1
|
Kim I, Sung J, Ahn YJ, Im M, Kim MJ, Park SJ, Cho SY. Risk and clinical characteristics of spinal cord compression across different mucopolysaccharidosis types: A retrospective cohort study. Medicine (Baltimore) 2024; 103:e40113. [PMID: 39432610 PMCID: PMC11495688 DOI: 10.1097/md.0000000000040113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
In patients with mucopolysaccharidosis (MPS), the accumulation of glycosaminoglycans leads to various complications, including spinal cord compression (SCC). Although SCC is a well-known complication in MPS, data comparing its clinical features across different MPS types remain limited. This study aimed to investigate the timing, location, and underlying causes of SCC in MPS, as well as to compare the risk and clinical characteristics by MPS type. We conducted a retrospective cohort study, reviewing the medical records of 183 patients with all types of MPS who were followed at Samsung Medical Center from January 1995 to March 2024. The distribution of patients diagnosed with SCC by MPS type was 33.3% for type I, 10.5% for type II, 55.0% for type IV, and 100% for type VI. The median age at SCC diagnosis was 16.3 years. Compared to type II, the risk of SCC was higher for type I (2.4 times, 95% confidence interval [CI]: 0.9-6.2), type IV (3.5 times; 95% CI: 1.5-8.1), and type VI (4.5 times, 95% CI: 1.2-16.4). Enzyme replacement therapy did not reduce the risk of SCC (P = .70). Moreover, SCC most frequently occurred at the C0 to C4 and T11 to L2 spinal levels. In the cervical spine, ligament thickening, and skeletal deformities were the predominant causes, whereas in the thoracolumbar spine, kyphoscoliosis and intervertebral disc issues were the main contributors. Although there was no significant difference in the location of SCC (P = .99), the underlying causes varied significantly by MPS type (P < .001). SCC is a common complication in MPS, but its risk and pathophysiology vary by MPS type. Therefore, an individualized approach is needed for early detection and appropriate intervention.
Collapse
Affiliation(s)
- Insung Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Juyoung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon Ji Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Minji Im
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Ji Kim
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Se-Jun Park
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Kenth J, Maughan E, Butler CR, Gabrie J, Rouhani M, Silver B, Ogunbiyi OK, Wilkinson S, Nandi R, Walker R, Muthialu N, Jones S, Hewitt R, Bruce IA. Novel approach for tracheal resection in Morquio a syndrome with end-stage critical airway obstruction: a UK case series. Orphanet J Rare Dis 2024; 19:274. [PMID: 39039523 PMCID: PMC11264958 DOI: 10.1186/s13023-024-03253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/16/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Mucopolysaccharidosis (MPS) type IVA is a rare lysosomal storage disorder caused by aberrations of the N-acetyl-galactosamine-6-sulfatase (GALNS) enzyme. MPS IVA is associated with a wide gamut of respiratory and airway disorders that manifest in a continuum of severity. In individuals exhibiting severe phenotypic expression, terminal stages of the disease frequently culminate in life-threatening, critical airway obstruction. These manifestations of end-stage disease are engendered by an insidious progression of multi-level airway pathologies, comprising of tracheomalacia, stenosis, tortuosity and 'buckling'. Historically, the management of end-stage airway disease has predominantly leaned towards palliative modalities. However, contemporary literature has posited that the potential benefits of tracheal resection with aortopexy, performed under cardiopulmonary bypass (CPB), may offer a promising therapeutic option. In this context, we report on outcomes from patients undergoing a novel approach to tracheal resection that is combined with manubrial resection, leading to improved airway calibre, obviating the requisition for CPB. RESULTS In this study, seven patients with severe MPS IVA exhibited clinical symptoms and radiological evidence indicative of advanced airway obstruction. All patients had a tracheal resection with a partial upper manubriectomy via transcervical approach, which did not require CPB. The surgical cohort consisted of 5 females and 2 males, the median age was 16 years (range 11-19) and the median height was 105.6cm (range 96.4-113.4). Postoperatively, significant improvements were seen in forced expiratory volume in 1 second (FEV1), with a mean increase of 0.68 litres (95% CI: 0.45-0.91; SD: 0.20). Notably, other spirometry variables also showed meaningful improvements, providing evidence of positive treatment effects. Furthermore, there were no major long-term complications, and the procedure resulted in a significant enhancement in patient-reported domains using PedsQL (version 4.0). CONCLUSIONS This study represents the largest case series to date, on tracheal resection in patients with severe MPS IVA. Our findings demonstrate the effectiveness of the transcervical approach with partial manubriectomy for improving respiratory function and quality of life for individuals with advanced airway obstruction. Tracheal resection presents a promising treatment modality for severe cases of MPS IVA. Successful outcomes rely on meticulous multidisciplinary assessment, judicious decision-making, and appropriate timing of tracheal surgery. Further research and long-term follow-up studies are warranted to validate the long-term efficacy and safety of this approach.
Collapse
Affiliation(s)
- Johnny Kenth
- Department of Paediatric Anaesthesia, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- Divisions of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Elizabeth Maughan
- National Paediatric Tracheal Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, UK
| | - Colin R Butler
- National Paediatric Tracheal Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, UK
| | - Jasleen Gabrie
- National Paediatric Tracheal Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Maral Rouhani
- National Paediatric Tracheal Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Benjamin Silver
- National Paediatric Tracheal Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Olumide K Ogunbiyi
- Great Ormond Street Hospital for Children, NHS Foundation Trust Research Histopathology Service, London, UK
| | - Stuart Wilkinson
- Department of Paediatric Respiratory Medicine, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Reema Nandi
- National Paediatric Tracheal Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Robert Walker
- Department of Paediatric Anaesthesia, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Nagarajan Muthialu
- National Paediatric Tracheal Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, UK
| | - Simon Jones
- Divisions of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Willink Metabolic Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Richard Hewitt
- National Paediatric Tracheal Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Iain A Bruce
- Divisions of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Paediatric ENT Department, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
3
|
Pimentel-Vera LN, Rodríguez-López A, Espejo-Mojica AJ, Ramírez AM, Cardona C, Reyes LH, Tomatsu S, Jaroentomeechai T, DeLisa MP, Sánchez OF, Alméciga-Díaz CJ. Novel human recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in a glyco-engineered Escherichia coli strain. Heliyon 2024; 10:e32555. [PMID: 38952373 PMCID: PMC11215262 DOI: 10.1016/j.heliyon.2024.e32555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disease caused by mutations in the gene encoding the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), resulting in the accumulation of keratan sulfate (KS) and chondroitin-6-sulfate (C6S). Previously, it was reported the production of an active human recombinant GALNS (rGALNS) in E. coli BL21(DE3). However, this recombinant enzyme was not taken up by HEK293 cells or MPS IVA skin fibroblasts. Here, we leveraged a glyco-engineered E. coli strain to produce a recombinant human GALNS bearing the eukaryotic trimannosyl core N-glycan, Man3GlcNAc2 (rGALNSoptGly). The N-glycosylated GALNS was produced at 100 mL and 1.65 L scales, purified and characterized with respect to pH stability, enzyme kinetic parameters, cell uptake, and KS clearance. The results showed that the addition of trimannosyl core N-glycans enhanced both protein stability and substrate affinity. rGALNSoptGly was capture through a mannose receptor-mediated process. This enzyme was delivered to the lysosome, where it reduced KS storage in human MPS IVA fibroblasts. This study demonstrates the potential of a glyco-engineered E. coli for producing a fully functional GALNS enzyme. It may offer an economic approach for the biosynthesis of a therapeutic glycoprotein that could prove useful for MPS IVA treatment. This strategy could be extended to other lysosomal enzymes that rely on the presence of mannose N-glycans for cell uptake.
Collapse
Affiliation(s)
- Luisa N. Pimentel-Vera
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Dogma Biotech, Bogotá, D.C., 110111, Colombia
| | - Angela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Dogma Biotech, Bogotá, D.C., 110111, Colombia
| | - Aura María Ramírez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| | - Carolina Cardona
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada GIBGA, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, Bogotá, D.C., Colombia
| | - Luis H. Reyes
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, D.C., Colombia
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, DE, 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE, 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, 19144, USA
| | - Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Oscar F. Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| |
Collapse
|
4
|
Lin C, Greenblatt MB, Gao G, Shim JH. Development of AAV-Mediated Gene Therapy Approaches to Treat Skeletal Diseases. Hum Gene Ther 2024; 35:317-328. [PMID: 38534217 PMCID: PMC11302315 DOI: 10.1089/hum.2024.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 03/28/2024] Open
Abstract
Adeno-associated viral (AAV) vectors have emerged as crucial tools in advancing gene therapy for skeletal diseases, offering the potential for sustained expression with low postinfection immunogenicity and pathogenicity. Preclinical studies support both the therapeutic efficacy and safety of these vectors, illustrating the promise of AAV-mediated gene therapy. Emerging technologies and innovations in AAV-mediated gene therapy strategies, such as gene addition, gene replacement, gene silencing, and gene editing, offer new approaches to clinical application. Recently, the increasing preclinical applications of AAV to rare skeletal diseases, such as fibrodysplasia ossificans progressiva (FOP) and osteogenesis imperfecta (OI), and prevalent bone diseases, such as osteoporosis, bone fracture, critical-sized bone defects, and osteoarthritis, have been reported. Despite existing limitations in clinical use, such as high cost and safety, the AAV-mediated gene transfer platform is a promising approach to deliver therapeutic gene(s) to the skeleton to treat skeletal disorders, including those otherwise intractable by other therapeutic approaches. This review provides a comprehensive overview of the therapeutic advancements, challenges, limitations, and solutions within AAV-based gene therapy for prevalent and rare skeletal diseases.
Collapse
Affiliation(s)
- Chujiao Lin
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Matthew B. Greenblatt
- Research Division, Hospital for Special Surgery, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Li JWY, Yan K, Balijepalli C, Druyts E. Humanistic burden of mucopolysaccharidoses: a systematic literature review. Curr Med Res Opin 2024; 40:709-722. [PMID: 38328952 DOI: 10.1080/03007995.2024.2316213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE To systematically review the literature and summarize the health-related quality-of-life (HRQoL) of patients undergoing treatment for mucopolysaccharidoses (MPS), a rare, hereditary lysosomal storage disorder. METHODS A systematic review was performed in accordance with PRISMA guidelines to identify research studies that describe the humanistic burden of MPS. A comprehensive literature search was conducted in EMBASE, MEDLINE, and eligible conferences were screened to include applicable abstracts. RESULTS Of 870 identified articles, 15 studies reported the HRQoL burden of patients with MPS undergoing or with a history of ERT and/or HSCT. These studies include patients of MPS I (n = 2), MPS II (n = 4), MPS IV (n = 6), MPS VI (n = 1), and subtype not mentioned (n = 2). Although the quality-of-life of MPS patients is influenced by time of diagnosis, pain, cognitive involvement, severity of disease, mobility, dependence, and time of treatment initiation, the HRQoL scores of MPS patients across all the scales were below the median reference population scores across all dimensions. This is seen in comparison to healthy participants but also in comparison to patients with other chronic illnesses. The multi-organ involvement, neurological impairment, pain, and morbidity associated with the condition not only affects activity of daily living but also affects social functioning, emotional status, employment status among adults, and school functioning among children. CONCLUSIONS This systematic literature review revealed the substantial humanistic burden of individuals affected by MPS as well as caregivers. Significant variation in HRQoL scores was observed, however studies indicate that the quality-of-life of MPS patients is influenced primarily by severity of disease (MPS type and phenotype), and then by time of diagnosis, pain, cognitive involvement, mobility, dependence, and time of treatment initiation. Further studies are needed to assess the global humanistic burden of MPS, particularly in MPS III, VI, VII, and IX subtypes, in adults, and for a longer follow-up period. Considering the vast array of HRQoL assessment tools available and used in this study, researchers should also consider using scales with condition-specific measures to ensure appropriate estimates of effectiveness.
