1
|
Jiang M, Kang L, Wang YL, Zhou B, Li HY, Yan Q, Liu ZG. Mechanisms of microbiota-gut-brain axis communication in anxiety disorders. Front Neurosci 2024; 18:1501134. [PMID: 39717701 PMCID: PMC11663871 DOI: 10.3389/fnins.2024.1501134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Anxiety disorders, prevalent mental health conditions, receive significant attention globally due to their intricate etiology and the suboptimal effectiveness of existing therapies. Research is increasingly recognizing that the genesis of anxiety involves not only neurochemical brain alterations but also changes in gut microbiota. The microbiota-gut-brain axis (MGBA), serving as a bidirectional communication pathway between the gut microbiota and the central nervous system (CNS), is at the forefront of novel approaches to deciphering the complex pathophysiology of anxiety disorders. This review scrutinizes the role and recent advancements in the MGBA concerning anxiety disorders through a review of the literature, emphasizing mechanisms via neural signals, endocrine pathways, and immune responses. The evidence robustly supports the critical influence of MGBA in both the development and progression of these disorders. Furthermore, this discussion explores potential therapeutic avenues stemming from these insights, alongside the challenges and issues present in this realm. Collectively, our findings aim to enhance understanding of the pathological mechanisms and foster improved preventative and therapeutic strategies for anxiety disorders.
Collapse
Affiliation(s)
- Min Jiang
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Li Kang
- Department of Anesthesiology, The First People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Ya-Li Wang
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Bin Zhou
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Hong-Yi Li
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Qiang Yan
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Zhi-Gang Liu
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| |
Collapse
|
2
|
Liang J, Xiong Z, Lei Q, Jiang Z, Wei J, Ouyang F, Chen Y, Zeng J. Sleep dysfunction and gut dysbiosis related amino acids metabolism disorders in cynomolgus monkeys after middle cerebral artery occlusion. Exp Neurol 2024; 382:114970. [PMID: 39321863 DOI: 10.1016/j.expneurol.2024.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION This study aimed to explore the characteristics of post-stroke sleep dysfunction and verify their association with gut dysbiosis and the related amino acid metabolism disorders. This was achieved by using fecal microbiota transplantation (FMT) in a non-human primate stroke model. METHODS Twenty adult male cynomolgus monkeys were divided into the sham (n = 4), middle cerebral artery occlusion (MCAO, n = 5), MCAO + FMT (n = 3), and donor (n = 8) groups. The MCAO+FMT group received FMT at post-MCAO week 4. Sleep parameters, gut microbiota, gamma-aminobutyric acid (GABA), and glutamine (Gln) in the cerebrospinal fluid (CSF) were measured at baseline and postoperative weeks 4, 8, and 12. RESULTS At postoperative weeks 4, 8, and 12, the MCAO group showed decreased sleep efficiency, measured as the percentage of sleep during the whole night (82.3 ± 3.2 % vs 91.3 ± 2.5 %, 79.0 ± 3.75 % vs 90.8 ± 3.2 %, and 69.5 ± 4.8 % vs 90.5 ± 2.7 %; all P < 0.05), lower relative abundance of Lactobacillus (all P < 0.05), and reduced GABA concentrations in the CSF (317.3 ± 30.6 nmol/L vs 437.7 ± 25.6 nmol/L, 303.1 ± 48.9 nmol/L vs 4 40.9 ± 37.8 nmol/L, and 337.9 ± 49.4 nmol/L vs 457.4 ± 39.2 nmol/L; all P < 0.05) compared with the sham group. Sleep efficiency at post-FMT weeks 4 and 8 (84.7 ± 1.1 % vs 79.0 ± 3.75 %, and 84.1 ± 2.0 % vs 69.5 ± 4.8 %; both P < 0.05) and GABA concentration in the CSF at post-FMT week 4 (403.1 ± 25.4 nmol/L vs 303.1 ± 48.9 nmol/L, P < 0.05) was higher in the MCAO+FMT group than in the MCAO group. CONCLUSIONS Post-stroke sleep dysfunction in monkeys is characterized by impaired sleep coherence, associated with decreased levels of probiotics such as Lactobacillus, GABA, and Gln in the CSF and can be ameliorated using FMT.
Collapse
Affiliation(s)
- Jiahui Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China; Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangdong 510060, China
| | - Zhiyi Xiong
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Qingfeng Lei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China; Department of Neurology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, China
| | - Zimu Jiang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Jiating Wei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Fubing Ouyang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yicong Chen
- Section II, Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China.
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
3
|
Rykalo N, Riehl L, Kress M. The gut microbiome and the brain. Curr Opin Support Palliat Care 2024; 18:282-291. [PMID: 39250732 DOI: 10.1097/spc.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome for human health and well-being is generally accepted, and elucidating the signaling pathways between the gut microbiome and the host offers novel mechanistic insight into the (patho)physiology and multifaceted aspects of healthy aging and human brain functions. RECENT FINDINGS The gut microbiome is tightly linked with the nervous system, and gut microbiota are increasingly emerging as important regulators of emotional and cognitive performance. They send and receive signals for the bidirectional communication between gut and brain via immunological, neuroanatomical, and humoral pathways. The composition of the gut microbiota and the spectrum of metabolites and neurotransmitters that they release changes with increasing age, nutrition, hypoxia, and other pathological conditions. Changes in gut microbiota (dysbiosis) are associated with critical illnesses such as cancer, cardiovascular, and chronic kidney disease but also neurological, mental, and pain disorders, as well as chemotherapies and antibiotics affecting brain development and function. SUMMARY Dysbiosis and a concomitant imbalance of mediators are increasingly emerging both as causes and consequences of diseases affecting the brain. Understanding the microbiota's role in the pathogenesis of these disorders will have major clinical implications and offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Nadiia Rykalo
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
4
|
Hinton T, Johnston GAR. GABA, epigallocatechin gallate, tea, and the gut-brain axis. Neurochem Int 2024; 180:105860. [PMID: 39303784 DOI: 10.1016/j.neuint.2024.105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Our investigations on GABA-enriched tea and the reduction of stress in a student cohort have shown that more than just GABA may be involved. The effects of other constituents that are changed in the enrichment process are likely to be important. We have concentrated on GABA as well as the major tea flavonoid, epigallocatechin gallate. While this flavonoid is known to get to the brain on oral administration, it is far from clear that GABA does the same. GABA may act primarily on the gut and influence brain function via the gut-brain axis and the gut microbiome. In addition, there may be a microbiome in the brain that has a role. The situation is complex and not clearly understood. Mixtures of bioactive compounds are always difficult to investigate, but even the precise mechanisms of how pure oral GABA acts as a neuro-nutraceutical is unclear.
Collapse
Affiliation(s)
- Tina Hinton
- Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Graham A R Johnston
- Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
5
|
Gong HS, Pan JP, Guo F, Wu MM, Dong L, Li Y, Rong WF. Sodium oligomannate activates the enteroendocrine-vagal afferent pathways in APP/PS1 mice. Acta Pharmacol Sin 2024; 45:1821-1831. [PMID: 38702501 PMCID: PMC11335854 DOI: 10.1038/s41401-024-01293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
Enteroendocrine cells (EECs) and vagal afferent neurons constitute functional sensory units of the gut, which have been implicated in bottom-up modulation of brain functions. Sodium oligomannate (GV-971) has been shown to improve cognitive functions in murine models of Alzheimer's disease (AD) and recently approved for the treatment of AD patients in China. In this study, we explored whether activation of the EECs-vagal afferent pathways was involved in the therapeutic effects of GV-971. We found that an enteroendocrine cell line RIN-14B displayed spontaneous calcium oscillations due to TRPA1-mediated calcium entry; perfusion of GV-971 (50, 100 mg/L) concentration-dependently enhanced the calcium oscillations in EECs. In ex vivo murine jejunum preparation, intraluminal infusion of GV-971 (500 mg/L) significantly increased the spontaneous and distension-induced discharge rate of the vagal afferent nerves. In wild-type mice, administration of GV-971 (100 mg· kg-1 ·d-1, i.g. for 7 days) significantly elevated serum serotonin and CCK levels and increased jejunal afferent nerve activity. In 7-month-old APP/PS1 mice, administration of GV-971 for 12 weeks significantly increased jejunal afferent nerve activity and improved the cognitive deficits in behavioral tests. Sweet taste receptor inhibitor Lactisole (0.5 mM) and the TRPA1 channel blocker HC-030031 (10 µM) negated the effects of GV-971 on calcium oscillations in RIN-14B cells as well as on jejunal afferent nerve activity. In APP/PS1 mice, co-administration of Lactisole (30 mg ·kg-1 ·d-1, i.g. for 12 weeks) attenuated the effects of GV-971 on serum serotonin and CCK levels, vagal afferent firing, and cognitive behaviors. We conclude that GV-971 activates sweet taste receptors and TRPA1, either directly or indirectly, to enhance calcium entry in enteroendocrine cells, resulting in increased CCK and 5-HT release and consequent increase of vagal afferent activity. GV-971 might activate the EECs-vagal afferent pathways to modulate cognitive functions.
Collapse
Affiliation(s)
- Hua-Shan Gong
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing-Pei Pan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mei-Mei Wu
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Dong
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Wei-Fang Rong
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Onimus O, Arrivet F, Souza INDO, Bertrand B, Castel J, Luquet S, Mothet JP, Heck N, Gangarossa G. The gut-brain vagal axis scales hippocampal memory processes and plasticity. Neurobiol Dis 2024; 199:106569. [PMID: 38885849 DOI: 10.1016/j.nbd.2024.106569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
The vagus nerve serves as an interoceptive relay between the body and the brain. Despite its well-established role in feeding behaviors, energy metabolism, and cognitive functions, the intricate functional processes linking the vagus nerve to the hippocampus and its contribution to learning and memory dynamics remain still elusive. Here, we investigated whether and how the gut-brain vagal axis contributes to hippocampal learning and memory processes at behavioral, functional, cellular, and molecular levels. Our results indicate that the integrity of the vagal axis is essential for long-term recognition memories, while sparing other forms of memory. In addition, by combing multi-scale approaches, our findings show that the gut-brain vagal tone exerts a permissive role in scaling intracellular signaling events, gene expressions, hippocampal dendritic spines density as well as functional long-term plasticities (LTD and LTP). These results highlight the critical role of the gut-brain vagal axis in maintaining the spontaneous and homeostatic functions of hippocampal ensembles and in regulating their learning and memory functions. In conclusion, our study provides comprehensive insights into the multifaceted involvement of the gut-brain vagal axis in shaping time-dependent hippocampal learning and memory dynamics. Understanding the mechanisms underlying this interoceptive body-brain neuronal communication may pave the way for novel therapeutic approaches in conditions associated with cognitive decline, including neurodegenerative disorders.
