1
|
Cimmino DB, Zabriskie B, Luke S, Gutman B, Isaev D, Alpert K, Glahn D, Rodrigue A, Kelly S, Pearlson G, Calhoun V, Ehrlich S, Andreassen O, Tordesillas-Gutierrez D, Crespo-Facorro B, Satterthwaite T, Gur R, Gur R, Spalletta G, Piras F, Donohoe G, McDonald C, Pomarol-Clotet E, Salvador R, Karuk A, Voineskos A, Kochunov P, Borgwardt S, Agartz I, Jonsson E, Kircher T, Stein F, Brosch K, Nenadic I, Iasevoli F, Pontillo G, de Bartolomeis A, Barone A, Ciccarelli M, Di Giorgio A, Brunetti A, Cocozza S, Tranfa M, James A, Zarei M, Hough M, Flyckt L, Busatto GF, Rosa PGP, Serpa MH, Zanetti MV, van Erp T, Preda A, Nguyen D, Thompson P, Turner J, Wang L, Cobia D. Sex differences in deep brain shape and asymmetry persist across schizophrenia and healthy individuals: A meta-analysis from the ENIGMA-Schizophrenia Working Group. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.619733. [PMID: 39484539 PMCID: PMC11526939 DOI: 10.1101/2024.10.24.619733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Schizophrenia (SCZ) is characterized by a disconnect from reality that manifests as various clinical and cognitive symptoms, and persistent neurobiological abnormalities. Sex-related differences in clinical presentation imply separate brain substrates. The present study characterized deep brain morphology using shape features to understand the independent effects of diagnosis and sex on the brain, and to determine whether the neurobiology of schizophrenia varies as a function of sex. Methods This study analyzed multi-site archival data from 1,871 male (M) and 955 female (F) participants with SCZ, and 2,158 male and 1,877 female healthy controls (CON) from twenty-three cross-sectional samples from the ENIGMA Schizophrenia Workgroup. Harmonized shape analysis protocols were applied to each site's data for seven deep brain regions obtained from T1-weighted structural MRI scans. Effect sizes were calculated for the following main contrasts: 1) Sex effects;2) Diagnosis-by-Sex interaction; 3) within sex tests of diagnosis; 4) within diagnosis tests of sex differences. Meta-regression models between brain structure and clinical variables were also computed separately in men and women with schizophrenia. Results Mass univariate meta-analyses revealed more concave-than-convex shape differences in all regions for women relative to men, across diagnostic groups ( d = -0.35 to 0.20, SE = 0.02 to 0.07); there were no significant diagnosis-by-sex interaction effects. Within men and women separately, we identified more-concave-than-convex shape differences for the hippocampus, amygdala, accumbens, and thalamus, with more-convex-than-concave differences in the putamen and pallidum in SCZ ( d = -0.30 to 0.30, SE = 0.03 to 0.10). Within CON and SZ separately, we found more-concave-than-convex shape differences in the thalamus, pallidum, putamen, and amygdala among females compared to males, with mixed findings in the hippocampus and caudate ( d = -0.30 to 0.20, SE = 0.03 to 0.09). Meta-regression models revealed similarly small, but significant relationships, with medication and positive symptoms in both SCZ-M and SCZ-F. Conclusions Sex-specific variation is an overriding feature of deep brain shape regardless of disease status, underscoring persistent patterns of sex differences observed both within and across diagnostic categories, and highlighting the importance of including it as a critical variable in studies of neurobiology. Future work should continue to explore these dimensions independently to determine whether these patterns of brain morphology extend to other aspects of neurobiology in schizophrenia, potentially uncovering broader implications for diagnosis and treatment. Key Points Statistical analyses revealed significant main effects for diagnosis and sex in deep brain shape morphology. Among patients with schizophrenia, there was a pattern of thinning and surface contraction in the bilateral hippocampus, amygdala, accumbens, and thalamus, and a pattern of significant thickening and surface expansion in the bilateral putamen and pallidum compared to healthy control participants. Between males and females, there was a pattern of significant thinning and surface contraction in the bilateral thalamus, pallidum, putamen, and amygdala in females compared to males.There was no significant interaction between diagnosis and biological sex, suggesting that sex differences in deep brain shape and asymmetry among patients with schizophrenia reflect those observed in healthy individuals.Small but statistically significant relationships exist between brain structure and clinical correlates of schizophrenia were similar for both men and women with the disease, such that higher CPZ was associated with shape-derived thinning and surface contraction in the caudate, accumbens, hippocampus, amygdala, and thalamus, and elevated positive symptoms were associated with shape-derived thinning and surface contraction in the bilateral caudate, right hippocampus, and right amygdala.
Collapse
|
2
|
Khan YT, Tsompanidis A, Radecki MA, Dorfschmidt L, Austin T, Suckling J, Allison C, Lai MC, Bethlehem RAI, Baron-Cohen S. Sex Differences in Human Brain Structure at Birth. Biol Sex Differ 2024; 15:81. [PMID: 39420417 PMCID: PMC11488075 DOI: 10.1186/s13293-024-00657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Sex differences in human brain anatomy have been well-documented, though remain significantly underexplored during early development. The neonatal period is a critical stage for brain development and can provide key insights into the role that prenatal and early postnatal factors play in shaping sex differences in the brain. METHODS Here, we assessed on-average sex differences in global and regional brain volumes in 514 newborns aged 0-28 days (236 birth-assigned females and 278 birth-assigned males) using data from the developing Human Connectome Project. We also assessed sex-by-age interactions to investigate sex differences in early postnatal brain development. RESULTS On average, males had significantly larger intracranial and total brain volumes, even after controlling for birth weight. After controlling for total brain volume, females showed significantly greater total cortical gray matter volumes, whilst males showed greater total white matter volumes. After controlling for total brain volume in regional comparisons, females had significantly increased white matter volumes in the corpus callosum and increased gray matter volumes in the bilateral parahippocampal gyri (posterior parts), left anterior cingulate gyrus, bilateral parietal lobes, and left caudate nucleus. Males had significantly increased gray matter volumes in the right medial and inferior temporal gyrus (posterior part) and right subthalamic nucleus. Effect sizes ranged from small for regional comparisons to large for global comparisons. Significant sex-by-age interactions were noted in the left anterior cingulate gyrus and left superior temporal gyrus (posterior parts). CONCLUSIONS Our findings demonstrate that sex differences in brain structure are already present at birth and remain comparatively stable during early postnatal development, highlighting an important role of prenatal factors in shaping sex differences in the brain.