Collapse
Affiliation(s)
| | - Kevin Yan
- Pharmalytics Group, Vancouver, BC, Canada
| | | | | |
Collapse
|
6
|
Leal AF, Celik B, Fnu N, Khan S, Tomatsu S, Alméciga-Díaz CJ. Iron oxide-coupled CRISPR-nCas9-based genome editing assessment in mucopolysaccharidosis IVA mice. Mol Ther Methods Clin Dev 2023; 31:101153. [PMID: 38107675 PMCID: PMC10724691 DOI: 10.1016/j.omtm.2023.101153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023]
Abstract
Mucopolysaccharidosis (MPS) IVA is a lysosomal storage disorder caused by mutations in the GALNS gene that leads to the lysosomal accumulation of keratan sulfate (KS) and chondroitin 6-sulfate, causing skeletal dysplasia and cardiopulmonary complications. Current enzyme replacement therapy does not impact the bone manifestation of the disease, supporting that new therapeutic alternatives are required. We previously demonstrated the suitability of the CRISPR-nCas9 system to rescue the phenotype of human MPS IVA fibroblasts using iron oxide nanoparticles (IONPs) as non-viral vectors. Here, we have extended this strategy to an MPS IVA mouse model by inserting the human GALNS cDNA into the ROSA26 locus. The results showed increased GALNS activity, mono-KS reduction, partial recovery of the bone pathology, and non-IONPs-related toxicity or antibody-mediated immune response activation. This study provides, for the first time, in vivo evidence of the potential of a CRISPR-nCas9-based gene therapy strategy for treating MPS IVA using non-viral vectors as carriers.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá DC 110231, Colombia
- Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Betul Celik
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nidhi Fnu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shaukat Khan
- Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Shunji Tomatsu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá DC 110231, Colombia
| |
Collapse
|
7
|
Padash S, Obaid H, Henderson RDE, Padash Y, Adams SJ, Miller SF, Babyn P. A pictorial review of the radiographic skeletal findings in Morquio syndrome (mucopolysaccharidosis type IV). Pediatr Radiol 2023; 53:971-983. [PMID: 36627376 DOI: 10.1007/s00247-022-05585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/18/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023]
Abstract
Morquio syndrome, also known as Morquio-Brailsford syndrome or mucopolysaccharidosis type IV (MPS IV), is a subgroup of mucopolysaccharidosis. It is an autosomal recessive lysosomal storage disorder. Two subtypes of Morquio syndrome have been identified. In MPS IVA, a deficiency in N-acetylgalactosamine-6-sulfate sulfatase interrupts the normal metabolic pathway of degrading glycosaminoglycans. Accumulated undigested glycosaminoglycans in the tissue and bones result in complications leading to severe skeletal deformity. In MPS IVB, a deficiency in beta-galactosidase results in a milder phenotype than in MPS IVA. Morquio syndrome presents a variety of clinical manifestations in a spectrum of mild to severe. It classically has been considered a skeletal dysplasia with significant skeletal involvement. However, the extraskeletal features can also provide valuable information to guide further work-up to assess the possibility of the disorder. Although the disease involves almost all parts of the body, it most commonly affects the axial skeleton, specifically the vertebrae. The characteristic radiologic findings in MPS IV, such as paddle-shaped ribs, odontoid hypoplasia, vertebral deformity, metaphyseal and epiphyseal bone dysplasia, and steep acetabula, are encompassed in the term "dysostosis multiplex," which is a common feature among other types of MPS and storage disorders. Myelopathy due to spinal cord compression and respiratory airway obstruction are the most critical complications related to mortality and morbidity. The variety of clinical features, as well as overlapping of radiological findings with other disorders, make diagnosis challenging, and delays in diagnosis and treatment may lead to critical complications. Timely imaging and radiologic expertise are important components for diagnosis. Gene therapies may provide robust treatment, particularly if genetic variations can be screened in utero.
Collapse
Affiliation(s)
- Sirwa Padash
- Department of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada
| | - Haron Obaid
- Department of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada
| | - Robert D E Henderson
- Department of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada.
| | - Yaseen Padash
- Department of Radiology, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Scott J Adams
- Department of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada
| | - Stephen F Miller
- Le Bonheur Children's Hospital and University of Tennessee Health Science Center, Memphis, TN, USA
| | - Paul Babyn
- Department of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada
| |
Collapse
|
8
|
Piechnik M, Amendum PC, Sawamoto K, Stapleton M, Khan S, Fnu N, Álvarez V, Pachon AMH, Danos O, Bruder JT, Karumuthil-Melethil S, Tomatsu S. Sex Difference Leads to Differential Gene Expression Patterns and Therapeutic Efficacy in Mucopolysaccharidosis IVA Murine Model Receiving AAV8 Gene Therapy. Int J Mol Sci 2022; 23:ijms232012693. [PMID: 36293546 PMCID: PMC9604118 DOI: 10.3390/ijms232012693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Adeno-associated virus (AAV) vector-based therapies can effectively correct some disease pathology in murine models with mucopolysaccharidoses. However, immunogenicity can limit therapeutic effect as immune responses target capsid proteins, transduced cells, and gene therapy products, ultimately resulting in loss of enzyme activity. Inherent differences in male versus female immune response can significantly impact AAV gene transfer. We aim to investigate sex differences in the immune response to AAV gene therapies in mice with mucopolysaccharidosis IVA (MPS IVA). MPS IVA mice, treated with different AAV vectors expressing human N-acetylgalactosamine 6-sulfate sulfatase (GALNS), demonstrated a more robust antibody response in female mice resulting in subsequent decreased GALNS enzyme activity and less therapeutic efficacy in tissue pathology relative to male mice. Under thyroxine-binding globulin promoter, neutralizing antibody titers in female mice were approximately 4.6-fold higher than in male mice, with GALNS enzyme activity levels approximately 6.8-fold lower. Overall, male mice treated with AAV-based gene therapy showed pathological improvement in the femur and tibial growth plates, ligaments, and articular cartilage as determined by contrasting differences in pathology scores compared to females. Cardiac histology revealed a failure to normalize vacuolation in females, in contrast, to complete correction in male mice. These findings promote the need for further determination of sex-based differences in response to AAV-mediated gene therapy related to developing treatments for MPS IVA.
Collapse
Affiliation(s)
- Matthew Piechnik
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paige C. Amendum
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kazuki Sawamoto
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Molly Stapleton
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Shaukat Khan
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Nidhi Fnu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Victor Álvarez
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | | | | | | | - Subha Karumuthil-Melethil
- REGENXBIO Inc., Rockville, MD 20850, USA
- Correspondence: (S.K.-M.); or (S.T.); Tel.: +1-240-552-8584 (S.K.-M.); +1-302-298-7336 (S.T.); Fax: +1-302-651-6888 (S.T.)
| | - Shunji Tomatsu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pediatrics, Shimane University, Izumo 693-8501, Shimane, Japan
- Correspondence: (S.K.-M.); or (S.T.); Tel.: +1-240-552-8584 (S.K.-M.); +1-302-298-7336 (S.T.); Fax: +1-302-651-6888 (S.T.)
| |
Collapse
|
9
|
Lee CL, Chuang CK, Syu YM, Chiu HC, Tu YR, Lo YT, Chang YH, Lin HY, Lin SP. Efficacy of Intravenous Elosulfase Alfa for Mucopolysaccharidosis Type IVA: A Systematic Review and Meta-Analysis. J Pers Med 2022; 12:1338. [PMID: 36013287 PMCID: PMC9409773 DOI: 10.3390/jpm12081338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA or Morquio A), a lysosomal storage disease with an autosomal recessive inherited pattern, is induced by GALNS gene mutations causing deficiency in N-acetylgalactosamine-6-sulfatase activity (GALNS; EC 3.1.6.4). Currently, intravenous (IV) enzyme replacement therapy (ERT) with elosulfase alfa is employed for treating MPS IVA patients. A systematic literature review was conducted to evaluate the efficacy and safety of IV elosulfase alfa for MPS IVA by searching the National Center for Biotechnology Information, U.S. National Library of Medicine National Institutes of Health (PubMed), Excerpta Medica dataBASE, and Cochrane Library databases, limited to clinical trials. Four cohort studies and two randomized controlled trials, with a total of 550 participants (327 on ERT treatment versus 223 on placebo treatment), satisfied the inclusion criteria. Pooled analysis of proportions and confidence intervals were also utilized to systematically review clinical cohort studies and trials. Per the pooled proportions analysis, the difference in means of urinary keratan sulfate (uKS), 6-min walk test, 3-min stair climb test, self-care MPS-Health Assessment Questionnaire, caregiver assistance and mobility, forced vital capacity, the first second of forced expiration, and maximal voluntary ventilation between the ERT and placebo treatment groups were -0.260, -0.102, -0.182, -0.360, -0.408, -0.587, -0.293, -0.311, and -0.213, respectively. Based on the currently available data, our meta-analysis showed that there is uKS, physical performance, quality of life, and respiratory function improvements with ERT in MPS IVA patients. It is optimal to start ERT after diagnosis.
Collapse
Grants
- MMH-E-111-13, MMH-E-110-16, MMH-E-109-16, MMH-E-108-16, MMH-MM-10801, and MMH-107-82 Mackay Memorial Hospital
- MOST-111-2811-B-195-001, MOST-111-2811-B-195-002, MOST-111-2314-B-195-017, MOST-110-2314-B-195-010-MY3, MOST-110-2314-B-195-014, MOST-110-2314-B-195-029, MOST-109-2314-B-195-024, MOST-108-2314-B-195-012, and MOST-108-2314-B-195-014 Ministry of Science and Technology
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, New Taipei City 25245, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
- College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yu-Min Syu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 22021, Taiwan
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Yuan-Rong Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Yun-Ting Lo
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, New Taipei City 25245, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
| |
Collapse
|
10
|
Weesner JA, Annunziata I, Yang T, Acosta W, Gomero E, Hu H, van de Vlekkert D, Ayala J, Qiu X, Fremuth LE, Radin DN, Cramer CL, d’Azzo A. Preclinical Enzyme Replacement Therapy with a Recombinant β-Galactosidase-Lectin Fusion for CNS Delivery and Treatment of GM1-Gangliosidosis. Cells 2022; 11:2579. [PMID: 36010656 PMCID: PMC9406850 DOI: 10.3390/cells11162579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
GM1-gangliosidosis is a catastrophic, neurodegenerative lysosomal storage disease caused by a deficiency of lysosomal β-galactosidase (β-Gal). The primary substrate of the enzyme is GM1-ganglioside (GM1), a sialylated glycosphingolipid abundant in nervous tissue. Patients with GM1-gangliosidosis present with massive and progressive accumulation of GM1 in the central nervous system (CNS), which leads to mental and motor decline, progressive neurodegeneration, and early death. No therapy is currently available for this lysosomal storage disease. Here, we describe a proof-of-concept preclinical study toward the development of enzyme replacement therapy (ERT) for GM1-gangliosidosis using a recombinant murine β-Gal fused to the plant lectin subunit B of ricin (mβ-Gal:RTB). We show that long-term, bi-weekly systemic injection of mβ-Gal:RTB in the β-Gal-/- mouse model resulted in widespread internalization of the enzyme by cells of visceral organs, with consequent restoration of enzyme activity. Most importantly, β-Gal activity was detected in several brain regions. This was accompanied by a reduction of accumulated GM1, reversal of neuroinflammation, and decrease in the apoptotic marker caspase 3. These results indicate that the RTB lectin delivery module enhances both the CNS-biodistribution pattern and the therapeutic efficacy of the β-Gal ERT, with the potential to translate to a clinical setting for the treatment of GM1-gangliosidosis.
