream target genes were upregulated in HF-fed mice and in combinatorial lipid-BAs-treated intestinal HT29 epithelial cells. Collectively, our data indicate that HF diet protects against colitis and CAC risk through gut microbiota and BA metabolites modulating vitamin D targeting pathways. Our data highlights the complex relationship between dietary fat-induced alterations of microbiota-host interactions in IBD/CAC pathophysiology.
Collapse
|
24
|
Zhang YF, Gao Y, Yang J, Jiang YM, Huang M, Fan SC, Bi HC. Long-term treatment with the mPXR agonist PCN promotes hepatomegaly and lipid accumulation without hepatocyte proliferation in mice. Acta Pharmacol Sin 2023; 44:169-177. [PMID: 35773338 DOI: 10.1038/s41401-022-00925-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 01/18/2023] Open
Abstract
Pregnane X receptor (PXR) is highly expressed in the liver and plays a pivotal role in xenobiotic and endobiotic metabolism. We previously reported that PXR activation by its specific mouse agonist pregnenolone 16α-carbonitrile (PCN) significantly induces liver enlargement and lipid accumulation. However, the effect of long-term PCN treatment on PXR and mouse liver is still unknown. This study aimed to explore the influence of long-term administration of PCN on mouse liver and hepatic lipid homeostasis. Male C57BL/6 mice were injected intraperitoneally with PCN (100 mg/kg once a week) for 42 weeks. Serum and liver samples were collected for biochemical and histological analysis. PXR activation was investigated by Western blot. Ultra-high-performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (UHPLC-ESI-HRMS)-based lipidomics analysis was performed to explore the change in different lipid categories. The results showed that long-term treatment with PCN significantly promoted hepatomegaly without hepatocyte proliferation and enlargement. Long-term treatment with PCN did not upregulate PXR target proteins in mice, and there was no significant upregulation of CYP3A11, CYP2B10, UGT1A1, MRP2, or MRP4. Lipidomics analysis showed obvious hepatic lipid accumulation in the PCN-treated mice, and the most significant change was found in triglycerides (TGs). Additionally, long-term treatment with PCN had no risk for carcinogenesis. These findings demonstrated that long-term PCN treatment induces hepatomegaly and lipid accumulation without hepatocyte proliferation or enlargement.
Collapse
Affiliation(s)
- Yi-Fei Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yi-Ming Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Shi-Cheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Hui-Chang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
25
|
Zhang X, Sun K, Wang X, Shi X, Gong D. Chlorpyrifos induces apoptosis and necroptosis via the activation of CYP450s pathway mediated by nuclear receptors in LMH cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1060-1071. [PMID: 35908035 DOI: 10.1007/s11356-022-22285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Chlorpyrifos (CPF), an organophosphorus pesticide, is detected commonly in environments, where it is thought to be highly toxic to non-target organisms. However, the mechanism of CYP450s pathway mediated by nuclear receptors on CPF-induced apoptosis and necroptosis at the cellular level and the effect of CPF on the cytotoxicity of the chicken hepatocarcinoma cell line (LMH) has also not been reported in detail. Therefore, this experiment aims to explore whether CPF can improve apoptosis and necroptosis in LMH cells by activating the nuclear receptors/CYP450s axis. LMH cells, the subject of this study, were exposed to 5 μg/mL, 10 μg/mL, and 15 μg/mL doses of CPF. With the increase of CPF concentration, the increase of nuclear receptor level led to the up-regulation of CYP450s activity. With the massive production of ROS, the expression of apoptotic pathway genes (Bax, Caspase9, and Caspase3) enhanced, while Bcl-2 expression dropped sharply. The expression of programmed necroptosis genes (RIPK1, RIPK3, and MLKL) heightened, and Caspase8 reduced considerably. In short, our data suggests that excessive activation of nuclear receptors and CYP450s induced by CPF promotes ROS production, which directs apoptosis and programmed necroptosis in LMH cells.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kexin Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Duqiang Gong
- College of Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China.
| |
Collapse
|
26
|
Li Y, Lin W, Chai SC, Wu J, Annu K, Chen T. Design and Optimization of 1 H-1,2,3-Triazole-4-carboxamides as Novel, Potent, and Selective Inverse Agonists and Antagonists of PXR. J Med Chem 2022; 65:16829-16859. [PMID: 36480704 PMCID: PMC9789209 DOI: 10.1021/acs.jmedchem.2c01640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pregnane X receptor (PXR) is a key regulator of drug metabolism. Many drugs bind to and activate PXR, causing adverse drug responses. This suggests that PXR inhibitors have therapeutic value, but potent PXR inhibitors have so far been lacking. Herein, we report the structural optimization of a series of 1H-1,2,3-triazole-4-carboxamides compounds that led to the discovery of compound 85 as a selective and the most potent inverse agonist and antagonist of PXR, with low nanomolar IC50 values for binding and cellular activity. Importantly, compound 89, a close analog of 85, is a selective and pure antagonist with low nanomolar IC50 values for binding and cellular activity. This study has provided novel, selective, and most potent PXR inhibitors (a dual inverse agonist/antagonist and a pure antagonist) for use in basic research and future clinical studies and also shed light on how to reduce the binding affinity of a compound to PXR.
