1
|
Wang D, Duan JJ, Guo YF, Chen JJ, Chen TQ, Wang J, Yu SC. Targeting the glutamine-arginine-proline metabolism axis in cancer. J Enzyme Inhib Med Chem 2024; 39:2367129. [PMID: 39051546 PMCID: PMC11275534 DOI: 10.1080/14756366.2024.2367129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic abnormalities are an important feature of tumours. The glutamine-arginine-proline axis is an important node of cancer metabolism and plays a major role in amino acid metabolism. This axis also acts as a scaffold for the synthesis of other nonessential amino acids and essential metabolites. In this paper, we briefly review (1) the glutamine addiction exhibited by tumour cells with accelerated glutamine transport and metabolism; (2) the methods regulating extracellular glutamine entry, intracellular glutamine synthesis and the fate of intracellular glutamine; (3) the glutamine, proline and arginine metabolic pathways and their interaction; and (4) the research progress in tumour therapy targeting the glutamine-arginine-proline metabolic system, with a focus on summarising the therapeutic research progress of strategies targeting of one of the key enzymes of this metabolic system, P5CS (ALDH18A1). This review provides a new basis for treatments targeting the metabolic characteristics of tumours.
Collapse
Affiliation(s)
- Di Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
| | - Jiang-jie Duan
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
- Jin-feng Laboratory, Chongqing, China
| | - Yu-feng Guo
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun-jie Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
| | - Tian-qing Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
- Jin-feng Laboratory, Chongqing, China
| | - Shi-cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
- Jin-feng Laboratory, Chongqing, China
| |
Collapse
|
2
|
Babajani A, Eftekharinasab A, Bekeschus S, Mehdian H, Vakhshiteh F, Madjd Z. Reactive oxygen species from non-thermal gas plasma (CAP): implication for targeting cancer stem cells. Cancer Cell Int 2024; 24:344. [PMID: 39438918 PMCID: PMC11515683 DOI: 10.1186/s12935-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains a major global health challenge, with the persistence of cancer stem cells (CSCs) contributing to treatment resistance and relapse. Despite advancements in cancer therapy, targeting CSCs presents a significant hurdle. Non-thermal gas plasma, also known as CAP, represents an innovative cancer treatment. It has recently gained attention for its often found to be selective, immunogenic, and potent anti-cancer properties. CAP is composed of a collection of transient, high-energy, and physically and chemically active entities, such as reactive oxygen species (ROS). It is acknowledged that the latter are responsible for a major portion of biomedical CAP effects. The dynamic interplay of CAP-derived ROS and other components contributes to the unique and versatile properties of CAP, enabling it to interact with biological systems and elicit various therapeutic effects, including its potential in cancer treatment. While CAP has shown promise in various cancer types, its application against CSCs is relatively unexplored. This review assesses the potential of CAP as a therapeutic strategy for targeting CSCs, focusing on its ability to regulate cellular states and achieve redox homeostasis. This is done by providing an overview of CSC characteristics and demonstrating recent findings on CAP's efficacy in targeting these cells. By contributing insights into the unique attributes of CSCs and the potential of CAP, this work contributes to an advanced understanding of innovative oncology strategies.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Hassan Mehdian
- Plasma Medicine Group, Plasma Research Institute, Kharazmi University, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
3
|
Yilmaz SN, Steiner K, Marksteiner J, Faserl K, Villunger M, Sarg B, Humpel C. From Organotypic Mouse Brain Slices to Human Alzheimer's Plasma Biomarkers: A Focus on Nerve Fiber Outgrowth. Biomolecules 2024; 14:1326. [PMID: 39456259 PMCID: PMC11506054 DOI: 10.3390/biom14101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory loss and progressive deterioration of cognitive functions. Being able to identify reliable biomarkers in easily available body fluids such as blood plasma is vital for the disease. To achieve this, we used a technique that applied human plasma to organotypic brain slice culture via microcontact printing. After a 2-week culture period, we performed immunolabeling for neurofilament and myelin oligodendrocyte glycoprotein (MOG) to visualize newly formed nerve fibers and oligodendrocytes. There was no significant change in the number of new nerve fibers in the AD plasma group compared to the healthy control group, while the length of the produced fibers significantly decreased. A significant increase in the number of MOG+ dots around these new fibers was detected in the patient group. According to our hypothesis, there are factors in the plasma of AD patients that affect the growth of new nerve fibers, which also affect the oligodendrocytes. Based on these findings, we selected the most promising plasma samples and conducted mass spectrometry using a differential approach and we identified three putative biomarkers: aldehyde-dehydrogenase 1A1, alpha-synuclein and protein S100-A4. Our method represents a novel and innovative approach for translating research findings from mouse models to human applications.
Collapse
Affiliation(s)
- Sakir Necat Yilmaz
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.N.Y.); (K.S.)
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin 33130, Turkey
| | - Katharina Steiner
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.N.Y.); (K.S.)
| | - Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, Hall State Hospital, 6060 Hall in Tirol, Austria;
| | - Klaus Faserl
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (M.V.); (B.S.)
| | - Mathias Villunger
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (M.V.); (B.S.)
| | - Bettina Sarg
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (M.V.); (B.S.)
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.N.Y.); (K.S.)
| |
Collapse
|
4
|
Wang X, Yang Z, Peng C, Yu H, Cui C, Xing Q, Hu J, Bao Z, Huang X. Comparative Analyses of Dynamic Transcriptome Profile of Heart Highlight the Key Response Genes for Heat Stress in Zhikong Scallop Chlamys farreri. Antioxidants (Basel) 2024; 13:1217. [PMID: 39456470 PMCID: PMC11505284 DOI: 10.3390/antiox13101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Heat stress resulting from global climate change has been demonstrated to adversely affect growth, development, and reproduction of marine organisms. The Zhikong scallop (Chlamys farreri), an important economical mollusk in China, faces increasing risks of summer mortality due to the prolonged heat waves. The heart, responsible for transporting gas and nutrients, is vital in maintaining homeostasis and physiological status in response to environmental changes. In this study, the effect of heat stress on the cardiac function of C. farreri was investigated during the continuous 30-day heat stress at 27 °C. The results showed the heart rate of scallops increased due to stress in the initial phase of high temperature exposure, peaking at 12 h, and then gradually recovered, indicating an acclimatization at the end of the experiment. In addition, the levels of catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) exhibited an initial increase followed by recovery in response to heat stress. Furthermore, transcriptome analysis of the heart identified 3541 differentially expressed genes (DEGs) in response to heat stress. Subsequent GO and KEGG enrichment analysis showed that these genes were primarily related to signal transduction and oxidative stress, such as the phosphatidylinositol signaling system, regulation of actin cytoskeleton, MAPK signaling pathway, FoxO signaling pathway, etc. In addition, two modules were identified as significant responsive modules according to the weighted gene co-expression network analysis (WGCNA). The upregulation of key enzymes within the base excision repair and gap junction pathways indicated that the heart of C. farreri under heat stress enhanced DNA repair and maintained cellular integrity. In addition, the variable expression of essential signaling molecules and cytoskeletal regulators suggested that the heart of C. farreri modulated cardiomyocyte contraction, intracellular signaling, and heart rate through complex regulation of phosphorylation and calcium dynamics in response to heat stress. Collectively, this study enhances our understanding of cardiac function and provides novel evidence for unraveling the mechanism underlying the thermal response in mollusks.
Collapse
Affiliation(s)
- Xinyuan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Haitao Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Chang Cui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
5
|
Venton G, Colle J, Tichadou A, Quessada J, Baier C, Labiad Y, Perez M, De Lassus L, Loosveld M, Arnoux I, Abbou N, Ceylan I, Martin G, Costello R. Reactive oxygen species and aldehyde dehydrogenase 1A as prognosis and theragnostic biomarker in acute myeloid leukaemia patients. J Cell Mol Med 2024; 28:e70011. [PMID: 39392121 PMCID: PMC11467733 DOI: 10.1111/jcmm.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 10/12/2024] Open
Abstract
Acute myeloid leukaemia (AML) remains a major unmet medical, despite recent progress in targeted molecular therapies. One aspect of leukaemic cell resistance to chemotherapy is the development of clones with increased capacity to respond to cellular stress and the production of reactive oxygen species (ROS), thanks in particular to a high aldehyde dehydrogenases (ALDH) 1A1/2 activity. At diagnosis, ROS level and ALDH1A1/2 activity in AML patients BM are correlated with the different ELN 2022 prognostic groups and overall survival (OS). A significant lower ALDH1A1/2 activity in BM was observed in the favourable ELN2022 subgroup compared to the intermediate and adverse group (p < 0.01). In the same way, the ROS levels were significantly lower in the favourable ELN 2022 subgroup compared to the intermediate group (p < 0.0001) and adverse group (p < 0.0002). ROShigh AML patients had a significantly lower median overall survival (OS) (8.2 months) than ROSlow patients (24.6 months) (p = 0.0368). After first-line therapy, a significant increase of ROS level (p = 0.015) and ALDH1A1/2 activity (0 = 0.0273) in leukaemic blasts was observed, especially in the refractory ones. ABD-3001, a competitive and irreversible inhibitor of ALDHs 1 and 3, can in vitro inhibit the proliferation of patient-derived leukaemic cells in accordance with redox balance. In multivariate analysis, ROS level was the most significant (p < 0.05) and the strongest predictive factor for the sensitivity of cells to ABD-3001. The safety profile of ABD-3001 is currently being assessed through the first inhuman multicenter phase 1 clinical trial "ODYSSEY" (NCT05601726) for patients with relapsed AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Reactive Oxygen Species/metabolism
- Prognosis
- Male
- Biomarkers, Tumor/metabolism
- Middle Aged
- Female
- Aldehyde Dehydrogenase 1 Family/metabolism
- Adult
- Aged
- Retinal Dehydrogenase/metabolism
- Aged, 80 and over
- Young Adult
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase/metabolism
Collapse
Affiliation(s)
- G. Venton
- APHM, Hôpital de la Conception, Service d'Hématologie et Thérapie CellulaireMarseilleFrance
- TAGC‐Theories and Approaches of Genomic ComplexityAix Marseille UniversityMarseilleFrance
| | - J. Colle
- APHM, Hôpital de la Conception, Service d'Hématologie et Thérapie CellulaireMarseilleFrance
- TAGC‐Theories and Approaches of Genomic ComplexityAix Marseille UniversityMarseilleFrance
| | - A. Tichadou
- APHM, Hôpital de la Conception, Service d'Hématologie et Thérapie CellulaireMarseilleFrance
- TAGC‐Theories and Approaches of Genomic ComplexityAix Marseille UniversityMarseilleFrance
| | - J. Quessada
- APHM, Hôpital La Timone, Laboratoire d'HématologieMarseilleFrance
| | | | | | | | - L. De Lassus
- APHM, Hôpital de la Conception, Service d'Hématologie et Thérapie CellulaireMarseilleFrance
| | - M. Loosveld
- APHM, Hôpital La Timone, Laboratoire d'HématologieMarseilleFrance
- CRCMInserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli CalmettesMarseilleFrance
| | - I. Arnoux
- APHM, Hôpital La Timone, Laboratoire d'HématologieMarseilleFrance
| | - N. Abbou
- APHM, Hopital La Timone, Service d'Oncobiologie, Plateforme M2GM, Hopital de la TimoneMarseilleFrance
- Aix‐Marseille Univ, INSERM, INRAE, C2VN, Laboratory of Haematology, CRB Assistance Publique‐Hôpitaux de Marseille, HemoVasc (CRB AP‐HM HemoVasc)MarseilleFrance
| | | | | | - R. Costello
- APHM, Hôpital de la Conception, Service d'Hématologie et Thérapie CellulaireMarseilleFrance
- TAGC‐Theories and Approaches of Genomic ComplexityAix Marseille UniversityMarseilleFrance
| |
Collapse
|
6
|
Fernando W, Cruickshank BM, Arun RP, MacLean MR, Cahill HF, Morales-Quintanilla F, Dean CA, Wasson MCD, Dahn ML, Coyle KM, Walker OL, Power Coombs MR, Marcato P. ALDH1A3 is the switch that determines the balance of ALDH + and CD24 -CD44 + cancer stem cells, EMT-MET, and glucose metabolism in breast cancer. Oncogene 2024; 43:3151-3169. [PMID: 39251846 PMCID: PMC11493680 DOI: 10.1038/s41388-024-03156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Plasticity is an inherent feature of cancer stem cells (CSCs) and regulates the balance of key processes required at different stages of breast cancer progression, including epithelial-to-mesenchymal transition (EMT) versus mesenchymal-to-epithelial transition (MET), and glycolysis versus oxidative phosphorylation. Understanding the key factors that regulate the switch between these processes could lead to novel therapeutic strategies that limit tumor progression. We found that aldehyde dehydrogenase 1A3 (ALDH1A3) regulates these cancer-promoting processes and the abundance of the two distinct breast CSC populations defined by high ALDH activity and CD24-CD44+ cell surface expression. While ALDH1A3 increases ALDH+ breast cancer cells, it inversely suppresses the CD24-CD44+ population by retinoic acid signaling-mediated gene expression changes. This switch in CSC populations induced by ALDH1A3 was paired with decreased migration but increased invasion and an intermediate EMT phenotype. We also demonstrate that ALDH1A3 increases oxidative phosphorylation and decreases glycolysis and reactive oxygen species (ROS). The effects of ALDH1A3 reduction were countered with the glycolysis inhibitor 2-deoxy-D-glucose (2DG). In cell culture and tumor xenograft models, 2DG suppresses the increase in the CD24-CD44+ population and ROS induced by ALDH1A3 knockdown. Combined inhibition of ALDH1A3 and glycolysis best reduces breast tumor growth and tumor-initiating cells, suggesting that the combination of targeting ALDH1A3 and glycolysis has therapeutic potential for limiting CSCs and tumor progression. Together, these findings identify ALDH1A3 as a key regulator of processes required for breast cancer progression and depletion of ALDH1A3 makes breast cancer cells more susceptible to glycolysis inhibition.
