1
|
Tsuda MC, Akoh-Arrey T, Mercurio JC, Rucker A, Airey ML, Jacobs H, Lukasz D, Wang L, Cameron HA. Adult Neurogenesis and the Initiation of Social Aggression in Male Mice. Hippocampus 2024. [PMID: 39376052 DOI: 10.1002/hipo.23643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/18/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
The hippocampus is important for social behavior and exhibits unusual structural plasticity in the form of continued production of new granule neurons throughout adulthood, but it is unclear how adult neurogenesis contributes to social interactions. In the present study, we suppressed neurogenesis using a pharmacogenetic mouse model and examined social investigation and aggression in adult male mice to investigate the role of hippocampal adult-born neurons in the expression of aggressive behavior. In simultaneous choice tests with stimulus mice placed in corrals, mice with complete suppression of adult neurogenesis in adulthood (TK mice) exhibited normal social investigation behaviors, indicating that new neurons are not required for social interest, social memory, or detection of and response to social olfactory signals. However, mice with suppressed neurogenesis displayed decreased offensive and defensive aggression in a resident-intruder paradigm, and less resistance in a social dominance test, relative to neurogenesis-intact controls, when paired with weight and strain-matched (CD-1) mice. During aggression tests, TK mice were frequently attacked by the CD-1 intruder mice, which never occurred with WTs, and normal CD-1 male mice investigated TK mice less than controls when corralled in the social investigation test. Importantly, TK mice showed normal aggression toward prey (crickets) and smaller, nonaggressive (olfactory bulbectomized) C57BL/6J intruders, suggesting that mice lacking adult neurogenesis do not avoid aggressive social interactions if they are much larger than their opponent and will clearly win. Taken together, our findings show that adult hippocampal neurogenesis plays an important role in the instigation of intermale aggression, possibly by weighting a cost-benefit analysis against confrontation in cases where the outcome of the fight is not clear.
Collapse
Affiliation(s)
- Mumeko C Tsuda
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Talia Akoh-Arrey
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey C Mercurio
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Ariana Rucker
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Megan L Airey
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Hannah Jacobs
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Daria Lukasz
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Lijing Wang
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Rodríguez-Moreno CB, Cañeque-Rufo H, Flor-García M, Terreros-Roncal J, Moreno-Jiménez EP, Pallas-Bazarra N, Bressa C, Larrosa M, Cafini F, Llorens-Martín M. Azithromycin preserves adult hippocampal neurogenesis and behavior in a mouse model of sepsis. Brain Behav Immun 2024; 117:135-148. [PMID: 38211636 PMCID: PMC7615685 DOI: 10.1016/j.bbi.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
The mammalian hippocampus can generate new neurons throughout life. Known as adult hippocampal neurogenesis (AHN), this process participates in learning, memory, mood regulation, and forgetting. The continuous incorporation of new neurons enhances the plasticity of the hippocampus and contributes to the cognitive reserve in aged individuals. However, the integrity of AHN is targeted by numerous pathological conditions, including neurodegenerative diseases and sustained inflammation. In this regard, the latter causes cognitive decline, mood alterations, and multiple AHN impairments. In fact, the systemic administration of Lipopolysaccharide (LPS) from E. coli to mice (a model of sepsis) triggers depression-like behavior, impairs pattern separation, and decreases the survival, maturation, and synaptic integration of adult-born hippocampal dentate granule cells. Here we tested the capacity of the macrolide antibiotic azithromycin to neutralize the deleterious consequences of LPS administration in female C57BL6J mice. This antibiotic exerted potent neuroprotective effects. It reversed the increased immobility time during the Porsolt test, hippocampal secretion of pro-inflammatory cytokines, and AHN impairments. Moreover, azithromycin promoted the synaptic integration of adult-born neurons and functionally remodeled the gut microbiome. Therefore, our data point to azithromycin as a clinically relevant drug with the putative capacity to ameliorate the negative consequences of chronic inflammation by modulating AHN and hippocampal-related behaviors.
Collapse
Affiliation(s)
- Carla B Rodríguez-Moreno
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Héctor Cañeque-Rufo
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julia Terreros-Roncal
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noemí Pallas-Bazarra
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Carlo Bressa
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid
| | - Mar Larrosa
- Department of Food Science and Nutrition, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Fabio Cafini
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain.
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
3
|
Gallardo-Caballero M, Rodríguez-Moreno CB, Álvarez-Méndez L, Terreros-Roncal J, Flor-García M, Moreno-Jiménez EP, Rábano A, Llorens-Martín M. Prolonged fixation and post-mortem delay impede the study of adult neurogenesis in mice. Commun Biol 2023; 6:978. [PMID: 37741930 PMCID: PMC10517969 DOI: 10.1038/s42003-023-05367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Adult hippocampal neurogenesis (AHN) gives rise to new neurons throughout life. This phenomenon takes place in more than 120 mammalian species, including humans, yet its occurrence in the latter was questioned after one study proposed the putative absence of neurogenesis markers in the adult human hippocampus. In this regard, we showed that prolonged fixation impedes the visualization of Doublecortin+ immature neurons in this structure, whereas other authors have suggested that a dilated post-mortem delay (PMD) underlies these discrepancies. Nevertheless, the individual and/or additive contribution of fixation and the PMD to the detection (or lack thereof) of other AHN markers has not been studied to date. To address this pivotal question, we used a tightly controlled experimental design in mice, which allowed the dissection of the relative contribution of the aforementioned factors to the visualization of markers of individual AHN stages. Fixation time emerged as the most prominent factor globally impeding the study of this process in mice. Moreover, the visualization of other particularly sensitive epitopes was further prevented by prolonged PMD. These results are crucial to disambiguate current controversies related to the occurrence of AHN not only in humans but also in other mammalian species.
Collapse
Affiliation(s)
- M Gallardo-Caballero
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - C B Rodríguez-Moreno
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - L Álvarez-Méndez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Terreros-Roncal
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - M Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - E P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - M Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
4
|
MacLeod KJ, English S, Ruuskanen SK, Taborsky B. Stress in the social context: a behavioural and eco-evolutionary perspective. J Exp Biol 2023; 226:jeb245829. [PMID: 37529973 PMCID: PMC10445731 DOI: 10.1242/jeb.245829] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The social environment is one of the primary sources of challenging stimuli that can induce a stress response in animals. It comprises both short-term and stable interactions among conspecifics (including unrelated individuals, mates, potential mates and kin). Social stress is of unique interest in the field of stress research because (1) the social domain is arguably the most complex and fluctuating component of an animal's environment; (2) stress is socially transmissible; and (3) stress can be buffered by social partners. Thus, social interactions can be both the cause and cure of stress. Here, we review the history of social stress research, and discuss social stressors and their effects on organisms across early life and adulthood. We also consider cross-generational effects. We discuss the physiological mechanisms underpinning social stressors and stress responses, as well as the potential adaptive value of responses to social stressors. Finally, we identify outstanding challenges in social stress research, and propose a framework for addressing these in future work.
Collapse
Affiliation(s)
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Suvi K. Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9 C, FI-40014, Finland
- Department of Biology, University of Turku, Turku, FI-20014, Finland
| | - Barbara Taborsky
- Division of Behavioural Biology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Institute for Advanced Study, 14193 Berlin, Germany
| |
Collapse
|
5
|
Sinks MR, Morrison DE, Ramdev RA, Lentzou S, Spritzer MD. Cell proliferation and cell death levels in the dentate gyrus correlate with home range size among adult male meadow voles. Neuroscience 2023:S0306-4522(23)00231-2. [PMID: 37245693 DOI: 10.1016/j.neuroscience.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/07/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Neurogenesis occurs throughout adulthood within the dentate gyrus, and evidence indicates that these new neurons play a critical role in both spatial and social memory. However, a vast majority of past research on adult neurogenesis has involved experiments with captive mice and rats, making the generalizability of results to natural settings questionable. We assessed the connection between adult neurogenesis and memory by measuring the home range size of wild-caught, free-ranging meadow voles (Microtus pennsylvanicus). Adult male voles (n = 18) were captured, fitted with radio collars, and released back into their natural habitat, where each vole's home range was assessed using 40 radio-telemetry fixes over the course of 5 evenings. Voles were then recaptured, and brain tissue was collected. Cellular markers of cell proliferation (pHisH3, Ki67), neurogenesis (DCX), and pyknosis were labeled on histological sections and then quantified using either fluorescent or light microscopy. Voles with larger home ranges had significantly higher pHisH3+ cell densities within the granule cell layer and subgranular zone (GCL+SGZ) of the dentate gyrus and higher Ki67+ cell densities in the dorsal GCL+SGZ. Voles with larger ranges also had significantly higher pyknotic cell densities in the entire GCL+SGZ and in the dorsal GCL+SGZ. These results support the hypothesis that cell proliferation and cell death within the hippocampus are involved with spatial memory formation. However, a marker of neurogenesis (DCX+) was not correlated with range size, suggesting that there may be selective cellular turnover in the dentate gyrus when a vole is ranging through its environment.
Collapse
Affiliation(s)
- Mark R Sinks
- Department of Biology, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, U.S.A.
| | - Daryl E Morrison
- Department of Biology, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, U.S.A.
| | - Rajan A Ramdev
- Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, U.S.A.
| | - Stergiani Lentzou
- Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, U.S.A.
| | - Mark D Spritzer
- Department of Biology, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, U.S.A; Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, U.S.A.
| |
Collapse
|
6
|
Amorim L, Dá Mesquita S, Jacinto L, Castelhano-Carlos MJ, Santos NC, Leite-Almeida H, Sousa N. Shaping social behavior in an enriched environment. Front Behav Neurosci 2022; 16:999325. [PMID: 36311866 PMCID: PMC9606827 DOI: 10.3389/fnbeh.2022.999325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Access to vital needs shapes social orders. In rats, social systems tend to maintain a certain stability, but alterations in the physical environment can change inter-individual relations, which consequently can alter social orders. Principles governing social systems are, however, difficult to study and most analyses have been restricted to dyads of animals over short periods of time, hardly capturing the complexity and temporal dynamics of social interactions. Herein, we studied social interactions in a colony of six rats living in a customized enriched environment (PhenoWorld, PhW), under variable conditions of access/availability to limited resources. Reductions in food accessibility and availability resulted in a marked heterogeneity in sniffing, chasing and fighting/struggling behaviors, and, in the latter condition, an overall increase of these displays. The introduction of the possibility of interaction with a female rat also increased the amount of sniffing and fighting/struggling in a homogeneous manner. Results also showed that individual food retrieval success had no association with fighting/struggling when food pellets are delivered to the animals. However, there was a statistically significant correlation between fighting/struggling and impulsivity as measured by the amount of premature responses in the Variable-to-Signal-Test outside of the PhW providing external validation to our measures. To sum up, through continuous monitoring of a group of rats in the PhW, we demonstrated how variations in access to reinforcers modulate social behavior.