Collapse
Affiliation(s)
- Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Sergio C. Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Kavya Annu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| |
Collapse
|
27
|
Chen K, Jones HM. PBPK perspective on alternative CYP3A4 inducers for rifampin. CPT Pharmacometrics Syst Pharmacol 2022; 11:1543-1546. [PMID: 36146978 PMCID: PMC9755915 DOI: 10.1002/psp4.12864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
|
28
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
29
|
Kamaraj R, Drastik M, Maixnerova J, Pavek P. Allosteric Antagonism of the Pregnane X Receptor (PXR): Current-State-of-the-Art and Prediction of Novel Allosteric Sites. Cells 2022; 11:2974. [PMID: 36230936 PMCID: PMC9563780 DOI: 10.3390/cells11192974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a xenobiotic-activated transcription factor with high levels of expression in the liver. It not only plays a key role in drug metabolism and elimination, but also promotes tumor growth, drug resistance, and metabolic diseases. It has been proposed as a therapeutic target for type II diabetes, metabolic syndrome, and inflammatory bowel disease, and PXR antagonists have recently been considered as a therapy for colon cancer. There are currently no PXR antagonists that can be used in a clinical setting. Nevertheless, due to the large and complex ligand-binding pocket (LBP) of the PXR, it is challenging to discover PXR antagonists at the orthosteric site. Alternative ligand binding sites of the PXR have also been proposed and are currently being studied. Recently, the AF-2 allosteric binding site of the PXR has been identified, with several compounds modulating the site discovered. Herein, we aimed to summarize our current knowledge of allosteric modulation of the PXR as well as our attempt to unlock novel allosteric sites. We describe the novel binding function 3 (BF-3) site of PXR, which is also common for other nuclear receptors. In addition, we also mention a novel allosteric site III based on in silico prediction. The identified allosteric sites of the PXR provide new insights into the development of safe and efficient allosteric modulators of the PXR receptor. We therefore propose that novel PXR allosteric sites might be promising targets for treating chronic metabolic diseases and some cancers.
Collapse
Affiliation(s)
- Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Martin Drastik
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Jana Maixnerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
30
|
Bolleddula J, Gopalakrishnan S, Hu P, Dong J, Venkatakrishnan K. Alternatives to rifampicin: A review and perspectives on the choice of strong CYP3A inducers for clinical drug-drug interaction studies. Clin Transl Sci 2022; 15:2075-2095. [PMID: 35722783 PMCID: PMC9468573 DOI: 10.1111/cts.13357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
N-Nitrosamine (NA) impurities are considered genotoxic and have gained attention due to the recall of several marketed drug products associated with higher-than-permitted limits of these impurities. Rifampicin is an index inducer of multiple cytochrome P450s (CYPs) including CYP2B6, 2C8, 2C9, 2C19, and 3A4/5 and an inhibitor of OATP1B transporters (single dose). Hence, rifampicin is used extensively in clinical studies to assess drug-drug interactions (DDIs). Despite NA impurities being reported in rifampicin and rifapentine above the acceptable limits, these critical anti-infective drugs are available for therapeutic use considering their benefit-risk profile. Reports of NA impurities in rifampicin products have created uncertainty around using rifampicin in clinical DDI studies, especially in healthy volunteers. Hence, a systematic investigation through a literature search was performed to determine possible alternative index inducer(s) to rifampicin. The available strong CYP3A inducers were selected from the University of Washington DDI Database and their in vivo DDI potential assessed using the data from clinical DDI studies with sensitive CYP3A substrates. To propose potential alternative CYP3A inducers, factors including lack of genotoxic potential, adequate safety, feasibility of multiple dose administration to healthy volunteers, and robust in vivo evidence of induction of CYP3A were considered. Based on the qualifying criteria, carbamazepine, phenytoin, and lumacaftor were identified to be the most promising alternatives to rifampicin for conducting CYP3A induction DDI studies. Strengths and limitations of the proposed alternative CYP3A inducers, the magnitude of in vivo CYP3A induction, appropriate study designs for each alternative inducer, and future perspectives are presented in this paper.
Collapse
Affiliation(s)
- Jayaprakasam Bolleddula
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | | | - Ping Hu
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | - Jennifer Dong
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | - Karthik Venkatakrishnan
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| |
Collapse
|
31
|
Proteomic analysis of hepatic effects of phenobarbital in mice with humanized liver. Arch Toxicol 2022; 96:2739-2754. [PMID: 35881160 PMCID: PMC9352639 DOI: 10.1007/s00204-022-03338-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Activation of the constitutive androstane receptor (CAR) may induce adaptive but also adverse effects in rodent liver, including the induction of drug-metabolizing enzymes, transient hepatocellular proliferation, and promotion of liver tumor growth. Human relevance of CAR-related adverse hepatic effects is controversially debated. Here, we used the chimeric FRG-KO mouse model with livers largely repopulated by human hepatocytes, in order to study human hepatocytes and their response to treatment with the model CAR activator phenobarbital (PB) in vivo. Mice received an intraperitoneal injection with 50 mg/kg body weight PB or saline, and were sacrificed after 72–144 h. Non-repopulated FRG-KO mice were used as additional control. Comprehensive proteomics datasets were generated by merging data obtained by targeted as well as non-targeted proteomics approaches. For the first time, a novel proteomics workflow was established to comparatively analyze the effects of PB on human and murine proteins within one sample. Analysis of merged proteome data sets and bioinformatics data mining revealed comparable responses in murine and human hepatocytes with respect to nuclear receptor activation and induction of xenobiotic metabolism. By contrast, activation of MYC, a key regulator of proliferation, was predicted only for mouse but not human hepatocytes. Analyses of 5-bromo-2′-deoxyuridine incorporation confirmed this finding. In summary, this study for the first time presents a comprehensive proteomic analysis of CAR-dependent effects in human and mouse hepatocytes from humanized FRG-KO mice. The data support the hypothesis that PB does induce adaptive metabolic responses, but not hepatocellular proliferation in human hepatocytes in vivo.