Collapse
Affiliation(s)
- Yumnah T Khan
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK.
| | - Alex Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
| | - Marcin A Radecki
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Social and Affective Neuroscience Group, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Lena Dorfschmidt
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, 19139, USA
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Peterborough Foundation NHS Trust, Cambridge, CB2 8SZ, UK
| | - Carrie Allison
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychology, Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
3
|
Luders E, Gaser C, Spencer D, Thankamony A, Hughes I, Srirangalingam U, Gleeson H, Hines M, Kurth F. Effects of Congenital Adrenal Hyperplasia (CAH) and Biological Sex on Brain Size. ANATOMIA (BASEL, SWITZERLAND) 2024; 3:155-162. [PMID: 39391581 PMCID: PMC11461354 DOI: 10.3390/anatomia3030012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Congenital Adrenal Hyperplasia (CAH) has been reported to involve structural alterations in some brain regions. However, it remains to be established whether there is also an impact on the size of the brain as a whole. Here, we compiled the largest CAH sample to date (n = 53), matched pair-wise to a control group (n = 53) on sex, age, and verbal intelligence. Using T1-weighted brain scans, we calculated intracranial volume (ICV) as well as total brain volume (TBV), which are both common estimates for brain size. The statistical analysis was performed using a general linear model assessing the effects of CAH (CAH vs. controls), sex (women vs. men), and any CAH-by-sex interaction. The outcomes were comparable for ICV and TBV, i.e., there was no significant main effect of CAH and no significant CAH-by-sex interaction. However, there was a significant main effect of sex, with larger ICVs and TBVs in men than in women. Our findings contribute to an understudied field of research exploring brain anatomy in CAH. In contrast to some existing studies suggesting a smaller brain size in CAH, we did not observe such an effect. In other words, ICV and TBV in women and men with CAH did not differ significantly from those in controls. Notwithstanding, we observed the well-known sex difference in brain size (12.69% for ICV and 12.50% for TBV), with larger volumes in men than in women, which is in agreement with the existing literature.
Collapse
Affiliation(s)
- Eileen Luders
- Department of Women’s and Children’s Health, Uppsala University, 75237 Uppsala, Sweden
- Swedish Collegium for Advanced Study (SCAS), 75238 Uppsala, Sweden
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07747 Jena, Germany
| | - Debra Spencer
- Department of Psychology, University of Cambridge, Cambridge CB2 3RQ, UK
| | - Ajay Thankamony
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Weston Centre for Paediatric Endocrinology & Diabetes, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ieuan Hughes
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Umasuthan Srirangalingam
- Department of Endocrinology and Diabetes, University College Hospital London, London NW1 2BU, UK
| | | | - Melissa Hines
- Department of Psychology, University of Cambridge, Cambridge CB2 3RQ, UK
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
- Department of Diagnostic and Interventional Radiology, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
4
|
Sal-Sarria S, Conejo NM, González-Pardo H. Maternal immune activation and its multifaceted effects on learning and memory in rodent offspring: A systematic review. Neurosci Biobehav Rev 2024; 164:105844. [PMID: 39106940 DOI: 10.1016/j.neubiorev.2024.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
This systematic review explored the impact of maternal immune activation (MIA) on learning and memory behavior in offspring, with a particular focus on sexual dimorphism. We analyzed 20 experimental studies involving rodent models (rats and mice) exposed to either lipopolysaccharide (LPS) or POLY I:C during gestation following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our findings reveal that most studies report a detrimental impact of MIA on the learning and memory performance of offspring, highlighting the significant role of prenatal environmental factors in neurodevelopment. Furthermore, this review underscores the complex effects of sex, with males often exhibiting more pronounced cognitive impairment compared to females. Notably, a small subset of studies report enhanced cognitive function following MIA, suggesting complex, context-dependent outcomes of prenatal immune challenges. This review also highlights sex differences caused by the effects of MIA in terms of cytokine responses, alterations in gene expression, and differences in microglial responses as factors that contribute to the cognitive outcomes observed.
Collapse
Affiliation(s)
- Saúl Sal-Sarria
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
5
|
Quintana GR, Pfaus JG. Do Sex and Gender Have Separate Identities? ARCHIVES OF SEXUAL BEHAVIOR 2024; 53:2957-2975. [PMID: 39105983 PMCID: PMC11335805 DOI: 10.1007/s10508-024-02933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 08/07/2024]
Abstract
The largely binary nature of biological sex and its conflation with the socially constructed concept of gender has created much strife in the last few years. The notion of gender identity and its differences and similarities with sex have fostered much scientific and legal confusion and disagreement. Settling the debate can have significant repercussions for science, medicine, legislation, and people's lives. The present review addresses this debate though different levels of analysis (i.e., genetic, anatomical, physiological, behavioral, and sociocultural), and their implications and interactions. We propose a rationale where both perspectives coexist, where diversity is the default, establishing a delimitation to the conflation between sex and gender, while acknowledging their interaction. Whereas sex in humans and other mammals is a biological reality that is largely binary and based on genes, chromosomes, anatomy, and physiology, gender is a sociocultural construct that is often, but not always, concordant with a person' sex, and can span a multitude of expressions.
Collapse
Affiliation(s)
- Gonzalo R Quintana
- Departamento de Psicología y Filosofía, Facultad de Ciencias Sociales, Universidad de Tarapacá, Arica, Arica y Parinacota, Chile
| | - James G Pfaus
- Department of Psychology and Life Sciences, Charles University, Prague, 18200, Czech Republic.
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
6
|
Ernsten L, Körner LM, Heil M, Schaal NK. The association between 2D:4D digit ratio and sex-typed play in children with and without siblings. Sci Rep 2024; 14:15231. [PMID: 38956189 PMCID: PMC11219774 DOI: 10.1038/s41598-024-65739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
The 2D:4D digit ratio is commonly used as a surrogate possibly reflecting prenatal testosterone levels. Indirect evidence comes from studies investigating the association between 2D:4D and human characteristics that likely relate to prenatal testosterone. In children, sex-typed play reveals large sex differences early in development and an influence of prenatal testosterone is likely. Findings on the association between 2D:4D and children's sex-typed play are heterogeneous and other influences on the development of sex-typed play have been suggested, most of all social influences like siblings, their sex and birth order. The current study examined the association between right and left 2D:4D, a proposed surrogate for prenatal testosterone exposure, which was assessed in right and left hands of N = 505 6-month-old children, and sex-typed play behavior, which was evaluated 3.5 years later using the Pre-School Activities Inventory (PSAI), and the influence of siblings. To capture differential effects of siblings' sex and birth order, dummy-coded variables were used reflecting having no siblings as well as older or younger sisters or brothers. Multiple regression models were used to investigate the association between PSAI scores and sex, right and left 2D:4D, being a singleton as well as having an older or younger sister or brother. It was shown that sex and having an older brother were significant predictors for sex-typed play. Effects were further disentangled by conducting separate regression analyses in boys and girls. In boys, a significant association between PSAI scores and having an older brother was revealed, in girls, no significant associations were found. Results are discussed highlighting the non-significant association between 2D:4D and children's sex-typed play, which weakens the applicability of 2D:4D as a surrogate reflecting influences of prenatal T. Further, the importance of social factors like siblings on children's sex-typed play is discussed.