Collapse
Affiliation(s)
- Jason Andrew Weesner
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Anatomy and Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Compliance Office, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tianhong Yang
- BioStrategies, LC, P.O. Box 2428, State University, Jonesboro, AR 72467, USA
| | - Walter Acosta
- BioStrategies, LC, P.O. Box 2428, State University, Jonesboro, AR 72467, USA
| | - Elida Gomero
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Huimin Hu
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Jorge Ayala
- BioStrategies, LC, P.O. Box 2428, State University, Jonesboro, AR 72467, USA
| | - Xiaohui Qiu
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Leigh Ellen Fremuth
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David N. Radin
- BioStrategies, LC, P.O. Box 2428, State University, Jonesboro, AR 72467, USA
| | - Carole L. Cramer
- BioStrategies, LC, P.O. Box 2428, State University, Jonesboro, AR 72467, USA
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Anatomy and Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
11
|
Wiesinger AM, Bigger B, Giugliani R, Scarpa M, Moser T, Lampe C, Kampmann C, Lagler FB. The Inflammation in the Cytopathology of Patients With Mucopolysaccharidoses- Immunomodulatory Drugs as an Approach to Therapy. Front Pharmacol 2022; 13:863667. [PMID: 35645812 PMCID: PMC9136158 DOI: 10.3389/fphar.2022.863667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/31/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSDs), characterized by the accumulation of glycosaminoglycans (GAGs). GAG storage-induced inflammatory processes are a driver of cytopathology in MPS and pharmacological immunomodulation can bring improvements in brain, cartilage and bone pathology in rodent models. This manuscript reviews current knowledge with regard to inflammation in MPS patients and provides hypotheses for the therapeutic use of immunomodulators in MPS. Thus, we aim to set the foundation for a rational repurposing of the discussed molecules to minimize the clinical unmet needs still remaining despite enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Anna-Maria Wiesinger
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- *Correspondence: Anna-Maria Wiesinger,
| | - Brian Bigger
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Roberto Giugliani
- Department of Genetics, Medical Genetics Service and Biodiscovery Laboratory, HCPA, UFRGS, Porto Alegre, Brazil
| | - Maurizio Scarpa
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Udine, Italy
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christina Lampe
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Department of Child and Adolescent Medicine, Center of Rare Diseases, University Hospitals Giessen/Marburg, Giessen, Germany
| | - Christoph Kampmann
- Department of Pediatric Cardiology, University Hospital Mainz, Mainz, Germany
| | - Florian B. Lagler
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
| |
Collapse
|
12
|
Yin X, Ahn J, Boca SM. Understanding bias when estimating life expectancy from age at death: a simulation approach applied to Morquio syndrome A. BMC Res Notes 2022; 15:19. [PMID: 35033196 PMCID: PMC8760562 DOI: 10.1186/s13104-021-05894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Life expectancy can be estimated accurately from a cohort of individuals born in the same year and followed from birth to death. However, due to the resource-consuming nature of following a cohort prospectively, life expectancy is often assessed based upon retrospective death record reviews. This conventional approach may lead to potentially biased estimates, in particular when estimating life expectancy of rare diseases such as Morquio syndrome A. We investigated the accuracy of life expectancy estimation using death records by simulating the survival of individuals with Morquio syndrome A under four different scenarios. RESULTS When life expectancy was constant during the entire period, using death data did not result in a biased estimate. However, when life expectancy increased over time, as is often expected to be the case in rare diseases, using only death data led to a substantial underestimation of life expectancy. We emphasize that it is therefore crucial to understand how estimates of life expectancy are obtained, to interpret them in an appropriate context, and to assess estimation methods within a sensitivity analysis framework, similar to the simulations performed herein.
Collapse
Affiliation(s)
- Xue Yin
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, DC, USA
- Medpace, Cincinnati, OH, USA
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, DC, USA.
| | - Simina M Boca
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, DC, USA.
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA.
- AstraZeneca, Gaithersburg, MD, USA.
| |
Collapse
|
13
|
Lee CL, Chuang CK, Chiu HC, Tu RY, Lo YT, Chang YH, Lin SP, Lin HY. Clinical Utility of Elosulfase Alfa in the Treatment of Morquio A Syndrome. Drug Des Devel Ther 2022; 16:143-154. [PMID: 35046639 PMCID: PMC8759989 DOI: 10.2147/dddt.s219433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA or Morquio A) is an autosomal recessive disorder and is one of the lysosomal storage diseases. Patients with MPS IVA have a striking skeletal phenotype but normal intellect. The phenotypic continuum of MPS IVA ranges from severe and rapid progress to mild and slow progress. The diagnosis of MPS IVA is usually suspected based on abnormal bone findings and dysplasia on physical examination and radiographic investigation in the preschool years. In the past, only supportive care was available. Due to the early and severe skeletal abnormalities, the orthopedic specialist was usually the main care provider. However, patients need aggressive monitoring and management of their systemic disease. Therefore, they need an interdisciplinary team for their care, comprising medical geneticists, cardiologists, pulmonary specialists, gastroenterologists, otolaryngologists, audiologists, and ophthalmologists. After the US Food and Drug Administration approved elosulfase alfa in 2014, patients older than 5 years could benefit from this treatment. Clinical trials showed clinically meaningful improvements with once-a-week intravenous dosing (2.0 mg/kg per week), significantly improving the 6min walk test, the 3min stair climb test, and respiratory function when compared with placebo. Elosulfase alfa is well-tolerated, and there is a good response indicated by decreasing urine glycosaminoglycans.
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan,Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan,Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan,College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ru-Yi Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yun-Ting Lo
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan,Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan,Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan,Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan,Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan,Correspondence: Shuan-Pei Lin; Hsiang-Yu Lin Department of Pediatrics, MacKay Memorial Hospital, No. 92, Sec. 2, Chung-Shan North Road, Taipei, 10449, TaiwanTel +886-2-2543-3535 ext. 3090; +886-2-2543-3535 ext. 3089Fax +886-2-2543-3642 Email ;
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan,Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan,Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Ricci S, Cacialli P. Stem Cell Research Tools in Human Metabolic Disorders: An Overview. Cells 2021; 10:cells10102681. [PMID: 34685661 PMCID: PMC8534517 DOI: 10.3390/cells10102681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolic disorders are very common in the population worldwide and are among the diseases with the highest health utilization and costs per person. Despite the ongoing efforts to develop new treatments, currently, for many of these disorders, there are no approved therapies, resulting in a huge economic hit and tension for society. In this review, we recapitulate the recent advancements in stem cell (gene) therapy as potential tools for the long-term treatment of both inherited (lysosomal storage diseases) and acquired (diabetes mellitus, obesity) metabolic disorders, focusing on the main promising results observed in human patients and discussing the critical hurdles preventing the definitive jump of this approach from the bench to the clinic.
Collapse
Affiliation(s)
- Serena Ricci
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Rue Michel Servet 1, 1206 Geneva, Switzerland;
| | - Pietro Cacialli
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Rue Michel Servet 1, 1206 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
15
|
Plasma Proteomic Analysis in Morquio A Disease. Int J Mol Sci 2021; 22:ijms22116165. [PMID: 34200496 PMCID: PMC8201332 DOI: 10.3390/ijms22116165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is a lysosomal disease caused by mutations in the gene encoding the enzymeN-acetylgalactosamine-6-sulfate sulfatase (GALNS), and is characterized by systemic skeletal dysplasia due to excessive storage of keratan sulfate (KS) and chondroitin-6-sulfate in chondrocytes. Although improvements in the activity of daily living and endurance tests have been achieved with enzyme replacement therapy (ERT) with recombinant human GALNS, recovery of bone lesions and bone growth in MPS IVA has not been demonstrated to date. Moreover, no correlation has been described between therapeutic efficacy and urine levels of KS, which accumulates in MPS IVA patients. The objective of this study was to assess the validity of potential biomarkers proposed by other authors and to identify new biomarkers. To identify candidate biomarkers of this disease, we analyzed plasma samples from healthy controls (n=6) and from untreated (n=8) and ERT-treated (n=5, sampled before and after treatment) MPS IVA patients using both qualitative and quantitative proteomics analyses. The qualitative proteomics approach analyzed the proteomic profile of the different study groups. In the quantitative analysis, we identified/quantified 215 proteins after comparing healthy control untreated, ERT-treated MPSIVA patients. We selected a group of proteins that were dysregulated in MPS IVA patients. We identified four potential protein biomarkers, all of which may influence bone and cartilage metabolism: fetuin-A, vitronectin, alpha-1antitrypsin, and clusterin. Further studies of cartilage and bone samples from MPS IVA patients will be required to verify the validity of these proteins as potential biomarkers of MPS IVA.
Collapse
|
16
|
Evaluation of artificial signal peptides for secretion of two lysosomal enzymes in CHO cells. Biochem J 2021; 478:2309-2319. [PMID: 34032266 DOI: 10.1042/bcj20210015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022]
Abstract
Enzyme replacement therapy (ERT) is a scientifically rational and clinically proven treatment for lysosomal storage diseases. Most enzymes used for ERT are purified from the culture supernatant of mammalian cells. However, it is challenging to purify lysosomal enzymes with sufficient quality and quantity for clinical use due to their low secretion levels in mammalian cell systems. To improve the secretion efficiency of recombinant lysosomal enzymes, we evaluated the impact of artificial signal peptides on the production of recombinant lysosomal enzymes in Chinese hamster ovary (CHO) cell lines. We engineered two recombinant human lysosomal enzymes, N-acetyl-α-glucosaminidase (rhNAGLU) and glucosamine (N-acetyl)-6-sulfatase (rhGNS), by replacing their native signal peptides with nine different signal peptides derived from highly secretory proteins and expressed them in CHO K1 cells. When comparing the native signal peptides, we found that rhGNS was secreted into media at higher levels than rhNAGLU. The secretion of rhNAGLU and rhGNS can, however, be carefully controlled by altering signal peptides. The secretion of rhNAGLU was relatively higher with murine Igκ light chain and human chymotrypsinogen B1 signal peptides, whereas Igκ light chain signal peptide 1 and human chymotrypsinogen B1 signal peptides were more effective for rhGNS secretion, suggesting that human chymotrypsinogen B1 signal peptide is the most appropriate for increasing lysosomal enzyme secretion. Collectively, our results indicate that altering signal peptide can modulate the secretion of recombinant lysosome enzymes and will enable lysosomal enzyme production for clinical use.
Collapse
|
17
|
Flanagan M, Pathak I, Gan Q, Winter L, Emnet R, Akel S, Montaño AM. Umbilical mesenchymal stem cell-derived extracellular vesicles as enzyme delivery vehicle to treat Morquio A fibroblasts. Stem Cell Res Ther 2021; 12:276. [PMID: 33957983 PMCID: PMC8101245 DOI: 10.1186/s13287-021-02355-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis IVA (Morquio A syndrome) is a lysosomal storage disease caused by the deficiency of enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), which results in the accumulation of the glycosaminoglycans (GAGs), keratan sulfate, and chondroitin-6-sulfate in the lysosomes of all tissues causing systemic dysfunction. Current treatments include enzyme replacement therapy (ERT) which can treat only certain aspects of the disease such as endurance-related biological endpoints. A key challenge in ERT is ineffective enzyme uptake in avascular tissues, which makes the treatment of the corneal, cartilage, and heart valvular tissue difficult. The aim of this study was to culture human umbilical mesenchymal stem cells (UMSC), demonstrate presence of GALNS enzyme activity within the extracellular vesicles (EVs) derived from these UMSC, and study how these secreted EVs are taken up by GALNS-deficient cells and used by the deficient cell's lysosomes. METHODS We obtained and cultured UMSC from the umbilical cord tissue from anonymous donors from the Saint Louis Cord Blood Bank. We characterized UMSC cell surface markers to confirm phenotype by cell sorting analyses. In addition, we confirmed that UMSC secrete GALNS enzyme creating conditioned media for co-culture experiments with GALNS deficient cells. Lastly, we isolated EVs derived from UMSC by ultracentrifugation to confirm source of GALNS enzyme. RESULTS Co-culture and confocal microscopy experiments indicated that the lysosomal content from UMSC migrated to deficient cells as evidenced by the peak signal intensity occurring at 15 min. EVs released by UMSC were characterized indicating that the EVs contained the active GALNS enzyme. Uptake of GALNS within EVs by deficient fibroblasts was not affected by mannose-6-phosphate (M6P) inhibition, suggesting that EV uptake by these fibroblasts is gradual and might be mediated by a different means than the M6P receptor. CONCLUSIONS UMSC can deliver EVs containing functional GALNS enzyme to deficient cells. This enzyme delivery method, which was unaffected by M6P inhibition, can function as a novel technique for reducing GAG accumulation in cells in avascular tissues, thereby providing a potential treatment option for Morquio A syndrome.