Collapse
|
32
|
Jacobs MN, Kubickova B, Boshoff E. Candidate Proficiency Test Chemicals to Address Industrial Chemical Applicability Domains for in vitro Human Cytochrome P450 Enzyme Induction. FRONTIERS IN TOXICOLOGY 2022; 4:880818. [PMID: 35795225 PMCID: PMC9252529 DOI: 10.3389/ftox.2022.880818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes play a key role in the metabolism of both xenobiotics and endogenous chemicals, and the activity of some CYP isoforms are susceptible to induction and/or inhibition by certain chemicals. As CYP induction/inhibition can bring about significant alterations in the level of in vivo exposure to CYP substrates and metabolites, CYP induction/inhibition data is needed for regulatory chemical toxicity hazard assessment. On the basis of available human in vivo pharmaceutical data, a draft Organisation for Economic Co-operation and Development Test Guideline (TG) for an in vitro CYP HepaRG test method that is capable of detecting the induction of four human CYPs (CYP1A1/1A2, 2B6, and 3A4), has been developed and validated for a set of pharmaceutical proficiency chemicals. However to support TG adoption, further validation data was requested to demonstrate the ability of the test method to also accurately detect CYP induction mediated by industrial and pesticidal chemicals, together with an indication on regulatory uses of the test method. As part of "GOLIATH", a European Union Horizon-2020 funded research project on metabolic disrupting chemical testing approaches, work is underway to generate supplemental validated data for an additional set of chemicals with sufficient diversity to allow for the approval of the guideline. Here we report on the process of proficiency chemical selection based on a targeted literature review, the selection criteria and considerations required for acceptance of proficiency chemical selection for OECD TG development (i.e. structural diversity, range of activity, relevant chemical sectors, global restrictions etc). The following 13 proposed proficiency chemicals were reviewed and selected as a suitable set for use in the additional validation experiments: tebuconazole, benfuracarb, atrazine, cypermethrin, chlorpyrifos, perfluorooctanoic acid, bisphenol A, N,N-diethyl-m-toluamide, benzo-[a]-pyrene, fludioxonil, malathion, triclosan, and caffeine. Illustrations of applications of the test method in relation to endocrine disruption and non-genotoxic carcinogenicity are provided.
Collapse
Affiliation(s)
- Miriam Naomi Jacobs
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| | - Barbara Kubickova
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| | - Eugene Boshoff
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| |
Collapse
|
33
|
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19:432-450. [PMID: 35165436 DOI: 10.1038/s41575-021-00566-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.
Collapse
|
34
|
Pham B, Cheng Z, Lopez D, Lindsay RJ, Foutch D, Majors RT, Shen T. Statistical Analysis of Protein-Ligand Interaction Patterns in Nuclear Receptor RORγ. Front Mol Biosci 2022; 9:904445. [PMID: 35782874 PMCID: PMC9240913 DOI: 10.3389/fmolb.2022.904445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
The receptor RORγ belongs to the nuclear receptor superfamily that senses small signaling molecules and regulates at the gene transcription level. Since RORγ has a high basal activity and plays an important role in immune responses, inhibitors targeting this receptor have been a focus for many studies. The receptor-ligand interaction is complex, and often subtle differences in ligand structure can determine its role as an inverse agonist or an agonist. We examined more than 130 existing RORγ crystal structures that have the same receptor complexed with different ligands. We reported the features of receptor-ligand interaction patterns and the differences between agonist and inverse agonist binding. Specific changes in the contact interaction map are identified to distinguish active and inactive conformations. Further statistical analysis of the contact interaction patterns using principal component analysis reveals a dominant mode which separates allosteric binding vs. canonical binding and a second mode which may indicate active vs. inactive structures. We also studied the nature of constitutive activity by performing a 100-ns computer simulation of apo RORγ. Using constitutively active nuclear receptor CAR as a comparison, we identified a group of conserved contacts that have similar contact strength between the two receptors. These conserved contact interactions, especially a couple key contacts in H11–H12 interaction, can be considered essential to the constitutive activity of RORγ. These protein-ligand and internal protein contact interactions can be useful in the development of new drugs that direct receptor activity.
Collapse
Affiliation(s)
- Bill Pham
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Ziju Cheng
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Daniel Lopez
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Richard J. Lindsay
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, United States
| | - David Foutch
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, United States
| | - Rily T. Majors
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Tongye Shen
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
- *Correspondence: Tongye Shen,
| |
Collapse
|
35
|
Petros Z, Habtewold A, Makonnen E, Aklillu E. Constitutive androstane receptor and pregnane X receptor genotype influence efavirenz plasma concentration and CYP2B6 enzyme activity. Sci Rep 2022; 12:9698. [PMID: 35690682 PMCID: PMC9188543 DOI: 10.1038/s41598-022-14032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Efavirenz is metabolized by CYP2B6, an inducible enzyme whose expression is regulated by the constitutive androstane receptor and pregnane X receptor nuclear receptors. CAR and PXR are encoded by genetically polymorphic NR1I2 and NR1I3, respectively. We examined the impact of NR1I2 and NR1I3 genotype on plasma EFV concentration and CYP2B6 enzyme activity among TB-HIV co-infected patients in Ethiopia. Treatment-naïve HIV patients with TB co-infection (n = 80) were enrolled and received first-line EFV-based antiretroviral and rifampicin-based anti-TB therapy. Plasma EFV and 8-hydroxy-EFV concentrations at the 4th and 16th week of EFV treatment were determined using LC/MS/MS. EFV/8-hydroxy-EFVmetabolic ratio was used as CYP2B6 metabolic activity index. In multivariate regression analysis, NR1I3 rs3003596C or NR1I2 rs2472677T variant allele carriers had significantly lower plasma EFV concentrations than non-carriers. Patients with NR1I2 rs3814057C/C genotype or NR1I3 rs3003596C allele carriers had significantly lower mean log EFV MR. Among CYP2B6*6 allele carriers, patients with NR1I3 rs2502815T/T or NR1I2 rs3814057C/C genotype had significantly lower mean log EFV MR. In conclusion, genetic variants in NR1I2 and NR1I3 genes influence plasma EFV exposure and CYP2B6 enzyme activity in TB-HIV co-infected patients on drug treatment.