Collapse
Affiliation(s)
- Luisa Ernsten
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany.
| | - Lisa M Körner
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Heil
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Nora K Schaal
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
7
|
Zhao CL, Hou W, Jia Y, Sahakian BJ, Luo Q. Sex differences of signal complexity at resting-state functional magnetic resonance imaging and their associations with the estrogen-signaling pathway in the brain. Cogn Neurodyn 2024; 18:973-986. [PMID: 38826661 PMCID: PMC11143120 DOI: 10.1007/s11571-023-09954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 06/04/2024] Open
Abstract
Sex differences in the brain have been widely reported and may hold the key to elucidating sex differences in many medical conditions and drug response. However, the molecular correlates of these sex differences in structural and functional brain measures in the human brain remain unclear. Herein, we used sample entropy (SampEn) to quantify the signal complexity of resting-state functional magnetic resonance imaging (rsfMRI) in a large neuroimaging cohort (N = 1,642). The frontoparietal control network and the cingulo-opercular network had high signal complexity while the cerebellar and sensory motor networks had low signal complexity in both men and women. Compared with those in male brains, we found greater signal complexity in all functional brain networks in female brains with the default mode network exhibiting the largest sex difference. Using the gene expression data in brain tissues, we identified genes that were significantly associated with sex differences in brain signal complexity. The significant genes were enriched in the gene sets that were differentially expressed between the brain cortex and other tissues, the estrogen-signaling pathway, and the biological function of neural plasticity. In particular, the G-protein-coupled estrogen receptor 1 gene in the estrogen-signaling pathway was expressed more in brain regions with greater sex differences in SampEn. In conclusion, greater complexity in female brains may reflect the interactions between sex hormone fluctuations and neuromodulation of estrogen in women. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09954-y.
Collapse
Affiliation(s)
- Cheng-li Zhao
- College of Science, National University of Defense Technology, Changsha, 410073 China
| | - Wenjie Hou
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- Center for Computational Psychiatry, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Yanbing Jia
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000 China
| | - Barbara J. Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - the DIRECT Consortium
- College of Science, National University of Defense Technology, Changsha, 410073 China
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- Center for Computational Psychiatry, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200438 China
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000 China
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- Center for Computational Psychiatry, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| |
Collapse
|
8
|
Torgerson C, Ahmadi H, Choupan J, Fan CC, Blosnich JR, Herting MM. Sex, gender diversity, and brain structure in early adolescence. Hum Brain Mapp 2024; 45:e26671. [PMID: 38590252 PMCID: PMC11002534 DOI: 10.1002/hbm.26671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
There remains little consensus about the relationship between sex and brain structure, particularly in early adolescence. Moreover, few pediatric neuroimaging studies have analyzed both sex and gender as variables of interest-many of which included small sample sizes and relied on binary definitions of gender. The current study examined gender diversity with a continuous felt-gender score and categorized sex based on X and Y allele frequency in a large sample of children ages 9-11 years old (N = 7195). Then, a statistical model-building approach was employed to determine whether gender diversity and sex independently or jointly relate to brain morphology, including subcortical volume, cortical thickness, gyrification, and white matter microstructure. Additional sensitivity analyses found that male versus female differences in gyrification and white matter were largely accounted for by total brain volume, rather than sex per se. The model with sex, but not gender diversity, was the best-fitting model in 60.1% of gray matter regions and 61.9% of white matter regions after adjusting for brain volume. The proportion of variance accounted for by sex was negligible to small in all cases. While models including felt-gender explained a greater amount of variance in a few regions, the felt-gender score alone was not a significant predictor on its own for any white or gray matter regions examined. Overall, these findings demonstrate that at ages 9-11 years old, sex accounts for a small proportion of variance in brain structure, while gender diversity is not directly associated with neurostructural diversity.
Collapse
Affiliation(s)
- Carinna Torgerson
- Department of Population and Public Health SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hedyeh Ahmadi
- Department of Population and Public Health SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jeiran Choupan
- Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Chun Chieh Fan
- Center for Population Neuroscience and GeneticsLaureate Institute for Brain ResearchTulsaOklahomaUSA
- Department of Radiology, School of MedicineUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - John R. Blosnich
- Suzanne Dworak‐Peck School of Social WorkUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Megan M. Herting
- Department of Population and Public Health SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Thurston LT, Skorska MN, Lobaugh NJ, Zucker KJ, Chakravarty MM, Lai MC, Chavez S, VanderLaan DP. White matter microstructure in transmasculine and cisgender adolescents: A multiparametric and multivariate study. PLoS One 2024; 19:e0300139. [PMID: 38470896 DOI: 10.1371/journal.pone.0300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Adolescence is a sensitive developmental period for neural sex/gender differentiation. The present study used multiparametric mapping to better characterize adolescent white matter (WM) microstructure. WM microstructure was investigated using diffusion tensor indices (fractional anisotropy; mean, radial, and axial diffusivity [AD]) and quantitative T1 relaxometry (T1) in hormone therapy naïve adolescent cisgender girls, cisgender boys, and transgender boys (i.e., assigned female at birth and diagnosed with gender dysphoria). Diffusion indices were first analyzed for group differences using tract-based spatial statistics, which revealed a group difference in AD. Thus, two multiparametric and multivariate analyses assessed AD in conjunction with T1 relaxation time, and with respect to developmental proxy variables (i.e., age, serum estradiol, pubertal development, sexual attraction) thought to be relevant to adolescent brain development. The multivariate analyses showed a shared pattern between AD and T1 such that higher AD was associated with longer T1, and AD and T1 strongly related to all five developmental variables in cisgender boys (10 significant correlations, r range: 0.21-0.73). There were fewer significant correlations between the brain and developmental variables in cisgender girls (three correlations, r range: -0.54-0.54) and transgender boys (two correlations, r range: -0.59-0.77). Specifically, AD related to direction of sexual attraction (i.e., gynephilia, androphilia) in all groups, and T1 related to estradiol inversely in cisgender boys compared with transgender boys. These brain patterns may be indicative of less myelination and tissue density in cisgender boys, which corroborates other reports of protracted WM development in cisgender boys. Further, these findings highlight the importance of considering developmental trajectory when assessing the subtleties of neural structure associated with variations in sex, gender, and sexual attraction.