Collapse
Affiliation(s)
- Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Acadia University, Wolfville, NS, Canada
| | - Brianne M Cruickshank
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Raj Pranap Arun
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Maya R MacLean
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Hannah F Cahill
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - Cheryl A Dean
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - Margaret L Dahn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Krysta M Coyle
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Olivia L Walker
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Melanie R Power Coombs
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Acadia University, Wolfville, NS, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada.
- Nova Scotia Health Authority, Halifax, NS, Canada.
| |
Collapse
|
7
|
Huang YK, Wang TM, Chen CY, Li CY, Wang SC, Irshad K, Pan Y, Chang KC. The role of ALDH1A1 in glioblastoma proliferation and invasion. Chem Biol Interact 2024; 402:111202. [PMID: 39128802 DOI: 10.1016/j.cbi.2024.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
High-grade gliomas, including glioblastoma multiforme (GBM), continue to be a leading aggressive brain tumor in adults, marked by its rapid growth and invasive nature. Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), an enzyme, plays a significant role in tumor progression, yet its function in high-grade gliomas is still poorly investigated. In this study, we evaluated ALDH1A1 levels in clinical samples of GBM. We also assessed the prognostic significance of ALDH1A1 expression in GBM and LGG (low grade glioma) patients using TCGA (The Cancer Genome Atlas) database analysis. The MTT and transwell assays were utilized to examine cell growth and the invasive capability of U87 cells, respectively. We quantitatively examined markers for cell proliferation (Ki-67 and cyclin D1) and invasion (MMP2 and 9). A Western blot test was conducted to determine the downstream signaling of ALDH1A1. We found a notable increase in ALDH1A1 expression in high-grade gliomas compared to their low-grade counterparts. U87 cells that overexpressed ALDH1A1 showed increased cell growth and invasion. We found that ALDH1A1 promotes the phosphorylation of AKT, and inhibiting AKT phosphorylation mitigates the ALDH1A1's effects on tumor growth and migration. In summary, our findings suggest ALDH1A1 as a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Ming Wang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chi-Yu Chen
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Khushboo Irshad
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
8
|
Nikhil K, Shah K. The significant others of aurora kinase a in cancer: combination is the key. Biomark Res 2024; 12:109. [PMID: 39334449 PMCID: PMC11438406 DOI: 10.1186/s40364-024-00651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
AURKA is predominantly famous as an essential mitotic kinase. Recent findings have also established its critical role in a plethora of other biological processes including ciliogenesis, mitochondrial dynamics, neuronal outgrowth, DNA replication and cell cycle progression. AURKA overexpression in numerous cancers is strongly associated with poor prognosis and survival. Still no AURKA-targeted drug has been approved yet, partially because of the associated collateral toxicity and partly due to its limited efficacy as a single agent in a wide range of tumors. Mechanistically, AURKA overexpression allows it to phosphorylate numerous pathological substrates promoting highly aggressive oncogenic phenotypes. Our review examines the most recent advances in AURKA regulation and focuses on 33 such direct cancer-specific targets of AURKA and their associated oncogenic signaling cascades. One of the common themes that emerge is that AURKA is often involved in a feedback loop with its substrates, which could be the decisive factor causing its sustained upregulation and hyperactivation in cancer cells, an Achilles heel not exploited before. This dynamic interplay between AURKA and its substrates offers potential opportunities for targeted therapeutic interventions. By targeting these substrates, it may be possible to disrupt this feedback loop to effectively reverse AURKA levels, thereby providing a promising avenue for developing safer AURKA-targeted therapeutics. Additionally, exploring the synergistic effects of AURKA inhibition with its other oncogenic and/or tumor-suppressor targets could provide further opportunities for developing effective combination therapies against AURKA-driven cancers, thereby maximizing its potential as a critical drug target.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| | - Kavita Shah
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
9
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and other detrimental metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:309-365. [PMID: 39396839 DOI: 10.1016/bs.adgen.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
10
|
Acharya SK, Shai S, Choon YF, Gunardi I, Hartanto FK, Kadir K, Roychoudhury A, Amtha R, Vincent-Chong VK. Cancer Stem Cells in Oral Squamous Cell Carcinoma: A Narrative Review on Experimental Characteristics and Methodological Challenges. Biomedicines 2024; 12:2111. [PMID: 39335624 PMCID: PMC11429394 DOI: 10.3390/biomedicines12092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation of cancer cells that are believed to initiate and drive cancer progression. In animal models, xenotransplanted CSCs have demonstrated the ability to produce tumors. Since their initial isolation in blood cancers, CSCs have been identified in various solid human cancers, including oral squamous cell carcinoma (OSCC). In addition to their tumorigenic properties, dysregulated stem-cell-related signaling pathways-Wnt family member (Wnt), neurogenic locus notch homolog protein (Notch), and hedgehog-have been shown to endow CSCs with characteristics like self-renewal, phenotypic plasticity, and chemoresistance, contributing to recurrence and treatment failure. Consequently, CSCs have become targets for new therapeutic agents, with some currently in different phases of clinical trials. Notably, small molecule inhibitors of the hedgehog signaling pathway, such as vismodegib and glasdegib, have been approved for the treatment of basal cell carcinoma and acute myeloid leukemia, respectively. Other strategies for eradicating CSCs include natural compounds, nano-drug delivery systems, targeting mitochondria and the CSC microenvironment, autophagy, hyperthermia, and immunotherapy. Despite the extensive documentation of CSCs in OSCC since its first demonstration in head and neck (HN) SCC in 2007, none of these novel pharmacological approaches have yet entered clinical trials for OSCC patients. This narrative review summarizes the in vivo and in vitro evidence of CSCs and CSC-related signaling pathways in OSCC, highlighting their role in promoting chemoresistance and immunotherapy resistance. Additionally, it addresses methodological challenges and discusses future research directions to improve experimental systems and advance CSC studies.
Collapse
Affiliation(s)
- Surendra Kumar Acharya
- Department of Oral Medicine, Radiology and Surgery, Faculty of Dentistry, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia
| | - Saptarsi Shai
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Yee Fan Choon
- Department of Oral and Maxillofacial Surgical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Indrayadi Gunardi
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Firstine Kelsi Hartanto
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Kathreena Kadir
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ajoy Roychoudhury
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rahmi Amtha
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Vui King Vincent-Chong
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
11
|
Ren Z, Liu N, Jia H, Sun M, Ma S, Zhao B, Chen Y, Miao X, Cao Z, Dong J. Discovery of Aldehyde Dehydrogenase as a Potential Fungicide Target and Screening of its Natural Inhibitors against Fusarium verticillioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19424-19435. [PMID: 39172074 DOI: 10.1021/acs.jafc.4c05553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Fusarium verticillioides is the primary pathogen causing ear rot and stalk rot in corn (Zea mays). It not only affects yields but also produces mycotoxins endangering both human and animal health. Aldehyde dehydrogenase (ALDH) is essential for the oxidation of aldehydes in living organisms, making it a potential target for human drug design. However, there are limited reports on its function in plant pathogenic fungus. In this study, we analyzed the expression levels and gene knockout mutants, revealing that ALDH genes FvALDH-43 and FvALDH-96 in F. verticillioides played significant roles in pathogenicity and resistance to low-temperature stress by affecting antioxidant capacity. Virtual screening for natural product inhibitors and molecular docking were performed targeting FvALDH-43 and FvALDH-96. Following the biological activity analysis, three natural flavonoid compounds featuring a 2-hydroxyphenol chromene were identified. Among these, Taxifolin exhibited the highest biological activity and low toxicity. Both in vitro and in vivo biological evaluations confirmed that Taxifolin targeted ALDH and inhibited its activity. These findings indicate that aldehyde dehydrogenase may serve as a promising target for the design of novel fungicides.
Collapse
Affiliation(s)
- Zhiguo Ren
- State Key Laboratory of North China Crop Improvement and regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071000, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Ning Liu
- State Key Laboratory of North China Crop Improvement and regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071000, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Hui Jia
- State Key Laboratory of North China Crop Improvement and regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071000, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Manli Sun
- State Key Laboratory of North China Crop Improvement and regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071000, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Shujie Ma
- State Key Laboratory of North China Crop Improvement and regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071000, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Bin Zhao
- State Key Laboratory of North China Crop Improvement and regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071000, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Yue Chen
- State Key Laboratory of North China Crop Improvement and regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071000, China
| | - Xiaoyang Miao
- Hebei Peiran's Century Nutritional Foods Co., Ltd., Cangzhou 061000, China
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071000, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071000, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
12
|
Mohajer F, Khoradmehr A, Riazalhosseini B, Zendehboudi T, Nabipour I, Baghban N. In vitro detection of marine invertebrate stem cells: utilizing molecular and cellular biology techniques and exploring markers. Front Cell Dev Biol 2024; 12:1440091. [PMID: 39239558 PMCID: PMC11374967 DOI: 10.3389/fcell.2024.1440091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Marine invertebrate stem cells (MISCs) represent a distinct category of pluripotent and totipotent cells with remarkable abilities for self-renewal and differentiation into multiple germ layers, akin to their vertebrate counterparts. These unique cells persist throughout an organism's adult life and have been observed in various adult marine invertebrate phyla. MISCs play crucial roles in numerous biological processes, including developmental biology phenomena specific to marine invertebrates, such as senescence, delayed senescence, whole-body regeneration, and asexual reproduction. Furthermore, they serve as valuable models for studying stem cell biology. Despite their significance, information about MISCs remains scarce and scattered in the scientific literature. In this review, we have carefully collected and summarized valuable information about MISC detection by perusing the articles that study and detect MISCs in various marine invertebrate organisms. The review begins by defining MISCs and highlighting their unique features compared to vertebrates. It then discusses the common markers for MISC detection and in vitro techniques employed in invertebrate and vertebrates investigation. This comprehensive review provides researchers and scientists with a cohesive and succinct overview of MISC characteristics, detection methods, and associated biological phenomena in marine invertebrate organisms. We aim to offer a valuable resource to researchers and scientists interested in marine invertebrate stem cells, fostering a better understanding of their broader implications in biology. With ongoing advancements in scientific techniques and the continued exploration of marine invertebrate species, we anticipate that further discoveries will expand our knowledge of MISCs and their broader implications in biology.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behnaz Riazalhosseini
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tuba Zendehboudi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Baghban
- Food Control Laboratory, Food and Drug Deputy, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
13
|
Lv W, Shi W, Zhang Z, Ru L, Feng W, Tang H, Wang X. Identification of volatile biomarkers for lung cancer from different histological sources: A comprehensive study. Anal Biochem 2024; 690:115527. [PMID: 38565333 DOI: 10.1016/j.ab.2024.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The identification of noninvasive volatile biomarkers for lung cancer is a significant clinical challenge. Through in vitro studies, the recognition of altered metabolism in cell volatile organic compound (VOC) emitting profile, along with the occurrence of oncogenesis, provides insight into the biochemical pathways involved in the production and metabolism of lung cancer volatile biomarkers. In this research, for the first time, a comprehensive comparative analysis of the volatile metabolites in NSCLS cells (A549), SCLC cells (H446), lung normal cells (BEAS-2B), as well as metabolites in both the oxidative stress (OS) group and control group. Specifically, the combination of eleven VOCs, including n-dodecane, acetaldehyde, isopropylbenzene, p-ethyltoluene and cis-1,3-dichloropropene, exhibited potential as volatile biomarkers for lung cancer originating from two different histological sources. Furthermore, the screening process in A549 cell lines resulted in the identification of three exclusive biomarkers, isopropylbenzene, formaldehyde and bromoform. Similarly, the exclusive biomarkers 1,2,4-trimethylbenzene, p-ethyltoluene, and cis-1,3-dichloropropene were present in the H446 cell line. Additionally, significant changes in trans-2-pentene, acetaldehyde, 1,2,4-trimethylbenzene, and bromoform were observed, indicating a strong association with OS. These findings highlight the potential of volatile biomarkers profiling as a means of noninvasive identification for lung cancer diagnosis.