Collapse
Affiliation(s)
- Zelalem Petros
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Wachamo University, Hosaena, Ethiopia
| | - Abiy Habtewold
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmaceutical Sciences, School of Pharmacy, Wiliam Carey University, Biloxi, MS, USA
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge, Stockholm, Sweden.
| |
Collapse
|
36
|
Shaw RPH, Kolyvas P, Dang N, Hyon A, Bailey K, Anakk S. Loss of Hepatic Small Heterodimer Partner Elevates Ileal Bile Acids and Alters Cell Cycle-related Genes in Male Mice. Endocrinology 2022; 163:bqac052. [PMID: 35451003 PMCID: PMC9113360 DOI: 10.1210/endocr/bqac052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/19/2022]
Abstract
Small heterodimer partner (Shp) regulates several metabolic processes, including bile acid levels, but lacks the conserved DNA binding domain. Phylogenetic analysis revealed conserved genetic evolution of SHP, FXR, CYP7A1, and CYP8B1. Shp, although primarily studied as a downstream target of Farnesoid X Receptor (Fxr), has a distinct hepatic role that is poorly understood. Here, we report that liver-specific Shp knockout (LShpKO) mice have impaired negative feedback of Cyp7a1 and Cyp8b1 on bile acid challenge and demonstrate that a single copy of the Shp gene is sufficient to maintain this response. LShpKO mice also exhibit elevated total bile acid pool with ileal bile acid composition mimicking that of cholic acid-fed control mice. Agonistic activation of Fxr (GW4064) in the LShpKO did not alter the elevated basal expression of Cyp8b1 but lowered Cyp7a1 expression. We found that deletion of Shp led to an enrichment of distinct motifs and pathways associated with circadian rhythm, copper ion transport, and DNA synthesis. We confirmed increased expression of metallothionein genes that can regulate copper levels in the absence of SHP. LShpKO livers also displayed a higher basal proliferation that was exacerbated specifically with bile acid challenge either with cholic acid or 3,5-diethoxycarbonyl-1,4-dihydrocollidine but not with another liver mitogen, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene. Overall, our data indicate that hepatic SHP uniquely regulates certain proliferative and metabolic cues.
Collapse
Affiliation(s)
| | - Peter Kolyvas
- Department of Molecular and Integrative Physiology, Urbana, IL 61801, USA
| | - Nathanlown Dang
- Department of Molecular and Integrative Physiology, Urbana, IL 61801, USA
| | - Angela Hyon
- Department of Molecular and Integrative Physiology, Urbana, IL 61801, USA
| | - Keith Bailey
- Veterinary Diagnostic Laboratory, Urbana, IL 61801, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA
- Division of Nutritional Sciences, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
37
|
Zhou S, Shu Y. Transcriptional Regulation of Solute Carrier (SLC) Drug Transporters. Drug Metab Dispos 2022; 50:DMD-MR-2021-000704. [PMID: 35644529 PMCID: PMC9488976 DOI: 10.1124/dmd.121.000704] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 09/03/2023] Open
Abstract
Facilitated transport is necessitated for large size, charged, and/or hydrophilic drugs to move across the membrane. The drug transporters in the solute carrier (SLC) superfamily, mainly including organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug and toxin extrusion proteins (MATEs), are critical facilitators of drug transport and distribution in human body. The expression of these SLC drug transporters is found in tissues throughout the body, with high abundance in the epithelial cells of major organs for drug disposition, such as intestine, liver, and kidney. These SLC drug transporters are clinically important in drug absorption, metabolism, distribution, and excretion. The mechanisms underlying their regulation have been revealing in recent years. Epigenetic and nuclear receptor-mediated transcriptional regulation of SLC drug transporters have particularly attracted much attention. This review focuses on the transcriptional regulation of major SLC drug transporter genes. Revealing the mechanisms underlying the transcription of those critical drug transporters will help us understand pharmacokinetics and pharmacodynamics, ultimately improving drug therapeutic effectiveness while minimizing drug toxicity. Significance Statement It has become increasingly recognized that solute carrier (SLC) drug transporters play a crucial, and sometimes determinative, role in drug disposition and response, which is reflected in decision-making during not only clinical drug therapy but also drug development. Understanding the mechanisms accounting for the transcription of these transporters is critical to interpret their abundance in various tissues under different conditions, which is necessary to clarify the pharmacological response, adverse effects, and drug-drug interactions for clinically used drugs.
Collapse
Affiliation(s)
- Shiwei Zhou
- Pharmaceutical Sciences, University of Maryland, United States
| | - Yan Shu
- Pharmaceutical Sciences, University of Maryland, United States
| |
Collapse
|
38
|
Niu Z, Qiang T, Lin W, Li Y, Wang K, Wang D, Wang X. Evaluation of Potential Herb-Drug Interactions Between Shengmai Injection and Losartan Potassium in Rat and In Vitro. Front Pharmacol 2022; 13:878526. [PMID: 35517807 PMCID: PMC9065348 DOI: 10.3389/fphar.2022.878526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: The present study aimed to explore the potential herb-drug interactions (HDI) between Shengmai injection (SMI) and losartan potassium (LOS) based on the expression profiles of cytochromes P450 (CYP450) and drug transporters in rat and in vitro. Methods: Different concentrations of SMI were used to explore the influence of SMI on the antihypertensive efficacy of LOS in the hypertension rat model established by N (omega)-nitro-L-arginine methyl ester (L-NAME) for 4 weeks. Subsequently, the serum concentration levels of LOS and losartan carboxylic acid (EXP3174) were determined by Liquid Chromatography Mass Spectrometry (LC-MS) and pharmacokinetic analysis. Human liver microsomes, human multidrug resistance protein 1 (MDR1/P-gp), and breast cancer resistance protein (BCRP) vesicles, human embryonic kidney 293 cell line with stable expression of the organic anion transporting polypeptide 1B1 (HEK293-OATP1B1 cells) and mock-transfected HEK293 (HEK293-MOCK) cells were used to verify the effects of SMI on CYP450 enzymes and drug transporters in vitro. Results: Low, medium, and high concentrations of SMI increased the antihypertensive efficacy of LOS to varying degrees. The high dose SMI increased the half-life (t 1/2 ), the maximum plasma concentration (C max), the area under the plasma concentration-time curve (AUC) from time zero to the time of the last measurable plasma concentration (AUC 0-t ), AUC from time zero to infinity (AUC 0-∞ ), and mean residence time (MRT) values of LOS and decreased its apparent volume of distribution (Vd) and clearance (CL) values. The AUC 0-t , AUC 0-∞ , and MRT of LOS were increased, whereas the CL was decreased by the medium concentration of SMI. In addition, the high, medium, and low doses of SMI increased the relative bioavailability (Frel) of LOS. SMI exhibited no significant effects on the pharmacokinetics of EXP3174. In vitro, SMI exhibited different suppressive effects on the enzyme activity levels of CYP1A2 (6.12%), CYP2B6 (2.72%), CYP2C9 (14.31%), CYP2C19 (12.96%), CYP2D6 (12.26%), CYP3A4 (3.72%), CYP2C8 (10.00-30.00%), MDR1 (0.75%), OATP1B1(2.03%), and BCRP (0.15%). Conclusion: In conclusion, SMI improved the antihypertensive efficacy of LOS in the L-NAME-induced hypertension rat model by increasing the concentration of LOS, while leaving the concentration of EXP3174 intact. SMI affected the pharmacokinetic properties of LOS by decreasing the elimination of LOS. These effects might partly be attributed to the inhibition of the activities of CYP3A4, CYP2C9, and of the drug transporters (P-gp, BCRP, and OATP1B1) by SMI, which need further scrutiny.