Collapse
Affiliation(s)
- Liliana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
| | - Sandro Dá Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
| | - Luís Jacinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
| | - Magda J. Castelhano-Carlos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
| | - Nadine Correia Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
- *Correspondence: Nuno Sousa,
| |
Collapse
|
7
|
Fulenwider HD, Caruso MA, Ryabinin AE. Manifestations of domination: Assessments of social dominance in rodents. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12731. [PMID: 33769667 PMCID: PMC8464621 DOI: 10.1111/gbb.12731] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Social hierarchies are ubiquitous features of virtually all animal groups. The varying social ranks of members within these groups have profound effects on both physical and emotional health, with lower-ranked individuals typically being the most adversely affected by their respective ranks. Thus, reliable measures of social dominance in preclinical rodent models are necessary to better understand the effects of an individual's social rank on other behaviors and physiological processes. In this review, we outline the primary methodologies used to assess social dominance in various rodent species: those that are based on analyses of agonistic behaviors, and those that are based on resource competition. In synthesizing this review, we conclude that assays based on resource competition may be better suited to characterize social dominance in a wider variety of rodent species and strains, and in both males and females. Lastly, albeit expectedly, we demonstrate that similarly to many other areas of preclinical research, studies incorporating female subjects are lacking in comparison to those using males. These findings emphasize the need for an increased number of studies assessing social dominance in females to form a more comprehensive understanding of this behavioral phenomenon.
Collapse
Affiliation(s)
- Hannah D. Fulenwider
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| | - Maya A. Caruso
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| | - Andrey E. Ryabinin
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
8
|
Spatial working memory is disparately interrelated with social status through different developmental stages in rats. Behav Brain Res 2022; 416:113547. [PMID: 34437940 DOI: 10.1016/j.bbr.2021.113547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/15/2021] [Accepted: 08/21/2021] [Indexed: 02/02/2023]
Abstract
Social life necessitates cognitive competence to meet the dynamic demands of social development. The formation of dominance hierarchy is a general phenomenon in social groups. As an essential element of executive and cognitive function, working memory could influence and be influenced by social status in a dominance hierarchy. However, the direction and degree of the association between them through different developmental stages remain unclear. To address this issue and clarify the "cause or consequence" problem, we investigated the spatial working memory performance in a Y-maze and Morris water maze in home-caged sibling Wistar rats (N = 26 cages, three rats/cage) through three stages of their life: before (week 7), during (week 10), and after (week 20) assumed timings of the social dominance hierarchy formation (SDHF). We used the social dominance tube test during the assumed time of hierarchy formation (weeks 9-11) to measure the relative dominance status in each cage. Here, we found that higher working memory index before SDHF could be predictive of later acquisition of higher social status. Working memory performance declined for all animals during SDHF, in which agonistic conflicts are increased. However, living within an established hierarchical social network for several weeks deteriorated the working memory performance of dominant and middle-ranked animals, while the performance of subordinates improved and got significantly better than higher-ranked animals. In conclusion, while working memory and social status were correlated positively before dominance hierarchy formation, there was a trade-off between them after the formation of it. In contrast to the common view, these results highlight the adverse effect of higher social status on cognitive behavior.
Collapse
|
9
|
Heinen VK, Benedict LM, Pitera AM, Sonnenberg BR, Bridge ES, Pravosudov VV. Social dominance has limited effects on spatial cognition in a wild food-caching bird. Proc Biol Sci 2021; 288:20211784. [PMID: 34784764 PMCID: PMC8596002 DOI: 10.1098/rspb.2021.1784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Social dominance has long been used as a model to investigate social stress. However, many studies using such comparisons have been performed in captive environments. These environments may produce unnaturally high antagonistic interactions, exaggerating the stress of social subordination and any associated adverse consequences. One such adverse effect concerns impaired cognitive ability, often thought to be associated with social subordination. Here, we tested whether social dominance rank is associated with differences in spatial learning and memory, and in reversal spatial learning (flexibility) abilities in wild food-caching mountain chickadees at different montane elevations. Higher dominance rank was associated with higher spatial cognitive flexibility in harsh environments at higher elevations, but not at lower, milder elevations. By contrast, there were no consistent differences in spatial learning and memory ability associated with dominance rank. Our results suggest that spatial learning and memory ability in specialized food-caching species is a stable trait resilient to social influences. Spatial cognitive flexibility, on the other hand, appears to be more sensitive to environmental influences, including social dominance. These findings contradict those from laboratory studies and suggest that it is critical to investigate the biological consequences of social dominance under natural conditions.
Collapse
Affiliation(s)
| | | | - Angela M. Pitera
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | | | - Eli S. Bridge
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK 73019, USA
| | | |
Collapse
|
10
|
Flor-García M, Ávila J, Llorens-Martín M. GSK-3β S9A overexpression leads murine hippocampal neural precursors to acquire an astroglial phenotype in vivo. Dev Neurobiol 2021; 81:710-723. [PMID: 33955712 DOI: 10.1002/dneu.22823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 11/09/2022]
Abstract
The addition of new neurons to the existing hippocampal circuitry persists in the adult dentate gyrus (DG). During this process, named adult hippocampal neurogenesis (AHN), adult hippocampal progenitor cells (AHPs) give rise to newborn dentate granule cells (DGCs). The acquisition of a neuronal lineage by AHPs is tightly regulated by numerous signaling molecules and transcription factors. In this regard, glycogen synthase kinase 3β (GSK-3β) is a master regulator of the maturation of AHPs in vitro. Here we analyzed the cell-autonomous effects of overexpressing a constitutively active form of GSK-3β (GSK-3β S9A) in AHPs in vivo. To this end, we stereotaxically injected a GSK-3β S9A-encoding retrovirus (GSK-3β-V5) into the DG of young adult C57BL6/J Ola Hsd female mice and studied the cell lineage acquisition, migratory and marker expression patterns, and the morphological maturation of the infected cells over time. Strikingly, GSK-3β S9A-transduced cells expressed glial fibrillary acidic protein (GFAP) and NG2, thereby acquiring an immature astroglial phenotype, which differed markedly from the neuronal phenotype observed in cells transduced with a control retrovirus that encoded GFP. Accordingly, the morphology and migration patterns of cells transduced by the two retroviruses are remarkably divergent. These observations support the role of GSK-3β as a cornerstone that regulates the balance between new astocytes/neurons generated in the adult murine DG.
Collapse
Affiliation(s)
- Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC-UAM, Madrid, Spain.,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC-UAM, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC-UAM, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
11
|
Giacolini T, Conversi D, Alcaro A. The Brain Emotional Systems in Addictions: From Attachment to Dominance/Submission Systems. Front Hum Neurosci 2021; 14:609467. [PMID: 33519403 PMCID: PMC7843379 DOI: 10.3389/fnhum.2020.609467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
Human development has become particularly complex during the evolution. In this complexity, adolescence is an extremely important developmental stage. Adolescence is characterized by biological and social changes that create the prerequisites to psychopathological problems, including both substance and non-substance addictive behaviors. Central to the dynamics of the biological changes during adolescence are the synergy between sexual and neurophysiological development, which activates the motivational/emotional systems of Dominance/Submission. The latter are characterized by the interaction between the sexual hormones, the dopaminergic system and the stress axis (HPA). The maturation of these motivational/emotional systems requires the integration with the phylogenetically more recent Attachment/CARE Systems, which primarily have governed the subject's relationships until puberty. The integration of these systems is particularly complex in the human species, due to the evolution of the process of competition related to sexual selection: from a simple fight between two individuals (of the same genus and species) to a struggle for the acquisition of a position in rank and the competition between groups. The latter is an important evolutionary acquisition and believed to be the variable that has most contributed to enhancing the capacity for cooperation in the human species. The interaction between competition and cooperation, and between competition and attachment, characterizes the entire human relational and emotional structure and the unending work of integration to which the BrainMind is involved. The beginning of the integration of the aforementioned motivational/emotional systems is currently identified in the prepubertal period, during the juvenile stage, with the development of the Adrenarche-the so-called Adrenal Puberty. This latter stage is characterized by a low rate of release of androgens, the hormones released by the adrenal cortex, which activate the same behaviors as those observed in the PLAY system. The Adrenarche and the PLAY system are biological and functional prerequisites of adolescence, a period devoted to learning the difficult task of integrating the phylogenetically ancient Dominance/Submission Systems with the newer Attachment/CARE Systems. These systems accompany very different adaptive goals which can easily give rise to mutual conflict and can in turn make the balance of the BrainMind precarious and vulnerable to mental suffering.
Collapse
Affiliation(s)
- Teodosio Giacolini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - David Conversi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonio Alcaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Podgorny OV, Gulyaeva NV. Glucocorticoid-mediated mechanisms of hippocampal damage: Contribution of subgranular neurogenesis. J Neurochem 2020; 157:370-392. [PMID: 33301616 DOI: 10.1111/jnc.15265] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
A comprehensive overview of the interplay between glucocorticoids (GCs) and adult hippocampal neurogenesis (AHN) is presented, particularly, in the context of a diseased brain. The effectors of GCs in the dentate gyrus neurogenic niche of the hippocampal are reviewed, and the consequences of the GC signaling on the generation and integration of new neurons are discussed. Recent findings demonstrating how GC signaling mediates impairments of the AHN in various brain pathologies are overviewed. GC-mediated effects on the generation and integration of adult-born neurons in the hippocampal dentate gyrus depend on the nature, severity, and duration of the acting stress factor. GCs realize their effects on the AHN primarily via specific glucocorticoid and mineralocorticoid receptors. Disruption of the reciprocal regulation between the hypothalamic-pituitary-adrenal (HPA) axis and the generation of the adult-born granular neurons is currently considered to be a key mechanism implicating the AHN into the pathogenesis of numerous brain diseases, including those without a direct hippocampal damage. These alterations vary from reduced proliferation of stem and progenitor cells to increased cell death and abnormalities in morphology, connectivity, and localization of young neurons. Although the involvement of the mutual regulation between the HPA axis and the AHN in the pathogenesis of cognitive deficits and mood impairments is evident, several unresolved critical issues are stated. Understanding the details of GC-mediated mechanisms involved in the alterations in AHN could enable the identification of molecular targets for ameliorating pathology-induced imbalance in the HPA axis/AHN mutual regulation to conquer cognitive and psychiatric disturbances.