Collapse
Affiliation(s)
- Oriane Onimus
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Faustine Arrivet
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris Seine, F-75005 Paris, France
| | - Isis Nem de Oliveira Souza
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France; Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Brazil
| | - Benoit Bertrand
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Jean-Pierre Mothet
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France
| | - Nicolas Heck
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris Seine, F-75005 Paris, France
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France; Institut Universitaire de France, France.
| |
Collapse
|
7
|
Pasqualette L, Fidalgo TKDS, Freitas-Fernandes LB, Souza GGL, Imbiriba LA, Lobo LA, Volchan E, Domingues RMCP, Valente AP, Miranda KR. Alterations in Vagal Tone Are Associated with Changes in the Gut Microbiota of Adults with Anxiety and Depression Symptoms: Analysis of Fecal Metabolite Profiles. Metabolites 2024; 14:450. [PMID: 39195546 DOI: 10.3390/metabo14080450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Accumulating evidence suggests that interactions between the brain and gut microbiota significantly impact brain function and mental health. In the present study, we aimed to investigate whether young, healthy adults without psychiatric diagnoses exhibit differences in metabolic stool and microbiota profiles based on depression/anxiety scores and heart rate variability (HRV) parameters. Untargeted nuclear magnetic resonance-based metabolomics was used to identify fecal metabolic profiles. Results were subjected to multivariate analysis through principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), and the metabolites were identified through VIP score. Metabolites separating asymptomatic and symptomatic groups were acetate, valine, and glutamate, followed by sugar regions, glutamine, acetone, valerate, and acetoacetate. The main metabolites identified in high vagal tone (HVT) and low vagal tone (LVT) groups were acetate, valerate, and glutamate, followed by propionate and butyrate. In addition to the metabolites identified by the PLS-DA test, significant differences in aspartate, sarcosine, malate, and methionine were observed between the groups. Levels of acetoacetate were higher in both symptomatic and LVT groups. Valerate levels were significantly increased in the symptomatic group, while isovalerate, propionate, glutamate, and acetone levels were significantly increased in the LVT group. Furthermore, distinct abundance between groups was only confirmed for the Firmicutes phylum. Differences between participants with high and low vagal tone suggest that certain metabolites are involved in communication between the vagus nerve and the brain.
Collapse
Affiliation(s)
- Laura Pasqualette
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Developmental and Educational Psychology, University of Bremen, 28359 Bremen, Germany
| | - Tatiana Kelly da Silva Fidalgo
- Pediatric Dentistry, Department of Preventive and Community Dentistry, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Liana Bastos Freitas-Fernandes
- National Centre of Nuclear Magnetic Resonance/CENABIO, Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gabriela Guerra Leal Souza
- Laboratory of Psychophysiology, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Luís Aureliano Imbiriba
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Leandro Araujo Lobo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eliane Volchan
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Ana Paula Valente
- National Centre of Nuclear Magnetic Resonance/CENABIO, Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Karla Rodrigues Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
8
|
Zou Q, Han S, Liang J, Yan G, Wang Q, Wang Y, Zhang Z, Hu J, Li J, Yuan T, Liu Z. Alleviating effect of vagus nerve cutting in Salmonella-induced gut infections and anxiety-like behavior via enhancing microbiota-derived GABA. Brain Behav Immun 2024; 119:607-620. [PMID: 38663772 DOI: 10.1016/j.bbi.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024] Open
Abstract
The vagus nerve, a pivotal link within the gut-brain axis, plays a critical role in maintaining homeostasis and mediating communication between the gastrointestinal tract and the brain. It has been reported that gastrointestinal infection by Salmonella typhimurium (S. typhimurium) triggers gut inflammation and manifests as anxiety-like behaviors, yet the mechanistic involvement of the vagus nerve remains to be elucidated. In this study, we demonstrated that unilateral cervical vagotomy markedly attenuated anxiety-like behaviors induced by S. typhimurium SL1344 infection in C57BL/6 mice, as evidenced by the open field test and marble burying experiment. Furthermore, vagotomy significantly diminished neuronal activation within the nucleus of the solitary tract and amygdala, alongside mitigating aberrant glial cell activation in the hippocampus and amygdala. Additionally, vagotomy notably decreases serum endotoxin levels, counters the increase in splenic Salmonella concentration, and modulates the expression of inflammatory cytokines-including IL-6, IL-1β, and TNF-α-in both the gastrointestinal tract and brain, with a concurrent reduction in IL-22 and CXCL1 expression. This intervention also fostered the enrichment of beneficial gut microbiota, including Alistipes and Lactobacillus species, and augmented the production of gamma-aminobutyric acid (GABA) in the gut. Administration of GABA replicated the vagotomy's beneficial effects on reducing gut inflammation and anxiety-like behavior in infected mice. However, blockade of GABA receptors with picrotoxin abrogated the vagotomy's protective effects against gut inflammation, without influencing its impact on anxiety-like behaviors. Collectively, these findings suggest that vagotomy exerts a protective effect against infection by promoting GABA synthesis in the colon and alleviating anxiety-like behavior. This study underscores the critical role of the vagus nerve in relaying signals of gut infection to the brain and posits that targeting the gut-brain axis may offer a novel and efficacious approach to preventing gastrointestinal infections and associated behavioral abnormalities.
Collapse
Affiliation(s)
- Qianhui Zou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiyao Han
- Molecular Biology Laboratory of Stem Cells and Anti-infection Medicine, College of Veterinary medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiarui Liang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiming Yan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianxu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zilong Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jufang Li
- Heilongjiang Feihe Dairy Co., Ltd., Beijing, China
| | - Tian Yuan
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China; Shaanxi Precision Nutrition and Health Research Institute, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Edwards CM, Guerrero IE, Thompson D, Dolezel T, Rinaman L. An ascending vagal sensory-central noradrenergic pathway modulates retrieval of passive avoidance memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588717. [PMID: 38645069 PMCID: PMC11030408 DOI: 10.1101/2024.04.09.588717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. Results To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. Conclusions These new findings support the view that a gut vagal afferent-to-cNTSNA-to-vlBNST circuit plays a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Program in Neuroscience, Florida State University
| | | | - Danielle Thompson
- Department of Psychology, Program in Neuroscience, Florida State University
| | - Tyla Dolezel
- Department of Psychology, Program in Neuroscience, Florida State University
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University
| |
Collapse
|
10
|
Yan L, Yang F, Wang Y, Shi L, Wang M, Yang D, Wang W, Jia Y, So KF, Zhang L. Stress increases hepatic release of lipocalin 2 which contributes to anxiety-like behavior in mice. Nat Commun 2024; 15:3034. [PMID: 38589429 PMCID: PMC11001612 DOI: 10.1038/s41467-024-47266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Chronic stress induces anxiety disorders via both neural pathways and circulating factors. Although many studies have elucidated the neural circuits involved in stress-coping behaviors, the origin and regulatory mechanism of peripheral cytokines in behavioural regulation under stress conditions are not fully understood. Here, we identified a serum cytokine, lipocalin 2 (LCN2), that was upregulated in participants with anxiety disorders. Using a mouse model of chronic restraint stress (CRS), circulating LCN2 was found to be related to stress-induced anxiety-like behaviour via modulation of neural activity in the medial prefrontal cortex (mPFC). These results suggest that stress increases hepatic LCN2 via a neural pathway, leading to disrupted cortical functions and behaviour.
Collapse
Affiliation(s)
- Lan Yan
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Fengzhen Yang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yajie Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Lingling Shi
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Mei Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Diran Yang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wenjing Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yanbin Jia
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- Institute of Clinical Research for Mental Health, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Institute of Clinical Research for Mental Health, Jinan University, Guangzhou, China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
- Institute of Clinical Research for Mental Health, Jinan University, Guangzhou, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
11
|
Décarie-Spain L, Hayes AMR, Lauer LT, Kanoski SE. The gut-brain axis and cognitive control: A role for the vagus nerve. Semin Cell Dev Biol 2024; 156:201-209. [PMID: 36803834 PMCID: PMC10427741 DOI: 10.1016/j.semcdb.2023.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Survival requires the integration of external information and interoceptive cues to effectively guide advantageous behaviors, particularly foraging and other behaviors that promote energy acquisition and consumption. The vagus nerve acts as a critical relay between the abdominal viscera and the brain to convey metabolic signals. This review synthesizes recent findings from rodent models and humans revealing the impact of vagus nerve signaling from the gut on the control of higher-order neurocognitive domains, including anxiety, depression, reward motivation, and learning and memory. We propose a framework where meal consumption engages gastrointestinal tract-originating vagal afferent signaling that functions to alleviate anxiety and depressive-like states, while also promoting motivational and memory functions. These concurrent processes serve to favor the encoding of meal-relevant information into memory storage, thus facilitating future foraging behaviors. Modulation of these neurocognitive domains by vagal tone is also discussed in the context of pathological conditions, including the use of transcutaneous vagus nerve stimulation for the treatment of anxiety disorders, major depressive disorder, and dementia-associated memory impairments. Collectively, these findings highlight the contributions of gastrointestinal vagus nerve signaling to the regulation of neurocognitive processes that shape various adaptive behavioral responses.