Collapse
Affiliation(s)
- Zhenchao Niu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Qiang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyong Lin
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Li
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Keyan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Herber CB, Yuan C, Chang A, Wang JC, Cohen I, Leitman DC. 2',3',4'-Trihydroxychalcone changes estrogen receptor α regulation of genes and breast cancer cell proliferation by a reprogramming mechanism. Mol Med 2022; 28:44. [PMID: 35468719 PMCID: PMC9036729 DOI: 10.1186/s10020-022-00470-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/06/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Menopausal hormone therapy (MHT) is recommended for only five years to treat vasomotor symptoms and vulvovaginal atrophy because of safety concerns with long-term treatment. We investigated the ability of 2',3',4'-trihydroxychalcone (2',3',4'-THC) to modulate estrogen receptor (ER)-mediated responses in order to find drug candidates that could potentially prevent the adverse effects of long-term MHT treatment. METHODS Transfection assays, real time-polymerase chain reaction, and microarrays were used to evaluate the effects of 2',3',4'-THC on gene regulation. Radioligand binding studies were used to determine if 2',3',4'-THC binds to ERα. Cell proliferation was examined in MCF-7 breast cancer cells by using growth curves and flow cytometry. Western blots were used to determine if 2',3',4'-THC alters the E2 activation of the MAPK pathway and degradation of ERα. Chromatin immunoprecipitation was used to measure ERα binding to genes. RESULTS The 2',3',4'-THC/E2 combination produced a synergistic activation with ERα on reporter and endogenous genes in human U2OS osteosarcoma cells. Microarrays identified 824 genes that we termed reprogrammed genes because they were not regulated in U2OS-ERα cells unless they were treated with 2',3',4'-THC and E2 at the same time. 2',3',4'-THC blocked the proliferation of MCF-7 cells by preventing the E2-induced activation of MAPK and c-MYC transcription. The antiproliferative mechanism of 2',3',4'-THC differs from selective estrogen receptor modulators (SERMs) because 2',3',4'-THC did not bind to the E2 binding site in ERα like SERMs. CONCLUSION Our study suggests that 2',3',4'-THC may represent a new class of ERα modulators that do not act as a direct agonists or antagonists. We consider 2',3',4'-THC to be a reprogramming compound, since it alters the activity of ERα on gene regulation and cell proliferation without competing with E2 for binding to ERα. The addition of a reprogramming drug to estrogens in MHT may offer a new strategy to overcome the adverse proliferative effects of estrogen in MHT by reprogramming ERα as opposed to an antagonist mechanism that involves blocking the binding of estrogen to ERα.
Collapse
Affiliation(s)
- Candice B Herber
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
- DENALI Therapeutics, 161 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Chaoshen Yuan
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
- Iaterion, University of California, QB3, 1700 4th Street Byers Hall, Suite 214, San Francisco, CA, 94158, USA
| | - Anthony Chang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
- Biomedical Sciences Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jen-Chywan Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
| | - Isaac Cohen
- Iaterion, University of California, QB3, 1700 4th Street Byers Hall, Suite 214, San Francisco, CA, 94158, USA
| | - Dale C Leitman
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA.
- Iaterion, University of California, QB3, 1700 4th Street Byers Hall, Suite 214, San Francisco, CA, 94158, USA.
| |
Collapse
|
40
|
Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P, Mikó E. The role of bile acids in carcinogenesis. Cell Mol Life Sci 2022; 79:243. [PMID: 35429253 PMCID: PMC9013344 DOI: 10.1007/s00018-022-04278-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
AbstractBile acids are soluble derivatives of cholesterol produced in the liver that subsequently undergo bacterial transformation yielding a diverse array of metabolites. The bulk of bile acid synthesis takes place in the liver yielding primary bile acids; however, other tissues have also the capacity to generate bile acids (e.g. ovaries). Hepatic bile acids are then transported to bile and are subsequently released into the intestines. In the large intestine, a fraction of primary bile acids is converted to secondary bile acids by gut bacteria. The majority of the intestinal bile acids undergo reuptake and return to the liver. A small fraction of secondary and primary bile acids remains in the circulation and exert receptor-mediated and pure chemical effects (e.g. acidic bile in oesophageal cancer) on cancer cells. In this review, we assess how changes to bile acid biosynthesis, bile acid flux and local bile acid concentration modulate the behavior of different cancers. Here, we present in-depth the involvement of bile acids in oesophageal, gastric, hepatocellular, pancreatic, colorectal, breast, prostate, ovarian cancer. Previous studies often used bile acids in supraphysiological concentration, sometimes in concentrations 1000 times higher than the highest reported tissue or serum concentrations likely eliciting unspecific effects, a practice that we advocate against in this review. Furthermore, we show that, although bile acids were classically considered as pro-carcinogenic agents (e.g. oesophageal cancer), the dogma that switch, as lower concentrations of bile acids that correspond to their serum or tissue reference concentration possess anticancer activity in a subset of cancers. Differences in the response of cancers to bile acids lie in the differential expression of bile acid receptors between cancers (e.g. FXR vs. TGR5). UDCA, a bile acid that is sold as a generic medication against cholestasis or biliary surge, and its conjugates were identified with almost purely anticancer features suggesting a possibility for drug repurposing. Taken together, bile acids were considered as tumor inducers or tumor promoter molecules; nevertheless, in certain cancers, like breast cancer, bile acids in their reference concentrations may act as tumor suppressors suggesting a Janus-faced nature of bile acids in carcinogenesis.