Collapse
Affiliation(s)
- Michael Flanagan
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA
| | - Isha Pathak
- School of Medicine, Saint Louis University, Saint Louis, Missouri, USA
| | - Qi Gan
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA
| | - Linda Winter
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA
| | - Ryan Emnet
- St. Louis Cord Blood Bank, SSM Cardinal Glennon Children's Medical Center, St Louis, MO, USA
| | - Salem Akel
- St. Louis Cord Blood Bank, SSM Cardinal Glennon Children's Medical Center, St Louis, MO, USA
| | - Adriana M Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA.
- Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, Saint Louis, Missouri, USA.
| |
Collapse
|
18
|
Evaluation of HIV-1 derived lentiviral vectors as transductors of Mucopolysaccharidosis type IV a fibroblasts. Gene 2021; 780:145527. [PMID: 33636292 DOI: 10.1016/j.gene.2021.145527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is a lysosomal storage disease produced by the deficiency of the N-acetylgalactosamine-6-sulfate sulfatase (GALNS) enzyme, leading to glycosaminoglycans (GAGs) accumulation. Since currently available treatments remain limited and unspecific, novel therapeutic approaches are essential for the disease treatment. In an attempt to reduce treatment limitations, gene therapy rises as a more effective and specific alternative. We present in this study the delivery assessment of GALNS and sulfatase-modifying factor 1 (SUMF1) genes via HIV-1 derived lentiviral vectors into fibroblasts from MPS IVA patients. After transduction, we determined GALNS enzymatic activity, lysosomal mass change, and autophagy pathway impairment. Additionally, we computationally assessed the effect of mutations over the enzyme-substrate interaction and phenotypic effects. The results showed that the co-transduction of MPS IVA fibroblasts with GALNS and SUMF1 cDNAs led to a significant increase in GALNS enzyme activity and a reduction of lysosomal mass. We show that patient-specific differences in cellular response are directly associated with the set of mutations on each patient. Lastly, we present new evidence supporting autophagy impairment in MPS IVA due to the presence and changes in autophagy proteins in treated MPS IVA fibroblasts. Our results offer new evidence that demonstrate the potential of lentiviral vectors as a strategy to correct GALNS deficiency.
Collapse
|
19
|
Álvarez VJ, Bravo SB, Chantada-Vazquez MP, Colón C, De Castro MJ, Morales M, Vitoria I, Tomatsu S, Otero-Espinar FJ, Couce ML. Characterization of New Proteomic Biomarker Candidates in Mucopolysaccharidosis Type IVA. Int J Mol Sci 2020; 22:ijms22010226. [PMID: 33379360 PMCID: PMC7795692 DOI: 10.3390/ijms22010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is a lysosomal storage disease caused by mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. Skeletal dysplasia and the related clinical features of MPS IVA are caused by disruption of the cartilage and its extracellular matrix, leading to a growth imbalance. Enzyme replacement therapy (ERT) with recombinant human GALNS has yielded positive results in activity of daily living and endurance tests. However, no data have demonstrated improvements in bone lesions and bone grow thin MPS IVA after ERT, and there is no correlation between therapeutic efficacy and urine levels of keratan sulfate, which accumulates in MPS IVA patients. Using qualitative and quantitative proteomics approaches, we analyzed leukocyte samples from healthy controls (n = 6) and from untreated (n = 5) and ERT-treated (n = 8, sampled before and after treatment) MPS IVA patients to identify potential biomarkers of disease. Out of 690 proteins identified in leukocytes, we selected a group of proteins that were dysregulated in MPS IVA patients with ERT. From these, we identified four potential protein biomarkers, all of which may influence bone and cartilage metabolism: lactotransferrin, coronin 1A, neutral alpha-glucosidase AB, and vitronectin. Further studies of cartilage and bone alterations in MPS IVA will be required to verify the validity of these proteins as potential biomarkers of MPS IVA.
Collapse
Affiliation(s)
- Víctor J. Álvarez
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. du Pont Hospital for Children, 1600 Rockland Road., Wilmington, DE 19803, USA;
| | - Susana B. Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (S.B.B.); (M.P.C.-V.)
| | - Maria Pilar Chantada-Vazquez
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (S.B.B.); (M.P.C.-V.)
| | - Cristóbal Colón
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
| | - María J. De Castro
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
| | - Montserrat Morales
- Minority Diseases Unit Hospital Universitario12 de Octubre, 28041 Madrid, Spain;
| | - Isidro Vitoria
- Nutrition and Metabolophaties Unit, Hospital Universitario La Fe, 46026 Valencia, Spain;
| | - Shunji Tomatsu
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. du Pont Hospital for Children, 1600 Rockland Road., Wilmington, DE 19803, USA;
| | - Francisco J. Otero-Espinar
- Paraquasil Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - María L. Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
- Correspondence: or ; Tel.: +34-981-951-100
| |
Collapse
|
20
|
Olarte-Avellaneda S, Cepeda Del Castillo J, Rojas-Rodriguez AF, Sánchez O, Rodríguez-López A, Suárez García DA, Pulido LMS, Alméciga-Díaz CJ. Bromocriptine as a Novel Pharmacological Chaperone for Mucopolysaccharidosis IV A. ACS Med Chem Lett 2020; 11:1377-1385. [PMID: 32676143 DOI: 10.1021/acsmedchemlett.0c00042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disease caused by mutations in the gene encoding for the enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), leading to lysosomal accumulation of keratan sulfate (KS) and chondroitin-6-sulfate. In this study, we identified and characterized bromocriptine (BC) as a novel PC for MPS IVA. BC was identified through virtual screening and predicted to be docked within the active cavity of GALNS in a similar conformation to that observed for KS. BC interacted with similar residues to those predicted for natural GALNS substrates. In vitro inhibitory assay showed that BC at 50 μM reduced GALNS activity up to 30%. However, the activity of hrGALNS produced in HEK293 cells was increased up to 1.48-fold. BC increased GALNS activity and reduced lysosomal mass in MPS IVA fibroblasts in a mutation-dependent manner. Overall, these results show the potential of BC as a novel PC for MPS IVA and contribute to the consolidation of PCs as a potential therapy for this disease.
Collapse
Affiliation(s)
- Sergio Olarte-Avellaneda
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Pharmacy Department, Faculty of Science, Universidad Nacional de Colombia, Bogotá D.C. 11001, Colombia
| | - Jacobo Cepeda Del Castillo
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Andrés Felipe Rojas-Rodriguez
- Computational and Structural Biochemistry, Biochemistry and Nutrition Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Oscar Sánchez
- Neurobiochemistry and Systems Physiology, Biochemistry and Nutrition Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Chemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Diego A. Suárez García
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C 11001, Colombia
| | - Luz Mary Salazar Pulido
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Bogotá D.C. 11001, Colombia
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| |
Collapse
|
21
|
Sawamoto K, Karumuthil-Melethil S, Khan S, Stapleton M, Bruder JT, Danos O, Tomatsu S. Liver-Targeted AAV8 Gene Therapy Ameliorates Skeletal and Cardiovascular Pathology in a Mucopolysaccharidosis IVA Murine Model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:50-61. [PMID: 32577432 PMCID: PMC7301175 DOI: 10.1016/j.omtm.2020.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is due to the deficiency of GALNS (N-acetylgalactosamine 6-sulfate sulfatase) and is characterized by systemic skeletal dysplasia. We have evaluated adeno-associated virus 8 (AAV8) vectors expressing different forms of human GALNS under a liver-specific promoter. The vectors were delivered intravenously into 4-week-old MPS IVA knockout (KO) and immune tolerant (MTOL) mice at a dose of 5 × 1013 genome copies (GC)/kg. These mice were monitored for 12 weeks post-injection. GALNS enzyme activity was elevated significantly in plasma of all treated mice at 2 weeks post-injection. The activity observed was 4- to 19-fold higher than that in wild-type mice and was maintained throughout the monitoring period. Treatment with AAV vectors resulted in a reduction of keratan sulfate (KS) levels in plasma to normal levels 2 weeks post-injection, which were maintained until necropsy. Both vectors reduced the storage in articular cartilage, ligaments, and meniscus surrounding articular cartilage and growth plate region as well as heart muscle and valves. Our results suggest that the continuous presence of high levels of circulating enzyme increases the penetration into bone and heart and reduces the KS level, thereby improving storage in these regions. The current data support a strategy for developing a novel treatment to address the bone and heart disease in MPS IVA using AAV gene therapy.
Collapse
Affiliation(s)
- Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19899-0269, USA
| | | | - Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19899-0269, USA
| | - Molly Stapleton
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19899-0269, USA
| | | | - Olivier Danos
- REGENXBIO, Rockville, MD 20850, USA
- Corresponding author: Olivier Danos, PhD, REGENXBIO, 9600 Blackwell Road, Suite 210, Rockville, MD 20850, USA.
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19899-0269, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA
- Corresponding author: Shunji Tomatsu, MD, PhD, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19899-0269, USA.
| |
Collapse
|
22
|
Rintz E, Gaffke L, Podlacha M, Brokowska J, Cyske Z, Węgrzyn G, Pierzynowska K. Transcriptomic Changes Related to Cellular Processes with Particular Emphasis on Cell Activation in Lysosomal Storage Diseases from the Group of Mucopolysaccharidoses. Int J Mol Sci 2020; 21:ijms21093194. [PMID: 32366041 PMCID: PMC7246638 DOI: 10.3390/ijms21093194] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Although mucopolysaccharidoses (MPS), inherited metabolic diseases from the group of lysosomal storage diseases (LSD), are monogenic disorders, recent studies indicated that their molecular mechanisms are complicated. Storage of glycosaminoglycans (GAGs), arising from a deficiency in one of the enzymes involved in the degradation of these compounds, is the primary cause of each MPS type. However, dysfunctions of various cellular organelles and disturbance of cellular processes have been reported which contribute considerably to pathomechanisms of the disease. Here, we present a complex transcriptomic analysis in which all types and subtypes of MPS were investigated, with special emphasis on genes related to cell activation processes. Complex changes in expression of these genes were found in fibroblasts of all MPS types, with number of transcripts revealing higher or lower levels (relative to control fibroblasts) between 19 and over 50, depending on MPS type. Genes in which expression was significantly affected in most MPS types code for proteins involved in following processes, classified according to Gene Ontology knowledge database: cell activation, cell growth, cell recognition, and cell division. Levels of some transcripts (including CD9, CLU, MME and others) were especially significantly changed (over five times relative to controls). Our results are discussed in the light of molecular pathomechanisms of MPS, indicating that secondary and/or tertiary changes, relative to GAG storage, might significantly modulate cellular dysfunctions and contribute to molecular mechanisms of the disease. This may influence the efficacy of various therapies and suggests why various treatments are not fully effective in improving the complex symptoms of MPS.