Collapse
Affiliation(s)
- Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
13
|
Adult-Born Neurons in the Hippocampus Are Essential for Social Memory Maintenance. eNeuro 2020; 7:ENEURO.0182-20.2020. [PMID: 33060182 PMCID: PMC7768285 DOI: 10.1523/eneuro.0182-20.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/18/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
Throughout adulthood, the dentate gyrus continues to produce new granule cells, which integrate into the hippocampal circuitry. New neurons have been linked to several known functions of the hippocampus, including learning and memory, anxiety and stress regulation, and social behavior. We explored whether transgenic reduction of adult-born neurons in mice would impair social memory and the formation of social dominance hierarchies. We used a conditional transgenic mouse strain [thymidine kinase (TK) mice] that selectively reduces adult neurogenesis by treatment with the antiviral drug valganciclovir (VGCV). TK mice treated with VGCV were unable to recognize conspecifics as familiar 24 h after initial exposure. We then explored whether reducing new neurons completely impaired their ability to acquire or retrieve a social memory and found that TK mice treated with VGCV were able to perform at control levels when the time between exposure (acquisition) and reexposure (retrieval) was brief. We next explored whether adult-born neurons are involved in dominance hierarchy formation by analyzing their home cage behavior as well as their performance in the tube test, a social hierarchy test, and did not find any consistent alterations in behavior between control and TK mice treated with VGCV. These data suggest that adult neurogenesis is essential for social memory maintenance, but not for acquisition nor retrieval over a short time frame, with no effect on social dominance hierarchy. Future work is needed to explore whether the influence of new neurons on social memory is mediated through connections with the CA2, an area involved in social recognition.
Collapse
|
14
|
Fenrich KK, Hallworth BW, Vavrek R, Raposo PJF, Misiaszek JE, Bennett DJ, Fouad K, Torres-Espin A. Self-directed rehabilitation training intensity thresholds for efficient recovery of skilled forelimb function in rats with cervical spinal cord injury. Exp Neurol 2020; 339:113543. [PMID: 33290776 DOI: 10.1016/j.expneurol.2020.113543] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/18/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023]
Abstract
Task specific rehabilitation training is commonly used to treat motor dysfunction after neurological injures such as spinal cord injury (SCI), yet the use of task specific training in preclinical animal studies of SCI is not common. This is due in part to the difficulty in training animals to perform specific motor tasks, but also due to the lack of knowledge about optimal rehabilitation training parameters to maximize recovery. The single pellet reaching, grasping and retrieval (SPRGR) task (a.k.a. single pellet reaching task or Whishaw task) is a skilled forelimb motor task used to provide rehabilitation training and test motor recovery in rodents with cervical SCI. However, the relationships between the amount, duration, intensity, and timing of training remain poorly understood. In this study, using automated robots that allow rats with cervical SCI ad libitum access to self-directed SPRGR rehabilitation training, we show clear relationships between the total amount of rehabilitation training, the intensity of training (i.e., number of attempts/h), and performance in the task. Specifically, we found that rats naturally segregate into High and Low performance groups based on training strategy and performance in the task. Analysis of the different training strategies showed that more training (i.e., increased number of attempts in the SPRGR task throughout rehabilitation training) at higher intensities (i.e., number of attempts per hour) increased performance in the task, and that improved performance in the SPRGR task was linked to differences in corticospinal tract axon collateral densities in the injured spinal cords. Importantly, however, our data also indicate that rehabilitation training becomes progressively less efficient (i.e., less recovery for each attempt) as both the amount and intensity of rehabilitation training increases. Finally, we found that Low performing animals could increase their training intensity and transition to High performing animals in chronic SCI. These results highlight the rehabilitation training strategies that are most effective to regain skilled forelimb motor function after SCI, which will facilitate pre-clinical rehabilitation studies using animal models and could be beneficial in the development of more efficient clinical rehabilitation training strategies.
Collapse
Affiliation(s)
- Keith K Fenrich
- Faculty of Rehabilitation Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| | - Ben W Hallworth
- Faculty of Rehabilitation Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Romana Vavrek
- Faculty of Rehabilitation Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Pamela J F Raposo
- Faculty of Rehabilitation Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - John E Misiaszek
- Faculty of Rehabilitation Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - David J Bennett
- Faculty of Rehabilitation Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Karim Fouad
- Faculty of Rehabilitation Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Abel Torres-Espin
- Faculty of Rehabilitation Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Brain and Spinal Injury Center (BASIC), Department of Neurosurgery, University of California San Francisco, San Francisco 94110, USA.
| |
Collapse
|
15
|
Stress in groups: Lessons from non-traditional rodent species and housing models. Neurosci Biobehav Rev 2020; 113:354-372. [PMID: 32278793 DOI: 10.1016/j.neubiorev.2020.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
A major feature of life in groups is that individuals experience social stressors of varying intensity and type. Social stress can have profound effects on health, social behavior, and ongoing relationships. Relationships can also buffer the experience of exogenous stressors. Social stress has most commonly been investigated in dyadic contexts in mice and rats that produce intense stress. Here we review findings from studies of diverse rodents and non-traditional group housing paradigms, focusing on laboratory studies of mice and rats housed in visible burrow systems, prairie and meadow voles, and mole-rats. We argue that the use of methods informed by the natural ecology of rodent species provides novel insights into the relationship between social stress, behavior and physiology. In particular, we describe how this ethologically inspired approach reveals how individuals vary in their experience of and response to social stress, and how ecological and social contexts impact the effects of stress. Social stress induces adaptive changes, as well as long-term disruptive effects on behavior and physiology.
Collapse
|
16
|
Millon EM, Shors TJ. Taking neurogenesis out of the lab and into the world with MAP Train My Brain™. Behav Brain Res 2019; 376:112154. [PMID: 31421141 DOI: 10.1016/j.bbr.2019.112154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 01/22/2023]
Abstract
Neurogenesis in the adult hippocampus was rediscovered in the 1990's after being reported in the 1960's. Since then, thousands upon thousands of laboratories have reported on the characteristics and presumed functional significance of new neurons in the adult brain. In 1999, we reported that mental training with effortful learning could extend the survival of these new cells and in the same year, others reported that physical training with exercise could increase their proliferation. Based on these studies and others, we developed MAP Train My Brain™, which is a brain fitness program for humans. The program combines mental and physical (MAP) training through 30-min of effortful meditation followed by 30-min of aerobic exercise. This program, when practiced twice a week for eight weeks reduced depressive symptoms and ruminative thoughts in men and women with major depressive disorder (MDD) while increasing synchronized brain activity during cognitive control. It also reduced anxiety and depression and increased oxygen consumption in young mothers who had been homeless. Moreover, engaging in the program reduced trauma-related cognitions and ruminative thoughts while increasing self-worth in adult women with a history of sexual trauma. And finally, the combination of mental and physical training together was more effective than either activity alone. Albeit effortful, this program does not require inordinate amounts of time or money to practice and can be easily adopted into everyday life. MAP Training exemplifies how we as neuroscientists can take discoveries made in the laboratory out into the world for the benefit of others.
Collapse
Affiliation(s)
- Emma M Millon
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Tracey J Shors
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
17
|
The Impact of Ethologically Relevant Stressors on Adult Mammalian Neurogenesis. Brain Sci 2019; 9:brainsci9070158. [PMID: 31277460 PMCID: PMC6680763 DOI: 10.3390/brainsci9070158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Adult neurogenesis—the formation and functional integration of adult-generated neurons—remains a hot neuroscience topic. Decades of research have identified numerous endogenous (such as neurotransmitters and hormones) and exogenous (such as environmental enrichment and exercise) factors that regulate the various neurogenic stages. Stress, an exogenous factor, has received a lot of attention. Despite the large number of reviews discussing the impact of stress on adult neurogenesis, no systematic review on ethologically relevant stressors exists to date. The current review details the effects of conspecifically-induced psychosocial stress (specifically looking at the lack or disruption of social interactions and confrontation) as well as non-conspecifically-induced stress on mammalian adult neurogenesis. The underlying mechanisms, as well as the possible functional role of the altered neurogenesis level, are also discussed. The reviewed data suggest that ethologically relevant stressors reduce adult neurogenesis.
Collapse
|
18
|
Activity-Dependent Reconnection of Adult-Born Dentate Granule Cells in a Mouse Model of Frontotemporal Dementia. J Neurosci 2019; 39:5794-5815. [PMID: 31133559 DOI: 10.1523/jneurosci.2724-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 01/17/2023] Open
Abstract
Frontotemporal dementia (FTD) is characterized by neuronal loss in the frontal and temporal lobes of the brain. Here, we provide the first evidence of striking morphological alterations in dentate granule cells (DGCs) of FTD patients and in a mouse model of the disease, TauVLW mice. Taking advantage of the fact that the hippocampal dentate gyrus (DG) gives rise to newborn DGCs throughout the lifetime in rodents, we used RGB retroviruses to study the temporary course of these alterations in newborn DGCs of female TauVLW mice. In addition, retroviruses that encode either PSD95:GFP or Syn:GFP revealed striking alterations in the afferent and efferent connectivity of newborn TauVLW DGCs, and monosynaptic retrograde rabies virus tracing showed that these cells are disconnected from distal brain regions and local sources of excitatory innervation. However, the same cells exhibited a predominance of local inhibitory innervation. Accordingly, the expression of presynaptic and postsynaptic markers of inhibitory synapses was markedly increased in the DG of TauVLW mice and FTD patients. Moreover, an increased number of neuropeptide Y-positive interneurons in the DG correlated with a reduced number of activated egr-1+ DGCs in TauVLW mice. Finally, we tested the therapeutic potential of environmental enrichment and chemoactivation to reverse these alterations in mice. Both strategies reversed the morphological alterations of newborn DGCs and partially restored their connectivity in a mouse model of the disease. Moreover, our data point to remarkable morphological similarities between the DGCs of TauVLW mice and FTD patients.SIGNIFICANCE STATEMENT We show, for the first time to our knowledge, that the population of dentate granule cells is disconnected from other regions of the brain in the neurodegenerative disease frontotemporal dementia (FTD). These alterations were observed in FTD patients and in a mouse model of this disease. Moreover, we tested the therapeutic potential of two strategies, environmental enrichment and chemoactivation, to stimulate the activity of these neurons in mice. We found that some of the alterations were reversed by these therapeutic interventions.