Collapse
Affiliation(s)
- Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
| |
Collapse
|
41
|
Mustonen EK, Pantsar T, Rashidian A, Reiner J, Schwab M, Laufer S, Burk O. Target Hopping from Protein Kinases to PXR: Identification of Small-Molecule Protein Kinase Inhibitors as Selective Modulators of Pregnane X Receptor from TüKIC Library. Cells 2022; 11:1299. [PMID: 35455978 PMCID: PMC9030254 DOI: 10.3390/cells11081299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023] Open
Abstract
Small-molecule protein kinase inhibitors are used for the treatment of cancer, but off-target effects hinder their clinical use. Especially off-target activation of the pregnane X receptor (PXR) has to be considered, as it not only governs drug metabolism and elimination, but also can promote tumor growth and cancer drug resistance. Consequently, PXR antagonism has been proposed for improving cancer drug therapy. Here we aimed to identify small-molecule kinase inhibitors of the Tübingen Kinase Inhibitor Collection (TüKIC) compound library that would act also as PXR antagonists. By a combination of in silico screen and confirmatory cellular reporter gene assays, we identified four novel PXR antagonists and a structurally related agonist with a common phenylaminobenzosuberone scaffold. Further characterization using biochemical ligand binding and cellular protein interaction assays classified the novel compounds as mixed competitive/noncompetitive, passive antagonists, which bind PXR directly and disrupt its interaction with coregulatory proteins. Expression analysis of prototypical PXR target genes ABCB1 and CYP3A4 in LS174T colorectal cancer cells and HepaRG hepatocytes revealed novel antagonists as selective receptor modulators, which showed gene- and tissue-specific effects. These results demonstrate the possibility of dual PXR and protein kinase inhibitors, which might represent added value in cancer therapy.
Collapse
Affiliation(s)
- Enni-Kaisa Mustonen
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, 72074 Tuebingen, Germany; (E.-K.M.); (M.S.)
| | - Tatu Pantsar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tuebingen, 72076 Tuebingen, Germany; (T.P.); (J.R.); (S.L.)
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Azam Rashidian
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Juliander Reiner
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tuebingen, 72076 Tuebingen, Germany; (T.P.); (J.R.); (S.L.)
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, 72074 Tuebingen, Germany; (E.-K.M.); (M.S.)
- Departments of Clinical Pharmacology and Biochemistry and Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tuebingen, 72076 Tuebingen, Germany; (T.P.); (J.R.); (S.L.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
| | - Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, 72074 Tuebingen, Germany; (E.-K.M.); (M.S.)
| |
Collapse
|
42
|
Šimečková P, Pěnčíková K, Kováč O, Slavík J, Pařenicová M, Vondráček J, Machala M. In vitro profiling of toxic effects of environmental polycyclic aromatic hydrocarbons on nuclear receptor signaling, disruption of endogenous metabolism and induction of cellular stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151967. [PMID: 34843781 DOI: 10.1016/j.scitotenv.2021.151967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) may interact with multiple intracellular receptors and related signaling pathways. We comprehensively evaluated the toxicity profiles of six environmentally relevant PAHs differing in structure, genotoxicity and their ability to activate the aryl hydrocarbon receptor (AhR). We focused particularly on their impact on intracellular hormone-, xenobiotic- and lipid-sensing receptors, as well as on cellular stress markers, combining a battery of human reporter gene assays and qRT-PCR evaluation of endogenous gene expression in human hepatocyte-like HepaRG cells, with LC/MS-MS analysis of cellular sphingolipids. The effects of PAHs included: activation of estrogen receptor α (in case of fluoranthene (Fla), pyrene (Pyr), benz[a]anthracene (BaA), benzo[a]pyrene (BaP)), suppression of androgen receptor activity (Fla, BaA, BaP and benzo[k]fluoranthene (BkF)), enhancement of dexamethasone-induced glucocorticoid receptor activity (chrysene (Chry), BaA, and BaP), and potentiation of triiodothyronine-induced thyroid receptor α activity (all tested PAHs). PAHs also induced transcription of endogenous gene targets of constitutive androstane receptor (Fla, Pyr), or repression of target genes of pregnane X receptor and peroxisome proliferator-activated receptor α (in case of the AhR-activating PAHs - Chry, BaA, BaP, and BkF) in HepaRG cells. In the same cell model, the AhR agonists reduced the expression of glucose metabolism genes (PCK1, G6PC and PDK4), and they up-regulated levels of glucosylceramides, together with a concomitant induction of expression of UGCG, glucosylceramide synthesis enzyme. Finally, both BaP and BkF were found to induce expression of early stress and genotoxicity markers: ATF3, EGR1, GDF15, CDKN1A/p21, and GADD45A mRNAs, while BaP alone increased levels of IL-6 mRNA. Overall, whereas low-molecular-weight PAHs exerted significant effects on nuclear receptors (with CYP2B6 induction observed already at nanomolar concentrations), the AhR activation by 4-ring and 5-ring PAHs appeared to be a key mechanism underlying their impact on nuclear receptor signaling, endogenous metabolism and induction of early stress and genotoxicity markers.