Collapse
Affiliation(s)
- Lindsey T Thurston
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Malvina N Skorska
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Nancy J Lobaugh
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Division of Neurology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth J Zucker
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Ontario, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Doug P VanderLaan
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Nowling D, Crum KI, Joseph J. Sex differences in development of functional connections in the face processing network. J Neuroimaging 2024; 34:280-290. [PMID: 38169075 PMCID: PMC10939922 DOI: 10.1111/jon.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Understanding sex differences in typical development of the face processing network is important for elucidating disruptions during atypical development in sex-linked developmental disorders like autism spectrum disorder. Based on prior sex difference studies in other cognitive domains, this study examined whether females show increased integration of core and extended face regions with age for face viewing, while males would show increased segregation. METHODS This study used a cross-sectional design with typically developing children and adults (n = 133) and a functional MRI face localizer task. Psychophysiological interaction (PPI) analysis examined functional connectivity between canonical and extended face processing network regions with age, with greater segregation indexed by decreased core-extended region connectivity with age and greater integration indexed by increased core-extended region connectivity with age. RESULTS PPI analysis confirmed increased segregation for males-right fusiform face area (FFA) coupling to right inferior frontal gyrus (IFG) opercular when viewing faces and left amygdala when viewing objects decreased with age. Females showed increased integration with age (increased coupling of the right FFA to right IFG opercular region and right occipital face area [OFA] to right IFG orbital when viewing faces and objects, respectively) and increased segregation (decreased coupling with age of the right OFA with IFG opercular region when viewing faces). CONCLUSIONS Development of core and extended face processing network connectivity follows sexually dimorphic paths. These differential changes mostly occur across childhood and adolescence, with males experiencing segregation and females both segregation and integration changes in connectivity.
Collapse
Affiliation(s)
- Duncan Nowling
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - Kathleen I. Crum
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - Jane Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
11
|
Fenske SJ, Liu J, Chen H, Diniz MA, Stephens RL, Cornea E, Gilmore JH, Gao W. Sex differences in brain-behavior relationships in the first two years of life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578147. [PMID: 38352542 PMCID: PMC10862872 DOI: 10.1101/2024.01.31.578147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Background Evidence for sex differences in cognition in childhood is established, but less is known about the underlying neural mechanisms for these differences. Recent findings suggest the existence of brain-behavior relationship heterogeneities during infancy; however, it remains unclear whether sex underlies these heterogeneities during this critical period when sex-related behavioral differences arise. Methods A sample of 316 infants was included with resting-state functional magnetic resonance imaging scans at neonate (3 weeks), 1, and 2 years of age. We used multiple linear regression to test interactions between sex and resting-state functional connectivity on behavioral scores of working memory, inhibitory self-control, intelligence, and anxiety collected at 4 years of age. Results We found six age-specific, intra-hemispheric connections showing significant and robust sex differences in functional connectivity-behavior relationships. All connections are either with the prefrontal cortex or the temporal pole, which has direct anatomical pathways to the prefrontal cortex. Sex differences in functional connectivity only emerge when associated with behavior, and not in functional connectivity alone. Furthermore, at neonate and 2 years of age, these age-specific connections displayed greater connectivity in males and lower connectivity in females in association with better behavioral scores. Conclusions Taken together, we critically capture robust and conserved brain mechanisms that are distinct to sex and are defined by their relationship to behavioral outcomes. Our results establish brain-behavior mechanisms as an important feature in the search for sex differences during development.
Collapse
Affiliation(s)
- Sonja J Fenske
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Janelle Liu
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Haitao Chen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| | - Marcio A Diniz
- The Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Rebecca L Stephens
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| |
Collapse
|
12
|
Gaspari L, Soyer-Gobillard MO, Kerlin S, Paris F, Sultan C. Early Female Transgender Identity after Prenatal Exposure to Diethylstilbestrol: Report from a French National Diethylstilbestrol (DES) Cohort. J Xenobiot 2024; 14:166-175. [PMID: 38249107 PMCID: PMC10801508 DOI: 10.3390/jox14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Diagnostic of transsexualism and gender incongruence are terms to describe individuals whose self-identity does not match their sex assignment at birth. A transgender woman is an individual assigned male at birth (AMAB) on the basis of the external or internal genitalia who identifies and lives as a woman. In recent decades, a significant increase in the number of transgender people has been reported. Although, its etiology is unknown, biological, anatomical, genetic, environmental and cultural factors have been suggested to contribute to gender variation. In XY animals, it has been shown that environmental endocrine disruptors, through their anti-androgenic activity, induce a female identity. In this work, we described four XY individuals who were exposed in utero to the xenoestrogen diethylstilbesterol (DES) and were part of the French HHORAGES cohort. They all reported a female transgender identity starting from childhood and adolescence. This high prevalence of male to female transgenderism (1.58%) in our cohort of 253 DES sons suggests that exposure to chemicals with xenoestrogen activity during fetal life may affect the male sex identity and behavior.
Collapse
Affiliation(s)
- Laura Gaspari
- Unité d’Endocrinologie-Gynécologie Pédiatrique, CHU Montpellier, University Montpellier, 34090 Montpellier, France; (L.G.); (F.P.)
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
- CHU Montpellier, University Montpellier, Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, Hôpital Lapeyronie, 34295 Montpellier, France
| | - Marie-Odile Soyer-Gobillard
- Laboratoire Arago, Observatoire Océanologique, Sorbonne University, CNRS, 75016 Paris, France;
- Association HHORAGES-France, 66100 Perpignan, France
| | - Scott Kerlin
- DES International Information and Research Network, Livermore, CA 94551, USA;
| | - Françoise Paris
- Unité d’Endocrinologie-Gynécologie Pédiatrique, CHU Montpellier, University Montpellier, 34090 Montpellier, France; (L.G.); (F.P.)
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
- CHU Montpellier, University Montpellier, Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, Hôpital Lapeyronie, 34295 Montpellier, France
| | - Charles Sultan
- Unité d’Endocrinologie-Gynécologie Pédiatrique, CHU Montpellier, University Montpellier, 34090 Montpellier, France; (L.G.); (F.P.)
| |
Collapse
|
13
|
VanderLaan DP, Skorska MN, Peragine DE, Coome LA. Carving the Biodevelopment of Same-Sex Sexual Orientation at Its Joints. ARCHIVES OF SEXUAL BEHAVIOR 2023; 52:2939-2962. [PMID: 35960401 DOI: 10.1007/s10508-022-02360-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Sexual orientation is a core aspect of human experience and understanding its development is fundamental to psychology as a scientific discipline. Biological perspectives have played an important role in uncovering the processes that contribute to sexual orientation development. Research in this field has relied on a variety of populations, including community, clinical, and cross-cultural samples, and has commonly focused on female gynephilia (i.e., female sexual attraction to adult females) and male androphilia (i.e., male sexual attraction to adult males). Genetic, hormonal, and immunological processes all appear to influence sexual orientation. Consistent with biological perspectives, there are sexual orientation differences in brain development and evidence indicates that similar biological influences apply across cultures. An outstanding question in the field is whether the hypothesized biological influences are all part of the same process or represent different developmental pathways leading to same-sex sexual orientation. Some studies indicate that same-sex sexually oriented people can be divided into subgroups who likely experienced different biological influences. Consideration of gender expression in addition to sexual orientation might help delineate such subgroups. Thus, future research on the possible existence of such subgroups could prove to be valuable for uncovering the biological development of sexual orientation. Recommendations for such future research are discussed.