Collapse
Affiliation(s)
- Wei Lv
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wenmin Shi
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China.
| | - Lihua Ru
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hanxiao Tang
- College of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiangqi Wang
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
14
|
Magrassi L, Pinton G, Luzzi S, Comincini S, Scravaglieri A, Gigliotti V, Bernardoni BL, D’Agostino I, Juretich F, La Motta C, Garavaglia S. A New Vista of Aldehyde Dehydrogenase 1A3 (ALDH1A3): New Specific Inhibitors and Activity-Based Probes Targeting ALDH1A3 Dependent Pathways in Glioblastoma, Mesothelioma and Other Cancers. Cancers (Basel) 2024; 16:2397. [PMID: 39001459 PMCID: PMC11240489 DOI: 10.3390/cancers16132397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Aldehyde dehydrogenases of the subfamily 1A (ALDH1A) are enzymes necessary for the oxidation of all-trans or 9-cis retinal to retinoic acid (RA). Retinoic acid and its derivatives are important for normal development and maintenance of epithelia, reproduction, memory, and immune function in adults. Moreover, in recent years, it has been demonstrated that ALDH1A members are also expressed and functional in several human cancers where their role is not limited to the synthesis of RA. Here, we review the current knowledge about ALDH1A3, one of the 1A isoforms, in cancers with an emphasis on two of the deadliest tumors that affect humans: glioblastoma multiforme and mesothelioma. In both tumors, ALDH1A3 is considered a negative prognostic factor, and its level correlates with excessive proliferation, chemoresistance, and invasiveness. We also review the recent attempts to develop both ALDH1A3-selective inhibitors for cancer therapy and ALDH1A3-specific fluorescent substrates for fluorescence-guided tumor resection.
Collapse
Affiliation(s)
- Lorenzo Magrassi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
- Istituto di Genetica Molecolare—CNR, 27100 Pavia, Italy
| | - Giulia Pinton
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Sabino Luzzi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
| | - Sergio Comincini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy;
| | - Andrea Scravaglieri
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
| | - Valentina Gigliotti
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Bianca Laura Bernardoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Ilaria D’Agostino
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Francesca Juretich
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Silvia Garavaglia
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| |
Collapse
|
15
|
Gupta RC, Singh-Gupta V, Szekely KJ, Zhang K, Lanfear DE, Sabbah HN. Dysregulation of cardiac mitochondrial aldehyde dehydrogenase 2: Studies in dogs with chronic heart failure. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 8:100067. [PMID: 38938550 PMCID: PMC11210280 DOI: 10.1016/j.jmccpl.2024.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Mitochondrial (MITO) dysfunction occurs in the failing heart and contributes to worsening of heart failure (HF). Reduced aldehyde dehydrogenase 2 (ALDH2) in left ventricular (LV) myocardium of diabetic hearts has been implicated in MITO dysfunction through accumulation of toxic aldehydes including and elevated levels of 4-hydroxy-2-nonenal (4HNE). This study examined whether dysregulation of MITO ALDH2 (mALDH2) occurs in mitochondria of the failing LV and is associated with increased levels of 4HNE. LV tissue from 7 HF and 7 normal (NL) dogs was obtained. Protein quantification of total mitochondrial ALDH2 (t-mALDH2), phosphorylated mALDH2 (p-mALDH2), total MITO protein kinase c epsilon (t-mPKCε), phosphorylated mPKCε (p-mPKCε) was performed by Western blotting, and total mALDH2 enzymatic activity was measured. Protein adducts of 4HNE-MITO and 4HNE-mALDH2 were also measured in MITO fraction by Western Blotting. Protein level of t-mALDH2 was decreased in HF compared with NL dogs (0.63 ± 0.07 vs 1.17 ± 0.08, p < 0.05) as did mALDH2 enzymatic activity (51.39 ± 3 vs. 107.66 ± 4 nmol NADH/min/mg, p < 0.05). Phosphorylated-mALDH2 and p-mPKCε were unchanged. 4HNE-MITO proteins adduct levels increased in HF compared with NL (2.45 ± 0.08 vs 1.30 ± 0.03 du, p < 0.05) as did adduct levels of 4HNE-mALDH2 (1.60 ± 0.20 vs 0.39 ± 0.08, p < 0.05). In isolated failing cardiomyocytes (CM) exposure to 4HNE decreased mALDH2 activity, increased ROS and 4HNE-ALDH2 adducts, and worsened MITO function. Stimulation of mALDH2 activity with ALDA-1 in isolated HF CMs compared to NL CMs improved ADP-stimulated respiration and maximal ATP synthesis to a greater extant (+47 % and +89 %, respectively). Down-regulation of mALDH2 protein levels and activity occurs in HF and contributes to MITO dysfunction and is likely caused by accumulation of 4HNE-mALDH2 adduct. Increasing mALDH2 activity (via ALDA-1) improved MITO function in failing CMs.
Collapse
Affiliation(s)
- Ramesh C. Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - Vinita Singh-Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - Kristina J. Szekely
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - Kefei Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - David E. Lanfear
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - Hani N. Sabbah
- Corresponding author at: Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA. (H.N. Sabbah)
| |
Collapse
|
16
|
Chen J, Chen W, Zhang J, Zhao H, Cui J, Wu J, Shi A. Dual effects of endogenous formaldehyde on the organism and drugs for its removal. J Appl Toxicol 2024; 44:798-817. [PMID: 37766419 DOI: 10.1002/jat.4546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Endogenous formaldehyde (FA) is produced in the human body via various mechanisms to preserve healthy energy metabolism and safeguard the organism. However, endogenous FA can have several negative effects on the body through epigenetic alterations, including cancer growth promotion; neuronal, hippocampal and endothelial damages; atherosclerosis acceleration; haemopoietic stem cell destruction and haemopoietic cell production reduction. Certain medications with antioxidant effects, such as glutathione, vitamin E, resveratrol, alpha lipoic acid and polyphenols, lessen the detrimental effects of endogenous FA by reducing oxidative stress, directly scavenging endogenous FA or promoting its degradation. This study offers fresh perspectives for managing illnesses associated with endogenous FA exposure.
Collapse
Affiliation(s)
- Jiaxin Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Wenhui Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinjia Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Huanhuan Zhao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Ji Cui
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| | - Anhua Shi
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
17
|
Duan X, Hu H, Wang L, Chen L. Aldehyde dehydrogenase 1 family: A potential molecule target for diseases. Cell Biol Int 2024. [PMID: 38800962 DOI: 10.1002/cbin.12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Aldehyde dehydrogenase 1 (ALDH1), a crucial aldehyde metabolizing enzyme, has six family members. The ALDH1 family is expressed in various tissues, with a significant presence in the liver. It plays a momentous role in several pathophysiological processes, including aldehyde detoxification, oxidative stress, and lipid peroxidation. Acetaldehyde detoxification is the fundamental function of the ALDH1 family in participating in vital pathological mechanisms. The ALDH1 family can catalyze retinal to retinoic acid (RA) that is a hormone-signaling molecule and plays a vital role in the development and adult tissues. Furthermore, there is a need for further and broader research on the role of the ALDH1 family as a signaling molecule. The ALDH1 family is widely recognized as a cancer stem cell (CSC) marker and plays a significant role in the proliferation, invasion, metastasis, prognosis, and drug resistance of cancer. The ALDH1 family also participates in other human diseases, such as neurodegenerative diseases, osteoarthritis, diabetes, and atherosclerosis. It can inhibit disease progression by inhibiting/promoting the expression/activity of the ALDH1 family. In this review, we comprehensively analyze the tissue distribution, and functions of the ALDH1 family. Additionally, we review the involvement of the ALDH1 family in diseases, focusing on the underlying pathological mechanisms and briefly talk about the current status and development of ALDH1 family inhibitors. The ALDH1 family presents new possibilities for treating diseases, with both its upstream and downstream pathways serving as promising targets for therapeutic intervention. This offers fresh perspectives for drug development in the field of disease research.
Collapse
Affiliation(s)
- Xiangning Duan
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| | - Haoliang Hu
- Changde Research Centre for Artificial Intelligence and Biomedicine, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Lingzhi Wang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| |
Collapse
|
18
|
Liu H, Li K, Xia J, Zhu J, Cheng Y, Zhang X, Ye H, Wang P. Prediction of esophageal cancer risk based on genetic variants and environmental risk factors in Chinese population. BMC Cancer 2024; 24:598. [PMID: 38755535 PMCID: PMC11100074 DOI: 10.1186/s12885-024-12370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Results regarding whether it is essential to incorporate genetic variants into risk prediction models for esophageal cancer (EC) are inconsistent due to the different genetic backgrounds of the populations studied. We aimed to identify single-nucleotide polymorphisms (SNPs) associated with EC among the Chinese population and to evaluate the performance of genetic and non-genetic factors in a risk model for developing EC. METHODS A meta-analysis was performed to systematically identify potential SNPs, which were further verified by a case-control study. Three risk models were developed: a genetic model with weighted genetic risk score (wGRS) based on promising SNPs, a non-genetic model with environmental risk factors, and a combined model including both genetic and non-genetic factors. The discrimination ability of the models was compared using the area under the receiver operating characteristic curve (AUC) and the net reclassification index (NRI). The Akaike information criterion (AIC) and Bayesian information criterion (BIC) were used to assess the goodness-of-fit of the models. RESULTS Five promising SNPs were ultimately utilized to calculate the wGRS. Individuals in the highest quartile of the wGRS had a 4.93-fold (95% confidence interval [CI]: 2.59 to 9.38) increased risk of EC compared with those in the lowest quartile. The genetic or non-genetic model identified EC patients with AUCs ranging from 0.618 to 0.650. The combined model had an AUC of 0.707 (95% CI: 0.669 to 0.743) and was the best-fitting model (AIC = 750.55, BIC = 759.34). The NRI improved when the wGRS was added to the risk model with non-genetic factors only (NRI = 0.082, P = 0.037). CONCLUSIONS Among the three risk models for EC, the combined model showed optimal predictive performance and can help to identify individuals at risk of EC for tailored preventive measures.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Keming Li
- Zhengzhou Center for Disease Control and Prevention, Zhengzhou City, 450042, Henan Province, China
| | - Junfen Xia
- Office of Health Care, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Jicun Zhu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Yifan Cheng
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Xiaoyue Zhang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Hua Ye
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Peng Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China.
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.
| |
Collapse
|
19
|
Li J, Bode K, Lee YC, Morrow N, Ma A, Wei S, da Silva Pereira J, Stewart T, Lee-Papastavros A, Hollister-Lock J, Sullivan B, Bonner-Weir S, Yi P. Loss-of-function of ALDH3B2 transdifferentiates human pancreatic duct cells into beta-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593941. [PMID: 38798376 PMCID: PMC11118503 DOI: 10.1101/2024.05.13.593941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Replenishment of pancreatic beta cells is a key to the cure for diabetes. Beta cells regeneration is achieved predominantly by self-replication especially in rodents, but it was also shown that pancreatic duct cells can transdifferentiate into beta cells. How pancreatic duct cells undergo transdifferentiated and whether we could manipulate the transdifferentiation to replenish beta cell mass is not well understood. Using a genome-wide CRISPR screen, we discovered that loss-of-function of ALDH3B2 is sufficient to transdifferentiate human pancreatic duct cells into functional beta-like cells. The transdifferentiated cells have significant increase in beta cell marker genes expression, secrete insulin in response to glucose, and reduce blood glucose when transplanted into diabetic mice. Our study identifies a novel gene that could potentially be targeted in human pancreatic duct cells to replenish beta cell mass for diabetes therapy.