Collapse
Affiliation(s)
- Pavlína Šimečková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Kateřina Pěnčíková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Ondrej Kováč
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Josef Slavík
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Martina Pařenicová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic.
| |
Collapse
|
43
|
Shen LX, Liu GF, Song JS, Cao YH, Peng X, Wu RR, Cao Y, Chen XJ, Liu Z, Sun ZL, Wu Y. Sex differences in the pharmacokinetics and tissue residues of Macleaya cordata extracts in rats. Xenobiotica 2022; 52:46-53. [PMID: 35227161 DOI: 10.1080/00498254.2022.2048323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macleaya cordata extracts (MCE) are listed as feed additives in animal production by the European Food Authority. The core components of MCE are mainly sanguinarine (SA) and chelerythrine (CHE). This study aims to investigate sex differences in the pharmacokinetics and tissue residues of MCE in rats.Male and female rates were intragastrically administered MCE (1.25 mg·kg-1 body weight and 12.5 mg·kg-1 body weight dose for 28 days). SA and CHE concentrations were determined using high-performance liquid chromatography/tandem mass spectrometry.The peak plasma concentration (Cmax) and area under the curve (AUC) of both CHE and SA were higher in female than in male rats (12.5 mg·kg-1 body weight group), whereas their half-life (T1/2) and apparent volume of distribution (Vd) was lower (p < 0.05). Tissue rfesidue analysis indicated that SA and CHE were more distributed in male than in female rats and were highly distributed in the cecum and liver. SA and CHE were completely eliminated from the liver, kidney, lung, heart, spleen, leg muscle, and cecum after 120 h, indicating they did not accumulate in rats for a long time.Overall, we found that the pharmacokinetics and tissue residues of SA and CHE of male and female rats showed sex differences.
Collapse
Affiliation(s)
- Li-Xia Shen
- Hunan Agricultural University, Changsha, 410128 China
| | - Gao-Feng Liu
- Hunan Canzoho Biological Technology Co. Ltd, Hunan Canzoho Biological Technology Co. Ltd, Changsha, China
| | | | - Yu-Hang Cao
- Hunan Agricultural University, Changsha, 410128 China
| | - Xiong Peng
- Hunan Agricultural University, Changsha, 410128 China
| | - Rong-Rong Wu
- Hunan Agricultural University, Changsha, 410128 China
| | - Yan Cao
- Hunan Agricultural University, Changsha, 410128 China
| | - Xiao-Jun Chen
- Hunan Agricultural University, Changsha, 410128 China
| | - Zhaoying Liu
- Hunan Agricultural University, Changsha, 410128 China
| | - Zhi-Liang Sun
- Hunan Agricultural University, Changsha, 410128 China
| | - Yong Wu
- Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
44
|
Gao L, Qiao H, Wei P, Moussian B, Wang Y. Xenobiotic responses in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21869. [PMID: 35088911 DOI: 10.1002/arch.21869] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Insects have evolved a powerful detoxification system to protect themselves against environmental and anthropogenic xenobiotics including pesticides and nanoparticles. The resulting tolerance to insecticides is an immense problem in agriculture. In this study, we summarize advances in our understanding of insect xenobiotic responses: the detoxification strategies and the regulation mechanisms against xenobiotics including nanoparticles, the problem of response specificity and the potential usefulness of this study field for an elaborate pest management. In particular, we highlight that versatility of the detoxification system relies on the relatively unspecific recognition of a broad range of potential toxic substances that trigger either of various canonical xenobiotic responses signaling pathways, including CncC/Keap1, HR96, AHR/ARNT, GPCR, and MAPK/CREB. However, it has emerged that the actual response to an inducer may nevertheless be specific. There are two nonexclusive possibilities that may explain response specificity: (1) differential cross-talk between the known pathways and (2) additional, yet unidentified regulators and pathways of detoxification. Hence, a deeper and broader understanding of the regulation mechanisms of xenobiotic response in insects in the future might facilitate the development and application of highly efficient and environmentally friendly pest control methods, allowing us to face the challenge of the world population growth.
Collapse
Affiliation(s)
- Lujuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Université Côte d'Azur, Parc Valrose, Nice, France
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
45
|
Veshkini A, M Hammon H, Vogel L, Delosière M, Viala D, Dèjean S, Tröscher A, Ceciliani F, Sauerwein H, Bonnet M. Liver proteome profiling in dairy cows during the transition from gestation to lactation: Effects of supplementation with essential fatty acids and conjugated linoleic acids as explored by PLS-DA. J Proteomics 2022; 252:104436. [PMID: 34839038 DOI: 10.1016/j.jprot.2021.104436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023]
Abstract
This study aimed at investigating the synergistic effects of essential fatty acids (EFA) and conjugated linoleic acids (CLA) on the liver proteome profile of dairy cows during the transition to lactation. 16 Holstein cows were infused from 9 wk. antepartum to 9 wk. postpartum into the abomasum with either coconut oil (CTRL) or a mixture of EFA (linseed + safflower oil) and CLA (EFA + CLA). Label-free quantitative proteomics was performed in liver tissue biopsied at days -21, +1, +28, and + 63 relative to calving. Differentially abundant proteins (DAP) between treatment groups were identified at the intersection between a multivariate and a univariate analysis. In total, 1680 proteins were identified at each time point, of which between groups DAP were assigned to the metabolism of xenobiotics by cytochrome P450, drug metabolism - cytochrome P450, steroid hormone biosynthesis, glycolysis/gluconeogenesis, and glutathione metabolism. Cytochrome P450, as a central hub, enriched with specific CYP enzymes comprising: CYP51A1 (d - 21), CYP1A1 & CYP4F2 (d + 28), and CYP4V2 (d + 63). Collectively, supplementation of EFA + CLA in transition cows impacted hepatic lipid metabolism and enriched several common biological pathways at all time points that were mainly related to ω-oxidation of fatty acids through the Cytochrome p450 pathway. SIGNIFICANCE: In three aspects this manuscript is notable. First, this is among the first longitudinal proteomics studies in nutrition of dairy cows. The selected time points are critical periods around parturition with profound endocrine and metabolic adaptations. Second, our findings provided novel information on key drivers of biologically relevant pathways suggested according to previously reported performance, zootechnical, and metabolism data (already published elsewhere). Third, our results revealed the role of cytochrome P450 that is hardly investigated, and of ω-oxidation pathways in the metabolism of fatty acids with the involvement of specific enzymes.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany; Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | - Harald M Hammon