Collapse
|
19
|
Moreno-Jiménez EP, Jurado-Arjona J, Ávila J, Llorens-Martín M. The Social Component of Environmental Enrichment Is a Pro-neurogenic Stimulus in Adult c57BL6 Female Mice. Front Cell Dev Biol 2019; 7:62. [PMID: 31080799 PMCID: PMC6497743 DOI: 10.3389/fcell.2019.00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022] Open
Abstract
In rodents, the hippocampal dentate gyrus gives rise to newly generated dentate granule cells (DGCs) throughout life. This process, named adult hippocampal neurogenesis (AHN), converges in the functional integration of mature DGCs into the trisynaptic hippocampal circuit. Environmental enrichment (EE) is one of the most potent positive regulators of AHN. This paradigm includes the combination of three major stimulatory components, namely increased physical activity, constant cognitive stimulation, and higher social interaction. In this regard, the pro-neurogenic effects of physical activity and cognitive stimulation have been widely addressed in adult rodents. However, the pro-neurogenic potential of the social aspect of EE has been less explored to date. Here we tackled this question by specifically focusing on the effects of a prolonged period of social enrichment (SE) in adult female C57BL6 mice. To this end, 7-week-old mice were housed in groups of 12 per cage for 8 weeks. These mice were compared with others housed under control housing (2–3 mice per cage) or EE (12 mice per cage plus running wheels and toys) conditions during the same period. We analyzed the number and morphology of Doublecortin-expressing (DCX+) cells. Moreover, using RGB retroviruses that allowed the labeling of three populations of newborn DGCs of different ages in the same mouse, we performed morphometric, immunohistochemical, and behavioral determinations. Both SE and EE increased the number and maturation of DCX+ cells, and caused an increase in dendritic maturation in certain populations of newborn DGCs. Moreover, both manipulations increased exploratory behavior in the Social Interaction test. Unexpectedly, our data revealed the potent neurogenesis-stimulating potential of SE in the absence of any further cognitive stimulation or increase in physical activity. Given that an increase in physical activity is strongly discouraged under certain circumstances, our findings may be relevant in the context of enhancing AHN via physical activity-independent mechanisms.
Collapse
Affiliation(s)
- Elena P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain.,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jerónimo Jurado-Arjona
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain.,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
20
|
Pregnancy Promotes Maternal Hippocampal Neurogenesis in Guinea Pigs. Neural Plast 2019; 2019:5765284. [PMID: 31097956 PMCID: PMC6487096 DOI: 10.1155/2019/5765284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 11/26/2022] Open
Abstract
Adult neurogenesis in the hippocampal dentate gyrus (DG) modulates cognition and behavior in mammals, while motherhood is associated with cognitive and behavioral changes essential for the care of the young. In mice and rats, hippocampal neurogenesis is reported to be reduced or unchanged during pregnancy, with few data available from other species. In guinea pigs, pregnancy lasts ~9 weeks; we set to explore if hippocampal neurogenesis is altered in these animals, relative to gestational stages. Time-pregnant primigravidas (3-5 months old) and age-matched nonpregnant females were examined, with neurogenic potential evaluated via immunolabeling of Ki67, Sp8, doublecortin (DCX), and neuron-specific nuclear antigen (NeuN) combined with bromodeoxyuridine (BrdU) birth-dating. Relative to control, subgranular Ki67, Sp8, and DCX-immunoreactive (+) cells tended to increase from early gestation to postpartum and peaked at the late gestational stage. In BrdU pulse-chasing experiments in nonpregnant females surviving for different time points (2-120 days), BrdU+ cells in the DG colocalized with DCX partially from 2 to 42 days (most frequently at 14-30 days) and with NeuN increasingly from 14 to 120 days. In pregnant females that received BrdU at early, middle, and late gestational stages and survived for 42 days, the density of BrdU+ cells in the DG was mostly high in the late gestational group. The rates of BrdU/DCX and BrdU/NeuN colocalization were similar among these groups and comparable to those among the corresponding control group. Together, the findings suggest that pregnancy promotes maternal hippocampal neurogenesis in guinea pigs, at least among primigravidas.
Collapse
|
21
|
Pallé A, Zorzo C, Luskey VE, McGreevy KR, Fernández S, Trejo JL. Social dominance differentially alters gene expression in the medial prefrontal cortex without affecting adult hippocampal neurogenesis or stress and anxiety-like behavior. FASEB J 2019; 33:6995-7008. [PMID: 30857420 DOI: 10.1096/fj.201801600r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Social hierarchies are crucial for a group's survival and can influence the way an individual behaves and relates to a given social context. The study of social rank has been classically based on ethological and observational paradigms, but it recently has taken advantage of the use of other approaches, such as the tube test that measures territorial dominance without the display of in situ aggression and is executable in group-living animals. However, little is known about how previous basal individual differences affect the development of dominance hierarchy measured in the tube test. We have analyzed in male mice body weight, locomotion, anxiety, and serum corticosterone both before and after the tube test, as well as adult hippocampal neurogenesis and transcriptome in the prefrontal cortex after the hierarchy had been established. We found differential gene expression between dominants and subordinates but no association between the other parameters and social status, neither pre- nor posttest. Our findings reveal that social rank in mice is stable along time and is not related to basal differences in stress, mood, or physical features. Lastly, real-time quantitative PCR analysis confirmed differential expression of vomeronasal and olfactory receptors in the cerebral cortex between dominant and subordinate individuals, suggesting that differential brain gene expression in the medial prefrontal cortex could potentially be used as a biomarker of social dominance.-Pallé, A., Zorzo, C., Luskey, V. E., McGreevy, K. R., Fernández, S., Trejo, J. L. Social dominance differentially alters gene expression in the medial prefrontal cortex without affecting adult hippocampal neurogenesis or stress and anxiety-like behavior.
Collapse
Affiliation(s)
- Anna Pallé
- Department of Translational Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; and
| | - Candela Zorzo
- Department of Translational Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; and
| | - Valerie E Luskey
- Department of Translational Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; and
| | - Kerry R McGreevy
- Department of Translational Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; and
| | - Silvia Fernández
- Molecular and Cellular Biology Unit, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Luis Trejo
- Department of Translational Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; and
| |
Collapse
|
22
|
Abstract
Adult neurogenesis continues to captivate the curiosity of the scientific community; and researchers seem to have a particular interest in identifying the functional implications of such plasticity. While the majority of research focuses on the association between adult neurogenesis and learning and memory (including spatial learning associated with hippocampal neurogenesis and olfactory discrimination associated with neurogenesis in the olfactory system), the following review will explore the link to motivated behaviors. In particular, goal-directed behaviors such as sociosexual, parental, aggressive, as well as depression- and anxiety-like behaviors and their reciprocal association to adult neurogenesis will be evaluated. The review will detail research in humans and other mammalian species. Furthermore, the potential mechanisms underlying these neurogenic alterations will be highlighted. Lastly, the review will conclude with a discussion on the functional significance of these newly generated cells in mediating goal-directed behaviors.
Collapse
Affiliation(s)
- Claudia Jorgensen
- Behavioral Science Department, Utah Valley University, Orem, Utah, USA
| |
Collapse
|
23
|
Renn SCP, O'Rourke CF, Aubin-Horth N, Fraser EJ, Hofmann HA. Dissecting the Transcriptional Patterns of Social Dominance across Teleosts. Integr Comp Biol 2018; 56:1250-1265. [PMID: 27940616 DOI: 10.1093/icb/icw118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In many species, under varying ecological conditions, social interactions among individuals result in the formation of dominance hierarchies. Despite general similarities, there are robust differences among dominance hierarchies across species, populations, environments, life stages, sexes, and individuals. Understanding the proximate mechanisms underlying the variation is an important step toward understanding the evolution of social behavior. However, physiological changes associated with dominance, such as gonadal maturation and somatic growth, often complicate efforts to identify the specific underlying mechanisms. Traditional gene expression analyses are useful for generating candidate gene lists, but are biased by choice of significance cut-offs and difficult to use for between-study comparisons. In contrast, complementary analysis tools allow one to both test a priori hypotheses and generate new hypotheses. Here we employ a meta-analysis of high-throughput expression profiling experiments to investigate the gene expression patterns that underlie mechanisms and evolution of behavioral social phenotypes. Specifically, we use a collection of datasets on social dominance in fish across social contexts, sex, and species. Using experimental manipulation to produce female dominance hierarchies in the cichlid Astatotilapia burtoni, heralded as a genomic model of social dominance, we generate gene lists, and assess molecular gene modules. In the dominant female gene expression profile, we demonstrate a strong pattern of up-regulation of genes previously identified as having male-biased expression and furthermore, compare expression biases between male and female dominance phenotypes. Using a threshold-free approach to identify correlation throughout ranked gene lists, we query previously published datasets associated with maternal behavior, alternative reproductive tactics, cooperative breeding, and sex-role reversal to describe correlations among these various neural gene expression profiles associated with different instances of social dominance. These complementary approaches capitalize on the high-throughput gene expression profiling from similar behavioral phenotypes in order to address the mechanisms associated with social dominance behavioral phenotypes.