Collapse
|
20
|
Zhang J, Liu H, Shen Y, Cheng D, Tang H, Zhang Q, Li C, Liu M, Yao W, Ran R, Hou Q, Zhao X, Wang JS, Sun X, Zhang T, Zhou J. Macrophage AHR-TLR4 cross-talk drives p-STAT3 (Ser727)-mediated mitochondrial oxidative stress and upregulates IDO/ICAM-1 in the steatohepatitis induced by aflatoxin B 1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171377. [PMID: 38458463 DOI: 10.1016/j.scitotenv.2024.171377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Aflatoxin B1 (AFB1) is a major mycotoxin contaminant showing in the environment and foods. In this study, the molecular initiating events (MIEs) of AFB1-induced steatohepatitis were explored in mice and human cell model. We observed dose-dependent steatohepatitis in the AFB1-treated mice, including triglyceride accumulation, fibrotic collagen secretion, enrichment of CD11b + and F4/80+ macrophages/Kupffer cells, cell death, lymphocytes clusters and remarkable atrophy areas. The gut barrier and gut-microbiota were also severely damaged after the AFB1 treatment and pre-conditioned colitis in the experimental mice aggravated the steatohepatitis phenotypes. We found that macrophages cells can be pro-inflammatorily activated to M1-like phenotype by AFB1 through an AHR/TLR4/p-STAT3 (Ser727)-mediated mitochondrial oxidative stress. The phenotypes can be rescued by AHR inhibitors in the mice model and human cell model. We further showed that this signaling axis is based on the cross-talk interaction between AHR and TLR4. Gene knock-up experiment found that the signaling is dependent on AFB1 ligand-binding with AHR, but not protein expressions of TLR4. The signaling elevated NLRP3 and two immune metabolic enzymes ICAM-1 and IDO that are associated with macrophage polarization. Results from intervention experiments with natural anti-oxidant and AHR inhibitor CH223191 suggest that the macrophage polarization may rely on AHR and ROS. Our study provides novel and critical references to the food safety and public health regulation of AFB1.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Hui Liu
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Yang Shen
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dong Cheng
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China.
| | - Hui Tang
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Qi Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chao Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China.
| | - Ming Liu
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Wenhuan Yao
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Rongrong Ran
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingzhen Hou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Shandong 250012, China.
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Tianliang Zhang
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Jun Zhou
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China; Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
21
|
Chen W, Hu J, Chen J, Guo Y, Hong Y, Xia H. Spatio-temporal analysis of toxigenic genes expression in the growing Bufo gargarizans based on RNA sequencing data. Genomics 2024; 116:110847. [PMID: 38685287 DOI: 10.1016/j.ygeno.2024.110847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Bufo gargarizans Cantor, a widely distributed amphibian species in Asia, produces and releases toxins through its retroauricular and granular glands. Although various tissues have been sequenced, the molecular mechanisms underlying the toxin production remain unclear. To elucidate these mechanisms, abdominal skin (non-toxic secretory glands) and retroauricular gland (toxic secreting glands) samples were collected at different time points (3, 6, 12, 24, and 36 months) for RNA sequencing (RNA-seq) and analysis. RESULTS In comparison to the S group during the same period, a total of 3053, 3026, 1516, 1028, and 2061 differentially expressed genes (DEGs) were identified across five developmental stages. Gene Ontology (GO) analysis revealed that DEGs were primarily enriched in biological processes including cellular processes, single-organism processes, metabolic processes, and biological regulation. In terms of cellular components, the DEGs were predominantly localized in the cell and cell parts, whereas molecular function indicated significant enrichment in binding and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the metabolism and synthesis of various substances, such as lipid metabolism, cofactor and vitamin metabolism, tryptophan metabolism, steroid biosynthesis, and primary bile acid biosynthesis, were accompanied by the development of toads. Additionally, using trend analysis, we discovered candidate genes that were upregulated in the retroauricular glands during development, and the abundance of these genes in the abdominal skin was extremely low. Finally, we identified 26 genes that are likely to be involved in toxin production and that are likely to be involved in toxin anabolism. CONCLUSION Overall, these results provide new insights into the genes involved in toxin production in B. gargarizans, which will improve our understanding of the molecular mechanisms underlying toxigenic gene expression.
Collapse
Affiliation(s)
- Wenxiao Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinghong Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jing Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanyuan Guo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongjian Hong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Houkai Xia
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Kang Yuan Tang Pharmaceutical Co., Ltd, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
22
|
MacLean MR, Walker OL, Arun RP, Fernando W, Marcato P. Informed by Cancer Stem Cells of Solid Tumors: Advances in Treatments Targeting Tumor-Promoting Factors and Pathways. Int J Mol Sci 2024; 25:4102. [PMID: 38612911 PMCID: PMC11012648 DOI: 10.3390/ijms25074102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation within tumors that promote cancer progression, metastasis, and recurrence due to their self-renewal capacity and resistance to conventional therapies. CSC-specific markers and signaling pathways highly active in CSCs have emerged as a promising strategy for improving patient outcomes. This review provides a comprehensive overview of the therapeutic targets associated with CSCs of solid tumors across various cancer types, including key molecular markers aldehyde dehydrogenases, CD44, epithelial cellular adhesion molecule, and CD133 and signaling pathways such as Wnt/β-catenin, Notch, and Sonic Hedgehog. We discuss a wide array of therapeutic modalities ranging from targeted antibodies, small molecule inhibitors, and near-infrared photoimmunotherapy to advanced genetic approaches like RNA interference, CRISPR/Cas9 technology, aptamers, antisense oligonucleotides, chimeric antigen receptor (CAR) T cells, CAR natural killer cells, bispecific T cell engagers, immunotoxins, drug-antibody conjugates, therapeutic peptides, and dendritic cell vaccines. This review spans developments from preclinical investigations to ongoing clinical trials, highlighting the innovative targeting strategies that have been informed by CSC-associated pathways and molecules to overcome therapeutic resistance. We aim to provide insights into the potential of these therapies to revolutionize cancer treatment, underscoring the critical need for a multi-faceted approach in the battle against cancer. This comprehensive analysis demonstrates how advances made in the CSC field have informed significant developments in novel targeted therapeutic approaches, with the ultimate goal of achieving more effective and durable responses in cancer patients.
Collapse
Affiliation(s)
- Maya R. MacLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Olivia L. Walker
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Raj Pranap Arun
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Nova Scotia Health Authority, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
23
|
Wang X, Wu M, Yu S, Zhai L, Zhu X, Yu L, Zhang Y. Comprehensive analysis of the aldehyde dehydrogenase gene family in Phaseolus vulgaris L. and their response to saline-alkali stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1283845. [PMID: 38450406 PMCID: PMC10915231 DOI: 10.3389/fpls.2024.1283845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Background Aldehyde dehydrogenase (ALDH) scavenges toxic aldehyde molecules by catalyzing the oxidation of aldehydes to carboxylic acids. Although ALDH gene family members in various plants have been extensively studied and were found to regulate plant response to abiotic stress, reports on ALDH genes in the common bean (Phaseolus vulgaris L.) are limited. In this study, we aimed to investigate the effects of neutral (NS) and basic alkaline (AS) stresses on growth, physiological and biochemical indices, and ALDH activity, ALDH gene expression of common bean. In addition, We used bioinformatics techniques to analyze the physical and chemical properties, phylogenetic relationships, gene replication, collinearity, cis-acting elements, gene structure, motifs, and protein structural characteristics of PvALDH family members. Results We found that both NS and AS stresses weakened the photosynthetic performance of the leaves, induced oxidative stress, inhibited common bean growth, and enhanced the antioxidative system to scavenge reactive oxygen species. Furthermore, we our findings revealed that ALDH in the common bean actively responds to NS or AS stress by inducing the expression of PvALDH genes. In addition, using the established classification criteria and phylogenetic analysis, 27 PvALDHs were identified in the common bean genome, belonging to 10 ALDH families. The primary expansion mode of PvALDH genes was segmental duplication. Cis-acting elemental analysis showed that PvALDHs were associated with abiotic stress and phytohormonal responses. Gene expression analysis revealed that the PvALDH gene expression was tissue-specific. For instance, PvALDH3F1 and PvALDH3H1 were highly expressed in flower buds and flowers, respectively, whereas PvALDH3H2 and PvALDH2B4 were highly expressed in green mature pods and young pods, respectively. PvALDH22A1 and PvALDH11A2 were highly expressed in leaves and young trifoliates, respectively; PvALDH18B2 and PvALDH18B3 were highly expressed in stems and nodules, respectively; and PvALDH2C2 and PvALDH2C3 were highly expressed in the roots. PvALDHs expression in the roots responded positively to NS-AS stress, and PvALDH2C3, PvALDH5F1, and PvALDH10A1 were significantly (P < 0.05) upregulated in the roots. Conclusion These results indicate that AS stress causes higher levels of oxidative damage than NS stress, resulting in weaker photosynthetic performance and more significant inhibition of common bean growth. The influence of PvALDHs potentially modulates abiotic stress response, particularly in the context of saline-alkali stress. These findings establish a basis for future research into the potential roles of ALDHs in the common bean.
Collapse
Affiliation(s)
- Xiaoqin Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
| | - Mingxu Wu
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
| | - Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Lingxia Zhai
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Keshan, Heilongjiang, China
| | - Xuetian Zhu
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Yifei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| |
Collapse
|
24
|
Koyanagi YN, Nakatochi M, Namba S, Oze I, Charvat H, Narita A, Kawaguchi T, Ikezaki H, Hishida A, Hara M, Takezaki T, Koyama T, Nakamura Y, Suzuki S, Katsuura-Kamano S, Kuriki K, Nakamura Y, Takeuchi K, Hozawa A, Kinoshita K, Sutoh Y, Tanno K, Shimizu A, Ito H, Kasugai Y, Kawakatsu Y, Taniyama Y, Tajika M, Shimizu Y, Suzuki E, Hosono Y, Imoto I, Tabara Y, Takahashi M, Setoh K, Matsuda K, Nakano S, Goto A, Katagiri R, Yamaji T, Sawada N, Tsugane S, Wakai K, Yamamoto M, Sasaki M, Matsuda F, Okada Y, Iwasaki M, Brennan P, Matsuo K. Genetic architecture of alcohol consumption identified by a genotype-stratified GWAS and impact on esophageal cancer risk in Japanese people. SCIENCE ADVANCES 2024; 10:eade2780. [PMID: 38277453 PMCID: PMC10816704 DOI: 10.1126/sciadv.ade2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
An East Asian-specific variant on aldehyde dehydrogenase 2 (ALDH2 rs671, G>A) is the major genetic determinant of alcohol consumption. We performed an rs671 genotype-stratified genome-wide association study meta-analysis of alcohol consumption in 175,672 Japanese individuals to explore gene-gene interactions with rs671 behind drinking behavior. The analysis identified three genome-wide significant loci (GCKR, KLB, and ADH1B) in wild-type homozygotes and six (GCKR, ADH1B, ALDH1B1, ALDH1A1, ALDH2, and GOT2) in heterozygotes, with five showing genome-wide significant interaction with rs671. Genetic correlation analyses revealed ancestry-specific genetic architecture in heterozygotes. Of the discovered loci, four (GCKR, ADH1B, ALDH1A1, and ALDH2) were suggested to interact with rs671 in the risk of esophageal cancer, a representative alcohol-related disease. Our results identify the genotype-specific genetic architecture of alcohol consumption and reveal its potential impact on alcohol-related disease risk.