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| | - Laura Vogel
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Mylène Delosière
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Didier Viala
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Sèbastien Dèjean
- Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | | | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
46
|
Vansell NR. Mechanisms by Which Inducers of Drug Metabolizing Enzymes Alter Thyroid Hormones in Rats. Drug Metab Dispos 2022; 50:508-517. [DOI: 10.1124/dmd.121.000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
|
47
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
48
|
Shizu R, Ezaki K, Sato T, Sugawara A, Hosaka T, Sasaki T, Yoshinari K. PXR Suppresses PPARα-Dependent HMGCS2 Gene Transcription by Inhibiting the Interaction between PPARα and PGC1α. Cells 2021; 10:cells10123550. [PMID: 34944058 PMCID: PMC8700377 DOI: 10.3390/cells10123550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 01/11/2023] Open
Abstract
Background: PXR is a xenobiotic-responsive nuclear receptor that controls the expression of drug-metabolizing enzymes. Drug-induced activation of PXR sometimes causes drug–drug interactions due to the induced metabolism of co-administered drugs. Our group recently reported a possible drug–drug interaction mechanism via an interaction between the nuclear receptors CAR and PPARα. As CAR and PXR are structurally and functionally related receptors, we investigated possible crosstalk between PXR and PPARα. Methods: Human hepatocyte-like HepaRG cells were treated with various PXR ligands, and mRNA levels were determined by quantitative reverse transcription PCR. Reporter assays using the HMGCS2 promoter containing a PPARα-binding motif and mammalian two-hybrid assays were performed in HepG2 or COS-1 cells. Results: Treatment with PXR activators reduced the mRNA levels of PPARα target genes in HepaRG cells. In reporter assays, PXR suppressed PPARα-dependent gene expression in HepG2 cells. In COS-1 cells, co-expression of PGC1α, a common coactivator of PPARα and PXR, enhanced PPARα-dependent gene transcription, which was clearly suppressed by PXR. Consistently, in mammalian two-hybrid assays, the interaction between PGC1α and PPARα was attenuated by ligand-activated PXR. Conclusion: The present results suggest that ligand-activated PXR suppresses PPARα-dependent gene expression by inhibiting PGC1α recruitment.
Collapse
|
49
|
Requena-Jimenez A, Nabiuni M, Miyan JA. Profound changes in cerebrospinal fluid proteome and metabolic profile are associated with congenital hydrocephalus. J Cereb Blood Flow Metab 2021; 41:3400-3414. [PMID: 34415213 PMCID: PMC8669293 DOI: 10.1177/0271678x211039612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/15/2022]
Abstract
The aetiology of congenital hydrocephalus (cHC) has yet to be resolved. cHC manifests late in rodent gestation, and by 18-22 weeks in human fetuses, coinciding with the start of the major phase of cerebral cortex development. Previously we found that cerebrospinal fluid (CSF) accumulation is associated with compositional changes, folate metabolic impairment and consequential arrest in cortical development. Here, we report a proteomics study on hydrocephalic and normal rat CSF using LC-MSMS and a metabolic pathway analysis to determine the major changes in metabolic and signalling pathways. Non-targeted analysis revealed a proteome transformation across embryonic days 17-20, with the largest changes between day 19 and 20. This provides evidence for a physiological shift in CSF composition and identifies some of the molecular mechanisms unleashed during the onset of cHC. Top molecular regulators that may control the shift in the CSF metabolic signature are also predicted, with potential key biomarkers proposed for early detection of these changes that might be used to develop targeted early therapies for this condition. This study confirms previous findings of a folate metabolic imbalance as well as providing more in depth metabolic analysis and understanding of cHC CSF.
Collapse
Affiliation(s)
- Alicia Requena-Jimenez
- Faculty of Biology, Medicine and Health, The University of Manchester, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Mohammad Nabiuni
- Faculty of Biology, Medicine and Health, The University of Manchester, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Jaleel A Miyan
- Faculty of Biology, Medicine and Health, The University of Manchester, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| |
Collapse
|
50
|
Alarcan J, de Sousa G, Katsanou ES, Spyropoulou A, Batakis P, Machera K, Rahmani R, Lampen A, Braeuning A, Lichtenstein D. Investigating the in vitro steatotic mixture effects of similarly and dissimilarly acting test compounds using an adverse outcome pathway-based approach. Arch Toxicol 2021; 96:211-229. [PMID: 34778935 PMCID: PMC8748329 DOI: 10.1007/s00204-021-03182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Within the EuroMix project, we have previously developed an adverse outcome pathway (AOP)-based in vitro assay toolbox to investigate the combined effects of liver steatosis-inducing compounds in human HepaRG hepatocarcinoma cells. In this study, we applied the toolbox to further investigate mixture effects of combinations, featuring either similarly acting or dissimilarly acting substances. The valproic acid structural analogs 2-propylheptanoic acid (PHP) and 2-propylhexanoic acid (PHX) were chosen for establishing mixtures of similarly acting substances, while a combination with the pesticidal active substance clothianidin (CTD) was chosen for establishing mixtures of dissimilarly acting compounds. We first determined relative potency factors (RPFs) for each compound based on triglyceride accumulation results. Thereafter, equipotent mixtures were tested for nuclear receptor activation in transfected HepG2 cells, while gene expression and triglyceride accumulation were investigated in HepaRG cells, following the proposed AOP for liver steatosis. Dose addition was observed for all combinations and endpoints tested, indicating the validity of the additivity assumption also in the case of the tested mixtures of dissimilarly acting substances. Gene expression results indicate that the existing steatosis AOP can still be refined with respect to the early key event (KE) of gene expression, in order to reflect the diversity of molecular mechanisms underlying the adverse outcome.
Collapse
Affiliation(s)
- Jimmy Alarcan
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Georges de Sousa
- Institut Sophia Agrobiotech, Université Côte d'Azur-INRAE-CNRS, 06903, Sophia Antipolis, France
| | | | | | | | | | - Roger Rahmani
- Institut Sophia Agrobiotech, Université Côte d'Azur-INRAE-CNRS, 06903, Sophia Antipolis, France
| | - Alfonso Lampen
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Dajana Lichtenstein
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|