Collapse
Affiliation(s)
- Suzy C P Renn
- *Department of Biology, Reed College, 3203 SE Woodstock blvd, Portland, OR 97202, USA
| | - Cynthia F O'Rourke
- *Department of Biology, Reed College, 3203 SE Woodstock blvd, Portland, OR 97202, USA
| | - Nadia Aubin-Horth
- Département de Biologie & Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030 Avenue de la Médecine - Local 1242 Québec G1V 0A6, QC Canada
| | - Eleanor J Fraser
- UCSF School of Medicine, 513 Parnassus Ave, Med Sci, San Francisco, CA 94122, USA
| | - Hans A Hofmann
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, The University of Texas at Austin, 2415 Speedway - C0990, Austin, TX 78705, USA
| |
Collapse
|
24
|
Saraulli D, Costanzi M, Mastrorilli V, Farioli-Vecchioli S. The Long Run: Neuroprotective Effects of Physical Exercise on Adult Neurogenesis from Youth to Old Age. Curr Neuropharmacol 2018; 15:519-533. [PMID: 27000776 PMCID: PMC5543673 DOI: 10.2174/1570159x14666160412150223] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The rapid lengthening of life expectancy has raised the problem of providing social programs to counteract the age-related cognitive decline in a growing number of older people. Physical activity stands among the most promising interventions aimed at brain wellbeing, because of its effective neuroprotective action and low social cost. The purpose of this review is to describe the neuroprotective role exerted by physical activity in different life stages. In particular, we focus on adult neurogenesis, a process which has proved being highly responsive to physical exercise and may represent a major factor of brain health over the lifespan. METHODS The most recent literature related to the subject has been reviewed. The text has been divided into three main sections, addressing the effects of physical exercise during childhood/ adolescence, adulthood and aging, respectively. For each one, the most relevant studies, carried out on both human participants and rodent models, have been described. RESULTS The data reviewed converge in indicating that physical activity exerts a positive effect on brain functioning throughout the lifespan. However, uncertainty remains about the magnitude of the effect and its biological underpinnings. Cellular and synaptic plasticity provided by adult neurogenesis are highly probable mediators, but the mechanism for their action has yet to be conclusively established. CONCLUSION Despite alternative mechanisms of action are currently debated, age-appropriate physical activity programs may constitute a large-scale, relatively inexpensive and powerful approach to dampen the individual and social impact of age-related cognitive decline.
Collapse
Affiliation(s)
- Daniele Saraulli
- Institute of Cell Biology and Neurobiology, National Research Council, & Fondazione S. Lucia, Rome. Italy
| | - Marco Costanzi
- Department of Human Sciences, LUMSA University, Rome. Italy
| | - Valentina Mastrorilli
- Institute of Cell Biology and Neurobiology, National Research Council, & Fondazione S. Lucia, Rome. Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, National Research Council, Via del Fosso di Fiorano 64, 00143 Rome. Italy
| |
Collapse
|
25
|
Oosthuizen MK. From Mice to Mole-Rats: Species-Specific Modulation of Adult Hippocampal Neurogenesis. Front Neurosci 2017; 11:602. [PMID: 29163007 PMCID: PMC5670158 DOI: 10.3389/fnins.2017.00602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022] Open
Abstract
Rodent populations living in their natural environments have very diverse ecological and life history profiles that may differ substantially from that of conventional laboratory rodents. Free-living rodents show species-specific neurogenesis that are dependent on their unique biology and ecology. This perspective aims to illustrate the benefit of studying wild rodent species in conjunction with laboratory rodents. African mole-rats are discussed in terms of habitat complexity, social structures, and longevity. African mole-rats are a group of subterranean rodents, endemic to Africa, that show major differences in both intrinsic and extrinsic traits compared to the classical rodent models. Mole-rats exhibit a spectrum of sociality within a single family, ranging from solitary to eusocial. This continuum of sociality provides a platform for comparative testing of hypotheses. Indeed, species differences are apparent both in learning ability and hippocampal neurogenesis. In addition, social mole-rat species display a reproductive division of labor that also results in differential hippocampal neurogenesis, independent of age, offering further scope for comparison. In conclusion, it is evident that neurogenesis studies on conventional laboratory rodents are not necessarily representative, specifically because of a lack of diversity in life histories, uniform habitats, and low genetic variability. The observed level of adult neurogenesis in the dentate gyrus is the result of an intricate balance between many contributing factors, which appear to be specific to distinct groups of animals. The ultimate understanding of the functional and adaptive role of adult neurogenesis will involve research on both laboratory animals and natural rodent populations.
Collapse
Affiliation(s)
- Maria K Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
26
|
Kalman E, Keay KA. Hippocampal volume, social interactions, and the expression of the normal repertoire of resident-intruder behavior. Brain Behav 2017; 7:e00775. [PMID: 28948073 PMCID: PMC5607542 DOI: 10.1002/brb3.775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Reduced hippocampal volumes are reported in individuals with disrupted emotional coping behaviors in both human clinical conditions and in experimental animal models of these populations. In a number of experimental animal models, it has been shown that social interactions can promote resilience and buffer the negative neural consequences of stimuli that disrupt effective coping. METHODS Hippocampal and dentate gyrus volumes were calculated in 54 male Sprague Dawley rats; (1) single housed (n = 12), (2) single housed and exposed to daily 6-min social interactions testing in a resident-intruder paradigm (n = 11); (3) group housed (n = 12); (4) single housed and sham injured (n = 12); (5) single housed, sham injured, and social interactions tested (n = 7). RESULTS We present data which shows that even a brief daily exposure to a conspecific in resident-intruder social interactions test is sufficient to prevent the reduction in hippocampal volume triggered by single housing. CONCLUSION When considered with previously published data, these findings suggest that the expression of the full repertoire of social, nonsocial, dominance, and submissive behaviors in response to the physical presence of an intruder in the home cage plays a significant role in this maintenance of hippocampal volume.
Collapse
Affiliation(s)
- Eszter Kalman
- School of Medical Sciences (Anatomy & Histology) The University of Sydney Sydney NSW Australia
| | - Kevin A Keay
- School of Medical Sciences (Anatomy & Histology) The University of Sydney Sydney NSW Australia
| |
Collapse
|
27
|
Lasting Adaptations in Social Behavior Produced by Social Disruption and Inhibition of Adult Neurogenesis. J Neurosci 2017; 36:7027-38. [PMID: 27358459 DOI: 10.1523/jneurosci.4435-15.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/16/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Research on social instability has focused on its detrimental consequences, but most people are resilient and respond by invoking various coping strategies. To investigate cellular processes underlying such strategies, a dominance hierarchy of rats was formed and then destabilized. Regardless of social position, rats from disrupted hierarchies had fewer new neurons in the hippocampus compared with rats from control cages and those from stable hierarchies. Social disruption produced a preference for familiar over novel conspecifics, a change that did not involve global memory impairments or increased anxiety. Using the neuropeptide oxytocin as a tool to increase neurogenesis in the hippocampus of disrupted rats restored preference for novel conspecifics to predisruption levels. Conversely, reducing the number of new neurons by limited inhibition of adult neurogenesis in naive transgenic GFAP-thymidine kinase rats resulted in social behavior similar to disrupted rats. Together, these results provide novel mechanistic evidence that social disruption shapes behavior in a potentially adaptive way, possibly by reducing adult neurogenesis in the hippocampus. SIGNIFICANCE STATEMENT To investigate cellular processes underlying adaptation to social instability, a dominance hierarchy of rats was formed and then destabilized. Regardless of social position, rats from disrupted hierarchies had fewer new neurons in the hippocampus compared with rats from control cages and those from stable hierarchies. Unexpectedly, these changes were accompanied by changes in social strategies without evidence of impairments in cognition or anxiety regulation. Restoring adult neurogenesis in disrupted rats using oxytocin and conditionally suppressing the production of new neurons in socially naive GFAP-thymidine kinase rats showed that loss of 6-week-old neurons may be responsible for adaptive changes in social behavior.
Collapse
|
28
|
Opendak M, Gould E, Sullivan R. Early life adversity during the infant sensitive period for attachment: Programming of behavioral neurobiology of threat processing and social behavior. Dev Cogn Neurosci 2017; 25:145-159. [PMID: 28254197 PMCID: PMC5478471 DOI: 10.1016/j.dcn.2017.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 01/03/2017] [Accepted: 02/04/2017] [Indexed: 02/06/2023] Open
Abstract
Animals, including humans, require a highly coordinated and flexible system of social behavior and threat evaluation. However, trauma can disrupt this system, with the amygdala implicated as a mediator of these impairments in behavior. Recent evidence has further highlighted the context of infant trauma as a critical variable in determining its immediate and enduring consequences, with trauma experienced from an attachment figure, such as occurs in cases of caregiver-child maltreatment, as particularly detrimental. This review focuses on the unique role of caregiver presence during early-life trauma in programming deficits in social behavior and threat processing. Using data primarily from rodent models, we describe the interaction between trauma and attachment during a sensitive period in early life, which highlights the role of the caregiver's presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. These data suggest that trauma experienced directly from an abusive caregiver and trauma experienced in the presence of caregiver cues produce similar neurobehavioral deficits, which are unique from those resulting from trauma alone. We go on to integrate this information into social experience throughout the lifespan, including consequences for complex scenarios, such as dominance hierarchy formation and maintenance.
Collapse
Affiliation(s)
- Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA.
| | - Elizabeth Gould
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Regina Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA
| |
Collapse
|
29
|
Williamson CM, Romeo RD, Curley JP. Dynamic changes in social dominance and mPOA GnRH expression in male mice following social opportunity. Horm Behav 2017; 87:80-88. [PMID: 27826060 DOI: 10.1016/j.yhbeh.2016.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022]
Abstract
Social competence - the ability of animals to dynamically adjust their social behavior dependent on the current social context - is fundamental to the successful establishment and maintenance of social relationships in group-living species. The social opportunity paradigm, where animals rapidly ascend a social hierarchy following the removal of more dominant individuals, is a well-established approach for studying the neural and neuroendocrine mechanisms underlying socially competent behavior. In the current study, we demonstrate that this paradigm can be successfully adapted for studying socially competent behavior in laboratory mice. Replicating our previous reports, we show that male laboratory mice housed in a semi-natural environment form stable linear social hierarchies. Novel to the current study, we find that subdominant male mice immediately respond to the removal of the alpha male from a hierarchy by initiating a dramatic increase in aggressive behavior towards more subordinate individuals. Consequently, subdominants assume the role of the alpha male. Analysis of brain gene expression in individuals 1h following social ascent indicates elevated gonadotropin-releasing hormone (GnRH) mRNA levels in the medial preoptic area (mPOA) of the hypothalamus compared to individuals that do not experience a social opportunity. Moreover, hormonal analyses indicate that subdominant individuals have increased circulating plasma testosterone levels compared to subordinate individuals. Our findings demonstrate that male mice are able to dynamically and rapidly adjust both behavior and neuroendocrine function in response to changes in social context. Further, we establish the social opportunity paradigm as an ethologically relevant approach for studying social competence and behavioral plasticity in mammals.