Collapse
|
23
|
Sawamoto K, Álvarez González JV, Piechnik M, Otero FJ, Couce ML, Suzuki Y, Tomatsu S. Mucopolysaccharidosis IVA: Diagnosis, Treatment, and Management. Int J Mol Sci 2020; 21:E1517. [PMID: 32102177 PMCID: PMC7073202 DOI: 10.3390/ijms21041517] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA, or Morquio syndrome type A) is an inherited metabolic lysosomal disease caused by the deficiency of the N-acetylglucosamine-6-sulfate sulfatase enzyme. The deficiency of this enzyme accumulates the specific glycosaminoglycans (GAG), keratan sulfate, and chondroitin-6-sulfate mainly in bone, cartilage, and its extracellular matrix. GAG accumulation in these lesions leads to unique skeletal dysplasia in MPS IVA patients. Clinical, radiographic, and biochemical tests are needed to complete the diagnosis of MPS IVA since some clinical characteristics in MPS IVA are overlapped with other disorders. Early and accurate diagnosis is vital to optimizing patient management, which provides a better quality of life and prolonged life-time in MPS IVA patients. Currently, enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are available for patients with MPS IVA. However, ERT and HSCT do not have enough impact on bone and cartilage lesions in patients with MPS IVA. Penetrating the deficient enzyme into an avascular lesion remains an unmet challenge, and several innovative therapies are under development in a preclinical study. In this review article, we comprehensively describe the current diagnosis, treatment, and management for MPS IVA. We also illustrate developing future therapies focused on the improvement of skeletal dysplasia in MPS IVA.
Collapse
Affiliation(s)
- Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (K.S.); (J.V.Á.G.); (M.P.)
| | | | - Matthew Piechnik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (K.S.); (J.V.Á.G.); (M.P.)
- University of Delaware, Newark, DE 19716, USA
| | - Francisco J. Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - Maria L. Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics and Pediatrics Neonatology Service, Metabolic Unit, IDIS, CIBERER, MetabERN, University Clinic Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Yasuyuki Suzuki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan;
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (K.S.); (J.V.Á.G.); (M.P.)
- University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan;
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
24
|
Losada Díaz JC, Cepeda del Castillo J, Rodriguez-López EA, Alméciga-Díaz CJ. Advances in the Development of Pharmacological Chaperones for the Mucopolysaccharidoses. Int J Mol Sci 2019; 21:ijms21010232. [PMID: 31905715 PMCID: PMC6981736 DOI: 10.3390/ijms21010232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
The mucopolysaccharidoses (MPS) are a group of 11 lysosomal storage diseases (LSDs) produced by mutations in the enzymes involved in the lysosomal catabolism of glycosaminoglycans. Most of the mutations affecting these enzymes may lead to changes in processing, folding, glycosylation, pH stability, protein aggregation, and defective transport to the lysosomes. It this sense, it has been proposed that the use of small molecules, called pharmacological chaperones (PCs), can restore the folding, trafficking, and biological activity of mutated enzymes. PCs have the advantages of wide tissue distribution, potential oral administration, lower production cost, and fewer issues of immunogenicity than enzyme replacement therapy. In this paper, we will review the advances in the identification and characterization of PCs for the MPS. These molecules have been described for MPS II, IVA, and IVB, showing a mutation-dependent enhancement of the mutated enzymes. Although the results show the potential of this strategy, further studies should focus in the development of disease-specific cellular models that allow a proper screening and evaluation of PCs. In addition, in vivo evaluation, both pre-clinical and clinical, should be performed, before they can become a real therapeutic strategy for the treatment of MPS patients.
Collapse
Affiliation(s)
- Juan Camilo Losada Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
| | - Jacobo Cepeda del Castillo
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
| | - Edwin Alexander Rodriguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
- Chemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
- Correspondence: ; Tel.: +57-1-3208320 (ext. 4140); Fax: +57-1-3208320 (ext. 4099)
| |
Collapse
|
25
|
Enzyme replacement therapy for mucopolysaccharidoses; past, present, and future. J Hum Genet 2019; 64:1153-1171. [PMID: 31455839 DOI: 10.1038/s10038-019-0662-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/08/2022]
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders, which lack an enzyme corresponding to the specific type of MPS. Enzyme replacement therapy (ERT) has been the standard therapeutic option for some types of MPS because of the ability to start immediate treatment with feasibility and safety and to improve prognosis. There are several disadvantages for current ERT, such as limited impact to the brain and avascular cartilage, weekly or biweekly infusions lasting 4-5 h, the immune response against the infused enzyme, a short half-life, and the high cost. Clinical studies of ERT have shown limited efficacy in preventing or resolving progression in neurological, cardiovascular, and skeletal diseases. One focus is to penetrate the avascular cartilage area to at least stabilize, if not reverse, musculoskeletal diseases. Although early intervention in some types of MPS has shown improvements in the severity of skeletal dysplasia and stunted growth, this limits the desired effect of ameliorating musculoskeletal disease progression to young MPS patients. Novel ERT strategies are under development to reach the brain: (1) utilizing a fusion protein with monoclonal antibody to target a receptor on the BBB, (2) using a protein complex from plant lectin, glycan, or insulin-like growth factor 2, and (3) direct infusion across the BBB. As for MPS IVA and VI, bone-targeting ERT will be an alternative to improve therapeutic efficacy in bone and cartilage. This review summarizes the effect and limitations on current ERT for MPS and describes the new technology to overcome the obstacles of conventional ERT.
Collapse
|
26
|
Abstract
Mucopolysaccharidoses (MPS) are inborn errors of metabolism produced by a deficiency of one of the enzymes involved in the degradation of glycosaminoglycans (GAGs). Although taken separately, each type is rare. As a group, MPS are relatively frequent, with an overall estimated incidence of around 1 in 20,000-25,000 births. Development of therapeutic options for MPS, including hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT), has modified the natural history of many MPS types. In spite of the improvement in some tissues and organs, significant challenges remain unsolved, including blood-brain barrier (BBB) penetration and treatment of lesions in avascular cartilage, heart valves, and corneas. Newer approaches, such as intrathecal ERT, ERT with fusion proteins to cross the BBB, gene therapy, substrate reduction therapy (SRT), chaperone therapy, and some combination of these strategies may provide better outcomes for MPS patients in the near future. As early diagnosis and early treatment are imperative to improve therapeutic efficacy, the inclusion of MPS in newborn screening programs should enhance the potential impact of treatment in reducing the morbidity associated with MPS diseases. In this review, we evaluate available treatments, including ERT and HSCT, and future treatments, such as gene therapy, SRT, and chaperone therapy, and describe the advantages and disadvantages. We also assess the current clinical endpoints and biomarkers used in clinical trials.
Collapse
|
27
|
Álvarez JV, Herrero Filgueira C, González ADLF, Colón Mejeras C, Beiras Iglesias A, Tomatsu S, Blanco Méndez J, Luzardo Álvarez A, Couce ML, Otero Espinar FJ. Enzyme-Loaded Gel Core Nanostructured Lipid Carriers to Improve Treatment of Lysosomal Storage Diseases: Formulation and In Vitro Cellular Studies of Elosulfase Alfa-Loaded Systems. Pharmaceutics 2019; 11:pharmaceutics11100522. [PMID: 31614479 PMCID: PMC6835858 DOI: 10.3390/pharmaceutics11100522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023] Open
Abstract
Mucopolysaccharidosis IVA (Morquio A) is a rare inherited metabolic disease caused by deficiency of the lysosomal enzyme N-acetylgalatosamine-6-sulfate-sulfatase (GALNS). Until now, treatments employed included hematopoietic stem cell transplantation and enzyme replacement therapy (ERT); the latter being the most commonly used to treat mucopolysaccharidoses, but with serious disadvantages due to rapid degradation and clearance. The purpose of this study was to develop and evaluate the potential of nanostructured lipid carriers (NLCs) by encapsulating elosulfase alfa and preserving its enzyme activity, leading to enhancement of its biological effect in chondrocyte cells. A pegylated elosulfase alfa-loaded NLC was characterized in terms of size, ζ potential, structural lipid composition (DSC and XRD), morphology (TEM microscopy), and stability in human plasma. The final formulation was freeze-dried by selecting the appropriate cryoprotective agent. Viability assays confirmed that NLCs were non-cytotoxic to human fibroblasts. Imaging techniques (confocal and TEM) were used to assess the cellular uptake of NLCs loaded with elosulfase alfa. This study provides evidence that the encapsulated drug exhibits enzyme activity inside the cells. Overall, this study provides a new approach regarding NLCs as a promising delivery system for the encapsulation of elosulfase alfa or other enzymes and the preservation of its activity and stability to be used in enzymatic replacement therapy (ERT).
Collapse
Affiliation(s)
- J. Víctor Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy. Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain; (J.V.Á.); (J.B.M.)
- Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road,Wilmington, DE 19803, USA;
| | - Carolina Herrero Filgueira
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela, Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
- Nasasbiotech, S.L., Canton Grande 3, 15003 A Coruña, Spain;
| | | | - Cristóbal Colón Mejeras
- Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| | - Andrés Beiras Iglesias
- Department of Morphological Sciences, School of Medicine, Hospital Clínico Universitario de Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - Shunji Tomatsu
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road,Wilmington, DE 19803, USA;
| | - José Blanco Méndez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy. Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain; (J.V.Á.); (J.B.M.)
| | - Asteria Luzardo Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, 27002 Lugo, Spain
- Correspondence: (A.L.Á.); (M.L.C.); (F.J.O.E.); Tel.: +34-981563100 (ext. 24142 (A.L.Á.); ext. 14878 (F.J.O.E.)); +34-981951134 (M.L.C.)
| | - María Luz Couce
- Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
- Correspondence: (A.L.Á.); (M.L.C.); (F.J.O.E.); Tel.: +34-981563100 (ext. 24142 (A.L.Á.); ext. 14878 (F.J.O.E.)); +34-981951134 (M.L.C.)
| | - Francisco J. Otero Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy. Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain; (J.V.Á.); (J.B.M.)
- Correspondence: (A.L.Á.); (M.L.C.); (F.J.O.E.); Tel.: +34-981563100 (ext. 24142 (A.L.Á.); ext. 14878 (F.J.O.E.)); +34-981951134 (M.L.C.)
| |
Collapse
|
28
|
Álvarez JV, Bravo SB, García-Vence M, De Castro MJ, Luzardo A, Colón C, Tomatsu S, Otero-Espinar FJ, Couce ML. Proteomic Analysis in Morquio A Cells Treated with Immobilized Enzymatic Replacement Therapy on Nanostructured Lipid Systems. Int J Mol Sci 2019; 20:ijms20184610. [PMID: 31540344 PMCID: PMC6769449 DOI: 10.3390/ijms20184610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Morquio A syndrome, or mucopolysaccharidosis type IVA (MPS IVA), is a lysosomal storage disease due to mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. Systemic skeletal dysplasia and the related clinical features of MPS IVA are due to disruption of cartilage and its extracellular matrix, leading to an imbalance of growth. Enzyme replacement therapy (ERT) with recombinant human GALNS, alpha elosulfase, provides a systemic treatment. However, this therapy has a limited impact on skeletal dysplasia because the infused enzyme cannot penetrate cartilage and bone. Therefore, an alternative therapeutic approach to reach the cartilage is an unmet challenge. We have developed a new drug delivery system based on a nanostructure lipid carrier with the capacity to immobilize enzymes used for ERT and to target the lysosomes. This study aimed to assess the effect of the encapsulated enzyme in this new delivery system, using in vitro proteomic technology. We found a greater internalization of the enzyme carried by nanoparticles inside the cells and an improvement of cellular protein routes previously impaired by the disease, compared with conventional ERT. This is the first qualitative and quantitative proteomic assay that demonstrates the advantages of a new delivery system to improve the MPS IVA ERT.