Collapse
Affiliation(s)
- Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Anna M R Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Logan Tierno Lauer
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
12
|
Keller BN, Snyder AE, Coker CR, Aguilar EA, O’Brien MK, Bingaman SS, Arnold AC, Hajnal A, Silberman Y. Vagus nerve damage increases alcohol intake and preference in a nonpreferring rat line: Relationship to vagal regulation of the hypothalamic-pituitary-adrenal axis. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:488-498. [PMID: 38311347 PMCID: PMC10939901 DOI: 10.1111/acer.15264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Clinical and preclinical research indicates that gastric weight loss surgeries, such as Roux-en-Y gastric bypass surgery, can induce alcohol use disorder (AUD). While numerous mechanisms have been proposed for these effects, one relatively unexplored potential mechanism is physical damage to the gastric branch of the vagus nerve, which can occur during bypass surgery. Therefore, we hypothesized that direct damage to the gastric branch of the vagus nerve, without altering other aspects of gastric anatomy, could result in increased alcohol intake. METHODS To test this hypothesis, we compared alcohol intake and preference in multiple models in male Sprague-Dawley rats that received selective gastric branch vagotomy (VX) with rats who underwent sham surgery. Because the vagus nerve regulates hypothalamic-pituitary-adrenal (HPA) axis function, and alterations to HPA function are critical to the escalation of non-dependent alcohol intake, we also tested the hypothesis that gastric VX increases HPA function. RESULTS We found that VX increases alcohol intake and preference in the every-other-day, two-bottle choice test and increases preference for 1 g/kg alcohol in the conditioned place preference test. The effects were selective for alcohol, as sucrose intake and preference were not altered by VX. We also found that VX increases corticotropin releasing factor (CRF) mRNA in the paraventricular nucleus of the hypothalamus (PVN), increases putative PVN CRF neuronal action potential firing, and increases corticosterone levels. CONCLUSIONS Overall, these findings suggest that the vagus nerve may play a critical role in regulating HPA axis function via modulation of PVN CRF mRNA expression and putative PVN CRF neuronal activity. Furthermore, disruptions to vagal regulation of HPA axis function may increase alcohol intake and preference.
Collapse
Affiliation(s)
- Bailey N. Keller
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Angela E. Snyder
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Caitlin R. Coker
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Elizabeth A. Aguilar
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Mary K. O’Brien
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Sarah S. Bingaman
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Amy C. Arnold
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Andras Hajnal
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Yuval Silberman
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| |
Collapse
|
13
|
Osakabe N, Shimizu T, Fujii Y, Fushimi T, Calabrese V. Sensory Nutrition and Bitterness and Astringency of Polyphenols. Biomolecules 2024; 14:234. [PMID: 38397471 PMCID: PMC10887135 DOI: 10.3390/biom14020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have demonstrated that the interaction of dietary constituents with taste and olfactory receptors and nociceptors expressed in the oral cavity, nasal cavity and gastrointestinal tract regulate homeostasis through activation of the neuroendocrine system. Polyphenols, of which 8000 have been identified to date, represent the greatest diversity of secondary metabolites in plants, most of which are bitter and some of them astringent. Epidemiological studies have shown that polyphenol intake contributes to maintaining and improving cardiovascular, cognitive and sensory health. However, because polyphenols have very low bioavailability, the mechanisms of their beneficial effects are unknown. In this review, we focused on the taste of polyphenols from the perspective of sensory nutrition, summarized the results of previous studies on their relationship with bioregulation and discussed their future potential.
Collapse
Affiliation(s)
- Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Takafumi Shimizu
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Yasuyuki Fujii
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Taiki Fushimi
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
14
|
Lai TT, Tsai YH, Liou CW, Fan CH, Hou YT, Yao TH, Chuang HL, Wu WL. The gut microbiota modulate locomotion via vagus-dependent glucagon-like peptide-1 signaling. NPJ Biofilms Microbiomes 2024; 10:2. [PMID: 38228675 DOI: 10.1038/s41522-024-00477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Locomotor activity is an innate behavior that can be triggered by gut-motivated conditions, such as appetite and metabolic condition. Various nutrient-sensing receptors distributed in the vagal terminal in the gut are crucial for signal transduction from the gut to the brain. The levels of gut hormones are closely associated with the colonization status of the gut microbiota, suggesting a complicated interaction among gut bacteria, gut hormones, and the brain. However, the detailed mechanism underlying gut microbiota-mediated endocrine signaling in the modulation of locomotion is still unclear. Herein, we show that broad-spectrum antibiotic cocktail (ABX)-treated mice displayed hypolocomotion and elevated levels of the gut hormone glucagon-like peptide-1 (GLP-1). Blockade of the GLP-1 receptor and subdiaphragmatic vagal transmission rescued the deficient locomotor phenotype in ABX-treated mice. Activation of the GLP-1 receptor and vagal projecting brain regions led to hypolocomotion. Finally, selective antibiotic treatment dramatically increased serum GLP-1 levels and decreased locomotion. Colonizing Lactobacillus reuteri and Bacteroides thetaiotaomicron in microbiota-deficient mice suppressed GLP-1 levels and restored the hypolocomotor phenotype. Our findings identify a mechanism by which specific gut microbes mediate host motor behavior via the enteroendocrine and vagal-dependent neural pathways.
Collapse
Affiliation(s)
- Tzu-Ting Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Hsuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Chia-Wei Liou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Tian Hou
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Tzu-Hsuan Yao
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115202, Taiwan
| | - Wei-Li Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
15
|
Riehl L, Fürst J, Kress M, Rykalo N. The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front Neurosci 2024; 17:1302957. [PMID: 38249593 PMCID: PMC10797776 DOI: 10.3389/fnins.2023.1302957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Increasing evidence links the gut microbiome and the nervous system in health and disease. This narrative review discusses current views on the interaction between the gut microbiota, the intestinal epithelium, and the brain, and provides an overview of the communication routes and signals of the bidirectional interactions between gut microbiota and the brain, including circulatory, immunological, neuroanatomical, and neuroendocrine pathways. Similarities and differences in healthy gut microbiota in humans and mice exist that are relevant for the translational gap between non-human model systems and patients. There is an increasing spectrum of metabolites and neurotransmitters that are released and/or modulated by the gut microbiota in both homeostatic and pathological conditions. Dysbiotic disruptions occur as consequences of critical illnesses such as cancer, cardiovascular and chronic kidney disease but also neurological, mental, and pain disorders, as well as ischemic and traumatic brain injury. Changes in the gut microbiota (dysbiosis) and a concomitant imbalance in the release of mediators may be cause or consequence of diseases of the central nervous system and are increasingly emerging as critical links to the disruption of healthy physiological function, alterations in nutrition intake, exposure to hypoxic conditions and others, observed in brain disorders. Despite the generally accepted importance of the gut microbiome, the bidirectional communication routes between brain and gut are not fully understood. Elucidating these routes and signaling pathways in more detail offers novel mechanistic insight into the pathophysiology and multifaceted aspects of brain disorders.
Collapse
Affiliation(s)
| | | | | | - Nadiia Rykalo
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Khan R, Di Gesù CM, Lee J, McCullough LD. The contribution of age-related changes in the gut-brain axis to neurological disorders. Gut Microbes 2024; 16:2302801. [PMID: 38237031 PMCID: PMC10798364 DOI: 10.1080/19490976.2024.2302801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Trillions of microbes live symbiotically in the host, specifically in mucosal tissues such as the gut. Recent advances in metagenomics and metabolomics have revealed that the gut microbiota plays a critical role in the regulation of host immunity and metabolism, communicating through bidirectional interactions in the microbiota-gut-brain axis (MGBA). The gut microbiota regulates both gut and systemic immunity and contributes to the neurodevelopment and behaviors of the host. With aging, the composition of the microbiota changes, and emerging studies have linked these shifts in microbial populations to age-related neurological diseases (NDs). Preclinical studies have demonstrated that gut microbiota-targeted therapies can improve behavioral outcomes in the host by modulating microbial, metabolomic, and immunological profiles. In this review, we discuss the pathways of brain-to-gut or gut-to-brain signaling and summarize the role of gut microbiota and microbial metabolites across the lifespan and in disease. We highlight recent studies investigating 1) microbial changes with aging; 2) how aging of the maternal microbiome can affect offspring health; and 3) the contribution of the microbiome to both chronic age-related diseases (e.g., Parkinson's disease, Alzheimer's disease and cerebral amyloidosis), and acute brain injury, including ischemic stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Romeesa Khan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Claudia M. Di Gesù
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
17
|
Wood CP, Avalos B, Alvarez C, DiPatrizio NV. A Sexually Dimorphic Role for Intestinal Cannabinoid Receptor Subtype-1 in the Behavioral Expression of Anxiety. Cannabis Cannabinoid Res 2023; 8:1045-1059. [PMID: 37862126 PMCID: PMC10771877 DOI: 10.1089/can.2023.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Background: Increasing evidence suggests that the endocannabinoid system (ECS) in the brain controls anxiety and may be a therapeutic target for the treatment of anxiety disorders. For example, both pharmacological and genetic disruption of cannabinoid receptor subtype-1 (CB1R) signaling in the central nervous system is associated with increased anxiety-like behaviors in rodents, while activating the system is anxiolytic. Sex is also a critical factor that controls the behavioral expression of anxiety; however, roles for the ECS in the gut in these processes and possible differences between sexes are largely unknown. Objective: In this study, we aimed to determine if CB1Rs in the intestinal epithelium exert control over anxiety-like behaviors in a sex-dependent manner. Methods: We subjected male and female mice with conditional deletion of CB1Rs in the intestinal epithelium (intCB1-/-) and controls (intCB1+/+) to the elevated plus maze (EPM), light/dark box, and open field test. Corticosterone (CORT) levels in plasma were measured at baseline and immediately after EPM exposure. Results: When compared with intCB1+/+ male mice, intCB1-/- male mice exhibited reduced levels of anxiety-like behaviors in the EPM and light/dark box. In contrast to male mice, no differences were found between female intCB1+/+ and intCB1-/- mice. Circulating CORT was higher in female versus male mice for both genotype groups at baseline and after EPM exposure; however, there was no effect of genotype on CORT levels. Conclusions: Collectively, these results indicate that genetic deletion of CB1Rs in the intestinal epithelium is associated with an anxiolytic phenotype in a sex-dependent manner.