Collapse
Affiliation(s)
- Cait M Williamson
- Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Russell D Romeo
- Department of Psychology, Barnard College, New York, NY 10027, USA
| | - James P Curley
- Department of Psychology, Columbia University, New York, NY 10027, USA; Center for Integrative Animal Behavior, Columbia University, New York 10027, USA.
| |
Collapse
|
30
|
Wolff GH, Strausfeld NJ. Genealogical correspondence of a forebrain centre implies an executive brain in the protostome-deuterostome bilaterian ancestor. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150055. [PMID: 26598732 DOI: 10.1098/rstb.2015.0055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Orthologous genes involved in the formation of proteins associated with memory acquisition are similarly expressed in forebrain centres that exhibit similar cognitive properties. These proteins include cAMP-dependent protein kinase A catalytic subunit (PKA-Cα) and phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (pCaMKII), both required for long-term memory formation which is enriched in rodent hippocampus and insect mushroom bodies, both implicated in allocentric memory and both possessing corresponding neuronal architectures. Antibodies against these proteins resolve forebrain centres, or their equivalents, having the same ground pattern of neuronal organization in species across five phyla. The ground pattern is defined by olfactory or chemosensory afferents supplying systems of parallel fibres of intrinsic neurons intersected by orthogonal domains of afferent and efferent arborizations with local interneurons providing feedback loops. The totality of shared characters implies a deep origin in the protostome-deuterostome bilaterian ancestor of elements of a learning and memory circuit. Proxies for such an ancestral taxon are simple extant bilaterians, particularly acoels that express PKA-Cα and pCaMKII in discrete anterior domains that can be properly referred to as brains.
Collapse
Affiliation(s)
- Gabriella H Wolff
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA
| | - Nicholas J Strausfeld
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
31
|
Trading new neurons for status: Adult hippocampal neurogenesis in eusocial Damaraland mole-rats. Neuroscience 2016; 324:227-37. [DOI: 10.1016/j.neuroscience.2016.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022]
|
32
|
Peragine DE, Yousuf Y, Fu Y, Swift-Gallant A, Ginzberg K, Holmes MM. Contrasting effects of opposite- versus same-sex housing on hormones, behavior and neurogenesis in a eusocial mammal. Horm Behav 2016; 81:28-37. [PMID: 27018426 DOI: 10.1016/j.yhbeh.2016.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/29/2016] [Accepted: 03/18/2016] [Indexed: 12/22/2022]
Abstract
Competitive interactions can have striking and enduring effects on behavior, but the mechanisms underlying this experience-induced plasticity are unclear, particularly in females. Naked mole-rat (NMR) colonies are characterized by the strictest social and reproductive hierarchy among mammals, and represent an ideal system for studies of social competition. In large matriarchal colonies, breeding is monopolized by one female and 1-3 males, with other colony members being socially subordinate and reproductively suppressed. To date, competition for breeding status has been examined in-colony, with female, but not male, aggression observed following the death/removal of established queens. To determine whether this sex difference extends to colony-founding contexts, and clarify neural and endocrine mechanisms underlying behavioral change in females competing for status, we examined neurogenesis and steroid hormone concentrations in colony-housed subordinates, and NMRs given the opportunity to transition status via pair-housing. To this end, Ki-67 and doublecortin immunoreactivity were compared in the hippocampal dentate gyrus (DG) and basolateral amygdala (BLA) of colony-housed subordinates, and subordinates housed with a same-sex (SS) or opposite-sex (OS) conspecific. Results suggest that OS pairing in eusocial mammals promotes cooperation and enhances hippocampal plasticity, while SS pairing is stressful, resulting in enhanced HPA activation and muted hippocampal neurogenesis relative to OS pairs. Data further indicate that competition for status is confined to females, with female-female housing exerting contrasting effects on hippocampal and amygdalar neurogenesis. These findings advance understanding of social stress effects on neuroplasticity and behavior, and highlight the importance of including female-dominated species in research on aggression and intrasexual competition.
Collapse
Affiliation(s)
- Deane E Peragine
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Yusef Yousuf
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Yi Fu
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Ashlyn Swift-Gallant
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Keren Ginzberg
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
33
|
McEwen BS, McKittrick CR, Tamashiro KLK, Sakai RR. The brain on stress: Insight from studies using the Visible Burrow System. Physiol Behav 2016; 146:47-56. [PMID: 26066722 DOI: 10.1016/j.physbeh.2015.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 11/26/2022]
Abstract
The discovery of adrenal steroid receptors outside of the hypothalamus in the hippocampus and other forebrain regions catalyzed research on the effects of stress upon cognitive function, emotions and self-regulatory behaviors as well as the molecular, cellular and neuroanatomical mechanisms underlying acute and chronic stress effects on the brain. Indeed, this work has shown that the brain is a plastic and vulnerable organ in the face of acute and chronic stress. The insight that Bob and Caroline Blanchard had in developing and interpreting findings using the Visible Burrow System model made an enormous contribution to the current view that the human brain is very sensitive to the social environment and to agonistic interactions between individuals. Their collaboration with Sakai and McEwen at The Rockefeller University extended application of the Visible Burrow System model to demonstrate that it also was a unique and highly relevant neuroethological model with which to study stress and adaptation to stressors. Those studies focused on the brain and systemic organ responses to stress and, in turn, described that the brain is also very responsive to changes in systemic physiology.
Collapse
|
34
|
Theilmann W, Kleimann A, Rhein M, Bleich S, Frieling H, Löscher W, Brandt C. Behavioral differences of male Wistar rats from different vendors in vulnerability and resilience to chronic mild stress are reflected in epigenetic regulation and expression of p11. Brain Res 2016; 1642:505-515. [PMID: 27103570 DOI: 10.1016/j.brainres.2016.04.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 11/27/2022]
Abstract
Outbred rat lines such as Wistar rats are commonly used for models of depressive disorders. Such rats arise from random mating schedules. Hence, genetic drift occurs in outbred populations which could lead to genotypic and phenotypic heterogeneity between rats from different vendors. Additionally, vendor specific rearing conditions could contribute to intrastrain variability. In the present study differences in behavioral responses to the chronic mild stress (CMS) model of depression within Wistar rat strains from different vendors are described. DNA methylation studies and mRNA expression analysis of p11 revealed that the behavioral differences between the substrains are reflected at the epigenetic and genetic level. The results suggest that there are breeder-dependent differences in vulnerability to stress in the CMS model of depression, which might bear on the validity of the model and contribute to contradictory findings and difficulties of replication between laboratories. P11 mRNA expression seems to be differently regulated depending on the quality of the stress response evoked by CMS exposure.
Collapse
Affiliation(s)
- Wiebke Theilmann
- Neuroscience Center, University of Helsinki, Finland; Center for Systems Neuroscience, Hannover, Germany
| | - Alexandra Kleimann
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover, Germany
| | - Mathias Rhein
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
35
|
Sobrero R, Fernández-Aburto P, Ly-Prieto Á, Delgado SE, Mpodozis J, Ebensperger LA. Effects of Habitat and Social Complexity on Brain Size, Brain Asymmetry and Dentate Gyrus Morphology in Two Octodontid Rodents. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:51-64. [DOI: 10.1159/000444741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 02/17/2016] [Indexed: 11/19/2022]
Abstract
Navigational and social challenges due to habitat conditions and sociality are known to influence dentate gyrus (DG) morphology, yet the relative importance of these factors remains unclear. Thus, we studied three natural populations of O. lunatus (Los Molles) and Octodon degus (El Salitre and Rinconada), two caviomorph species that differ in the extent of sociality and with contrasting vegetation cover of habitat used. The brains and DG of male and female breeding degus with simultaneous information on their physical and social environments were examined. The extent of sociality was quantified from total group size and range area overlap. O. degus at El Salitre was more social than at Rinconada and than O. lunatus from Los Molles. The use of transects to quantify cover of vegetation (and other physical objects in the habitat) and measures of the spatial behavior of animals indicated animal navigation based on unique cues or global landmarks is more cognitively challenging to O. lunatus. During lactation, female O. lunatus had larger brains than males. Relative DG volume was similar across sexes and populations. The right hemisphere of male and female O. lunatus had more cells than the left hemisphere, with DG directional asymmetry not found in O. degus. Degu population differences in brain size and DG cell number seemed more responsive to differences in habitat than to differences in sociality. Yet, large-sized O. degus (but not O. lunatus) that ranged over larger areas and were members of larger social groups had more DG cells per hemisphere. Thus, within-population variation in DG cell number by hemisphere was consistent with a joint influence of habitat and sociality in O. degus at El Salitre.
Collapse
|
36
|
Social behavior, hormones and adult neurogenesis. Front Neuroendocrinol 2016; 41:71-86. [PMID: 26996817 DOI: 10.1016/j.yfrne.2016.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
Abstract
A variety of experiences have been shown to affect the production of neurons in the adult hippocampus. These effects may be mediated by experience-driven hormonal changes, which, in turn, interact with factors such as sex, age and life history to alter brain plasticity. Although the effects of physical experience and stress have been extensively characterized, various types of social experience across the lifespan trigger profound neuroendocrine changes in parallel with changes in adult neurogenesis. This review article focuses on the influence of specific social experiences on adult neurogenesis in the dentate gyrus and the potential role of hormones in these effects.
Collapse
|
37
|
Holmes MM. Social regulation of adult neurogenesis: A comparative approach. Front Neuroendocrinol 2016; 41:59-70. [PMID: 26877107 DOI: 10.1016/j.yfrne.2016.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 01/25/2023]
Abstract
The social environment sculpts the mammalian brain throughout life. Adult neurogenesis, the birth of new neurons in the mature brain, can be up- or down-regulated by various social manipulations. These include social isolation, social conflict, social status, socio-sexual interactions, and parent/offspring interactions. However, socially-mediated changes in neuron production are often species-, sex-, and/or region-specific. In order to reconcile the variability of social effects on neurogenesis, we need to consider species-specific social adaptations and other contextual variables (e.g. age, social status, reproductive status, etc.) that shift the valence of social stimuli. Using a comparative approach to understand how adult-generated neurons in turn influence social behaviors will shed light on how adult neurogenesis contributes to survival and reproduction in diverse species.