Collapse
Affiliation(s)
- Yuriko N. Koyanagi
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hadrien Charvat
- Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
- Division of International Health Policy Research, Institute for Cancer Control, National Cancer Center, Tokyo, Japan
- Cancer Surveillance Branch, International Agency for Research on Cancer, Lyon, France
| | - Akira Narita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroaki Ikezaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Comprehensive General Internal Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuyuki Nakamura
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Division for Regional Community Development, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Kozo Tanno
- Department of Hygiene and Preventive Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
- Division of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yumiko Kasugai
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukino Kawakatsu
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yukari Taniyama
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Masahiro Tajika
- Department of Endoscopy, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Etsuji Suzuki
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yasuyuki Hosono
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Meiko Takahashi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuya Setoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shiori Nakano
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Atsushi Goto
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- Department of Health Data Science, Graduate School of Data Science, Yokohama City University, Yokohama, Japan
| | - Ryoko Katagiri
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
25
|
Peng M, Zhang C, Duan YY, Liu HB, Peng XY, Wei Q, Chen QY, Sang H, Kong QT. Antifungal activity of the repurposed drug disulfiram against Cryptococcus neoformans. Front Pharmacol 2024; 14:1268649. [PMID: 38273827 PMCID: PMC10808519 DOI: 10.3389/fphar.2023.1268649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Fungal infections have become clinically challenging owing to the emergence of drug resistance in invasive fungi and the rapid increase in the number of novel pathogens. The development of drug resistance further restricts the use of antifungal agents. Therefore, there is an urgent need to identify alternative treatments for Cryptococcus neoformans (C. neoformans). Disulfiram (DSF) has a good human safety profile and promising applications as an antiviral, antifungal, antiparasitic, and anticancer agent. However, the effect of DSF on Cryptococcus is yet to be thoroughly investigated. This study investigated the antifungal effects and the mechanism of action of DSF against C. neoformans to provide a new theoretical foundation for the treatment of Cryptococcal infections. In vitro studies demonstrated that DSF inhibited Cryptococcus growth at minimum inhibitory concentrations (MICs) ranging from 1.0 to 8.0 μg/mL. Combined antifungal effects have been observed for DSF with 5-fluorocytosine, amphotericin B, terbinafine, or ketoconazole. DSF exerts significant protective effects and synergistic effects combined with 5-FU for Galleria mellonella infected with C. neoformans. Mechanistic investigations showed that DSF dose-dependently inhibited melanin, urease, acetaldehyde dehydrogenase, capsule and biofilm viability of C. neoformans. Further studies indicated that DSF affected C. neoformans by interfering with multiple biological pathways, including replication, metabolism, membrane transport, and biological enzyme activity. Potentially essential targets of these pathways include acetaldehyde dehydrogenase, catalase, ATP-binding cassette transporter (ABC transporter), and iron-sulfur cluster transporter. These findings provide novel insights into the application of DSF and contribute to the understanding of its mechanisms of action in C. neoformans.
Collapse
Affiliation(s)
- Min Peng
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chen Zhang
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuan-Yuan Duan
- Affiliated Hospital for Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hai-Bo Liu
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin-Yuan Peng
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Qi-Ying Chen
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hong Sang
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing-Tao Kong
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Facey COB, Hunsu VO, Zhang C, Osmond B, Opdenaker LM, Boman BM. CYP26A1 Links WNT and Retinoic Acid Signaling: A Target to Differentiate ALDH+ Stem Cells in APC-Mutant CRC. Cancers (Basel) 2024; 16:264. [PMID: 38254755 PMCID: PMC10813786 DOI: 10.3390/cancers16020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
APC mutation is the main driving mechanism of CRC development and leads to constitutively activated WNT signaling, overpopulation of ALDH+ stem cells (SCs), and incomplete differentiation. We previously reported that retinoic acid (RA) receptors are selectively expressed in ALDH+ SCs, which provides a way to target cancer SCs with retinoids to induce differentiation. Hypotheses: A functional link exists between the WNT and RA pathways, and APC mutation generates a WNT:RA imbalance that decreases retinoid-induced differentiation and increases ALDH+ SCs. Accordingly, to restore parity in WNT:RA signaling, we induce wt-APC expression in APC-mutant CRC cells, and we assess the ability of all-trans retinoic acid (ATRA) to induce differentiation. We found that ATRA increased expression of the WNT target gene, CYP26A1, and inducing wt-APC reduced this expression by 50%. Thus, the RA and WNT pathways crosstalk to modulate CYP26A1, which metabolizes retinoids. Moreover, inducing wt-APC augments ATRA-induced cell differentiation by: (i) decreasing cell proliferation; (ii) suppressing ALDH1A1 expression; (iii) decreasing ALDH+ SCs; and (iv) increasing neuroendocrine cell differentiation. A novel CYP26A1-based network that links WNT and RA signaling was also identified by NanoString profiling/bioinformatics analysis. Furthermore, CYP26A1 inhibitors sensitized CRC cells to the anti-proliferative effect of drugs that downregulate WNT signaling. Notably, in wt-APC-CRCs, decreased CYP26A1 improved patient survival. These findings have strong potential for clinical translation.
Collapse
Affiliation(s)
- Caroline O. B. Facey
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA; (C.O.B.F.); (V.O.H.); (C.Z.); (B.O.); (L.M.O.)
| | - Victoria O. Hunsu
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA; (C.O.B.F.); (V.O.H.); (C.Z.); (B.O.); (L.M.O.)
- Department Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Chi Zhang
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA; (C.O.B.F.); (V.O.H.); (C.Z.); (B.O.); (L.M.O.)
- Department Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Brian Osmond
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA; (C.O.B.F.); (V.O.H.); (C.Z.); (B.O.); (L.M.O.)
- Department Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lynn M. Opdenaker
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA; (C.O.B.F.); (V.O.H.); (C.Z.); (B.O.); (L.M.O.)
| | - Bruce M. Boman
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA; (C.O.B.F.); (V.O.H.); (C.Z.); (B.O.); (L.M.O.)
- Department Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
27
|
Bharadwaj AG, McLean ME, Dahn ML, Cahill HF, Wasson MD, Arun RP, Walker OL, Cruickshank BM, Fernando W, Venkatesh J, Barnes PJ, Bethune G, Knapp G, Helyer LK, Giacomantonio CA, Waisman DM, Marcato P. ALDH1A3 promotes invasion and metastasis in triple-negative breast cancer by regulating the plasminogen activation pathway. Mol Oncol 2024; 18:91-112. [PMID: 37753740 PMCID: PMC10766202 DOI: 10.1002/1878-0261.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023] Open
Abstract
Aldehyde dehydrogenase 1A3 (ALDH1A3) is a cancer stem cell marker that promotes metastasis. Triple-negative breast cancer (TNBC) progression has been linked to ALDH1A3-induced gene expression changes. To investigate the mechanism of ALDH1A3-mediated breast cancer metastasis, we assessed the effect of ALDH1A3 on the expression of proteases and the regulators of proteases that degrade the extracellular matrix, a process that is essential for invasion and metastasis. This revealed that ALDH1A3 regulates the plasminogen activation pathway; it increased the levels and activity of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA). This resulted in a corresponding increase in the activity of serine protease plasmin, the enzymatic product of tPA and uPA. The ALDH1A3 product all-trans-retinoic acid similarly increased tPA and plasmin activity. The increased invasion of TNBC cells by ALDH1A3 was plasminogen-dependent. In patient tumours, ALDH1A3 and tPA are co-expressed and their combined expression correlated with the TNBC subtype, high tumour grade and recurrent metastatic disease. Knockdown of tPA in TNBC cells inhibited plasmin generation and lymph node metastasis. These results identify the ALDH1A3-tPA-plasmin axis as a key contributor to breast cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Gregory Knapp
- Department of SurgeryDalhousie UniversityHalifaxCanada
| | | | - Carman A. Giacomantonio
- Department of PathologyDalhousie UniversityHalifaxCanada
- Department of SurgeryDalhousie UniversityHalifaxCanada
| | - David M. Waisman
- Department of PathologyDalhousie UniversityHalifaxCanada
- Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada
| | - Paola Marcato
- Department of PathologyDalhousie UniversityHalifaxCanada
- Department of Microbiology and ImmunologyDalhousie UniversityHalifaxCanada
- Nova Scotia Health AuthorityHalifaxCanada
| |
Collapse
|
28
|
Sołtysiak M, Paplińska-Goryca M, Misiukiewicz-Stępień P, Wójtowicz P, Dutkiewicz M, Zegrocka-Stendel O, Sikorska M, Dymkowska D, Turos-Korgul L, Krenke R, Koziak K. β-escin activates ALDH and prevents cigarette smoke-induced cell death. Biomed Pharmacother 2024; 170:115924. [PMID: 38016364 DOI: 10.1016/j.biopha.2023.115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The tobacco use is one of the biggest public health threats worldwide. Cigarette smoke contains over 7000 chemicals among other aldehydes, regarded as priority toxicants. β-escin (a mixture of triterpenoid saponins extracted from the Aesculus hippocastanum. L) is a potent activator of aldehyde dehydrogenase (ALDH) - an enzyme catalyzing oxidation of aldehydes to non-toxic carboxylic acids. PURPOSE The aim of this study was to evaluate the effect of β-escin on ALDH activity, ALDH isoforms mRNA expression and cytotoxicity in nasal epithelial cells exposed to cigarette smoke extract (CSE). METHODS Nasal epithelial cells from healthy non-smokers were treated with β-escin (1 µM) and exposed to 5% CSE. After 6- or 24-hours of stimulation cell viability, DNA damage, ALDH activity and mRNA expression of ALDH isoforms were examined. RESULTS 24 h β-escin stimulation revised CSE induced cytotoxicity and DNA damage. Cells cultured with β-escin or exposed to CSE responded with strong increase in ALDH activity. This effect was more pronounced in cultures treated with combination of β-escin and CSE. The strongest stimulatory effect on ALDH isoform mRNA expression was observed in cells cultured simultaneously with β-escin and CSE: at 6 h for ALDH1A1 and ALDH3A1, and at 24 h for ALDH1A3, ALDH3A2, ALDH3B1, and ALDH18A1. Combined β-escin and CSE treatment prevented the CSE-induced inhibition of ALDH2 expression at 24 h. CONCLUSIONS β-escin is an effective ALDH stimulatory and cytoprotective agent and might be useful in the prevention or supportive treatment of tobacco smoke-related diseases.
Collapse
Affiliation(s)
- Malwina Sołtysiak
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Paulina Misiukiewicz-Stępień
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Paulina Wójtowicz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Małgorzata Dutkiewicz
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Oliwia Zegrocka-Stendel
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Maria Sikorska
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteura 3, 02-093 Warsaw, Poland
| | - Laura Turos-Korgul
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteura 3, 02-093 Warsaw, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Katarzyna Koziak
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland.
| |
Collapse
|
29
|
Wu B, Xia Y, Zhang G, Wang Y, Wang J, Ma S, Song Y, Yang Z, Ma L, Niu N. Transcriptomics reveals a core transcriptional network of K-type cytoplasmic male sterility microspore abortion in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2023; 23:618. [PMID: 38057735 DOI: 10.1186/s12870-023-04611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) plays a crucial role in hybrid production. K-type CMS, a cytoplasmic male sterile line of wheat with the cytoplasms of Aegilops kotschyi, is widely used due to its excellent characteristics of agronomic performance, easy maintenance and easy restoration. However, the mechanism of its pollen abortion is not yet clear. RESULTS In this study, wheat K-type CMS MS(KOTS)-90-110 (MS line) and it's fertile near-isogenic line MR (KOTS)-90-110 (MR line) were investigated. Cytological analysis indicated that the anthers of MS line microspore nucleus failed to divide normally into two sperm nucleus and lacked starch in mature pollen grains, and the key abortive period was the uninucleate stage to dinuclear stage. Then, we compared the transcriptome of MS line and MR line anthers at these two stages. 11,360 and 5182 differentially expressed genes (DEGs) were identified between the MS and MR lines in the early uninucleate and binucleate stages, respectively. Based on GO enrichment and KEGG pathways analysis, it was evident that significant transcriptomic differences were "plant hormone signal transduction", "MAPK signaling pathway" and "spliceosome". We identified 17 and 10 DEGs associated with the IAA and ABA signal transduction pathways, respectively. DEGs related to IAA signal transduction pathway were downregulated in the early uninucleate stage of MS line. The expression level of DEGs related to ABA pathway was significantly upregulated in MS line at the binucleate stage compared to MR line. The determination of plant hormone content and qRT-PCR further confirmed that hormone imbalance in MS lines. Meanwhile, 1 and 2 DEGs involved in ABA and Ethylene metabolism were also identified in the MAPK cascade pathway, respectively; the significant up regulation of spliceosome related genes in MS line may be another important factor leading to pollen abortion. CONCLUSIONS We proposed a transcriptome-mediated pollen abortion network for K-type CMS in wheat. The main idea is hormone imbalance may be the primary factor, MAPK cascade pathway and alternative splicing (AS) may also play important regulatory roles in this process. These findings provided intriguing insights for the molecular mechanism of microspore abortion in K-type CMS, and also give useful clues to identify the crucial genes of CMS in wheat.