Collapse
Affiliation(s)
- Courtney P. Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Camila Alvarez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
- University of California Riverside Center for Cannabinoid Research, Riverside, California, USA
| |
Collapse
|
18
|
Zhong S, Liu F, Giniatullin R, Jolkkonen J, Li Y, Zhou Z, Lin X, Liu C, Zhang X, Liu Z, Lv C, Guo Q, Zhao C. Blockade of CCR5 suppresses paclitaxel-induced peripheral neuropathic pain caused by increased deoxycholic acid. Cell Rep 2023; 42:113386. [PMID: 37948181 DOI: 10.1016/j.celrep.2023.113386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/13/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Paclitaxel leads to peripheral neuropathy (paclitaxel-induced peripheral neuropathy [PIPN]) in approximately 50% of cancer patients. At present, there are no effective treatment strategies for PIPN, the mechanisms of which also remain unclear. In this study, we performed microbiome and metabolome analysis of feces and serum from breast cancer patients with different PIPN grades due to paclitaxel treatment. Our analysis reveals that levels of deoxycholic acid (DCA) are highly increased because of ingrowth of Clostridium species, which is associated with severe neuropathy. DCA, in turn, elevates serum level of C-C motif ligand 5 (CCL5) and induces CCL5 receptor 5 (CCR5) overexpression in dorsal root ganglion (DRG) through the bile acid receptor Takeda G-protein-coupled receptor 5 (TGR5), contributing to neuronal hyperexcitability. Consistent with this, administration of CCR5 antagonist maraviroc suppresses the development of neuropathic nociception. These results implicate gut microbiota/bile acids/CCR5 signaling in the induction of PIPN, thus suggesting a target for PIPN treatment.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Liaoning Provincial Key Laboratory of Big Data for Neurological Diseases, Shenyang, Liaoning 110001, China
| | - Fangxi Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Institution of Medicine Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xinyu Lin
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Chang Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Liaoning Provincial Key Laboratory of Big Data for Neurological Diseases, Shenyang, Liaoning 110001, China
| | - Xiuchun Zhang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Liaoning Provincial Key Laboratory of Big Data for Neurological Diseases, Shenyang, Liaoning 110001, China
| | - Zhouyang Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Cheng Lv
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Qianqian Guo
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Liaoning Provincial Key Laboratory of Big Data for Neurological Diseases, Shenyang, Liaoning 110001, China.
| |
Collapse
|
19
|
Graham AS, Ben-Azu B, Tremblay MÈ, Torre P, Senekal M, Laughton B, van der Kouwe A, Jankiewicz M, Kaba M, Holmes MJ. A review of the auditory-gut-brain axis. Front Neurosci 2023; 17:1183694. [PMID: 37600010 PMCID: PMC10435389 DOI: 10.3389/fnins.2023.1183694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Hearing loss places a substantial burden on medical resources across the world and impacts quality of life for those affected. Further, it can occur peripherally and/or centrally. With many possible causes of hearing loss, there is scope for investigating the underlying mechanisms involved. Various signaling pathways connecting gut microbes and the brain (the gut-brain axis) have been identified and well established in a variety of diseases and disorders. However, the role of these pathways in providing links to other parts of the body has not been explored in much depth. Therefore, the aim of this review is to explore potential underlying mechanisms that connect the auditory system to the gut-brain axis. Using select keywords in PubMed, and additional hand-searching in google scholar, relevant studies were identified. In this review we summarize the key players in the auditory-gut-brain axis under four subheadings: anatomical, extracellular, immune and dietary. Firstly, we identify important anatomical structures in the auditory-gut-brain axis, particularly highlighting a direct connection provided by the vagus nerve. Leading on from this we discuss several extracellular signaling pathways which might connect the ear, gut and brain. A link is established between inflammatory responses in the ear and gut microbiome-altering interventions, highlighting a contribution of the immune system. Finally, we discuss the contribution of diet to the auditory-gut-brain axis. Based on the reviewed literature, we propose numerous possible key players connecting the auditory system to the gut-brain axis. In the future, a more thorough investigation of these key players in animal models and human research may provide insight and assist in developing effective interventions for treating hearing loss.
Collapse
Affiliation(s)
- Amy S. Graham
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Peter Torre
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA, United States
| | - Marjanne Senekal
- Department of Human Biology, Division of Physiological Sciences, University of Cape Town, Cape Town, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Marcin Jankiewicz
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Mamadou Kaba
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Martha J. Holmes
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
20
|
Prilutski Y, Livneh Y. Physiological Needs: Sensations and Predictions in the Insular Cortex. Physiology (Bethesda) 2023; 38:0. [PMID: 36040864 DOI: 10.1152/physiol.00019.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Physiological needs create powerful motivations (e.g., thirst and hunger). Studies in humans and animal models have implicated the insular cortex in the neural regulation of physiological needs and need-driven behavior. We review prominent mechanistic models of how the insular cortex might achieve this regulation and present a conceptual and analytical framework for testing these models in healthy and pathological conditions.
Collapse
Affiliation(s)
- Yael Prilutski
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Dess NK, Chapman CD, Jacobi PM. Selective pressure on a saccharin intake phenotype and its correlates: a replication study. Chem Senses 2023; 48:bjad021. [PMID: 37387468 DOI: 10.1093/chemse/bjad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/01/2023] Open
Abstract
The Occidental High- and Low-Saccharin rats (respectively, HiS and LoS lines) were selectively bred for decades to examine mechanisms and correlates of a saccharin intake phenotype. Observed line differences ranged from taste and eating to drug self-administration and defensive behavior, paralleling human research on relationships between gustation, personality, and psychopathology. The original lines were terminated in 2019, and replicate lines (HiS-R and LoS-R) were selectively bred for 5 generations to test for reproducible, rapid selection for the phenotype and its correlates. The line differences chosen for replication included intake of tastants (saccharin, sugars, quinine-adulterated sucrose, sodium chloride, and ethanol) and foods (cheese, peas, Spam, and chocolate) and several noningestive behaviors (deprivation-induced hyperactivity, acoustic startle, and open field behavior). The HiS-R and LoS-R lines diverged on intake of saccharin, disaccharides, quinine-adulterated sucrose, sodium chloride, and complex foods, and open field behavior. Differences from the original lines also were observed. Reasons for and implications of the pattern of replication and lack thereof in 5 generations are discussed.
Collapse
Affiliation(s)
- Nancy K Dess
- Department of Psychology, Occidental College, Los Angeles, CA, United States
| | - Clinton D Chapman
- Department of Psychology, Occidental College, Los Angeles, CA, United States
| | - Paulina M Jacobi
- Department of Psychology, Occidental College, Los Angeles, CA, United States
| |
Collapse
|
22
|
Edwards CM, Guerrero IE, Zheng H, Dolezel T, Rinaman L. Blockade of Ghrelin Receptor Signaling Enhances Conditioned Passive Avoidance and Context-Associated cFos Activation in Fasted Male Rats. Neuroendocrinology 2022; 113:535-548. [PMID: 36566746 PMCID: PMC10133005 DOI: 10.1159/000528828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Interoceptive feedback to the brain regarding the body's physiological state plays an important role in guiding motivated behaviors. For example, a state of negative energy balance tends to increase exploratory/food-seeking behaviors while reducing avoidance behaviors. We recently reported that overnight food deprivation reduces conditioned passive avoidance behavior in male (but not female) rats. Since fasting increases circulating levels of ghrelin, we hypothesized that ghrelin signaling contributes to the ability of fasting to reduce conditioned avoidance. METHODS Ad libitum-fed male rats were trained in a passive avoidance procedure using mild footshock. Later, following overnight food deprivation, the same rats were pretreated with ghrelin receptor antagonist (GRA) or saline vehicle 30 min before avoidance testing. RESULTS GRA restored passive avoidance in fasted rats as measured by both latency to enter and time spent in the shock-paired context. In addition, compared to vehicle-injected fasted rats, fasted rats that received GRA before reexposure to the shock-paired context displayed more cFos activation of prolactin-releasing peptide (PrRP)-positive noradrenergic (NA) neurons in the caudal nucleus of the solitary tract, accompanied by more cFos activation in downstream target sites of PrRP neurons (i.e., bed nucleus of the stria terminalis and paraventricular nucleus of the hypothalamus). DISCUSSION These results support the view that ghrelin signaling contributes to the inhibitory effect of fasting on learned passive avoidance behavior, perhaps by suppressing recruitment of PrRP-positive NA neurons and their downstream hypothalamic and limbic forebrain targets.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | | | - Huiyuan Zheng
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Tyla Dolezel
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Linda Rinaman
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
23
|
Cao J, Wang X, Chen J, Zhang N, Liu Z. The vagus nerve mediates the stomach-brain coherence in rats. Neuroimage 2022; 263:119628. [PMID: 36113737 PMCID: PMC10008817 DOI: 10.1016/j.neuroimage.2022.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Interactions between the brain and the stomach shape both cognitive and digestive functions. Recent human studies report spontaneous synchronization between brain activity and gastric slow waves in the resting state. However, this finding has not been replicated in any animal models. The neural pathways underlying this apparent stomach-brain synchrony is also unclear. Here, we performed functional magnetic resonance imaging while simultaneously recording body-surface gastric slow waves from anesthetized rats in the fasted vs. postprandial conditions and performed a bilateral cervical vagotomy to assess the role of the vagus nerve. The coherence between brain fMRI signals and gastric slow waves was found in a distributed "gastric network", including subcortical and cortical regions in the sensory, motor, and limbic systems. The stomach-brain coherence was largely reduced by the bilateral vagotomy and was different between the fasted and fed states. These findings suggest that the vagus nerve mediates the spontaneous coherence between brain activity and gastric slow waves, which is likely a signature of real-time stomach-brain interactions. However, its functional significance remains to be established.