Collapse
Affiliation(s)
- Melissa M Holmes
- Department of Psychology, University of Toronto, Canada; Department of Cell & Systems Biology, University of Toronto, Canada; Department of Ecology & Evolutionary Biology, University of Toronto, Canada.
| |
Collapse
|
38
|
Shors TJ, Millon EM. Sexual trauma and the female brain. Front Neuroendocrinol 2016; 41:87-98. [PMID: 27085856 DOI: 10.1016/j.yfrne.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
Sexual aggression and violence against women (VAM) are not only social problems; they are mental health problems. Women who experience sexual trauma often express disruptions in emotional and cognitive processes, some of which lead to depression and post-traumatic stress disorder (PTSD). Animal models of neurogenesis and learning suggest that social yet aggressive interactions between a pubescent female and an adult male can disrupt processes of learning related to maternal care, which in turn reduce survival of new neurons in the female hippocampus. Mental and Physical (MAP) Training is a novel clinical intervention that was translated from neurogenesis research. The intervention, which combines meditation and aerobic exercise, is currently being used to help women learn to recover from traumatic life experiences, especially those related to sexual violence and abuse.
Collapse
Affiliation(s)
- Tracey J Shors
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University, 152 Frelinghuysen Road Room 201, Piscataway, NJ 08854, USA.
| | - Emma M Millon
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University, 152 Frelinghuysen Road Room 201, Piscataway, NJ 08854, USA
| |
Collapse
|
39
|
Spritzer MD, Curtis MG, DeLoach JP, Maher J, Shulman LM. Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats. Neuroscience 2016; 318:143-56. [PMID: 26794592 DOI: 10.1016/j.neuroscience.2016.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 01/01/2023]
Abstract
Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of 5-bromo-2'-deoxyuridine (BrdU) (200mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30-min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohistochemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. Males in the familiar group engaged in significantly more sexual behavior (ejaculations and intromissions) than did males in the unfamiliar group, suggesting that level of sexual activity may influence neurogenesis levels. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect is stronger for sexual interactions than for social interactions.
Collapse
Affiliation(s)
- M D Spritzer
- Department of Biology, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA; Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | - M G Curtis
- Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | - J P DeLoach
- Department of Biology, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | - J Maher
- Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | - L M Shulman
- Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| |
Collapse
|
40
|
Borkum JM. Migraine Triggers and Oxidative Stress: A Narrative Review and Synthesis. Headache 2015; 56:12-35. [PMID: 26639834 DOI: 10.1111/head.12725] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Blau theorized that migraine triggers are exposures that in higher amounts would damage the brain. The recent discovery that the TRPA1 ion channel transduces oxidative stress and triggers neurogenic inflammation suggests that oxidative stress may be the common denominator underlying migraine triggers. OBJECTIVE The aim of this review is to present and discuss the available literature on the capacity of common migraine triggers to generate oxidative stress in the brain. METHODS A Medline search was conducted crossing the terms "oxidative stress" and "brain" with "alcohol," "dehydration," "water deprivation," "monosodium glutamate," "aspartame," "tyramine," "phenylethylamine," "dietary nitrates," "nitrosamines," "noise," "weather," "air pollutants," "hypoglycemia," "hypoxia," "infection," "estrogen," "circadian," "sleep deprivation," "information processing," "psychosocial stress," or "nitroglycerin and tolerance." "Flavonoids" was crossed with "prooxidant." The reference lists of the resulting articles were examined for further relevant studies. The focus was on empirical studies, in vitro and of animals, of individual triggers, indicating whether and/or by what mechanism they can generate oxidative stress. RESULTS In all cases except pericranial pain, common migraine triggers are capable of generating oxidative stress. Depending on the trigger, mechanisms include a high rate of energy production by the mitochondria, toxicity or altered membrane properties of the mitochondria, calcium overload and excitotoxicity, neuroinflammation and activation of microglia, and activation of neuronal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. For some triggers, oxidants also arise as a byproduct of monoamine oxidase or cytochrome P450 processing, or from uncoupling of nitric oxide synthase. CONCLUSIONS Oxidative stress is a plausible unifying principle behind the types of migraine triggers encountered in clinical practice. The possible implications for prevention and for understanding the nature of the migraine attack are discussed.
Collapse
Affiliation(s)
- Jonathan M Borkum
- Department of Psychology, University of Maine, Orono, ME, USA.,Health Psych Maine, Waterville, ME, USA
| |
Collapse
|
41
|
Smagin DA, Park JH, Michurina TV, Peunova N, Glass Z, Sayed K, Bondar NP, Kovalenko IN, Kudryavtseva NN, Enikolopov G. Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression. Front Neurosci 2015; 9:443. [PMID: 26648838 PMCID: PMC4664700 DOI: 10.3389/fnins.2015.00443] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022] Open
Abstract
Repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here, we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.
Collapse
Affiliation(s)
- Dmitry A. Smagin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
- Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and TechnologyMoscow, Russia
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
| | - June-Hee Park
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
| | - Tatyana V. Michurina
- Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and TechnologyMoscow, Russia
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
- Department of Anesthesiology, Stony Brook School of MedicineStony Brook, NY, USA
- Center for Developmental Genetics, Stony Brook UniversityStony Brook, NY, USA
| | - Natalia Peunova
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
- Department of Anesthesiology, Stony Brook School of MedicineStony Brook, NY, USA
- Center for Developmental Genetics, Stony Brook UniversityStony Brook, NY, USA
| | - Zachary Glass
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
| | - Kasim Sayed
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
| | - Natalya P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Irina N. Kovalenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Natalia N. Kudryavtseva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Grigori Enikolopov
- Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and TechnologyMoscow, Russia
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
- Department of Anesthesiology, Stony Brook School of MedicineStony Brook, NY, USA
- Center for Developmental Genetics, Stony Brook UniversityStony Brook, NY, USA
| |
Collapse
|
42
|
Wu MV, Sahay A, Duman RS, Hen R. Functional differentiation of adult-born neurons along the septotemporal axis of the dentate gyrus. Cold Spring Harb Perspect Biol 2015; 7:a018978. [PMID: 26238355 DOI: 10.1101/cshperspect.a018978] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the past several decades, the proliferation and integration of adult-born neurons into existing hippocampal circuitry has been implicated in a wide range of behaviors, including novelty recognition, pattern separation, spatial learning, anxiety behaviors, and antidepressant response. In this review, we suggest that the diversity in behavioral requirements for new neurons may be partly caused by separate functional roles of individual neurogenic niches. Growing evidence shows that the hippocampal formation can be compartmentalized not only along the classic trisynaptic circuit, but also along a longitudinal septotemporal axis. We suggest that subpopulations of hippocampal adult-born neurons may be specialized for distinct mnemonic- or mood-related behavioral tasks. We will examine the literature supporting a functional and anatomical dissociation of the hippocampus along the longitudinal axis and discuss techniques to functionally dissect the roles of adult-born hippocampal neurons in these distinct subregions.
Collapse
Affiliation(s)
- Melody V Wu
- Department of Psychiatry, Columbia University, New York, New York 10027 Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032
| | - Amar Sahay
- Center for Regenerative Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114 Harvard Stem Cell Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Ronald S Duman
- Department of Psychiatry, Yale University, New Haven, Connecticut 06520 Department of Neurobiology, Yale University, New Haven, Connecticut 06520
| | - René Hen
- Department of Psychiatry, Columbia University, New York, New York 10027 Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032 Department of Neuroscience, Columbia University, New York, New York 10027 Department of Pharmacology, Columbia University, New York, New York 10027
| |
Collapse
|
43
|
Eaton L, Edmonds EJ, Henry TB, Snellgrove DL, Sloman KA. Mild maternal stress disrupts associative learning and increases aggression in offspring. Horm Behav 2015; 71:10-5. [PMID: 25840012 DOI: 10.1016/j.yhbeh.2015.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 01/22/2023]
Abstract
Maternal stress has been shown to affect behaviour of offspring in a wide range of animals, but this evidence has come from studies that exposed gestating mothers to acute or severe stressors, such as restraint or exposure to synthetic stress hormones. Here we show that exposure of mothers to even a mild stressor reduces associative learning and increases aggression in offspring. Female guppies were exposed to routine husbandry procedures that produced only a minimal, non-significant, elevation of the stress hormone cortisol. In contrast to controls, offspring from mothers that experienced this mild stress failed to learn to associate a colour cue and food reward, and showed a greater amount of inter-individual variation in behaviour compared with control offspring. This mild stress also resulted in offspring that were more aggressive towards their own mirror image than controls. While it is possible that these results could represent the transmission of beneficial maternal characteristics to offspring born into unpredictable environments, the potential for mild maternal stress to affect offspring performance also has important implications for research into the trans-generational effects of stress.
Collapse
Affiliation(s)
- L Eaton
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, Scotland PA1 2BE, UK.
| | - E J Edmonds
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, Scotland PA1 2BE, UK
| | - T B Henry
- School of Life Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK; Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA; Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996 USA
| | - D L Snellgrove
- WALTHAM Centre for Pet Nutrition, Freeby Lane, Waltham-on-the-Wolds, LE14 4RT, Leicestershire, UK
| | - K A Sloman
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, Scotland PA1 2BE, UK
| |
Collapse
|
44
|
Dokter M, von Bohlen und Halbach O. Neurogenesis within the adult hippocampus under physiological conditions and in depression. Neural Regen Res 2015; 7:552-9. [PMID: 25745444 PMCID: PMC4349005 DOI: 10.3969/j.issn.1673-5374.2012.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/06/2012] [Indexed: 01/18/2023] Open
Abstract
Adult neurogenesis can only be observed in some specific brain regions. One of these areas is the dentate gyrus of the hippocampal formation. The progenitor cells located in the subgranular layer of the dentate gyrus proliferate, differentiate, and give rise to young neurons that can become integrated into existing neuronal circuits. Under physiological conditions, hippocampal neurogenesis is linked to hippocampal-dependent learning, whereas deficits in adult hippocampal neurogenesis have been shown to correlate with disturbances in spatial learning and memory. This review summarizes the phenomenon of adult hippocampal neurogenesis and the use of suitable markers for the investigation of adult hippocampal neurogenesis. In addition, we focused on the disturbances in neurogenesis that can be seen in depression. Interestingly, several antidepressants have been found to be capable of increasing the rate of hippocampal neurogenesis. Based on that, it can be speculated that factors, which directly or indirectly increase the rate of hippocampal neurogenesis, may be helpful in the treatment of depression.