Collapse
Affiliation(s)
- J Víctor Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain.
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain.
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA.
| | - Susana B Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostea, Spain.
| | - María García-Vence
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostea, Spain.
| | - María J De Castro
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain.
| | - Asteria Luzardo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, 27002 Lugo, Spain.
- Paraquasil Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - Cristóbal Colón
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain.
| | - Shunji Tomatsu
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA.
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain.
- Paraquasil Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - María L Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Development of Substrate Degradation Enzyme Therapy for Mucopolysaccharidosis IVA Murine Model. Int J Mol Sci 2019; 20:ijms20174139. [PMID: 31450640 PMCID: PMC6747109 DOI: 10.3390/ijms20174139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 11/17/2022] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is caused by a deficiency of the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Conventional enzyme replacement therapy (ERT) is approved for MPS IVA. However, the fact that the infused enzyme cannot penetrate avascular lesions in cartilage leads to minimal impact on the bone lesion. Moreover, short half-life, high cost, instability, and narrow optimal pH range remain unmet challenges in ERT. Thermostable keratanase, endo-β-N-acetylglucosaminidase, has a unique character of a wide optimal pH range of pH 5.0-7.0. We hypothesized that this endoglycosidase degrades keratan sulfate (KS) polymer in circulating blood and, therefore, ameliorates the accumulation of KS in multiple tissues. We propose a novel approach, Substrate Degradation Enzyme Therapy (SDET), to treat bone lesion of MPS IVA. We assessed the effect of thermostable keratanase on blood KS level and bone pathology using Galns knock-out MPS IVA mice. After a single administration of 2 U/kg (= 0.2 mg/kg) of the enzyme at 8 weeks of age via intravenous injection, the level of serum KS was significantly decreased to normal range level, and this suppression was maintained for at least 4 weeks. We administered 2 U/kg of the enzyme to MPS IVA mice every fourth week for 12 weeks (total of 3 times) at newborns or 8 weeks of age. After a third injection, serum mono-sulfated KS levels were kept low for 4 weeks, similar to that in control mice, and at 12 weeks, bone pathology was markedly improved when SDET started at newborns, compared with untreated MPS IVA mice. Overall, thermostable keratanase reduces the level of KS in blood and provides a positive impact on cartilage lesions, demonstrating that SDET is a novel therapeutic approach to MPS IVA.
Collapse
|
30
|
Alméciga-Diaz CJ, Hidalgo OA, Olarte-Avellaneda S, Rodríguez-López A, Guzman E, Garzón R, Pimentel-Vera LN, Puentes-Tellez MA, Rojas-Rodriguez AF, Gorshkov K, Li R, Zheng W. Identification of Ezetimibe and Pranlukast as Pharmacological Chaperones for the Treatment of the Rare Disease Mucopolysaccharidosis Type IVA. J Med Chem 2019; 62:6175-6189. [PMID: 31188588 PMCID: PMC11292729 DOI: 10.1021/acs.jmedchem.9b00428] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is a rare disease caused by mutations in the gene encoding the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). We report here two GALNS pharmacological chaperones, ezetimibe and pranlukast, identified by molecular docking-based virtual screening. These compounds bound to the active cavity of GALNS and increased its thermal stability as well as the production of recombinant GALNS in bacteria, yeast, and HEK293 cells. MPS IVA fibroblasts treated with these chaperones exhibited increases in GALNS protein and enzyme activity and reduced the size of enlarged lysosomes. Abnormalities in autophagy markers p62 and LC3B-II were alleviated by ezetimibe and pranlukast. Combined treatment of recombinant GALNS with ezetimibe or pranlukast produced an additive effect. Altogether, the results demonstrate that ezetimibe and pranlukast can increase the yield of recombinant GALNS and be used as a monotherapy or combination therapy to improve the therapeutic efficacy of MPS IVA enzyme replacement therapy.
Collapse
Affiliation(s)
- Carlos J. Alméciga-Diaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia
| | - Oscar A. Hidalgo
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia
| | - Sergio Olarte-Avellaneda
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia
- Pharmacy Department, Faculty of Science, Universidad Nacional de Colombia, Bogotá D.C., 111321, Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia
- Chemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia
| | - Esteban Guzman
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia
| | - Rafael Garzón
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia
| | - Luisa Natalia Pimentel-Vera
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia
| | - María Alejandra Puentes-Tellez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia
| | - Andrés Felipe Rojas-Rodriguez
- Computational and Structural Biochemistry, Departamento de Nutrición y Bioquímica, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rong Li
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
31
|
Fujitsuka H, Sawamoto K, Peracha H, Mason RW, Mackenzie W, Kobayashi H, Yamaguchi S, Suzuki Y, Orii K, Orii T, Fukao T, Tomatsu S. Biomarkers in patients with mucopolysaccharidosis type II and IV. Mol Genet Metab Rep 2019; 19:100455. [PMID: 30775257 PMCID: PMC6365937 DOI: 10.1016/j.ymgmr.2019.100455] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/25/2023] Open
Abstract
Glycosaminoglycans (GAGs), dermatan sulfate (DS), heparan sulfate (HS), and keratan sulfate (KS), are the primary biomarkers in patients with mucopolysaccharidoses (MPS); however, little is known about other biomarkers. To explore potential biomarkers and their correlation with GAGs, blood samples were collected from 46 MPS II patients, 34 MPS IVA patients, and 5 MPS IVB patients. We evaluated the levels of 8 pro-inflammatory factors (EGF, IL-1β, IL-6, MIP-1α, TNF-α, MMP-1, MMP-2, and MMP-9), collagen type II, and DS, HS (HS0S, HSNS), and KS (mono-sulfated, di-sulfated) in blood. Eight biomarkers measured were significantly elevated in untreated MPS II patients, compared with those in normal controls: EGF, IL-1β, IL-6, HS0S, HSNS, DS, mono-sulfated KS, and di-sulfated KS. The same eight biomarkers remained elevated in ERT-treated patients. However, only three biomarkers remained elevated in post-HSCT MPS II patients: EGF, mono-sulfated KS, and di-sulfated KS. Post-HSCT patients with MPS II showed that IL-1β and IL-6 were normalized as HS and DS levels decreased. Eight biomarkers were significantly elevated in untreated MPS IVA patients: EGF, IL-1β, IL-6, MIP-1α, MMP-9, HSNS, mono-sulfated KS, and di-sulfated KS, and four biomarkers were elevated in MPS IVA patients under ERT: IL-6, TNF-α, mono-sulfated KS, and di-sulfated KS. There was no reduction of KS in the ERT-treated MPS IVA patient, compared with untreated patients. Two biomarkers were significantly elevated in untreated MPS IVB patients: IL-6 and TNF-α. Reversely, collagen type II level was significantly decreased in untreated and ERT-treated MPS II patients and untreated MPS IVA patients. In conclusion, selected pro-inflammatory factors can be potential biomarkers in patients with MPS II and IV as well as GAGs levels.
Collapse
Affiliation(s)
- Honoka Fujitsuka
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Medical Education Development Center, Gifu University, Japan
| | - Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Hira Peracha
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Robert W. Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - William Mackenzie
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | | | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Shimane, Japan
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Japan
| | - Kenji Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Pediatrics, Shimane University, Shimane, Japan
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
32
|
Doherty C, Stapleton M, Piechnik M, Mason RW, Mackenzie WG, Yamaguchi S, Kobayashi H, Suzuki Y, Tomatsu S. Effect of enzyme replacement therapy on the growth of patients with Morquio A. J Hum Genet 2019; 64:625-635. [PMID: 31019230 DOI: 10.1038/s10038-019-0604-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023]
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is a degenerative systemic skeletal dysplasia, in which children exhibit marked short stature and become physically handicapped. This study evaluated the growth patterns of patients treated with enzyme replacement therapy (ERT), compared with those of untreated patients. Cross-sectional and longitudinal data of heights and weights were collected from 128 MPS IVA patients and compared with the growth charts of MPS IVA. Twelve patients (six males, six females) starting ERT before 5 years old were treated for at least 2 years. Six out of 12 patients (50%) with ERT over 2 years stopped growing between 94 and 98 cm (mean height of 95.1 ± 2.2 cm) from 5.0 years to 9.0 years of age (mean age of 6.2 ± 1.6 years). The other patients, except one attenuated case, exhibited a marked slow growth velocity from 3.6 years to 7.7 years. Treated and untreated patients with severe phenotype reached their final heights by ~10 years of age. Patients treated with ERT exhibited a reduced pubertal growth spurt analogous to their untreated counterparts, which contributes to the marked short stature associated with MPS IVA. Compared with the growth charts for untreated patients, patients treated with ERT did not show any significant increase in growth in any age group. Overall, ERT-treated patients do not experience growth improvement and continue to exhibit poor growth despite early ERT intervention before 5 years of age. These findings indicate that current intravenous ERT is ineffective at correcting abnormal growth in MPS IVA.
Collapse
Affiliation(s)
- Caitlin Doherty
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,University of Delaware, Newark, DE, USA
| | - Molly Stapleton
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,University of Delaware, Newark, DE, USA
| | - Matthew Piechnik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,University of Delaware, Newark, DE, USA
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,University of Delaware, Newark, DE, USA
| | | | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Shimane, Japan
| | | | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA. .,Department of Pediatrics, Shimane University, Shimane, Japan. .,Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Rodríguez MC, Ceaglio N, Antuña S, Tardivo MB, Etcheverrigaray M, Prieto C. Production of Therapeutic Enzymes by Lentivirus Transgenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:25-54. [PMID: 31482493 DOI: 10.1007/978-981-13-7709-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since ERT for several LSDs treatment has emerged at the beginning of the 1980s with Orphan Drug approval, patients' expectancy and life quality have been improved. Most LSDs treatment are based on the replaced of mutated or deficient protein with the natural or recombinant protein.One of the main ERT drawback is the high drug prices. Therefore, different strategies trying to optimize the global ERT biotherapeutic production have been proposed. LVs, a gene delivery tool, can be proposed as an alternative method to generate stable cell lines in manufacturing of recombinant proteins. Since LVs have been used in human gene therapy, clinical trials, safety testing assays and procedures have been developed. Moreover, one of the main advantages of LVs strategy to obtain manufacturing cell line is the short period required as well as the high protein levels achieved.In this chapter, we will focus on LVs as a recombinant protein production platform and we will present a case study that employs LVs to express in a manufacturing cell line, alpha-Galactosidase A (rhαGAL), which is used as ERT for Fabry disease treatment.