Collapse
Affiliation(s)
- Jiayue Cao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Xiaokai Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Jiande Chen
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, Huck Institutes of the life sciences, Pennsylvania State University, USA
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
24
|
Krieger JP, Asker M, van der Velden P, Börchers S, Richard JE, Maric I, Longo F, Singh A, de Lartigue G, Skibicka KP. Neural Pathway for Gut Feelings: Vagal Interoceptive Feedback From the Gastrointestinal Tract Is a Critical Modulator of Anxiety-like Behavior. Biol Psychiatry 2022; 92:709-721. [PMID: 35965105 PMCID: PMC11438499 DOI: 10.1016/j.biopsych.2022.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Anxiety disorders are associated with an altered perception of the body's internal state. Therefore, understanding the neuronal basis of interoception can foster novel anxiety therapies. In rodents, the feeding status bidirectionally modulates anxiety-like behavior but how the sensing of gastrointestinal state affects anxiety remains unclear. METHODS We combined chemogenetics, neuropharmacology, and behavioral approaches in male and female rats to test whether vagal afferents terminating in the gastrointestinal tract mediate feeding-induced tuning of anxiety. Using saporin-based lesions and transcriptomics, we investigated the chronic impact of this gut-brain circuit on anxiety-like behavior. RESULTS Both feeding and selective chemogenetic activation of gut-innervating vagal afferents increased anxiety-like behavior. Conversely, chemogenetic inhibition blocked the increase in anxiety-like behavior induced by feeding. Using a selective saporin-based lesion, we demonstrate that the loss of gut-innervating vagal afferent signaling chronically reduces anxiety-like behavior in male rats but not in female rats. We next identify a vagal circuit that connects the gut to the central nucleus of the amygdala, using anterograde transsynaptic tracing from the nodose ganglia. Lesion of this gut-brain vagal circuit modulated the central amygdala transcriptome in both sexes but selectively affected a network of GABA (gamma-aminobutyric acid)-related genes only in males, suggesting a potentiation of inhibitory control. Blocking GABAergic signaling in the central amygdala re-established normal anxiety levels in male rats. CONCLUSIONS Vagal sensory signals from the gastrointestinal tract are critical for baseline and feeding-induced tuning of anxiety via the central amygdala in rats. Our results suggest vagal gut-brain signaling as a target to normalize interoception in anxiety disorders.
Collapse
Affiliation(s)
- Jean-Philippe Krieger
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden
| | - Mohammed Asker
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden
| | | | - Stina Börchers
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden
| | - Jennifer E Richard
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden
| | - Ivana Maric
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden
| | - Francesco Longo
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden
| | - Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida
| | - Karolina P Skibicka
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden; Nutritional Sciences, College of Health and Human Development, Pennsylvania State University, State College, Pennsylvania.
| |
Collapse
|
25
|
Noble EE. Behavioral Consequences of a Rumbling Tummy: Fasting Alters Emotional State via the Vagus Nerve. Biol Psychiatry 2022; 92:690-692. [PMID: 36202543 DOI: 10.1016/j.biopsych.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Affiliation(s)
- Emily E Noble
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia.
| |
Collapse
|
26
|
ROLE OF GUT MICROBIOTA IN DEPRESSION: UNDERSTANDING MOLECULAR PATHWAYS, RECENT RESEARCH, AND FUTURE DIRECTION. Behav Brain Res 2022; 436:114081. [PMID: 36037843 DOI: 10.1016/j.bbr.2022.114081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Gut microbiota, also known as the "second brain" in humans because of the regulatory role it has on the central nervous system via neuronal, chemical and immune pathways. It has been proven that there exists a bidirectional communication between the gut and the brain. Increasing evidence supports that this crosstalk is linked to the etiology and treatment of depression. Reports suggest that the gut microbiota control the host epigenetic machinery in depression and gut dysbiosis causes negative epigenetic modifications via mechanisms like histone acetylation, DNA methylation and non-coding RNA mediated gene inhibition. The gut microbiome can be a promising approach for the management of depression. The diet and dietary metabolites like kynurenine, tryptophan, and propionic acid also greatly influence the microbiome composition and thereby, the physiological activities. This review gives a bird-eye view on the pathological updates and currently used treatment approaches targeting the gut microbiota in depression.
Collapse
|
27
|
Zhu Z, Gu Y, Zeng C, Yang M, Yu H, Chen H, Zhang B, Cai H. Olanzapine-induced lipid disturbances: A potential mechanism through the gut microbiota-brain axis. Front Pharmacol 2022; 13:897926. [PMID: 35991866 PMCID: PMC9388751 DOI: 10.3389/fphar.2022.897926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Long-term use of olanzapine can induce various side effects such as lipid metabolic disorders, but the mechanism remains to be elucidated. The gut microbiota-brain axis plays an important role in lipid metabolism, and may be related to the metabolic side effects of olanzapine. Therefore, we explored the mechanism by which olanzapine-induced lipid disturbances through the gut microbiota-brain axis. Methods: Sprague Dawley rats were randomly divided into two groups, which underwent subphrenic vagotomy and sham surgery. Then the two groups were further randomly divided into two subgroups, one was administered olanzapine (10 mg/kg/day) by intragastric administration, and the other was administered normal saline by intragastric administration (4 ml/kg/day) for 2 weeks. The final changes in lipid parameters, gut microbes and their metabolites, and orexin-related neuropeptides in the hypothalamus were investigated among the different groups. Results: Olanzapine induced lipid disturbances as indicated by increased weight gain, elevated ratio of white adipose tissue to brown adipose tissue, as well as increased triglyceride and total cholesterol. Olanzapine also increased the Firmicutes/Bacteroides (F/B) ratio in the gut, which was even aggravated by subphrenic vagotomy. In addition, olanzapine reduced the abundance of short-chain fatty acids (SCFAs) metabolism related microbiome and 5-hydroxytryptamine (5-HT) levels in the rat cecum, and increased the gene and protein expression of the appetite-related neuropeptide Y/agouti-related peptide (NPY/AgRP) in the hypothalamus. Conclusion: The abnormal lipid metabolism caused by olanzapine may be closely related to the vagus nerve-mediated gut microbiota-brain axis.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Yuxiu Gu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Man Yang
- School of Pharmacy, Changsha Medical University, Changsha, China
| | - Hao Yu
- School of Pharmacy, Hunan University of Medicine, Changsha, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- *Correspondence: Bikui Zhang, ; Hualin Cai,
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- *Correspondence: Bikui Zhang, ; Hualin Cai,
| |
Collapse
|
28
|
Kobrzycka AT, Stankiewicz AM, Goscik J, Gora M, Burzynska B, Iwanicka-Nowicka R, Pierzchala-Koziec K, Wieczorek M. Hypothalamic Neurochemical Changes in Long-Term Recovered Bilateral Subdiaphragmatic Vagotomized Rats. Front Behav Neurosci 2022; 16:869526. [PMID: 35874650 PMCID: PMC9304976 DOI: 10.3389/fnbeh.2022.869526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Background Vagus nerve is one of the crucial routes in communication between the immune and central nervous systems. The impaired vagal nerve function may intensify peripheral inflammatory processes. This effect subsides along with prolonged recovery after permanent nerve injury. One of the results of such compensation is a normalized plasma concentration of stress hormone corticosterone – a marker of hypothalamic-pituitary-adrenal (HPA) axis activity. In this work, we strive to explain this corticosterone normalization by studying the mechanisms responsible for compensation-related neurochemical alterations in the hypothalamus. Materials and Methods Using microarrays and high performance liquid chromatography (HPLC), we measured genome-wide gene expression and major amino acid neurotransmitters content in the hypothalamus of bilaterally vagotomized rats, 1 month after surgery. Results Our results show that, in the long term, vagotomy affects hypothalamic amino acids concentration but not mRNA expression of tested genes. Discussion We propose an alternative pathway of immune to CNS communication after vagotomy, leading to activation of the HPA axis, by influencing central amino acids and subsequent monoaminergic neurotransmission.
Collapse
Affiliation(s)
- Anna Teresa Kobrzycka
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Łodz, Łodz, Poland
- *Correspondence: Anna Teresa Kobrzycka,
| | - Adrian Mateusz Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Goscik
- Software Department, Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
| | - Monika Gora
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Burzynska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Łodz, Łodz, Poland
- Marek Wieczorek,
| |
Collapse
|
29
|
The Anxiolytic-like Properties of a Tryptic Hydrolysate of Bovine α s1 Casein Containing α-Casozepine Rely on GABA A Receptor Benzodiazepine Binding Sites but Not the Vagus Nerve. Nutrients 2022; 14:nu14112212. [PMID: 35684011 PMCID: PMC9182760 DOI: 10.3390/nu14112212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: A tryptic hydrolysate of bovine αs1-casein (CH) exerts anxiolytic-like properties in many species, including humans. This is mainly related to the presence of α-casozepine (α-CZP), which yields these properties in rodents. This study evaluates, in a rat model, the roles of the vagus nerve and the benzodiazepine binding site of GABAA receptors in the mode of action of CH. (2) Methods: The conditioned defensive burying test was used to evaluate anxiety. (3) Results: Participation of the vagus nerve in the mode of action of CH was excluded, as the global anxiety score in vagotomised rats was not significantly different from that of non-vagotomised animals. The blocking of the binding sites of benzodiazepines with flumazenil antagonised CH anxiolytic-like properties. (4) Conclusions: The vagus nerve does not play a role in the anxiolytic-like properties of CH. On the other hand, this anxiolytic-like activity relies on the benzodiazepine binding site of the GABAA receptors. This result is consistent with previous in vitro studies and, more specifically with the discovery of α-CZP, the peptide responsible for the anxiolytic-like properties of CH.
Collapse
|
30
|
Li H, Page AJ. Altered Vagal Signaling and Its Pathophysiological Roles in Functional Dyspepsia. Front Neurosci 2022; 16:858612. [PMID: 35527812 PMCID: PMC9072791 DOI: 10.3389/fnins.2022.858612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
The vagus nerve is crucial in the bidirectional communication between the gut and the brain. It is involved in the modulation of a variety of gut and brain functions. Human studies indicate that the descending vagal signaling from the brain is impaired in functional dyspepsia. Growing evidence indicate that the vagal signaling from gut to brain may also be altered, due to the alteration of a variety of gut signals identified in this disorder. The pathophysiological roles of vagal signaling in functional dyspepsia is still largely unknown, although some studies suggested it may contribute to reduced food intake and gastric motility, increased psychological disorders and pain sensation, nausea and vomiting. Understanding the alteration in vagal signaling and its pathophysiological roles in functional dyspepsia may provide information for new potential therapeutic treatments of this disorder. In this review, we summarize and speculate possible alterations in vagal gut-to-brain and brain-to-gut signaling and the potential pathophysiological roles in functional dyspepsia.