Collapse
Affiliation(s)
- Martin Dokter
- Institute of Anatomy and Cell Biology, Ernst Moritz Arndt University of Greifswald, Germany
| | | |
Collapse
|
45
|
Ramallo MR, Birba A, Honji RM, Morandini L, Moreira RG, Somoza GM, Pandolfi M. A multidisciplinary study on social status and the relationship between inter-individual variation in hormone levels and agonistic behavior in a Neotropical cichlid fish. Horm Behav 2015; 69:139-51. [PMID: 25647157 DOI: 10.1016/j.yhbeh.2015.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 01/21/2023]
Abstract
Social animals with hierarchal dominance systems are particularly susceptible to their social environment. There, interactions with conspecifics and hierarchal position can greatly affect an individual's behavior, physiology and reproductive success. Our experimental model, Cichlasoma dimerus, is a serially-monogamous Neotropical cichlid fish with a hierarchical social system, established and sustained through agonistic interactions. In this work, we aimed to describe C. dimerus social structure and its association with hormonal profiles and testicular cellular composition. We recorded and quantified agonistic interactions from the territorial pair, i.e. the top ranked male and female, and the lowest ranked male of stable social groups. Plasma levels of 11-ketotestosterone (11-KT), testosterone, 17β-estradiol (E2) and cortisol were measured by ELISA. Results show that territorial pairs cooperatively guarded the territory, but rarely attacked in synchrony. Territorial males had higher testosterone and 11-KT plasma levels than non-territorial males, while E2 and an index of its metabolization from testosterone were higher in non-territorial males. No difference was observed in cortisol levels. Plasma 11-KT and an index of the conversion of testosterone to 11-KT, positively correlated with the frequency of aggressiveness, while E2 showed the opposite pattern. Territorial males had a higher gonadosomatic index than non-territorial males. The quantification of testicular cellular types revealed that the percentage of spermatocytes and spermatids was higher in non-territorial males, while territorial males showed a greater percentage of spermatozoa. Thus, C. dimerus male social position within a stable hierarchy is associated with distinct behaviors, steroid levels and testicular degree of development.
Collapse
Affiliation(s)
- Martín R Ramallo
- Instituto de Biodiversidad y Biología Experimental y Aplicada - CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Neuroendocrinología y Comportamiento, Departamento de Biodiversidad y Biologia Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Agustina Birba
- Laboratorio de Neuroendocrinología y Comportamiento, Departamento de Biodiversidad y Biologia Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Renato M Honji
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14 n°321, Cidade Universitária, São Paulo 05508-090, Brazil
| | - Leonel Morandini
- Instituto de Biodiversidad y Biología Experimental y Aplicada - CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Neuroendocrinología y Comportamiento, Departamento de Biodiversidad y Biologia Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Renata G Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14 n°321, Cidade Universitária, São Paulo 05508-090, Brazil
| | - Gustavo M Somoza
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH. CONICET-UNSAM), Chascomús, Argentina
| | - Matías Pandolfi
- Instituto de Biodiversidad y Biología Experimental y Aplicada - CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Neuroendocrinología y Comportamiento, Departamento de Biodiversidad y Biologia Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
46
|
Shors TJ, Olson RL, Bates ME, Selby EA, Alderman BL. Mental and Physical (MAP) Training: a neurogenesis-inspired intervention that enhances health in humans. Neurobiol Learn Mem 2014; 115:3-9. [PMID: 25219804 PMCID: PMC4535923 DOI: 10.1016/j.nlm.2014.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/20/2022]
Abstract
New neurons are generated in the hippocampus each day and their survival is greatly enhanced through effortful learning (Shors, 2014). The numbers of cells produced can be increased by physical exercise (van Praag, Kempermann, & Gage, 1999). These findings inspired us to develop a clinical intervention for humans known as Mental and Physical Training, or MAP Training. Each session consists of 30min of mental training with focused attention meditation (20min sitting and 10min walking). Meditation is an effortful training practice that involves learning about the transient nature of thoughts and thought patterns, and acquiring skills to recognize them without necessarily attaching meaning and/or emotions to them. The mental training component is followed by physical training with 30min of aerobic exercise performed at moderate intensity. During this component, participants learn choreographed dance routines while engaging in aerobic exercise. In a pilot "proof-of-concept" study, we provided supervised MAP Training (2 sessions per week for 8weeks) to a group of young mothers in the local community who were recently homeless, most of them having previously suffered from physical and sexual abuse, addiction, and depression. Preliminary data suggest that MAP Training improves dependent measures of aerobic fitness (as assessed by maximal rate of oxygen consumed) while decreasing symptoms of depression and anxiety. Similar changes were not observed in a group of recently homeless women who did not participate in MAP Training. It is not currently possible to determine whether new neurons in the human brain increase in number as a result of MAP Training. Rather these preliminary results of MAP Training illustrate how neuroscientific research can be translated into novel clinical interventions that benefit human health and wellness.
Collapse
Affiliation(s)
- Tracey J Shors
- Behavioral and Systems Neuroscience, Rutgers University, United States; Department of Psychology, Rutgers University, United States; Center for Collaborative Neuroscience, Rutgers University, United States
| | - Ryan L Olson
- Department of Exercise Science, Rutgers University, United States
| | - Marsha E Bates
- Center of Alcohol Studies, Rutgers University, United States
| | - Edward A Selby
- Department of Psychology, Rutgers University, United States
| | | |
Collapse
|
47
|
Cumming MJ, Thompson MA, McCormick CM. Adolescent social instability stress increases aggression in a food competition task in adult male Long-Evans rats. Dev Psychobiol 2014; 56:1575-88. [PMID: 25176514 DOI: 10.1002/dev.21252] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/05/2014] [Indexed: 12/19/2022]
Abstract
Adolescent social instability stress (SS; daily 1 hr isolation + new cage partners postnatal days 30-45; thereafter with original cage partner, also in the SS condition) and control (CTL) rats competed for access to a preferred food in five sessions against their cage partner. In the first session, SS pairs displayed more aggression (face whacks, p = .02; rear attacks, p = .03), were less likely to relinquish access to the food voluntarily (p = .03), spent more time at the feeder than CTL pairs (p = .06), but did not differ in latency to access the feeder (p = .41). Pairs were considered in dominant-submissive relationships (DSR) if one rat spent significantly more time at the feeder than the other; 8 of 12 SS and 8 of 12 CTL pairs displayed DSRs (remaining: no-DSR). Aggression increased from the 1st to 5th session (p < .001), was greater in no-DSR than DSR pairs (p = .04; consistent with the proposed function of DSRs to be the reduction of aggression in groups), and was higher in SS than CTL pairs (p = .05). Because the increased aggression of SS compared with CTL pairs did not result in a significant increase in their time at the feeder, the increased aggression may be considered maladaptive, and may reflect an increased motivation for food reward. These results add to evidence that SS in adolescence modifies the adult social repertoire of rats and highlight the importance of adolescent social experiences for adult behavior.
Collapse
Affiliation(s)
- Mark J Cumming
- Centre for Neuroscience, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada, L2S 3A1
| | | | | |
Collapse
|
48
|
Stress modulation of hippocampal activity – Spotlight on the dentate gyrus. Neurobiol Learn Mem 2014; 112:53-60. [DOI: 10.1016/j.nlm.2014.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/17/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
|
49
|
Wu MV, Shamy JL, Bedi G, Choi CWJ, Wall MM, Arango V, Boldrini M, Foltin RW, Hen R. Impact of social status and antidepressant treatment on neurogenesis in the baboon hippocampus. Neuropsychopharmacology 2014; 39:1861-71. [PMID: 24518288 PMCID: PMC4059894 DOI: 10.1038/npp.2014.33] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/02/2014] [Accepted: 01/20/2014] [Indexed: 01/28/2023]
Abstract
Adult hippocampal neurogenesis is critically implicated in rodent models of stress and anxiety as well as behavioral effects of antidepressants. Whereas similar factors such as psychiatric disorder and antidepressant administration are correlated with hippocampal volume in humans, the relationship between these factors and adult neurogenesis is less well understood. To better bridge the gap between rodent and human physiology, we examined the numbers of proliferating neural precursors and immature cells in the hippocampal dentate gyrus (DG) as well as in vivo magnetic resonance imaging (MRI)-estimated whole hippocampal volume in eight socially dominant- or subordinate-like (SL) baboons administered the antidepressant fluoxetine or vehicle. SL baboons had lower numbers of proliferating cells and immature neurons than socially dominant-like baboons. Fluoxetine treatment was associated with a larger whole hippocampal volume but surprisingly resulted in lower numbers of immature neurons. These findings are the first to indicate that adult neurogenesis in the baboon hippocampal DG may be functionally relevant in the context of social stress and mechanisms of antidepressant action.
Collapse
Affiliation(s)
- Melody V Wu
- Department of Psychiatry, Columbia University, New York, NY, USA,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Jul Lea Shamy
- Department of Neuroscience and Friedman Brain Institute, Mt Sinai School of Medicine, New York, NY, USA
| | - Gillinder Bedi
- Department of Psychiatry, Columbia University, New York, NY, USA,Division on Substance Abuse, New York State Psychiatric Institute, New York, NY, USA
| | - Chien-Wen J Choi
- Department of Psychiatry, Columbia University, New York, NY, USA,Division of Biostatistics, New York State Psychiatric Institute, New York, NY, USA
| | - Melanie M Wall
- Department of Psychiatry, Columbia University, New York, NY, USA,Division of Biostatistics, New York State Psychiatric Institute, New York, NY, USA
| | - Victoria Arango
- Department of Psychiatry, Columbia University, New York, NY, USA,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Maura Boldrini
- Department of Psychiatry, Columbia University, New York, NY, USA,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Richard W Foltin
- Department of Psychiatry, Columbia University, New York, NY, USA,Division on Substance Abuse, New York State Psychiatric Institute, New York, NY, USA
| | - René Hen
- Department of Psychiatry, Columbia University, New York, NY, USA,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA,Departments of Neuroscience and Pharmacology, Columbia University, New York, NY, USA,Center for Neurobiology and Behavior, Columbia University, 1051 Riverside Drive, Unit 87, Kolb Annex, Room 767, New York, NY 10032, USA, Tel: +1 212 646 774 7108, Fax: +1 212 543 5074, E-mail:
| |
Collapse
|
50
|
Peragine D, Simpson J, Mooney S, Lovern M, Holmes M. Social regulation of adult neurogenesis in a eusocial mammal. Neuroscience 2014; 268:10-20. [DOI: 10.1016/j.neuroscience.2014.02.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/27/2014] [Accepted: 02/26/2014] [Indexed: 12/17/2022]
|