Collapse
Affiliation(s)
- Baolin Wu
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Yu Xia
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gaisheng Zhang
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Yongqing Wang
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Junwei Wang
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Shoucai Ma
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Yulong Song
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Zhiquan Yang
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Lingjian Ma
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China.
| | - Na Niu
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
30
|
Duan JJ, Cai J, Gao L, Yu SC. ALDEFLUOR activity, ALDH isoforms, and their clinical significance in cancers. J Enzyme Inhib Med Chem 2023; 38:2166035. [PMID: 36651035 PMCID: PMC9858439 DOI: 10.1080/14756366.2023.2166035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
High aldehyde dehydrogenase (ALDH) activity is a metabolic feature of adult stem cells and various cancer stem cells (CSCs). The ALDEFLUOR system is currently the most commonly used method for evaluating ALDH enzyme activity in viable cells. This system is applied extensively in the isolation of normal stem cells and CSCs from heterogeneous cell populations. For many years, ALDH1A1 has been considered the most important subtype among the 19 ALDH family members in determining ALDEFLUOR activity. However, in recent years, studies of many types of normal and tumour tissues have demonstrated that other ALDH subtypes can also significantly influence ALDEFLUOR activity. In this article, we briefly review the relationships between various members of the ALDH family and ALDEFLUOR activity. The clinical significance of these ALDH isoforms in different cancers and possible directions for future studies are also summarised.
Collapse
Affiliation(s)
- Jiang-Jie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China
| | - Jiao Cai
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital; Third Medical University (Army Medical University), Chongqing, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China,Jin-feng Laboratory, Chongqing, China,CONTACT Shi-Cang Yu Department of Stem Cell and Regenerative Medicine, Third Military Medical University (Army Medical University), Chongqing400038, China
| |
Collapse
|
31
|
Tang L, Zhai H, Zhang S, Lv Y, Li Y, Wei S, Ma P, Wei S, Hu Y, Cai J. Functional Characterization of Aldehyde Dehydrogenase in Fusarium graminearum. Microorganisms 2023; 11:2875. [PMID: 38138019 PMCID: PMC10745421 DOI: 10.3390/microorganisms11122875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Aldehyde dehydrogenase (ALDH), a common oxidoreductase in organisms, is an aldehyde scavenger involved in various metabolic processes. However, its function in different pathogenic fungi remains unknown. Fusarium graminearum causes Fusarium head blight in cereals, which reduces grain yield and quality and is an important global food security problem. To elucidate the pathogenic mechanism of F. graminearum, seven genes encoding ALDH were knocked out and then studied for their function. Single deletions of seven ALDH genes caused a decrease in spore production and weakened the pathogenicity. Furthermore, these deletions altered susceptibility to various abiotic stresses. FGSG_04194 is associated with a number of functions, including mycelial growth and development, stress sensitivity, pathogenicity, toxin production, and energy metabolism. FGSG_00139 and FGSG_11482 are involved in sporulation, pathogenicity, and SDH activity, while the other five genes are multifunctional. Notably, we found that FGSG_04194 has an inhibitory impact on ALDH activity, whereas FGSG_00979 has a positive impact. RNA sequencing and subcellular location analysis revealed that FGSG_04194 is responsible for biological process regulation, including glucose and lipid metabolism. Our results suggest that ALDH contributes to growth, stress responses, pathogenicity, deoxynivalenol synthesis, and mitochondrial energy metabolism in F. graminearum. Finally, ALDH presents a potential target and theoretical basis for fungicide development.
Collapse
Affiliation(s)
| | - Huanchen Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.T.); (S.Z.); (Y.L.); (Y.L.); (S.W.); (P.M.); (S.W.); (Y.H.); (J.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen Y, Wu X, Wang X, Yuan Y, Qi K, Zhang S, Yin H. PusALDH1 gene confers high levels of volatile aroma accumulation in both pear and tomato fruits. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154101. [PMID: 37806175 DOI: 10.1016/j.jplph.2023.154101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
Aroma is an important commercial trait that determines fruit quality and has an important influence on the overall flavor of fruits. Plant ALDH genes have been implicated in diverse pathways and play crucial roles in physiological activities. In this study, via genome resequencing we identified one gene PusALDH1 (Pbr034873.1) related to aroma biosynthesis that can respond to the induction of methyl jasmonate. Transient transformation of pear fruits and heterologous stable transformation of tomato further confirmed the function of PusALDH1 in aroma accumulation. The content of ALDH precursor substance, benzaldehyde, was reduced in the overexpressing pear and tomato fruits, and the content of ALDH product, benzoic acid and benzoic acid derivatives, was increased in the pear fruits. Meanwhile, transgenic tomato fruits with PusALDH1 overexpression exhibited a greater area of yellow placenta, indicating that the gene may be related to the growth and development of the fruit. Taken together, PusALDH1 could act as a strong candidate gene in aroma synthesis.
Collapse
Affiliation(s)
- Yangyang Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Xiaohua Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yubo Yuan
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Hao Yin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
33
|
Doustmihan A, Fathi M, Mazloomi M, Salemi A, Hamblin MR, Jahanban-Esfahlan R. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J Control Release 2023; 363:57-83. [PMID: 37739017 DOI: 10.1016/j.jconrel.2023.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
There is increasing evidence that malignant tumors are initiated and maintained by a sub-population of tumor cells that have similar biological properties to normal adult stem cells. This very small population of Cancer Stem Cells (CSC) comprises tumor initiating cells responsible for cancer recurrence, drug resistance and metastasis. Conventional treatments such as chemotherapy, radiotherapy and surgery, in addition to being potentially toxic and non-specific, may paradoxically increase the population, spread and survival of CSCs. Next-generation sequencing and omics technologies are increasing our understanding of the pathways and factors involved in the development of CSCs, and can help to discover new therapeutic targets against CSCs. In addition, recent advances in nanomedicine have provided hope for the development of optimal specific therapies to eradicate CSCs. Moreover, the use of artificial intelligence and nano-informatics can elucidate new drug targets, and help to design drugs and nanoparticles (NPs) to deal with CSCs. In this review, we first summarize the properties of CSCs and describe the signaling pathways and molecular characteristics responsible for the emergence and survival of CSCs. Also, the location of CSCs within the tumor and the effect of host factors on the creation and maintenance of CSCs are discussed. Newly discovered molecular targets involved in cancer stemness and some novel therapeutic compounds to combat CSCs are highlighted. The optimum properties of anti-CSC NPs, including blood circulation and stability, tumor accumulation and penetration, cellular internalization, drug release, endosomal escape, and aptamers designed for specific targeting of CSCs are covered. Finally, some recent smart NPs designed for therapeutic and theranostic purposes to overcome CSCs are discussed.
Collapse
Affiliation(s)
- Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Suazo KF, Bělíček J, Schey GL, Auger SA, Petre AM, Li L, Błażewska KM, Kopečný D, Distefano MD. Thinking outside the CaaX-box: an unusual reversible prenylation on ALDH9A1. RSC Chem Biol 2023; 4:913-925. [PMID: 37920391 PMCID: PMC10619140 DOI: 10.1039/d3cb00089c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/15/2023] [Indexed: 11/04/2023] Open
Abstract
Protein lipidation is a post-translational modification that confers hydrophobicity on protein substrates to control their cellular localization, mediate protein trafficking, and regulate protein function. In particular, protein prenylation is a C-terminal modification on proteins bearing canonical motifs catalyzed by prenyltransferases. Prenylated proteins have been of interest due to their numerous associations with various diseases. Chemical proteomic approaches have been pursued over the last decade to define prenylated proteomes (prenylome) and probe their responses to perturbations in various cellular systems. Here, we describe the discovery of prenylation of a non-canonical prenylated protein, ALDH9A1, which lacks any apparent prenylation motif. This enzyme was initially identified through chemical proteomic profiling of prenylomes in various cell lines. Metabolic labeling with an isoprenoid probe using overexpressed ALDH9A1 revealed that this enzyme can be prenylated inside cells but does not respond to inhibition by prenyltransferase inhibitors. Site-directed mutagenesis of the key residues involved in ALDH9A1 activity indicates that the catalytic C288 bears the isoprenoid modification likely through an NAD+-dependent mechanism. Furthermore, the isoprenoid modification is also susceptible to hydrolysis, indicating a reversible modification. We hypothesize that this modification originates from endogenous farnesal or geranygeranial, the established degradation products of prenylated proteins and results in a thioester form that accumulates. This novel reversible prenoyl modification on ALDH9A1 expands the current paradigm of protein prenylation by illustrating a potentially new type of protein-lipid modification that may also serve as a novel mechanism for controlling enzyme function.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
| | - Jakub Bělíček
- Department of Experimental Biology, Faculty of Science, Palacký University CZ-78371 Czech Republic
| | - Garrett L Schey
- Department of Medicinal Chemistry, University of Minnesota Minneapolis MN 55455 USA
| | - Shelby A Auger
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
| | - Alexandru M Petre
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota Minneapolis MN 55455 USA
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology Łódź Poland
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University CZ-78371 Czech Republic
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
35
|
Jiang W, Chen J, Zhang P, Zheng N, Ma L, Zhang Y, Zhang H. Repurposing Drugs for Inhibition against ALDH2 via a 2D/3D Ligand-Based Similarity Search and Molecular Simulation. Molecules 2023; 28:7325. [PMID: 37959744 PMCID: PMC10650273 DOI: 10.3390/molecules28217325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aldehyde dehydrogenase-2 (ALDH2) is a crucial enzyme participating in intracellular aldehyde metabolism and is acknowledged as a potential therapeutic target for the treatment of alcohol use disorder and other addictive behaviors. Using previously reported ALDH2 inhibitors of Daidzin, CVT-10216, and CHEMBL114083 as reference molecules, here we perform a ligand-based virtual screening of world-approved drugs via 2D/3D similarity search methods, followed by the assessments of molecular docking, toxicity prediction, molecular simulation, and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis. The 2D molecular fingerprinting of ECFP4 and FCFP4 and 3D molecule-shape-based USRCAT methods show good performances in selecting compounds with a strong binding behavior with ALDH2. Three compounds of Zeaxanthin (q = 0), Troglitazone (q = 0), and Sequinavir (q = +1 e) are singled out as potential inhibitors; Zeaxanthin can only be hit via USRCAT. These drugs displayed a stronger binding strength compared to the reported potent inhibitor CVT-10216. Sarizotan (q = +1 e) and Netarsudil (q = 0/+1 e) displayed a strong binding strength with ALDH2 as well, whereas they displayed a shallow penetration into the substrate-binding tunnel of ALDH2 and could not fully occupy it. This likely left a space for substrate binding, and thus they were not ideal inhibitors. The MM-PBSA results indicate that the selected negatively charged compounds from the similarity search and Vina scoring are thermodynamically unfavorable, mainly due to electrostatic repulsion with the receptor (q = -6 e for ALDH2). The electrostatic attraction with positively charged compounds, however, yielded very strong binding results with ALDH2. These findings reveal a deficiency in the modeling of electrostatic interactions (in particular, between charged moieties) in the virtual screening via the 2D/3D similarity search and molecular docking with the Vina scoring system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, China
| |
Collapse
|
36
|
Li D, Deng Z, Hou X, Qin Z, Wang X, Yin D, Chen Y, Rao Y, Chen J, Zhou J. Structural Insight into the Catalytic Mechanisms of an L-Sorbosone Dehydrogenase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301955. [PMID: 37679059 PMCID: PMC10602560 DOI: 10.1002/advs.202301955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/29/2023] [Indexed: 09/09/2023]
Abstract
L-Sorbosone dehydrogenase (SNDH) is a key enzyme involved in the biosynthesis of 2-keto-L-gulonic acid , which is a direct precursor for the industrial scale production of vitamin C. Elucidating the structure and the catalytic mechanism is essential for improving SNDH performance. By solving the crystal structures of SNDH from Gluconobacter oxydans WSH-004, a reversible disulfide bond between Cys295 and the catalytic Cys296 residues is discovered. It allowed SNDH to switch between oxidation and reduction states, resulting in opening or closing the substrate pocket. Moreover, the Cys296 is found to affect the NADP+ binding pose with SNDH. Combining the in vitro biochemical and site-directed mutagenesis studies, the redox-based dynamic regulation and the catalytic mechanisms of SNDH are proposed. Moreover, the mutants with enhanced activity are obtained by extending substrate channels. This study not only elucidates the physiological control mechanism of the dehydrogenase, but also provides a theoretical basis for engineering similar enzymes.