Collapse
Affiliation(s)
- Doug P VanderLaan
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Malvina N Skorska
- Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Diana E Peragine
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Lindsay A Coome
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
14
|
Rehmann-Sutter C, Hiort O, Krämer UM, Malich L, Spielmann M. Is sex still binary? MED GENET-BERLIN 2023; 35:173-180. [PMID: 38840819 PMCID: PMC10842549 DOI: 10.1515/medgen-2023-2039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
In this perspective article we discuss the limitations of sex as a binary concept and how it is challenged by medical developments and a better understanding of gender diversity. Recent data indicate that sex is not a simple binary classification based solely on genitalia at birth or reproductive capacity but encompasses various biological characteristics such as chromosomes, hormones, and secondary sexual characteristics. The existence of individuals with differences in sex development (DSD) who do not fit typical male or female categories further demonstrates the complexity of sex. We argue that the belief that sex is strictly binary based on gametes is insufficient, as there are multiple levels of sex beyond reproductivity. We also explore the role of sex in sex determination, gene expression, brain development, and behavioural patterns and emphasize the importance of recognizing sex diversity in personalized medicine, as sex can influence disease presentation, drug response, and treatment effectiveness. Finally, we call for an inter- and transdisciplinary approach to study sex diversity and develop new categories and methodologies that go beyond a binary model.
Collapse
Affiliation(s)
- Christoph Rehmann-Sutter
- Universität zu LübeckInstitut für Medizingeschichte und WissenschaftsforschungKönigstraße 2023552LübeckDeutschland
| | - Olaf Hiort
- Universität zu LübeckKlinik für Kinder- und Jugendmedizin, Sektion für Pädiatrische Endokrinologie und DiabetologieRatzeburger Allee 16023538LübeckDeutschland
| | - Ulrike M. Krämer
- Universität zu LübeckKlinik für NeurologieRatzeburger Allee 16023538LübeckDeutschland
| | - Lisa Malich
- Universität zu LübeckInstitut für Medizingeschichte und WissenschaftsforschungKönigstraße 2023552LübeckDeutschland
| | - Malte Spielmann
- University Medical Center Schleswig-Holstein, University of Lübeck & Kiel University, Institute of Human GeneticsRatzeburger Allee 16023562LübeckDeutschland
| |
Collapse
|
15
|
Nebe S, Reutter M, Baker DH, Bölte J, Domes G, Gamer M, Gärtner A, Gießing C, Gurr C, Hilger K, Jawinski P, Kulke L, Lischke A, Markett S, Meier M, Merz CJ, Popov T, Puhlmann LMC, Quintana DS, Schäfer T, Schubert AL, Sperl MFJ, Vehlen A, Lonsdorf TB, Feld GB. Enhancing precision in human neuroscience. eLife 2023; 12:e85980. [PMID: 37555830 PMCID: PMC10411974 DOI: 10.7554/elife.85980] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023] Open
Abstract
Human neuroscience has always been pushing the boundary of what is measurable. During the last decade, concerns about statistical power and replicability - in science in general, but also specifically in human neuroscience - have fueled an extensive debate. One important insight from this discourse is the need for larger samples, which naturally increases statistical power. An alternative is to increase the precision of measurements, which is the focus of this review. This option is often overlooked, even though statistical power benefits from increasing precision as much as from increasing sample size. Nonetheless, precision has always been at the heart of good scientific practice in human neuroscience, with researchers relying on lab traditions or rules of thumb to ensure sufficient precision for their studies. In this review, we encourage a more systematic approach to precision. We start by introducing measurement precision and its importance for well-powered studies in human neuroscience. Then, determinants for precision in a range of neuroscientific methods (MRI, M/EEG, EDA, Eye-Tracking, and Endocrinology) are elaborated. We end by discussing how a more systematic evaluation of precision and the application of respective insights can lead to an increase in reproducibility in human neuroscience.
Collapse
Affiliation(s)
- Stephan Nebe
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
| | - Mario Reutter
- Department of Psychology, Julius-Maximilians-UniversityWürzburgGermany
| | - Daniel H Baker
- Department of Psychology and York Biomedical Research Institute, University of YorkYorkUnited Kingdom
| | - Jens Bölte
- Institute for Psychology, University of Münster, Otto-Creuzfeldt Center for Cognitive and Behavioral NeuroscienceMünsterGermany
| | - Gregor Domes
- Department of Biological and Clinical Psychology, University of TrierTrierGermany
- Institute for Cognitive and Affective NeuroscienceTrierGermany
| | - Matthias Gamer
- Department of Psychology, Julius-Maximilians-UniversityWürzburgGermany
| | - Anne Gärtner
- Faculty of Psychology, Technische Universität DresdenDresdenGermany
| | - Carsten Gießing
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of OldenburgOldenburgGermany
| | - Caroline Gurr
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe UniversityFrankfurtGermany
- Brain Imaging Center, Goethe UniversityFrankfurtGermany
| | - Kirsten Hilger
- Department of Psychology, Julius-Maximilians-UniversityWürzburgGermany
- Department of Psychology, Psychological Diagnostics and Intervention, Catholic University of Eichstätt-IngolstadtEichstättGermany
| | - Philippe Jawinski
- Department of Psychology, Humboldt-Universität zu BerlinBerlinGermany
| | - Louisa Kulke
- Department of Developmental with Educational Psychology, University of BremenBremenGermany
| | - Alexander Lischke
- Department of Psychology, Medical School HamburgHamburgGermany
- Institute of Clinical Psychology and Psychotherapy, Medical School HamburgHamburgGermany
| | - Sebastian Markett
- Department of Psychology, Humboldt-Universität zu BerlinBerlinGermany
| | - Maria Meier
- Department of Psychology, University of KonstanzKonstanzGermany
- University Psychiatric Hospitals, Child and Adolescent Psychiatric Research Department (UPKKJ), University of BaselBaselSwitzerland
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University BochumBochumGermany
| | - Tzvetan Popov
- Department of Psychology, Methods of Plasticity Research, University of ZurichZurichSwitzerland
| | - Lara MC Puhlmann
- Leibniz Institute for Resilience ResearchMainzGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Daniel S Quintana
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- NevSom, Department of Rare Disorders & Disabilities, Oslo University HospitalOsloNorway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), University of OsloOsloNorway
| | - Tim Schäfer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe UniversityFrankfurtGermany
- Brain Imaging Center, Goethe UniversityFrankfurtGermany
| | | | - Matthias FJ Sperl
- Department of Clinical Psychology and Psychotherapy, University of GiessenGiessenGermany
- Center for Mind, Brain and Behavior, Universities of Marburg and GiessenGiessenGermany