Collapse
Affiliation(s)
| | - Natalia Ceaglio
- Cell Culture Laboratory, UNL, CONICET, FBCB, Santa Fe, Argentina
| | | | | | | | - Claudio Prieto
- Cell Culture Laboratory, UNL, FBCB, Santa Fe, Argentina.
| |
Collapse
|
34
|
Peracha H, Sawamoto K, Averill L, Kecskemethy H, Theroux M, Thacker M, Nagao K, Pizarro C, Mackenzie W, Kobayashi H, Yamaguchi S, Suzuki Y, Orii K, Orii T, Fukao T, Tomatsu S. Molecular genetics and metabolism, special edition: Diagnosis, diagnosis and prognosis of Mucopolysaccharidosis IVA. Mol Genet Metab 2018; 125:18-37. [PMID: 29779902 PMCID: PMC6175643 DOI: 10.1016/j.ymgme.2018.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/03/2023]
Abstract
Mucopolysaccharidosis IVA (MPS IVA, Morquio A syndrome) is an autosomal recessive disorder caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase. Deficiency of this enzyme leads to the accumulation of specific glycosaminoglycans (GAGs), chondroitin-6-sulfate (C6S) and keratan sulfate (KS), which are mainly synthesized in the cartilage. Therefore, the substrates are stored primarily in the cartilage and its extracellular matrix (ECM), leading to a direct impact on bone development and successive systemic skeletal spondylepiphyseal dysplasia. The skeletal-related symptoms for MPS IVA include short stature with short neck and trunk, odontoid hypoplasia, spinal cord compression, tracheal obstruction, obstructive airway, pectus carinatum, restrictive lung, kyphoscoliosis, platyspondyly, coxa valga, genu valgum, waddling gait, and laxity of joints. The degree of imbalance of growth in bone and other organs and tissues largely contributes to unique skeletal dysplasia and clinical severity. Diagnosis of MPS IVA needs clinical, radiographic, and laboratory testing to make a complete conclusion. To diagnose MPS IVA, total urinary GAG analysis which has been used is problematic since the values overlap with those in age-matched controls. Currently, urinary and blood KS and C6S, the enzyme activity of GALNS, and GALNS molecular analysis are used for diagnosis and prognosis of clinical phenotype in MPS IVA. MPS IVA can be diagnosed with unique characters although this disorder relates closely to other disorders in some characteristics. In this review article, we comprehensively describe clinical, radiographic, biochemical, and molecular diagnosis and clinical assessment tests for MPS IVA. We also compare MPS IVA to other closely related disorders to differentiate MPS IVA. Overall, imbalance of growth in MPS IVA patients underlies unique skeletal manifestations leading to a critical indicator for diagnosis.
Collapse
Affiliation(s)
- Hira Peracha
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Lauren Averill
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Heidi Kecskemethy
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Mary Theroux
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mihir Thacker
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Kyoko Nagao
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Linguistics and Cognitive Science, University of Delaware, Newark, DE, United States; College of Health Sciences, University of Delaware, Newark, DE, United States
| | - Christian Pizarro
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - William Mackenzie
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | | | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Shimane, Japan
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Japan
| | - Kenji Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pediatrics, Shimane University, Shimane, Japan; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
| |
Collapse
|
35
|
Giugliani R, Dalla Corte A, Poswar F, Vanzella C, Horovitz D, Riegel M, Baldo G, Vairo F. Intrathecal/Intracerebroventricular enzyme replacement therapy for the mucopolysaccharidoses: efficacy, safety, and prospects. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1487838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Roberto Giugliani
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amauri Dalla Corte
- Post-Graduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiano Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cláudia Vanzella
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Dafne Horovitz
- Department of Medical Genetics, National Institute for Women, Children and Adolescent Health Fernandes Figueira/Fiocruz, Rio de Janeiro, Brazil
| | - Mariluce Riegel
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Filippo Vairo
- Center of Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
36
|
Sawamoto K, Chen HH, Alméciga-Díaz CJ, Mason RW, Tomatsu S. Gene therapy for Mucopolysaccharidoses. Mol Genet Metab 2018; 123:59-68. [PMID: 29295764 PMCID: PMC5986190 DOI: 10.1016/j.ymgme.2017.12.434] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/19/2022]
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders (LSDs) caused by a deficiency of lysosomal enzymes, leading to a wide range of various clinical symptoms depending upon the type of MPS or its severity. Enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), substrate reduction therapy (SRT), and various surgical procedures are currently available for patients with MPS. However, there is no curative treatment for this group of disorders. Gene therapy should be a one-time permanent therapy, repairing the cause of enzyme deficiency. Preclinical studies of gene therapy for MPS have been developed over the past three decades. Currently, clinical trials of gene therapy for some types of MPS are ongoing in the United States, some European countries, and Australia. Here, in this review, we summarize the development of gene therapy for MPS in preclinical and clinical trials.
Collapse
Affiliation(s)
- Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Hui-Hsuan Chen
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, United States
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This review highlights how skeletal dysplasias are diagnosed and how our understanding of some of these conditions has now translated to treatment options. RECENT FINDINGS The use of multigene panels, using next-generation sequence technology, has improved our ability to quickly identify the genetic etiology, which can impact management. There are successes with the use of growth hormone in individuals with SHOX deficiencies, asfotase alfa in hypophosphatasia, and some promising data for c-type natriuretic peptide for those with achondroplasia. One needs to consider that a patient with short stature has a skeletal dysplasia as options for management may be available.
Collapse
Affiliation(s)
- Sarah M Nikkel
- Provinical Medical Genetics Program, BC Women's Hospital and Health Centre, University of British Columbia, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada.
| |
Collapse
|
38
|
Improvement in the production of the human recombinant enzyme N-acetylgalactosamine-6-sulfatase (rhGALNS) in Escherichia coli using synthetic biology approaches. Sci Rep 2017; 7:5844. [PMID: 28724898 PMCID: PMC5517531 DOI: 10.1038/s41598-017-06367-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/20/2017] [Indexed: 01/16/2023] Open
Abstract
Previously, we demonstrated production of an active recombinant human N-acetylgalactosamine-6-sulfatase (rhGALNS) enzyme in Escherichia coli as a potential therapeutic alternative for mucopolysaccharidosis IVA. However, most of the rhGALNS produced was present as protein aggregates. Here, several methods were investigated to improve production and activity of rhGALNS. These methods involved the use of physiologically-regulated promoters and alternatives to improve protein folding including global stress responses (osmotic shock), overexpression of native chaperones, and enhancement of cytoplasmic disulfide bond formation. Increase of rhGALNS activity was obtained when a promoter regulated under σs was implemented. Additionally, improvements were observed when osmotic shock was applied. Noteworthy, overexpression of chaperones did not have any effect on rhGALNS activity, suggesting that the effect of osmotic shock was probably due to a general stress response and not to the action of an individual chaperone. Finally, it was observed that high concentrations of sucrose in conjunction with the physiological-regulated promoter proUmod significantly increased the rhGALNS production and activity. Together, these results describe advances in the current knowledge on the production of human recombinant enzymes in a prokaryotic system such as E. coli, and could have a significant impact on the development of enzyme replacement therapies for lysosomal storage diseases.
Collapse
|
39
|
Penati R, Fumagalli F, Calbi V, Bernardo ME, Aiuti A. Gene therapy for lysosomal storage disorders: recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. J Inherit Metab Dis 2017; 40:543-554. [PMID: 28560469 PMCID: PMC5500670 DOI: 10.1007/s10545-017-0052-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/15/2017] [Accepted: 04/27/2017] [Indexed: 01/10/2023]
Abstract
Lysosomal storage diseases (LSDs) are rare inherited metabolic disorders characterized by a dysfunction in lysosomes, leading to waste material accumulation and severe organ damage. Enzyme replacement therapy (ERT) and haematopoietic stem cell transplant (HSCT) have been exploited as potential treatments for LSDs but pre-clinical and clinical studies have shown in some cases limited efficacy. Intravenous ERT is able to control the damage of visceral organs but cannot prevent nervous impairment. Depending on the disease type, HSCT has important limitations when performed for early variants, unless treatment occurs before disease onset. In the attempt to overcome these issues, gene therapy has been proposed as a valuable therapeutic option, either ex vivo, with target cells genetically modified in vitro, or in vivo, by inserting the genetic material with systemic or intra-parenchymal, in situ administration. In particular, the use of autologous haematopoietic stem cells (HSC) transduced with a viral vector containing a healthy copy of the mutated gene would allow supra-normal production of the defective enzyme and cross correction of target cells in multiple tissues, including the central nervous system. This review will provide an overview of the most recent scientific advances in HSC-based gene therapy approaches for the treatment of LSDs with particular focus on metachromatic leukodystrophy (MLD) and mucopolysaccharidosis type I (MPS-I).
Collapse
Affiliation(s)
- Rachele Penati
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Fumagalli
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
40
|
Mitrovic S, Gouze H, Gossec L, Schaeverbeke T, Fautrel B. Mucopolysaccharidoses seen in adults in rheumatology. Joint Bone Spine 2017; 84:663-670. [PMID: 28196778 DOI: 10.1016/j.jbspin.2017.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
Mucopolysaccharidoses are a group of rare lysosomal storage diseases including a great number of polymorph syndromes, each being related to a particular mutation responsible for a deficiency of glycosaminoglycan degrading enzymes, leading to an accumulation of glycosaminoglycans in tissues. Many of them are diagnosed in children or teenagers and have a severe prognosis because of organ failure, and are consequently usually not seen by the adult rheumatologist. However, some of them have a more progressive presentation, with musculoskeletal symptoms at the forefront and a lifespan that nearly reaches that of the general population. These milder forms are more likely to be diagnosed in adults, in patients who have suffered for years and sometimes even decades with unrecognized mucopolysaccharidosis. Indeed, they can sometimes mimic inflammatory rheumatic disorders, and therefore be misdiagnosed for a long time. Recognition and diagnosis of these attenuated forms can be a real challenge as they lead to moderate and/or nonspecific symptoms such as joint pain or stiffness. Hence, rheumatologists should know about them. Early diagnostic is essential since specific treatment, like enzyme replacement therapy, is now available for some subtypes and might, if given early, slow down the development of tissue damage, which is unfortunately irreversible. This article provides the opportunity to review the main clinical and radiographic features, the diagnostic strategy and the update of management, which should be multidisciplinary and led by an experienced physician in a reference centre. The contribution of the rheumatologist is important to ensure symptom control and prevent complications.
Collapse
Affiliation(s)
- Stéphane Mitrovic
- UPMC university Paris 06, institut Pierre-Louis d'épidémiologie et de santé publique, GRC-UPMC 08 (EEMOIS), Sorbonne universités, 75005 Paris, France; Department of rheumatology, Pitié-Salpêtrière hospital, AP-HP, 75013 Paris, France.
| | - Hélène Gouze
- UPMC university Paris 06, institut Pierre-Louis d'épidémiologie et de santé publique, GRC-UPMC 08 (EEMOIS), Sorbonne universités, 75005 Paris, France; Department of rheumatology, Pitié-Salpêtrière hospital, AP-HP, 75013 Paris, France
| | - Laure Gossec
- UPMC university Paris 06, institut Pierre-Louis d'épidémiologie et de santé publique, GRC-UPMC 08 (EEMOIS), Sorbonne universités, 75005 Paris, France; Department of rheumatology, Pitié-Salpêtrière hospital, AP-HP, 75013 Paris, France
| | - Thierry Schaeverbeke
- Department of rheumatology, Pellegrin hospital, Bordeaux university hospital, 33076 Bordeaux, France
| | - Bruno Fautrel
- UPMC university Paris 06, institut Pierre-Louis d'épidémiologie et de santé publique, GRC-UPMC 08 (EEMOIS), Sorbonne universités, 75005 Paris, France; Department of rheumatology, Pitié-Salpêtrière hospital, AP-HP, 75013 Paris, France
| |
Collapse
|
41
|
Khan S, Alméciga-Díaz CJ, Sawamoto K, Mackenzie WG, Theroux MC, Pizarro C, Mason RW, Orii T, Tomatsu S. Mucopolysaccharidosis IVA and glycosaminoglycans. Mol Genet Metab 2017; 120:78-95. [PMID: 27979613 PMCID: PMC5293636 DOI: 10.1016/j.ymgme.2016.11.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
Mucopolysaccharidosis IVA (MPS IVA; Morquio A: OMIM 253000) is a lysosomal storage disease with an autosomal recessive trait caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase. Deficiency of this enzyme leads to accumulation of specific glycosaminoglycans (GAGs): chondroitin-6-sulfate (C6S) and keratan sulfate (KS). C6S and KS are mainly produced in the cartilage. Therefore, the undegraded substrates are stored primarily in cartilage and in its extracellular matrix (ECM), leading to a direct impact on cartilage and bone development, and successive systemic skeletal dysplasia. Chondrogenesis, the earliest phase of skeletal formation, is maintained by cellular interactions with the ECM, growth and differentiation factors, signaling pathways, and transcription factors in a temporal-spatial manner. In patients with MPS IVA, the cartilage is disrupted at birth as a consequence of abnormal chondrogenesis and/or endochondral ossification. The unique skeletal features are distinguished by a disproportional short stature, odontoid hypoplasia, spinal cord compression, tracheal obstruction, pectus carinatum, kyphoscoliosis, platyspondyly, coxa valga, genu valgum, waddling gait, and laxity of joints. In spite of many descriptions of these unique clinical features, delay of diagnosis still happens. The pathogenesis and treatment of systemic skeletal dysplasia in MPS IVA remains an unmet challenge. In this review article, we comprehensively describe historical aspect, property of GAGs, diagnosis, screening, pathogenesis, and current and future therapies of MPS IVA.