Collapse
Affiliation(s)
- Dong Li
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Zhiwei Deng
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Xiaodong Hou
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Zhijie Qin
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Dejing Yin
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Yue Chen
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Yijian Rao
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jian Chen
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan UniversityWuxi214122China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Industrial BiotechnologyMinistry of Education and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan UniversityWuxi214122China
| |
Collapse
|
37
|
Kundu B, Iyer MR. A patent review on aldehyde dehydrogenase inhibitors: an overview of small molecule inhibitors from the last decade. Expert Opin Ther Pat 2023; 33:651-668. [PMID: 38037334 DOI: 10.1080/13543776.2023.2287515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Physiological and pathophysiological effects arising from detoxification of aldehydes in humans implicate the enzyme aldehyde dehydrogenase (ALDH) gene family comprising of 19 isoforms. The main function of this enzyme family is to metabolize reactive aldehydes to carboxylic acids. Dysregulation of ALDH activity has been associated with various diseases. Extensive research has since gone into studying ALHD isozymes, their structural biology and developing small-molecule inhibitors. Novel chemical strategies to enhance the selectivity of ALDH inhibitors have now appeared. AREAS COVERED A comprehensive review of patent literature related to aldehyde dehydrogenase inhibitors in the last decade and half (2007-2022) is provided. EXPERT OPINION Aldehyde dehydrogenase (ALDH) is an important enzyme that metabolizes reactive exogenous and endogenous aldehydes in the body through NAD(P)±dependent oxidation. Hence this family of enzymes possess important physiological as well as toxicological roles in human body. Significant efforts in the field have led to potent inhibitors with approved clinical agents for alcohol use disorder therapy. Further clinical translation of novel compounds targeting ALDH inhibition will validate the promised therapeutic potential in treating many human diseases.The scientific/patent literature has been searched on SciFinder-n, Reaxys, PubMed, Espacenet and Google Patents. The search terms used were 'ALDH inhibitors', 'Aldehyde Dehydrogenase Inhibitors'.
Collapse
Affiliation(s)
- Biswajit Kundu
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
38
|
Ikhmais BA, Hammad AM, Abusara OH, Hamadneh L, Abumansour H, Abdallah QM, Ibrahim AIM, Elsalem L, Awad M, Alshehada R. Investigating Carvedilol's Repurposing for the Treatment of Non-Small Cell Lung Cancer via Aldehyde Dehydrogenase Activity Modulation in the Presence of β-Adrenergic Agonists. Curr Issues Mol Biol 2023; 45:7996-8012. [PMID: 37886948 PMCID: PMC10605277 DOI: 10.3390/cimb45100505] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Repurposing existing drugs appears to be a potential solution for addressing the challenges in the treatment of non-small cell lung cancer (NSCLC). β-adrenoceptor antagonist drugs (β-blockers) have tumor-inhibiting effects, making them promising candidates for potential NSCLC treatment. This study investigates the anticancer potential of a subset of β-blockers in NSCLC cell lines; A549 and H1299. Additionally, it investigates the underlying mechanism behind β-blockers' anticancer effect by influencing a potential novel target named aldehyde dehydrogenase (ALDH). The MTT assay assessed β-blockers' cytotoxicity on both cell lines, while Western blot and NADH fluorescence assays evaluated their influence on ALDH protein expression and activity. Carvedilol (CAR) was the most effective blocker in reducing cell survival of A549 and H1299 with IC50 of 18 µM and 13.7 µM, respectively. Significantly, CAR led to a 50% reduction in ALDH expression and 80% decrease in ALDH activity in A549 cells, especially when combined with β-agonists, in comparison to the control. This effect might be attributed to β-agonist blockade or an alternative pathway. This novel finding adds to our understanding of CAR's multifaceted anticancer properties, implying that combining CAR with β-agonists could be a useful strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Balqis A. Ikhmais
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Osama H. Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Lama Hamadneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan;
| | - Hamza Abumansour
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Qasem M. Abdallah
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan;
| | - Ali I. M. Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
| | - Mariam Awad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Rahaf Alshehada
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| |
Collapse
|
39
|
Steigleder KM, Pascoal LB, Siqueira NSN, Simino LADP, Ayrizono MDLS, Ferreira MM, Fagundes JJ, Azevedo ATD, Torsoni AS, Leal RF. Mathematical Models Including microRNA Levels of Mesenteric Adipose Tissue May Predict Postoperative Relapse in Crohn's Disease Patients. GASTRO HEP ADVANCES 2023; 3:17-30. [PMID: 39132178 PMCID: PMC11307883 DOI: 10.1016/j.gastha.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/21/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Recent evidence suggests that the mesenteric adipose tissue (MAT) near the affected intestine may play a role in Crohn's disease (CD) pathophysiology. Modulation of several transcripts has already been identified in the MAT of CD in the literature. Therefore, our aim was to validate the microRNA (miRNA) transcript levels and their target genes in the MAT of active CD patients and correlate them with clinical and epidemiological data. Methods Samples from the MAT of surgical specimens from 25 active CD patients were obtained. The control group comprised fifteen patients who underwent surgery for other diseases, except inflammatory bowel diseases. Transcriptional levels of miRNA and their target genes were assessed by quantitative real-time polymerase chain reaction. The correlation between transcripts and clinical characteristics was obtained using multiple linear regression. The mathematical models (M) underwent a statistical filter to ensure robustness and reliability (P value < .05; adjusted R-squared (Rˆ2)> .99; correct predictions of more than 60%). Results miRNA-650 and miRNA-29c were upregulated in the MAT of CD compared to the control group (P < .0001 and P = .0032, respectively), besides presenting decreased levels of their target genes. Two were target genes of the miRNA-650: glutamine-fructose-6-phosphate transaminase 2 (P = .012) and aldehyde dehydrogenase 4 family (P = .0035); and 4 were targets of the miRNA-29c: cell death-inducing DFFA-like effector c (P = .001), E2F transcription factor-1 (P = .007), hypoxia-inducible factor 3 subunit alpha (P = .0029), and pyruvate dehydrogenase kinase 4 (P = .0054). We found 2 M with statistical strength and robustness. The performance test identified one model with 100% accuracy for predicting the month of recurrence and determining patients with less risk of early relapse after surgery. Conclusion We demonstrate that miRNA-650 and miRNA-29c and some of their target genes, besides clinical and epidemiological variables, may be useful in a model to predict when disease relapse may occur in CD patients who underwent surgery. These findings constitute a potential tool to guide postoperative clinical management.
Collapse
Affiliation(s)
- Karine Mariane Steigleder
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Lívia Bitencourt Pascoal
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Natália Souza Nunes Siqueira
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Laís Angélica de Paula Simino
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - Maria de Lourdes Setsuko Ayrizono
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Marciane Milanski Ferreira
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - João José Fagundes
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Aníbal Tavares de Azevedo
- Simulation Laboratory, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - Raquel Franco Leal
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| |
Collapse
|
40
|
Hayton C, Ahmed W, Cunningham P, Piper-Hanley K, Pearmain L, Chaudhuri N, Leonard C, Blaikley JF, Fowler SJ. Changes in lung epithelial cell volatile metabolite profile induced by pro-fibrotic stimulation with TGF- β1. J Breath Res 2023; 17:046012. [PMID: 37619557 DOI: 10.1088/1752-7163/acf391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Volatile organic compounds (VOCs) have shown promise as potential biomarkers in idiopathic pulmonary fibrosis. Measuring VOCs in the headspace ofin vitromodels of lung fibrosis may offer a method of determining the origin of those detected in exhaled breath. The aim of this study was to determine the VOCs associated with two lung cell lines (A549 and MRC-5 cells) and changes associated with stimulation of cells with the pro-fibrotic cytokine, transforming growth factor (TGF)-β1. A dynamic headspace sampling method was used to sample the headspace of A549 cells and MRC-5 cells. These were compared to media control samples and to each other to identify VOCs which discriminated between cell lines. Cells were then stimulated with the TGF-β1 and samples were compared between stimulated and unstimulated cells. Samples were analysed using thermal desorption-gas chromatography-mass spectrometry and supervised analysis was performed using sparse partial least squares-discriminant analysis (sPLS-DA). Supervised analysis revealed differential VOC profiles unique to each of the cell lines and from the media control samples. Significant changes in VOC profiles were induced by stimulation of cell lines with TGF-β1. In particular, several terpenoids (isopinocarveol, sativene and 3-carene) were increased in stimulated cells compared to unstimulated cells. VOC profiles differ between lung cell lines and alter in response to pro-fibrotic stimulation. Increased abundance of terpenoids in the headspace of stimulated cells may reflect TGF-β1 cell signalling activity and metabolic reprogramming. This may offer a potential biomarker target in exhaled breath in IPF.
Collapse
Affiliation(s)
- Conal Hayton
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- NIHR-Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Waqar Ahmed
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Peter Cunningham
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Karen Piper-Hanley
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Laurence Pearmain
- NIHR-Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nazia Chaudhuri
- School of Medicine, The University of Ulster, Magee Campus, Londonderry, United Kingdom
| | - Colm Leonard
- NIHR-Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - John F Blaikley
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- NIHR-Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- NIHR-Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
41
|
Li XC, Chang C, Pei ZM. Reactive Oxygen Species in Drought-Induced Stomatal Closure: The Potential Roles of NPR1. PLANTS (BASEL, SWITZERLAND) 2023; 12:3194. [PMID: 37765358 PMCID: PMC10537201 DOI: 10.3390/plants12183194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Stomatal closure is a vital, adaptive mechanism that plants utilize to minimize water loss and withstand drought conditions. We will briefly review the pathway triggered by drought that governs stomatal closure, with specific focuses on salicylic acid (SA) and reactive oxygen species (ROS). We propose that the non-expressor of PR Gene 1 (NPR1), a protein that protects plants during pathogen infections, also responds to SA during drought to sustain ROS levels and prevent ROS-induced cell death. We will examine the evidence underpinning this hypothesis and discuss potential strategies for its practical implementation.
Collapse
Affiliation(s)
- Xin-Cheng Li
- East Chapel Hill High School, 500 Weaver Dairy Rd, Chapel Hill, NC 27514, USA
| | - Claire Chang
- East Chapel Hill High School, 500 Weaver Dairy Rd, Chapel Hill, NC 27514, USA
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
42
|
Xanthis V, Mantso T, Dimtsi A, Pappa A, Fadouloglou VE. Human Aldehyde Dehydrogenases: A Superfamily of Similar Yet Different Proteins Highly Related to Cancer. Cancers (Basel) 2023; 15:4419. [PMID: 37686694 PMCID: PMC10650815 DOI: 10.3390/cancers15174419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The superfamily of human aldehyde dehydrogenases (hALDHs) consists of 19 isoenzymes which are critical for several physiological and biosynthetic processes and play a major role in the organism's detoxification via the NAD(P) dependent oxidation of numerous endogenous and exogenous aldehyde substrates to their corresponding carboxylic acids. Over the last decades, ALDHs have been the subject of several studies as it was revealed that their differential expression patterns in various cancer types are associated either with carcinogenesis or promotion of cell survival. Here, we attempt to provide a thorough review of hALDHs' diverse functions and 3D structures with particular emphasis on their role in cancer pathology and resistance to chemotherapy. We are especially interested in findings regarding the association of structural features and their changes with effects on enzymes' functionalities. Moreover, we provide an updated outline of the hALDHs inhibitors utilized in experimental or clinical settings for cancer therapy. Overall, this review aims to provide a better understanding of the impact of ALDHs in cancer pathology and therapy from a structural perspective.