| | - Antonia Vehlen
- Department of Biological and Clinical Psychology, University of TrierTrierGermany
| | - Tina B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
- Department of Psychology, Biological Psychology and Cognitive Neuroscience, University of BielefeldBielefeldGermany
| | - Gordon B Feld
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Department of Psychology, Heidelberg UniversityHeidelbergGermany
- Department of Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| |
Collapse
|
16
|
Zelco A, Wapeesittipan P, Joshi A. Insights into Sex and Gender Differences in Brain and Psychopathologies Using Big Data. Life (Basel) 2023; 13:1676. [PMID: 37629533 PMCID: PMC10455614 DOI: 10.3390/life13081676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/27/2023] Open
Abstract
The societal implication of sex and gender (SG) differences in brain are profound, as they influence brain development, behavior, and importantly, the presentation, prevalence, and therapeutic response to diseases. Technological advances have enabled speed up identification and characterization of SG differences during development and in psychopathologies. The main aim of this review is to elaborate on new technological advancements, such as genomics, imaging, and emerging biobanks, coupled with bioinformatics analyses of data generated from these technologies have facilitated the identification and characterization of SG differences in the human brain through development and psychopathologies. First, a brief explanation of SG concepts is provided, along with a developmental and evolutionary context. We then describe physiological SG differences in brain activity and function, and in psychopathologies identified through imaging techniques. We further provide an overview of insights into SG differences using genomics, specifically taking advantage of large cohorts and biobanks. We finally emphasize how bioinformatics analyses of big data generated by emerging technologies provides new opportunities to reduce SG disparities in health outcomes, including major challenges.
Collapse
Affiliation(s)
| | | | - Anagha Joshi
- Department of Clinical Science, Computational Biology Unit, University of Bergen, 5020 Bergen, Norway; (A.Z.); (P.W.)
| |
Collapse
|
17
|
Torgerson C, Ahmadi H, Choupan J, Fan CC, Blosnich JR, Herting MM. Sex, gender diversity, and brain structure in children ages 9 to 11 years old. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551036. [PMID: 37546960 PMCID: PMC10402171 DOI: 10.1101/2023.07.28.551036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
There remains little consensus about the relationship between sex and brain structure, particularly in childhood. Moreover, few pediatric neuroimaging studies have analyzed both sex and gender as variables of interest - many of which included small sample sizes and relied on binary definitions of gender. The current study examined gender diversity with a continuous felt-gender score and categorized sex based on X and Y allele frequency in a large sample of children ages 9-11 years-old (N=7693). Then, a statistical model-building approach was employed to determine whether gender diversity and sex independently or jointly relate to brain morphology, including subcortical volume, cortical thickness, gyrification, and white matter microstructure. The model with sex, but not gender diversity, was the best-fitting model in 75% of gray matter regions and 79% of white matter regions examined. The addition of gender to the sex model explained significantly more variance than sex alone with regard to bilateral cerebellum volume, left precentral cortical thickness, as well as gyrification in the right superior frontal gyrus, right parahippocampal gyrus, and several regions in the left parietal lobe. For mean diffusivity in the left uncinate fasciculus, the model with sex, gender, and their interaction captured the most variance. Nonetheless, the magnitude of variance accounted for by sex was small in all cases and felt-gender score was not a significant predictor on its own for any white or gray matter regions examined. Overall, these findings demonstrate that at ages 9-11 years-old, sex accounts for a small proportion of variance in brain structure, while gender diversity is not directly associated with neurostructural diversity.
Collapse
Affiliation(s)
- Carinna Torgerson
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Chun Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, School of Medicine, University of California, San Diego
| | - John R. Blosnich
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Zheng S, Fang J, Bai G, He X, Hua M, Zhu B, Chen W, Dong W, Wang L, Huang X, Wang H, Shao J. The association between parental risks and childhood development: findings from a community-based survey in East China. BMC Public Health 2023; 23:878. [PMID: 37173709 PMCID: PMC10176942 DOI: 10.1186/s12889-023-15702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Nurturing care is necessary for optimal early childhood development. This study aimed to investigate the prevalence of parental risks in rural East China and assess their impacts on early development in children younger than three years old. METHODS This community-based cross-sectional survey was conducted among 3852 caregiver-child pairs in Zhejiang Province from December 2019 to January 2020. Children aged 0 to 3 years were recruited from China's Early Childhood Development Program (ECD). Local child health care providers conducted face-to-face interviews with the primary caregivers. Demographic information of the participants was collected by questionnaire. Each child was screened for parental risk through the Parental Risk Checklist designed by the ECD program. The Ages and Stages Questionnaire (ASQ) was used to identify children with potential developmental delays. Multinomial logistic regression model and linear trend test were applied to assess the association between parental risks and suspected developmental delays. RESULTS Among the 3852 children included in the analyses, 46.70% had at least one parental risk and 9.01% presented suspected developmental delays in any domain of ASQ. Parental risk was statistically associated with the overall suspected developmental delay in young children (Relative Risk Ratio (RRR): 1.36; 95% confidence interval (CI): 1.08, 1.72; P = 0.010) after adjusting potential confounders. Compared with children with no parental risk, children exposed to 3 or more parental risks had 2.59, 5.76, 3.95, and 2.84 times higher risk of the suspected developmental delay in overall ASQ, communication, problem-solving, and personal-social domain, respectively (P values < 0.05). The linear trend tests found that the more parental risks, the higher possibility of developmental delay (P values < 0.05). CONCLUSIONS Parental risks are prevalent among children under three years in rural East China, which may increase the risk of developmental delays in children. Meanwhile, parental risk screening can be used to recognize poor nurturing care in primary health care settings. Targeted interventions are warranted to improve nurturing care for optimal early childhood development.