Collapse
Affiliation(s)
- Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Hui Li,
| | - Amanda J. Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
31
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
32
|
Zhang SQ, Xia ZX, Deng Q, Yang PF, Long LH, Wang F, Chen JG. Repeated vagus nerve stimulation produces anxiolytic effects via upregulation of AMPAR function in centrolateral amygdala of male rats. Neurobiol Stress 2022; 18:100453. [PMID: 35685681 PMCID: PMC9170826 DOI: 10.1016/j.ynstr.2022.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Repeated vagus nerve stimulation (rVNS) exerts anxiolytic effect by activation of noradrenergic pathway. Centrolateral amygdala (CeL), a lateral subdivision of central amygdala, receives noradrenergic inputs, and its neuronal activity is positively correlated to anxiolytic effect of benzodiazepines. The activation of β-adrenergic receptors (β-ARs) could enhance glutamatergic transmission in CeL. However, it is unclear whether the neurobiological mechanism of noradrenergic system in CeL mediates the anxiolytic effect induced by rVNS. Here, we find that rVNS treatment produces an anxiolytic effect in male rats by increasing the neuronal activity of CeL. Electrophysiology recording reveals that rVNS treatment enhances the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated excitatory neurotransmission in CeL, which is mimicked by β-ARs agonist isoproterenol or blocked by β-ARs antagonist propranolol. Moreover, chemogenetic inhibition of CeL neurons or pharmacological inhibition of β-ARs in CeL intercepts both enhanced glutamatergic neurotransmission and the anxiolytic effects by rVNS treatment. These results suggest that the amplified AMPAR trafficking in CeL via activation of β-ARs is critical for the anxiolytic effects induced by rVNS treatment. rVNS amplifies the noradrenergic system in CeL and results in anxiolysis. rVNS treatment enhances AMPAR-mediated excitatory neurotransmission CeL via β-ARs. Pharmacological inhibition β-ARs in CeL intercept the anxiolytic effects by rVNS. Exciting CeL neurons lead to an increase in inhibitory inputs into CeM neurons. Inhibiting CeL neurons abate inhibitory inputs into CeM and anxiolysis by rVNS.
Collapse
|
33
|
Therapeutic Anti-Depressant Potential of Microbial GABA Produced by Lactobacillus rhamnosus Strains for GABAergic Signaling Restoration and Inhibition of Addiction-Induced HPA Axis Hyperactivity. Curr Issues Mol Biol 2022; 44:1434-1451. [PMID: 35723354 PMCID: PMC9164062 DOI: 10.3390/cimb44040096] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
The role of the microbiota–gut–brain (MGB) axis in mood regulation and depression treatment has gained attention in recent years, as evidenced by the growing number of animal and human studies that have reported the anti-depressive and associated gamma-aminobutyric acid-ergic (GABAergic) effects of probiotics developed from Lactobacillus rhamnosus bacterial strains in the gut microbiome. The depressive states attenuated by these probiotics in patients suffering from clinical depression also characterize the severe and relapse-inducing withdrawal phase of the addiction cycle, which has been found to arise from the intoxication-enabled hyperregulation of the hypothalamic–pituitary–adrenal (HPA) axis, the body’s major stress response system, and a corresponding attenuation of its main inhibitory system, the gamma-aminobutyric acid (GABA) signaling system. Therefore, the use of probiotics in the treatment of general cases of depression provides hope for a novel therapeutic approach to withdrawal depression remediation. This review discusses potential therapeutic avenues by which probiotic application of Lactobacillus rhamnosus strains can be used to restore the central GABAergic activity responsible for attenuating the depression-inducing HPA axis hyperactivity in addiction withdrawal. Also, information is provided on brain GABAergic signaling from other known GABA-producing strains of gut microbiota.
Collapse
|
34
|
Bunyoz AH, Christensen RHB, Orlovska-Waast S, Nordentoft M, Mortensen PB, Petersen LV, Benros ME. Vagotomy and the risk of mental disorders: A nationwide population-based study. Acta Psychiatr Scand 2022; 145:67-78. [PMID: 34195992 DOI: 10.1111/acps.13343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate vagotomy, the severance of the vagus nerve, and its association with mental disorders, as gut-brain communication partly mediated by the vagus nerve have been suggested as a risk factor. METHODS Nationwide population-based Danish register study of all individuals alive and living in Denmark during the study period 1977-2016 and who had a hospital contact for ulcer with or without vagotomy. Follow-up was until any diagnosis of mental disorders requiring hospital contact, emigration, death, or end of follow-up on December 31, 2016, whichever came first. Data were analyzed using survival analysis and adjusted for sex, age, calendar year, ulcer type, and Charlson comorbidity index score. RESULTS During the study period, 113,086 individuals had a hospital contact for ulcer. Of these, 5,408 were exposed to vagotomy where 375 (6.9%) subsequently developed a mental disorder. Vagotomy overall was not associated with mental disorders (HR: 1.10; 95%CI: 0.99-1.23), compared to individuals with ulcer not exposed to vagotomy. However, truncal vagotomy was associated with an increased HR of 1.22 (95%CI: 1.06-1.41) for mental disorders, whereas highly selective vagotomy was not associated with mental disorders (HR: 0.98; 95%CI: 0.84-1.15). Truncal vagotomy was also associated with higher risk of mental disorders when compared to highly selective vagotomy (p = 0.034). CONCLUSIONS Overall, vagotomy did not increase the risk of mental disorders; however, truncal vagotomy specifically was associated with a small risk increase in mental disorders, whereas no association was found for highly selective vagotomy. Thus, the vagus nerve does not seem to have a major impact on the development of mental disorders.
Collapse
Affiliation(s)
- Artemis H Bunyoz
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rune H B Christensen
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sonja Orlovska-Waast
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.,iPSYCH The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Lundbeck, Denmark
| | - Preben B Mortensen
- iPSYCH The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Lundbeck, Denmark.,National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark.,Department of Economics, CIRRAU - Centre for Integrated Register-based Research, Aarhus, Denmark
| | - Liselotte V Petersen
- iPSYCH The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Lundbeck, Denmark.,National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark.,Department of Economics, CIRRAU - Centre for Integrated Register-based Research, Aarhus, Denmark
| | - Michael E Benros
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.,National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark.,Department of Immunology and Microbiology, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
|
36
|
Livneh Y, Andermann ML. Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron 2021; 109:3576-3593. [PMID: 34582784 PMCID: PMC8602715 DOI: 10.1016/j.neuron.2021.08.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 02/09/2023]
Abstract
Our wellness relies on continuous interactions between our brain and body: different organs relay their current state to the brain and are regulated, in turn, by descending visceromotor commands from our brain and by actions such as eating, drinking, thermotaxis, and predator escape. Human neuroimaging and theoretical studies suggest a key role for predictive processing by insular cortex in guiding these efforts to maintain bodily homeostasis. Here, we review recent studies recording and manipulating cellular activity in rodent insular cortex at timescales from seconds to hours. We argue that consideration of these findings in the context of predictive processing of future bodily states may reconcile several apparent discrepancies and offer a unifying, heuristic model for guiding future work.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
37
|
Jones CB, Peiffer LB, Davis CM, Sfanos KS. Examining the Effects of 4He Exposure on the Gut-Brain Axis. Radiat Res 2021; 197:242-252. [PMID: 34752622 DOI: 10.1667/rade-20-00285.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/30/2021] [Indexed: 11/03/2022]
Abstract
Beyond low-Earth orbit, space radiation poses significant risks to astronaut health. Previous studies have shown that the microbial composition of the gastrointestinal (GI) microbiome changes upon exposure to high-linear energy transfer radiation. Interestingly, radiation-induced shifts in GI microbiota composition are linked to various neuropsychological disorders. Herein, we aimed to study changes in GI microbiota and behaviors of rats exposed to whole-body radiation (0, 5 or 25 cGy 4He, 250 MeV/n) at approximately 6 months of age. Fecal samples were collected 24 h prior to 4He irradiation and 24 h and 7 days postirradiation for quantitative PCR analyses to assess fecal levels of spore-forming bacteria (SFB), Bifidobacterium, Lactobacillus and Akkermansia. Rats were also tested in the social odor recognition memory (SORM) test at day 7 after 4He exposure. A subset of rats was euthanized 90 min after completion of the SORM test, and GI tissue from small intestine to colon were prepared for examining overall histological changes and immunohistochemical staining for serotonin (5-HT). No notable pathological changes were observed in GI tissues. Akkermansia spp. and SFB were significantly decreased in the 25 cGy group at 24 h and 7 days postirradiation compared to pre-exposure, respectively. Bifidobacterium and Lactobacillus spp. showed no significant changes. 5-HT production was significantly higher in the proximal small intestine and the cecum in the 25 cGy group compared to the sham group. The 25 cGy group exhibited deficits in recognition in SORM testing at day 7 postirradiation. Taken together, these results suggest a connection between GI microbiome composition, serotonin production, and neurobehavioral performance, and that this connection may be disrupted upon exposure to 25 cGy of 4He ions.
Collapse
Affiliation(s)
- Carli B Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lauren B Peiffer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Catherine M Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
38
|
Brown RM, Guerrero-Hreins E, Brown WA, le Roux CW, Sumithran P. Potential gut-brain mechanisms behind adverse mental health outcomes of bariatric surgery. Nat Rev Endocrinol 2021; 17:549-559. [PMID: 34262156 DOI: 10.1038/s41574-021-00520-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Bariatric surgery induces sustained weight loss and metabolic benefits via notable effects on the gut-brain axis that lead to alterations in the neuroendocrine regulation of appetite and glycaemia. However, in a subset of patients, bariatric surgery is associated with adverse effects on mental health, including increased risk of suicide or self-harm as well as the emergence of depression and substance use disorders. The contributing factors behind these adverse effects are not well understood. Accumulating evidence indicates that there are important links between gut-derived hormones, microbial and bile acid profiles, and disorders of mood and substance use, which warrant further exploration in the context of changes in gut-brain signalling after bariatric surgery. Understanding the basis of these adverse effects is essential in order to optimize the health and well-being of people undergoing treatment for obesity.
Collapse
Affiliation(s)
- Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Eva Guerrero-Hreins
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Wendy A Brown
- Department of Surgery, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College, Dublin, Ireland
| | - Priya Sumithran
- Department of Medicine (St Vincent's), University of Melbourne, Melbourne, Victoria, Australia.
- Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia.
| |
Collapse
|
39
|
Diet-induced dysbiosis of the maternal gut microbiome in early life programming of neurodevelopmental disorders. Neurosci Res 2021; 168:3-19. [PMID: 33992660 DOI: 10.1016/j.neures.2021.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The maternal gut microbiome plays a critical role in fetal and early postnatal development, shaping fundamental processes including immune maturation and brain development, among others. Consequently, it also contributes to fetal programming of health and disease. Over the last decade, epidemiological studies and work in preclinical animal models have begun to uncover a link between dysbiosis of the maternal gut microbiome and neurodevelopmental disorders in offspring. Neurodevelopmental disorders are caused by both genetic and environmental factors, and their interactions; however, clinical heterogeneity, phenotypic variability, and comorbidities make identification of underlying mechanisms difficult. Among environmental factors, exposure to maternal obesity in utero confers a significant increase in risk for neurodevelopmental disorders. Obesogenic diets in humans, non-human primates, and rodents induce functional modifications in maternal gut microbiome composition, which animal studies suggest are causally related to adverse mental health outcomes in offspring. Here, we review evidence linking maternal diet-induced gut dysbiosis to neurodevelopmental disorders and discuss how it could affect pre- and early postnatal brain development. We are hopeful that this burgeoning field of research will revolutionize antenatal care by leading to accessible prophylactic strategies, such as prenatal probiotics, to improve mental health outcomes in children affected by maternal diet-induced obesity.
Collapse
|
40
|
James DM, Davidson EA, Yanes J, Moshiree B, Dallman JE. The Gut-Brain-Microbiome Axis and Its Link to Autism: Emerging Insights and the Potential of Zebrafish Models. Front Cell Dev Biol 2021; 9:662916. [PMID: 33937265 PMCID: PMC8081961 DOI: 10.3389/fcell.2021.662916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Research involving autism spectrum disorder (ASD) most frequently focuses on its key diagnostic criteria: restricted interests and repetitive behaviors, altered sensory perception, and communication impairments. These core criteria, however, are often accompanied by numerous comorbidities, many of which result in severe negative impacts on quality of life, including seizures, epilepsy, sleep disturbance, hypotonia, and GI distress. While ASD is a clinically heterogeneous disorder, gastrointestinal (GI) distress is among the most prevalent co-occurring symptom complex, manifesting in upward of 70% of all individuals with ASD. Consistent with this high prevalence, over a dozen family foundations that represent genetically distinct, molecularly defined forms of ASD have identified GI symptoms as an understudied area with significant negative impacts on quality of life for both individuals and their caregivers. Moreover, GI symptoms are also correlated with more pronounced irritability, social withdrawal, stereotypy, hyperactivity, and sleep disturbances, suggesting that they may exacerbate the defining behavioral symptoms of ASD. Despite these facts (and to the detriment of the community), GI distress remains largely unaddressed by ASD research and is frequently regarded as a symptomatic outcome rather than a potential contributory factor to the behavioral symptoms. Allowing for examination of both ASD's impact on the central nervous system (CNS) as well as its impact on the GI tract and the associated microbiome, the zebrafish has recently emerged as a powerful tool to study ASD. This is in no small part due to the advantages zebrafish present as a model system: their precocious development, their small transparent larval form, and their parallels with humans in genetics and physiology. While ASD research centered on the CNS has leveraged these advantages, there has been a critical lack of GI-centric ASD research in zebrafish models, making a holistic view of the gut-brain-microbiome axis incomplete. Similarly, high-throughput ASD drug screens have recently been developed but primarily focus on CNS and behavioral impacts while potential GI impacts have not been investigated. In this review, we aim to explore the great promise of the zebrafish model for elucidating the roles of the gut-brain-microbiome axis in ASD.
Collapse
Affiliation(s)
- David M. James
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | | | - Julio Yanes
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Baharak Moshiree
- Department of Gastroenterology and Hepatology, Atrium Health, Charlotte, NC, United States
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
41
|
Cordner ZA, Li Q, Liu L, Tamashiro KL, Bhargava A, Moran TH, Pasricha PJ. Vagal gut-brain signaling mediates amygdaloid plasticity, affect, and pain in a functional dyspepsia model. JCI Insight 2021; 6:144046. [PMID: 33591956 PMCID: PMC8026195 DOI: 10.1172/jci.insight.144046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Functional dyspepsia (FD) is associated with chronic gastrointestinal distress and with anxiety and depression. Here, we hypothesized that aberrant gastric signals, transmitted by the vagus nerve, may alter key brain regions modulating affective and pain behavior. Using a previously validated rat model of FD characterized by gastric hypersensitivity, depression-like behavior, and anxiety-like behavior, we found that vagal activity - in response to gastric distention - was increased in FD rats. The FD phenotype was associated with gastric mast cell hyperplasia and increased expression of corticotrophin-releasing factor (Crh) and decreased brain-derived neurotrophic factor genes in the central amygdala. Subdiaphragmatic vagotomy reversed these changes and restored affective behavior to that of controls. Vagotomy partially attenuated pain responses to gastric distention, which may be mediated by central reflexes in the periaqueductal gray, as determined by local injection of lidocaine. Ketotifen, a mast cell stabilizer, reduced vagal hypersensitivity, normalized affective behavior, and attenuated gastric hyperalgesia. In conclusion, vagal activity, partially driven by gastric mast cells, induces long-lasting changes in Crh signaling in the amygdala that may be responsible for enhanced pain and enhanced anxiety- and depression-like behaviors. Together, these results support a "bottom-up" pathway involving the gut-brain axis in the pathogenesis of both gastric pain and psychiatric comorbidity in FD.
Collapse
Affiliation(s)
| | - Qian Li
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liansheng Liu
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Aditi Bhargava
- Department of Obstetrics and Gynecology and The Center for Reproductive Sciences, UCSF, San Francisco, California, USA
| | | | - Pankaj Jay Pasricha
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Choi TY, Choi YP, Koo JW. Mental Disorders Linked to Crosstalk between The Gut Microbiome and The Brain. Exp Neurobiol 2020; 29:403-416. [PMID: 33139585 PMCID: PMC7788310 DOI: 10.5607/en20047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Often called the second brain, the gut communicates extensively with the brain and vice versa. The conversation between these two organs affects a variety of physiological mechanisms that are associated with our mental health. Over the past decade, a growing body of evidence has suggested that the gut microbiome builds a unique ecosystem inside the gastrointestinal tract to maintain the homeostasis and that compositional changes in the gut microbiome are highly correlated with several mental disorders. There are ongoing efforts to treat or prevent mental disorders by regulating the gut microbiome using probiotics. These attempts are based on the seminal findings that probiotics can control the gut microbiome and affect mental conditions. However, some issues have yet to be conclusively addressed, especially the causality between the gut microbiome and mental disorders. In this review, we focus on the mechanisms by which the gut microbiome affects mental health and diseases. Furthermore, we discuss the potential use of probiotics as therapeutic agents for psychiatric disorders.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Young Pyo Choi
- Laboratory Animal Center, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| |
Collapse
|
43
|
Lach G, Fülling C, Bastiaanssen TFS, Fouhy F, Donovan ANO, Ventura-Silva AP, Stanton C, Dinan TG, Cryan JF. Enduring neurobehavioral effects induced by microbiota depletion during the adolescent period. Transl Psychiatry 2020; 10:382. [PMID: 33159036 PMCID: PMC7648059 DOI: 10.1038/s41398-020-01073-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota is an essential regulator of many aspects of host physiology. Disruption of gut microbial communities affects gut-brain communication which ultimately can manifest as changes in brain function and behaviour. Transient changes in gut microbial composition can be induced by various intrinsic and extrinsic factors, however, it is possible that enduring shifts in the microbiota composition can be achieved by perturbation at a timepoint when the gut microbiota has not fully matured or is generally unstable, such as during early life or ageing. In this study, we investigated the effects of 3-week microbiota depletion with antibiotic treatment during the adolescent period and in adulthood. Following a washout period to restore the gut microbiota, behavioural and molecular hallmarks of gut-brain communication were investigated. Our data revealed that transient microbiota depletion had long-lasting effects on microbiota composition and increased anxiety-like behaviour in mice exposed to antibiotic treatment during adolescence but not in adulthood. Similarly, gene expression in the amygdala was more severely affected in mice treated during adolescence. Taken together these data highlight the vulnerability of the gut microbiota during the critical adolescent period and the long-lasting impact manipulations of the microbiota can have on gene expression and behaviour in adulthood.
Collapse
Affiliation(s)
- Gilliard Lach
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.4305.20000 0004 1936 7988Present Address: University of Edinburgh, Edinburgh, Scotland UK
| | - Christine Fülling
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fiona Fouhy
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.6435.40000 0001 1512 9569Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Ireland
| | - Aoife N. O’ Donovan
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.6435.40000 0001 1512 9569Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Ireland ,grid.7872.a0000000123318773School of Microbiology, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.6435.40000 0001 1512 9569Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Ireland
| | - Timothy G. Dinan
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F. Cryan
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Hou X, Rong C, Wang F, Liu X, Sun Y, Zhang HT. GABAergic System in Stress: Implications of GABAergic Neuron Subpopulations and the Gut-Vagus-Brain Pathway. Neural Plast 2020; 2020:8858415. [PMID: 32802040 PMCID: PMC7416252 DOI: 10.1155/2020/8858415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Stress can cause a variety of central nervous system disorders, which are critically mediated by the γ-aminobutyric acid (GABA) system in various brain structures. GABAergic neurons have different subsets, some of which coexpress certain neuropeptides that can be found in the digestive system. Accumulating evidence demonstrates that the gut-brain axis, which is primarily regulated by the vagus nerve, is involved in stress, suggesting a communication between the "gut-vagus-brain" pathway and the GABAergic neuronal system. Here, we first summarize the evidence that the GABAergic system plays an essential role in stress responses. In addition, we review the effects of stress on different brain regions and GABAergic neuron subpopulations, including somatostatin, parvalbumin, ionotropic serotonin receptor 5-HT3a, cholecystokinin, neuropeptide Y, and vasoactive intestinal peptide, with regard to signaling events, behavioral changes, and pathobiology of neuropsychiatric diseases. Finally, we discuss the gut-brain bidirectional communications and the connection of the GABAergic system and the gut-vagus-brain pathway.