Collapse
Affiliation(s)
| | | | | | | | - Vasiliki E. Fadouloglou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
43
|
Koh W, Kwak H, Cheong E, Lee CJ. GABA tone regulation and its cognitive functions in the brain. Nat Rev Neurosci 2023; 24:523-539. [PMID: 37495761 DOI: 10.1038/s41583-023-00724-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter released at GABAergic synapses, mediating fast-acting phasic inhibition. Emerging lines of evidence unequivocally indicate that a small amount of extracellular GABA - GABA tone - exists in the brain and induces a tonic GABA current that controls neuronal activity on a slow timescale relative to that of phasic inhibition. Surprisingly, studies indicate that glial cells that synthesize GABA, such as astrocytes, release GABA through non-vesicular mechanisms, such as channel-mediated release, and thereby act as the source of GABA tone in the brain. In this Review, we first provide an overview of major advances in our understanding of the cell-specific molecular and cellular mechanisms of GABA synthesis, release and clearance that regulate GABA tone in various brain regions. We next examine the diverse ways in which the tonic GABA current regulates synaptic transmission and synaptic plasticity through extrasynaptic GABAA-receptor-mediated mechanisms. Last, we discuss the physiological mechanisms through which tonic inhibition modulates cognitive function on a slow timescale. In this Review, we emphasize that the cognitive functions of tonic GABA current extend beyond mere inhibition, laying a foundation for future research on the physiological and pathophysiological roles of GABA tone regulation in normal and abnormal psychiatric conditions.
Collapse
Affiliation(s)
- Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
44
|
Li X, Wang P, Pan Q, Liu G, Liu W, Omotoso O, Du J, Li Z, Yu Y, Huang Y, Zhu P, Li M, Zhou X. Chromosome-level Asian elephant genome assembly and comparative genomics of long-lived mammals reveal the common substitutions for cancer resistance. Aging Cell 2023; 22:e13917. [PMID: 37395176 PMCID: PMC10497851 DOI: 10.1111/acel.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
The naked mole rat (Heterocephalus glaber), bats (e.g., genus Myotis), and elephants (family Elephantidae) are known as long-lived mammals and are assumed to be excellent cancer antagonists. However, whether there are common genetic changes underpinning cancer resistance in these long-lived species is yet to be fully established. Here, we newly generated a high-quality chromosome-level Asian elephant (Elephas maximus) genome and identified that the expanded gene families in elephants are involved in Ras-associated and base excision repair pathways. Moreover, we performed comparative genomic analyses of 12 mammals and examined genes with signatures of positive selection in elephants, naked mole rat, and greater horseshoe bat. Residues at positively selected sites of CDR2L and ALDH6A1 in these long-lived mammals enhanced the inhibition of tumor cell migration compared to those in short-lived relatives. Overall, our study provides a new genome resource and a preliminary survey of common genetic changes in long-lived mammals.
Collapse
Affiliation(s)
- Xuanjing Li
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengcheng Wang
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Qi Pan
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Gaoming Liu
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
| | - Weiqiang Liu
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Olatunde Omotoso
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Juan Du
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zihao Li
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Yu
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yun Huang
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Pingfen Zhu
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
| | - Meng Li
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
| |
Collapse
|
45
|
Seike T, Chen CH, Mochly-Rosen D. Impact of common ALDH2 inactivating mutation and alcohol consumption on Alzheimer's disease. Front Aging Neurosci 2023; 15:1223977. [PMID: 37693648 PMCID: PMC10483235 DOI: 10.3389/fnagi.2023.1223977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is an enzyme found in the mitochondrial matrix that plays a central role in alcohol and aldehyde metabolism. A common ALDH2 polymorphism in East Asians descent (called ALDH2*2 or E504K missense variant, SNP ID: rs671), present in approximately 8% of the world's population, has been associated with a variety of diseases. Recent meta-analyses support the relationship between this ALDH2 polymorphism and Alzheimer's disease (AD). And AD-like pathology observed in ALDH2-/- null mice and ALDH2*2 overexpressing transgenic mice indicate that ALDH2 deficiency plays an important role in the pathogenesis of AD. Recently, the worldwide increase in alcohol consumption has drawn attention to the relationship between heavy alcohol consumption and AD. Of potential clinical significance, chronic administration of alcohol in ALDH2*2/*2 knock-in mice exacerbates the pathogenesis of AD-like symptoms. Therefore, ALDH2 polymorphism and alcohol consumption likely play an important role in the onset and progression of AD. Here, we review the data on the relationship between ALDH2 polymorphism, alcohol, and AD, and summarize what is currently known about the role of the common ALDH2 inactivating mutation, ALDH2*2, and alcohol in the onset and progression of AD.
Collapse
Affiliation(s)
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
46
|
Wills R, Farhi J, Czabala P, Shahin S, M Spangle J, Raj M. Chemical sensors for imaging total cellular aliphatic aldehydes in live cells. Chem Sci 2023; 14:8305-8314. [PMID: 37564401 PMCID: PMC10411626 DOI: 10.1039/d3sc02025h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Aliphatic aldehydes are reactive electrophilic carbonyls that cross-link with DNA and proteins leading to cellular toxicity and disease pathogenesis. This toxicity is due to the cooperative effect of multiple aldehydes via a common mechanism. Therefore, live-cell imaging of total aliphatic aldehydes, small-to-long chain (C1-C10), is highly desired to decipher their physiological and pathological functions. However, sensors for imaging total cellular aliphatic aldehydes are currently lacking despite their high concentrations (∼80 to >500 μM) inside cells. Herein, we report chemical sensors that generate a benzimidazole moiety upon reaction with aliphatic aldehydes of different chain lengths (C1-C10), resulting in turn-on fluorescence. These sensors exhibit high quantum yields, high dynamic range, and enable the quantification of changes in both the exogenous administration of aldehydes and endogenous real-time formation of aliphatic aldehydes in live mammalian cells. This tool has great potential to transform aldehyde research by illuminating cellular metabolites that have remained elusive in living systems.
Collapse
Affiliation(s)
- Rachel Wills
- Department of Chemistry, Emory University Atlanta GA USA
| | - Jonathan Farhi
- Department of Radiation Oncology, Winship Cancer Institute of Emory University School of Medicine Atlanta GA USA
| | | | - Sophia Shahin
- Department of Chemistry, Emory University Atlanta GA USA
| | - Jennifer M Spangle
- Department of Radiation Oncology, Winship Cancer Institute of Emory University School of Medicine Atlanta GA USA
| | - Monika Raj
- Department of Chemistry, Emory University Atlanta GA USA
| |
Collapse
|
47
|
Kwong JMK, Caprioli J, Lee JCY, Song Y, Yu FJ, Bian J, Sze YH, Li KK, Do CW, To CH, Lam TC. Differential Responses of Retinal Neurons and Glia Revealed via Proteomic Analysis on Primary and Secondary Retinal Ganglion Cell Degeneration. Int J Mol Sci 2023; 24:12109. [PMID: 37569482 PMCID: PMC10418669 DOI: 10.3390/ijms241512109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
To explore the temporal profile of retinal proteomes specific to primary and secondary retinal ganglion cell (RGC) loss. Unilateral partial optic nerve transection (pONT) was performed on the temporal side of the rat optic nerve. Temporal and nasal retinal samples were collected at 1, 4 and 8 weeks after pONT (n = 4 each) for non-biased profiling with a high-resolution hybrid quadrupole time-of-flight mass spectrometry running on label-free SWATHTM acquisition (SCIEX). An information-dependent acquisition ion library was generated using ProteinPilot 5.0 and OneOmics cloud bioinformatics. Combined proteome analysis detected 2531 proteins with a false discovery rate of <1%. Compared to the nasal retina, 10, 25 and 61 significantly regulated proteins were found in the temporal retina at 1, 4, and 8 weeks, respectively (p < 0.05, FC ≥ 1.4 or ≤0.7). Eight proteins (ALDH1A1, TRY10, GFAP, HBB-B1, ALB, CDC42, SNCG, NEFL) were differentially expressed for at least two time points. The expressions of ALDH1A1 and SNCG at nerve fibers were decreased along with axonal loss. Increased ALDH1A1 localization in the inner nuclear layer suggested stress response. Increased GFAP expression demonstrated regional reactivity of astrocytes and Muller cells. Meta-analysis of gene ontology showed a pronounced difference in endopeptidase and peptidase inhibitor activity. Temporal proteomic profiling demonstrates established and novel protein targets associated with RGC damage.
Collapse
Affiliation(s)
- Jacky M. K. Kwong
- Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.); (J.C.Y.L.); (Y.S.)
| | - Joseph Caprioli
- Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.); (J.C.Y.L.); (Y.S.)
| | - Joanne C. Y. Lee
- Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.); (J.C.Y.L.); (Y.S.)
| | - Yifan Song
- Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.); (J.C.Y.L.); (Y.S.)
| | - Feng-Juan Yu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
| | - Jingfang Bian
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
| | - Ying-Hon Sze
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
| | - King-Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
| | - Chi-Wai Do
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, 17W, Hong Kong Science Park, Hong Kong, China
| | - Chi-Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, 17W, Hong Kong Science Park, Hong Kong, China
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, 17W, Hong Kong Science Park, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518052, China
| |
Collapse
|
48
|
Zhang J, Guo Y, Zhao X, Pang J, Pan C, Wang J, Wei S, Yu X, Zhang C, Chen Y, Yin H, Xu F. The role of aldehyde dehydrogenase 2 in cardiovascular disease. Nat Rev Cardiol 2023; 20:495-509. [PMID: 36781974 DOI: 10.1038/s41569-023-00839-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/15/2023]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme involved in the detoxification of alcohol-derived acetaldehyde and endogenous aldehydes. The inactivating ALDH2 rs671 polymorphism, present in up to 8% of the global population and in up to 50% of the East Asian population, is associated with increased risk of cardiovascular conditions such as coronary artery disease, alcohol-induced cardiac dysfunction, pulmonary arterial hypertension, heart failure and drug-induced cardiotoxicity. Although numerous studies have attributed an accumulation of aldehydes (secondary to alcohol consumption, ischaemia or elevated oxidative stress) to an increased risk of cardiovascular disease (CVD), this accumulation alone does not explain the emerging protective role of ALDH2 rs671 against ageing-related cardiac dysfunction and the development of aortic aneurysm or dissection. ALDH2 can also modulate risk factors associated with atherosclerosis, such as cholesterol biosynthesis and HDL biogenesis in hepatocytes and foam cell formation and efferocytosis in macrophages, via non-enzymatic pathways. In this Review, we summarize the basic biology and the clinical relevance of the enzymatic and non-enzymatic, tissue-specific roles of ALDH2 in CVD, and discuss the future directions in the research and development of therapeutic strategies targeting ALDH2. A thorough understanding of the complex roles of ALDH2 in CVD will improve the diagnosis, management and prognosis of patients with CVD who harbour the ALDH2 rs671 polymorphism.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Yunyun Guo
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Xiangkai Zhao
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Jiaojiao Pang
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Chang Pan
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Jiali Wang
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Shujian Wei
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Shandong, China
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
- Department of Cardiology, Qilu Hospital of Shandong University, Shandong, China
| | - Yuguo Chen
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China.
| | - Huiyong Yin
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China.
| |
Collapse
|
49
|
Gorący A, Rosik J, Szostak J, Szostak B, Retfiński S, Machaj F, Pawlik A. Improving mitochondrial function in preclinical models of heart failure: therapeutic targets for future clinical therapies? Expert Opin Ther Targets 2023; 27:593-608. [PMID: 37477241 DOI: 10.1080/14728222.2023.2240021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Heart failure is a complex clinical syndrome resulting from the unsuccessful compensation of symptoms of myocardial damage. Mitochondrial dysfunction is a process that occurs because of an attempt to adapt to the disruption of metabolic and energetic pathways occurring in the myocardium. This, in turn, leads to further dysfunction in cardiomyocyte processes. Currently, many therapeutic strategies have been implemented to improve mitochondrial function, but their effectiveness varies widely. AREAS COVERED This review focuses on new models of therapeutic strategies targeting mitochondrial function in the treatment of heart failure. EXPERT OPINION Therapeutic strategies targeting mitochondria appear to be a valuable option for treating heart failure. Currently, the greatest challenge is to develop new research models that could restore the disrupted metabolic processes in mitochondria as comprehensively as possible. Only the development of therapies that focus on improving as many dysregulated mitochondrial processes as possible in patients with heart failure will be able to bring the expected clinical improvement, along with inhibition of disease progression. Combined strategies involving the reduction of the effects of oxidative stress and mitochondrial dysfunction, appear to be a promising possibility for developing new therapies for a complex and multifactorial disease such as heart failure.
Collapse
Affiliation(s)
- Anna Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Szymon Retfiński
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
50
|
Dancik GM, Varisli L, Vlahopoulos SA. The Molecular Context of Oxidant Stress Response in Cancer Establishes ALDH1A1 as a Critical Target: What This Means for Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24119372. [PMID: 37298333 DOI: 10.3390/ijms24119372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.
Collapse
Affiliation(s)
- Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| |
Collapse
|