Collapse
Affiliation(s)
- Shuangshuang Zheng
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 57 Zhu-Gan Road, Gongshu District, 310003, Hangzhou, China
| | - Jianing Fang
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 57 Zhu-Gan Road, Gongshu District, 310003, Hangzhou, China
| | - Guannan Bai
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 57 Zhu-Gan Road, Gongshu District, 310003, Hangzhou, China
| | - Xinyu He
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 57 Zhu-Gan Road, Gongshu District, 310003, Hangzhou, China
| | - Mengdi Hua
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 57 Zhu-Gan Road, Gongshu District, 310003, Hangzhou, China
| | - Bingquan Zhu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 57 Zhu-Gan Road, Gongshu District, 310003, Hangzhou, China
| | - Weijun Chen
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 57 Zhu-Gan Road, Gongshu District, 310003, Hangzhou, China
| | - Wenhong Dong
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 57 Zhu-Gan Road, Gongshu District, 310003, Hangzhou, China
| | - Lei Wang
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 57 Zhu-Gan Road, Gongshu District, 310003, Hangzhou, China
| | - Xiaona Huang
- Section of Child Health and Development, the United Nations Children's Fund, UNICEF Office for China, Beijing, China
| | - Huishan Wang
- Department of Children Health, National Center for Maternal and Children Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Shao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 57 Zhu-Gan Road, Gongshu District, 310003, Hangzhou, China.
| |
Collapse
|
19
|
Reale C, Invernizzi F, Panteghini C, Garavaglia B. Genetics, sex, and gender. J Neurosci Res 2023; 101:553-562. [PMID: 34498752 DOI: 10.1002/jnr.24945] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
This review aims to give an overview of what has been discovered so far and what still needs to be analyzed about how sex and gender affect the disease development. These two terms are often confused and indifferently used. In principle, the term "sex" refers to biological differences between males and females, specifically reproductive organs and their functions, while the term "gender" refers to the social context in which people live and which contributes to a subjective sexual identity, masculine or feminine. This dichotomy, however, is not so rigid and both sex and gender influence different aspects of human health, such as brain, health and aging and drug treatment and pharmacokinetics. In particular, we want to focus on genetic differences between men and women: indeed, the expression of the genes mapped on X chromosome or Y chromosome and all epigenetic interactions affect the diseases development. Finally, we will briefly outline sex and gender differences in clinical manifestations of three neurological diseases: Alzheimer's disease, Parkinson's disease, and obsessive compulsive disorder. In the era of personalized medicine, we must not forget the importance of gender medicine to promote personalized care for any kind of patients.
Collapse
Affiliation(s)
- Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| |
Collapse
|
20
|
Bölte S, Neufeld J, Marschik PB, Williams ZJ, Gallagher L, Lai MC. Sex and gender in neurodevelopmental conditions. Nat Rev Neurol 2023; 19:136-159. [PMID: 36747038 PMCID: PMC10154737 DOI: 10.1038/s41582-023-00774-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Health-related conditions often differ qualitatively or quantitatively between individuals of different birth-assigned sexes and gender identities, and/or with different gendered experiences, requiring tailored care. Studying the moderating and mediating effects of sex-related and gender-related factors on impairment, disability, wellbeing and health is of paramount importance especially for neurodivergent individuals, who are diagnosed with neurodevelopmental conditions with uneven sex/gender distributions. Researchers have become aware of the myriad influences that sex-related and gender-related variables have on the manifestations of neurodevelopmental conditions, and contemporary work has begun to investigate the mechanisms through which these effects are mediated. Here we describe topical concepts of sex and gender science, summarize current knowledge, and discuss research and clinical challenges related to autism, attention-deficit/hyperactivity disorder and other neurodevelopmental conditions. We consider sex and gender in the context of epidemiology, behavioural phenotypes, neurobiology, genetics, endocrinology and neighbouring disciplines. The available evidence supports the view that sex and gender are important contributors to the biological and behavioural variability in neurodevelopmental conditions. Methodological caveats such as frequent conflation of sex and gender constructs, inappropriate measurement of these constructs and under-representation of specific demographic groups (for example, female and gender minority individuals and people with intellectual disabilities) limit the translational potential of research so far. Future research and clinical implementation should integrate sex and gender into next-generation diagnostics, mechanistic investigations and support practices.
Collapse
Affiliation(s)
- Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia.
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Peter B Marschik
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- iDN - interdisciplinary Developmental Neuroscience, Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Zachary J Williams
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
21
|
Ivan S, Daniela O, Jaroslava BD. Sex differences matter: Males and females are equal but not the same. Physiol Behav 2023; 259:114038. [PMID: 36423797 DOI: 10.1016/j.physbeh.2022.114038] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Sex differences between males and females can be detected early in life. They are present also later even to a much greater extent affecting our life in adulthood and a wide spectrum of physical, psychological, cognitive, and behavioral characteristics. Moreover, sex differences matter also in individual's health and disease. In this article, we reviewed at first the sex differences in brain organization and function with respect to the underlying biological mechanisms. Since the individual functional differences in the brain, in turn, shape the behavior, sex-specific psychological/behavioral differences that can be observed in infants but also adults are consequently addressed. Finally, we briefly mention sex-dependent variations in susceptibility to selected disorders as well as their pathophysiology, diagnosis, and response to therapy. The understanding of biologically determined variability between males and females can have important implications, especially in gender-specific health care. We have the impression that it is very important to emphasize that sex matters. Males and females are differently programmed by nature, and it must be respected. Even though we as males and females are not the same, we would like to emphasize that we are still equal and together form a worthy colorful continuum.
Collapse
Affiliation(s)
- Szadvári Ivan
- Institute of Physiology, Medical School, Comenius University, Bratislava, Slovakia
| | - Ostatníková Daniela
- Institute of Physiology, Medical School, Comenius University, Bratislava, Slovakia
| | | |
Collapse
|
22
|
Frankfurt M, Nassrallah Z, Luine V. Steroid Hormone Interaction with Dendritic Spines: Implications for Neuropsychiatric Disease. ADVANCES IN NEUROBIOLOGY 2023; 34:349-366. [PMID: 37962800 DOI: 10.1007/978-3-031-36159-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines, key sites for neural plasticity, are influenced by gonadal steroids. In this chapter, we review the effects of gonadal steroids on dendritic spine density in areas important to cognitive function, the hippocampus, and prefrontal cortex. Most of these animal model studies investigated the effects of estrogen in females, but we also include more recent data on androgen effects in both males and females. The underlying genomic and non-genomic mechanisms related to gonadal steroid-induced spinogenesis are also reviewed. Subsequently, we discuss possible reasons for the observed sex differences in many neuropsychiatric diseases, which appear to be caused, in part, by aberrant synaptic connections that may involve dendritic spine pathology. Overall, knowledge concerning the regulation of dendritic spines by gonadal hormones has grown since the initial discoveries in the 1990s, and current research points to a potential role for aberrant spine functioning in many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maya Frankfurt
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hempstead, NY, USA.