Collapse
Affiliation(s)
- Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - William G Mackenzie
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Mary C Theroux
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Christian Pizarro
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
42
|
Abstract
Mucopolysaccharidoses (MPSs) are a group of inherited lysosomal storage disorders characterized by deficiencies in specific enzymes involved in the catabolism of glycosaminoglycans (GAGs). These deficiencies cause excessive metabolites to accumulate in multiple organs. There are eight different MPS disorders, contributing to the wide variation in clinical presentation. Depending on the severity and subtype of the disease, some children live normal life spans, while others have a more grim prognosis. Children with MPS can present with neurologic, behavioral, skeletal, cardiovascular, gastrointestinal, or respiratory abnormalities. Cutaneous manifestations are mostly nonspecific and can include coarse facial features, thickened skin, and excessive hair growth. More specific skin findings include ivory-colored "pebbly" papules found in Hunter syndrome and extensive dermal melanocytosis found in Hurler and Hunter syndromes. Early diagnosis of MPS disorders is extremely important to minimize the progression of the disease and for early initiation of appropriate treatment.
Collapse
Affiliation(s)
- Mimi C Tran
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Joseph M Lam
- Department of Paediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
43
|
Do Cao J, Wiedemann A, Quinaux T, Battaglia-Hsu SF, Mainard L, Froissart R, Bonnemains C, Ragot S, Leheup B, Journeau P, Feillet F. 30 months follow-up of an early enzyme replacement therapy in a severe Morquio A patient: About one case. Mol Genet Metab Rep 2016; 9:42-45. [PMID: 27761411 PMCID: PMC5065040 DOI: 10.1016/j.ymgmr.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/01/2016] [Accepted: 10/01/2016] [Indexed: 11/25/2022] Open
Abstract
Patients under 5 years were not evaluated in the phase-3 study for enzyme replacement therapy (ERT) in MPS IV A. Here we describe the evolution of a severe Morquio A pediatric patient who was diagnosed at 19 months old and treated by ERT at 21 months old for the next 30 months. Applying the standard ERT protocol on this very young patient appeared to reduce his urinary excretion of glycosaminoglycans (GAGs); the improvements in both the 6 minute-walk test (6MWT) and the stair climb test, however, were no different than those reported in the nature history study. Additionally, this young patient experienced many ERT-associated side effects, and as a result a specific corticosteroid protocol (1 mg/kg of betamethasone the day before and 1 h before the ERT infusion) was given to avoid adverse events. Under these treatments, the height of this patient increased during the first year of the ERT although no more height gain was observed thereafter for 18 months. However, despite of ERT, his bone deformities (including severe pectus carinatum) actually worsened and his medullar cervical spine compression showed no improvement (thus needed decompression surgery). CONCLUSION early ERT treatment did not improve the bone outcome in this severe MPS IV A patient after the 30 months-long treatment. A longer term follow up is required to further assess the efficacy of ERT on both the motor and the respiratory function of the patient.
Collapse
Affiliation(s)
- J Do Cao
- Reference Center for Inborn Errors of Metabolism, University Children's Hospital, 5 rue du Morvan, 54511 Vandoeuvre-les-Nancy, France
| | - A Wiedemann
- Reference Center for Inborn Errors of Metabolism, University Children's Hospital, 5 rue du Morvan, 54511 Vandoeuvre-les-Nancy, France
| | - T Quinaux
- Reference Center for Inborn Errors of Metabolism, University Children's Hospital, 5 rue du Morvan, 54511 Vandoeuvre-les-Nancy, France
| | - S F Battaglia-Hsu
- Reference Center for Inborn Errors of Metabolism, University Children's Hospital, 5 rue du Morvan, 54511 Vandoeuvre-les-Nancy, France
| | - L Mainard
- Radiology Department, University Children's Hospital, Vandoeuvre-les-Nancy, France
| | - R Froissart
- Biochemistry and Molecular Biology, University Hospital, Lyon, France
| | - C Bonnemains
- Reference Center for Inborn Errors of Metabolism, University Children's Hospital, 5 rue du Morvan, 54511 Vandoeuvre-les-Nancy, France
| | - S Ragot
- Rehabilitation center, University Children's Hospital, Vandoeuvre-les-Nancy, France
| | - B Leheup
- Genetic Department, University Children's Hospital, Vandoeuvre-les-Nancy, France
| | - P Journeau
- Pediatric Orthopedic surgery department, University Children's Hospital, Vandoeuvre-les-Nancy, France
| | - F Feillet
- Reference Center for Inborn Errors of Metabolism, University Children's Hospital, 5 rue du Morvan, 54511 Vandoeuvre-les-Nancy, France
| |
Collapse
|
44
|
Sawamoto K, Suzuki Y, Mackenzie WG, Theroux MC, Pizarro C, Yabe H, Orii KE, Mason RW, Orii T, Tomatsu S. Current therapies for Morquio A syndrome and their clinical outcomes. Expert Opin Orphan Drugs 2016; 4:941-951. [PMID: 28217429 PMCID: PMC5312776 DOI: 10.1080/21678707.2016.1214572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Morquio A syndrome is characterized by a unique skeletal dysplasia, leading to short neck and trunk, pectus carinatum, laxity of joints, kyphoscoliosis, and tracheal obstruction. Cervical spinal cord compression/inability, a restrictive and obstructive airway, and/or bone deformity and imbalance of growth, are life-threatening to Morquio A patients, leading to a high morbidity and mortality. It is critical to review the current therapeutic approaches with respect to their efficacy and limitations. AREAS COVERED Patients with progressive skeletal dysplasia often need to undergo orthopedic surgical interventions in the first two decades of life. Recently, we have treated four patients with a new surgery to correct progressive tracheal obstruction. Enzyme replacement therapy (ERT) has been approved clinically. Cell-based therapies such as hematopoietic stem cell therapy (HSCT) and gene therapy are typically one-time, permanent treatments for enzyme deficiencies. We report here on four Morquio A patients treated with HSCT approved in Japan and followed for at least ten years after treatment. Gene therapy is under investigation on mouse models but not yet available as a therapeutic option. EXPERT OPINION ERT and HSCT in combination with surgical intervention(s) are a therapeutic option for Morquio A; however, the approach for bone and cartilage lesion remains an unmet challenge.
Collapse
Affiliation(s)
- Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu, Japan
| | | | - Mary C. Theroux
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Hiromasa Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kenji E. Orii
- Division of Neonatal Intensive Care Unit, Gifu University Hospital, Gifu, Japan
| | - Robert W. Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Gifu University, Gifu, Japan
| |
Collapse
|
45
|
Rodríguez-López A, Alméciga-Díaz CJ, Sánchez J, Moreno J, Beltran L, Díaz D, Pardo A, Ramírez AM, Espejo-Mojica AJ, Pimentel L, Barrera LA. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris. Sci Rep 2016; 6:29329. [PMID: 27378276 PMCID: PMC4932491 DOI: 10.1038/srep29329] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022] Open
Abstract
Mucopolysaccharidosis IV A (MPS IV A, Morquio A disease) is a lysosomal storage disease (LSD) produced by mutations on N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Recently an enzyme replacement therapy (ERT) for this disease was approved using a recombinant enzyme produced in CHO cells. Previously, we reported the production of an active GALNS enzyme in Escherichia coli that showed similar stability properties to that of a recombinant mammalian enzyme though it was not taken-up by culture cells. In this study, we showed the production of the human recombinant GALNS in the methylotrophic yeast Pichia pastoris GS115 (prGALNS). We observed that removal of native signal peptide and co-expression with human formylglycine-generating enzyme (SUMF1) allowed an improvement of 4.5-fold in the specific GALNS activity. prGALNS enzyme showed a high stability at 4 °C, while the activity was markedly reduced at 37 and 45 °C. It was noteworthy that prGALNS was taken-up by HEK293 cells and human skin fibroblasts in a dose-dependent manner through a process potentially mediated by an endocytic pathway, without any additional protein or host modification. The results show the potential of P. pastoris in the production of a human recombinant GALNS for the development of an ERT for Morquio A.
Collapse
Affiliation(s)
- Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
- Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhonnathan Sánchez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jefferson Moreno
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Beltran
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Dennis Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrea Pardo
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Aura María Ramírez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Angela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luisa Pimentel
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis A. Barrera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
46
|
Yasuda E, Suzuki Y, Shimada T, Sawamoto K, Mackenzie WG, Theroux MC, Pizarro C, Xie L, Miller F, Rahman T, Kecskemethy HH, Nagao K, Morlet T, Shaffer TH, Chinen Y, Yabe H, Tanaka A, Shintaku H, Orii KE, Orii KO, Mason RW, Montaño AM, Fukao T, Orii T, Tomatsu S. Activity of daily living for Morquio A syndrome. Mol Genet Metab 2016; 118:111-22. [PMID: 27161890 PMCID: PMC5016714 DOI: 10.1016/j.ymgme.2016.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 01/26/2023]
Abstract
The aim of this study was to evaluate the activity of daily living (ADL) and surgical interventions in patients with mucopolysaccharidosis IVA (MPS IVA). The factor(s) that affect ADL are age, clinical phenotypes, surgical interventions, therapeutic effect, and body mass index. The ADL questionnaire comprises three domains: "Movement," "Movement with cognition," and "Cognition." Each domain has four subcategories rated on a 5-point scale based on the level of assistance. The questionnaire was collected from 145 healthy controls and 82 patients with MPS IVA. The patient cohort consisted of 63 severe and 17 attenuated phenotypes (2 were undefined); 4 patients treated with hematopoietic stem cell transplantation (HSCT), 33 patients treated with enzyme replacement therapy (ERT) for more than a year, and 45 untreated patients. MPS IVA patients show a decline in ADL scores after 10years of age. Patients with a severe phenotype have a lower ADL score than healthy control subjects, and lower scores than patients with an attenuated phenotype in domains of "Movement" and "Movement with cognition." Patients, who underwent HSCT and were followed up for over 10years, had higher ADL scores and fewer surgical interventions than untreated patients. ADL scores for ERT patients (2.5years follow-up on average) were similar with the-age-matched controls below 10years of age, but declined in older patients. Surgical frequency was higher for severe phenotypic patients than attenuated ones. Surgical frequency for patients treated with ERT was not decreased compared to untreated patients. In conclusion, we have shown the utility of the proposed ADL questionnaire and frequency of surgical interventions in patients with MPS IVA to evaluate the clinical severity and therapeutic efficacy compared with age-matched controls.
Collapse
Affiliation(s)
- Eriko Yasuda
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Medical Informatics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuyuki Suzuki
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Kanazawa, Japan
| | - Tsutomu Shimada
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Mary C Theroux
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Li Xie
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Freeman Miller
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Tariq Rahman
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Kyoko Nagao
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Thierry Morlet
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Thomas H Shaffer
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Yasutsugu Chinen
- Department of Pediatrics, Faculty of Medicine, University of the Ryukyus, Ryukyu, Japan
| | - Hiromasa Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Akemi Tanaka
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji E Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Koji O Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Adriana M Montaño
- Department of Pediatrics, Saint Louis University, St. Louis, MO, USA; Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, MO, USA
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
| |
Collapse
|