Collapse
Affiliation(s)
- Xueqin Hou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Cuiping Rong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fugang Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Xiaoqian Liu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Yi Sun
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| |
Collapse
|
45
|
Davey S, Bell E, Halberstadt J, Collings S. Where is an emotion? Using targeted visceroception as a method of improving emotion regulation in healthy participants to inform suicide prevention initiatives: a randomised controlled trial. Trials 2020; 21:642. [PMID: 32664997 PMCID: PMC7362633 DOI: 10.1186/s13063-020-04479-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 06/06/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND William James' 1884 paper "What is an emotion?" has generated much recent interest in affective science regarding somatic contributions to emotion. Studies of interoception ("sensing the physiological condition of the body") suggest that sensing specific parts of the body contributes to the production of emotion, namely when sensing the viscera (i.e. "visceroception" of the heart, gut or lungs). Improved visceroception has, for instance, been linked to increased emotional intensity, suggesting a role for interoception in emotion regulation that may pertain specifically to visceral bodily locations. Thus, in addition to asking James' question, "What is an emotion?", we ask, "Where is an emotion?". Further, there is an evidence base pointing to the connections between emotion regulation and suicide, and between interoception and suicide. This is a preliminary trial investigating whether targeted interoception/visceroception improves emotion regulation. Ultimately, the overall project aims to inform suicide prevention efforts. METHODS The trial utilises a pre-test/post-test control group design, with two experimental groups undergoing visceroceptive interventions (focussing on areas pertaining to the gut or heart) and a control group. The interventions will run for 8 weeks. A spatial cueing task will measure reaction times to bodily changes relating to lower abdomen or chest focus. A stop/signal task will measure emotional inhibition, which is hypothesised to obscure awareness of active bodily locations. Visceroceptive ability will be tracked using a heartbeat estimation task, a water load test, and by self-report questionnaire. The sample will consist of healthcare professionals and healthcare students. Despite these being groups that represent a relatively high suicide risk among professional and student groups, all participants will be healthy, given the preliminary nature of this trial. DISCUSSION To our knowledge, this will be the first project to address whether emotional feeling presents as a localised bodily phenomenon and whether trained awareness of emotional localisation can improve emotion regulation. It will also be the first to investigate relationships between interoception and emotional inhibition (i.e. whether a sustained interoceptive practice leads to the disinhibition of bodily emotional sensations, which can positively contribute to emotion regulation). These empirical findings on emotion regulation from a healthy sample will be used to inform a desk-based enquiry into the role of embodied emotion in suicide prevention, which may make a significant contribution to a growing evidence base on interoception and suicide. TRIAL REGISTRATION ACTR N12619000324112 . Registered on 4 March 2019. Universal Trial Number (UTN): U1111-1221-0201.
Collapse
Affiliation(s)
- Steven Davey
- Suicide and Mental Health Research Group, University of Otago, Wellington, PO Box 7343, Wellington, Newtown, 6242, New Zealand.
| | - Elliot Bell
- Department of Psychological Medicine, University of Otago, Wellington, New Zealand
| | | | - Sunny Collings
- Suicide and Mental Health Research Group, University of Otago, Wellington, New Zealand
| |
Collapse
|
46
|
Guo TL, Chen Y, Xu HS, McDonough CM, Huang G. Gut microbiome in neuroendocrine and neuroimmune interactions: The case of genistein. Toxicol Appl Pharmacol 2020; 402:115130. [PMID: 32673657 DOI: 10.1016/j.taap.2020.115130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
The healthy and diverse microbes living in our gut provide numerous benefits to our health. It is increasingly recognized that the gut microbiome affects the host's neurobehavioral state through production of metabolites, modulation of intestinal immunity (e.g., cytokines) and other mechanisms (e.g., gut neuropeptides). By sending the sensed information (e.g., metabolic and immunologic mediators) about the state of the inner organs to the brain via afferent fibers, the vagus nerve maintains one of the connections between the brain and GI tract, and oversees many critical bodily functions (e.g., mood, immune response, digestion and heart rate). The microbiota-gut-brain axis is a bidirectional communication between the gut, its microbiome, and the nervous system. In the present review, the roles of microbiome in neuroendocrine and neuroimmune interactions have been discussed using naturally occurring isoflavones, particularly the phytoestrogen genistein, as there are sex differences in the interactions among the microbiome, hormones, immunity and disease susceptibility. A deep understanding of the mechanisms underlying the interactions among the endocrine modulators, brain, endocrine glands, gut immune cells, vagus nerve, enteric nervous system and gut microbiome will provide important knowledges that may ultimately lead to treatment and prevention of debilitating disorders characterized by deficits of microbiome-neuroendocrine-neuroimmune relationships.
Collapse
Affiliation(s)
- Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Yingjia Chen
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Hannah Shibo Xu
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Callie M McDonough
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
47
|
Holland J, Sorrell J, Yates E, Smith K, Arbabi S, Arnold M, Rivir M, Morano R, Chen J, Zhang X, Dimarchi R, Woods SC, Sanchez-Gurmaches J, Wohleb E, Perez-Tilve D. A Brain-Melanocortin-Vagus Axis Mediates Adipose Tissue Expansion Independently of Energy Intake. Cell Rep 2020; 27:2399-2410.e6. [PMID: 31116984 PMCID: PMC6550338 DOI: 10.1016/j.celrep.2019.04.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
The melanocortin system is a brain circuit that influences energy balance by regulating energy intake and expenditure. In addition, the brain-melanocortin system controls adipose tissue metabolism to optimize fuel mobilization and storage. Specifically, increased brain-melanocortin signaling or negative energy balance promotes lipid mobilization by increasing sympathetic nervous system input to adipose tissue. In contrast, calorie-independent mechanisms favoring energy storage are less understood. Here, we demonstrate that reduction of brain-melanocortin signaling actively promotes fat mass gain by activating the lipogenic program and adipocyte and endothelial cell proliferation in white fat depots independently of caloric intake via efferent nerve fibers conveyed by the common hepatic branch of the vagus nerve. Those vagally regulated obesogenic signals also contribute to the fat mass gain following chronic high-fat diet feeding. These data reveal a physiological mechanism whereby the brain controls energy stores that may contribute to increased susceptibility to obesity. Brain-melanocortin signaling controls fat mass indirectly by regulating energy balance and by direct control of lipid mobilization from adipose tissue via sympathetic nervous system activity. Holland et al. show that reduced brain-melanocortin signaling promotes white adipose tissue expansion via signals conveyed by efferent innervation of the vagus nerve.
Collapse
Affiliation(s)
- Jenna Holland
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joyce Sorrell
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Emily Yates
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kathleen Smith
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shahriar Arbabi
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Marita Rivir
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rachel Morano
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jenny Chen
- Genomics, Epigenomics and Sequencing Core, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiang Zhang
- Genomics, Epigenomics and Sequencing Core, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard Dimarchi
- Novo Nordisk Research Center Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joan Sanchez-Gurmaches
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Endocrinology and Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Eric Wohleb
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Diego Perez-Tilve
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
48
|
Kaelberer MM, Rupprecht LE, Liu WW, Weng P, Bohórquez DV. Neuropod Cells: The Emerging Biology of Gut-Brain Sensory Transduction. Annu Rev Neurosci 2020; 43:337-353. [PMID: 32101483 PMCID: PMC7573801 DOI: 10.1146/annurev-neuro-091619-022657] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology-that of gut-brain sensory transduction.
Collapse
Affiliation(s)
- Melanie Maya Kaelberer
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Laura E Rupprecht
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Winston W Liu
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Peter Weng
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Diego V Bohórquez
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
49
|
Kaelberer MM, Rupprecht LE, Liu WW, Weng P, Bohórquez DV. Neuropod Cells: The Emerging Biology of Gut-Brain Sensory Transduction. Annu Rev Neurosci 2020. [PMID: 32101483 DOI: 10.1146/annurev‐neuro‐091619‐022657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology-that of gut-brain sensory transduction.
Collapse
Affiliation(s)
- Melanie Maya Kaelberer
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Laura E Rupprecht
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Winston W Liu
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Peter Weng
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Diego V Bohórquez
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
50
|
Zhao Z, Wang B, Mu L, Wang H, Luo J, Yang Y, Yang H, Li M, Zhou L, Tao C. Long-Term Exposure to Ceftriaxone Sodium Induces Alteration of Gut Microbiota Accompanied by Abnormal Behaviors in Mice. Front Cell Infect Microbiol 2020; 10:258. [PMID: 32714875 PMCID: PMC7344183 DOI: 10.3389/fcimb.2020.00258] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/04/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Growing evidence points out that a disturbance of gut microbiota may also disturb the gut–brain communication. However, it is not clear to what extent the alteration of microbiota composition can modulate brain function, affecting host behaviors. Here, we investigated the effects of gut microbiota depletion on emotional behaviors. Methods: Mice in the experimental group were orally administered ceftriaxone sodium solution (250 mg/ml, 0.2 ml/d) for 11 weeks. The open-field test and tail-suspension test were employed for the neurobehavioral assessment of the mice. Fecal samples were collected for 16s rDNA sequencing. The serum levels of cytokines and corticosterone were quantified using enzyme-linked immunosorbent assays. The immunohistochemistry method was used for the detection of brain-derived neurotrophic factor (BDNF) and c-Fos protein. Results: The gut microbiota for antibiotic-treated mice showed lower richness and diversity compared with normal controls. This effect was accompanied by increased anxiety-like, depression-like, and aggressive behaviors. We found these changes to be possibly associated with a dysregulation of the immune system, abnormal activity of the hypothalamic-pituitary-adrenal axis, and an alteration of neurochemistry. Conclusions: The findings demonstrate the indispensable role of microbiota in the gut–brain communication and suggest that the absence of conventional gut microbiota could affect the nervous system, influencing brain function.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Baoning Wang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Liyuan Mu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hongren Wang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingjing Luo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hui Yang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingyuan Li
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Linlin Zhou
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|