| | - Zeinab Nassrallah
- Department of Science Education Zucker School of Medicine, 500 Hofstra University, Hempstead, NY, USA
| | - Victoria Luine
- Department of Psychology, Hunter College, New York, NY, USA
| |
Collapse
|
23
|
Lun T, Wang D, Li L, Zhou J, Zhao Y, Chen Y, Yin X, Ou S, Yu J, Song R. Low-dissipation optimization of the prefrontal cortex in the -12° head-down tilt position: A functional near-infrared spectroscopy study. Front Psychol 2022; 13:1051256. [PMID: 36619014 PMCID: PMC9815614 DOI: 10.3389/fpsyg.2022.1051256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Our present study set out to investigate the instant state of the prefrontal cortex (PFC) in healthy subjects before and after placement in the -12°head-down tilt (HDT) position in order to explore the mechanism behind the low-dissipation optimization state of the PFC. Methods 40 young, right-handed healthy subjects (male: female = 20: 20) were enrolled in this study. Three resting state positions, 0°initial position, -12°HDT position, and 0°rest position were sequentially tested, each for 10 minutes. A continuous-wave functional near-infrared spectroscopy (fNIRS) instrument was used to assess the resting state hemodynamic data of the PFC. After preprocessing the hemodynamics data, we evaluated changes in resting-state functional connectivity (rsFC) level and beta values of PFC. The subjective visual analogue scale (VAS) was applied before and after the experiment. The presence of sleep changes or adverse reactions were also recorded. Results Pairwise comparisons of the concentrations of oxyhemoglobin (HbO), deoxyhemoglobin (HbR), and hemoglobin (HbT) revealed significant differences in the aforementioned positions. Specifically, the average rsFC of PFC showed a gradual increase throughout the whole process. In addition, based on graph theory, the topological properties of brain network, such as small-world network and nodal degree centrality were analyzed. The results show that global efficiency and small-world sigma (σ) value were differences between 0°initial and 0°rest. Discussion In this study, placement in the -12°HDT had a significant effect on PFC function, mainly manifested as self-inhibition, decreased concentration of HbO in the PFC, and improved rsFC, which may provide ideas to the understanding and explanation of neurological diseases.
Collapse
Affiliation(s)
- Tingting Lun
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dexin Wang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Li
- College of TCM health care, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Junliang Zhou
- Department of Traditional Chinese Medicine, Nanhai District Maternal and Child Health Hospital, Foshan, China
| | - Yunxuan Zhao
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuecai Chen
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuntao Yin
- Department of Radiology, Guangzhou women and children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shanxing Ou
- Department of Radiology, Southern Theater Command Hospital of PLA, Guangzhou, China
| | - Jin Yu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Jin Yu, Rong Song
| | - Rong Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China,*Correspondence: Jin Yu, Rong Song
| |
Collapse
|
24
|
Skorska MN, Lobaugh NJ, Lombardo MV, van Bruggen N, Chavez S, Thurston LT, Aitken M, Zucker KJ, Chakravarty MM, Lai MC, VanderLaan DP. Inter-Network Brain Functional Connectivity in Adolescents Assigned Female at Birth Who Experience Gender Dysphoria. Front Endocrinol (Lausanne) 2022; 13:903058. [PMID: 35937791 PMCID: PMC9353716 DOI: 10.3389/fendo.2022.903058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Gender dysphoria (GD) is characterized by distress due to an incongruence between experienced gender and sex assigned at birth. Brain functional connectivity in adolescents who experience GD may be associated with experienced gender (vs. assigned sex) and/or brain networks implicated in own-body perception. Furthermore, sexual orientation may be related to brain functional organization given commonalities in developmental mechanisms proposed to underpin GD and same-sex attractions. Here, we applied group independent component analysis to resting-state functional magnetic resonance imaging (rs-fMRI) BOLD timeseries data to estimate inter-network (i.e., between independent components) timeseries correlations, representing functional connectivity, in 17 GD adolescents assigned female at birth (AFAB) not receiving gender-affirming hormone therapy, 17 cisgender girls, and 15 cisgender boys (ages 12-17 years). Sexual orientation was represented by degree of androphilia-gynephilia and sexual attractions strength. Multivariate partial least squares analyses found that functional connectivity differed among cisgender boys, cisgender girls, and GD AFAB, with the largest difference between cisgender boys and GD AFAB. Regarding sexual orientation and age, the brain's intrinsic functional organization of GD AFAB was both similar to and different from cisgender girls, and both differed from cisgender boys. The pattern of group differences and the networks involved aligned with the hypothesis that brain functional organization is different among GD AFAB (vs. cisgender) adolescents, and certain aspects of this organization relate to brain areas implicated in own-body perception and self-referential thinking. Overall, brain functional organization of GD AFAB was generally more similar to that of cisgender girls than cisgender boys.
Collapse
Affiliation(s)
- Malvina N. Skorska
- Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Nancy J. Lobaugh
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Nina van Bruggen
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lindsey T. Thurston
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Madison Aitken
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kenneth J. Zucker
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - M. Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, PQ, Canada
- Department of Psychiatry, McGill University, Montreal, PQ, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, PQ, Canada
| | - Meng-Chuan Lai
- Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry and Autism Research Unit, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Doug P. VanderLaan
- Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
25
|
Cicchella A. Recommendations for Resuming PA after Prolonged Rest in Children and Adolescents: A Systematic Integrative Review of Relevance for Immunity. J Funct Morphol Kinesiol 2022; 7:47. [PMID: 35736018 PMCID: PMC9224580 DOI: 10.3390/jfmk7020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
This systematic integrative review aims to summarize the protective effect of PA on children and adolescents, with special reference to the immune system. Periods of prolonged inactivity in children and adolescents are rare and due to exceptional events, such as illness or environmental circumstances, e.g., natural disasters, wars, or epidemics. The recent COVID-19 pandemic forced billions of children in developmental ages into inactivity. This exceptional event was the reason for studying the compensational behavioral strategies adopted by children and adolescents to counteract physical inactivity. Several studies showed the rise of spontaneous physical activity (PA) among children and adolescents to compensate for sedentarism. However, for some children, sedentarism could in turn foster other sedentarism. With the restart of "normal daily life" worldwide, a question is posed on both how to resume PA without causing damage and how to improve the immune response. Some key points emerged from the literature. Children must resume PA gradually using different methods, considering age, sex, health status, and the presence of overweight conditions. Immunity can be stimulated with PA by aerobic exercise, resistance training, flexibility exercise, relaxation, and coordinative exercises.
Collapse
Affiliation(s)
- Antonio Cicchella
- International College of Football, Shanghai Tongji University, 1239 Siping Road, Shanghai 200092, China;
- Department for Quality-of-Life Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
26
|
Mulak A, Larauche M, Taché Y. Sexual Dimorphism in the Gut Microbiome: Microgenderome or Microsexome? J Neurogastroenterol Motil 2022; 28:332-333. [PMID: 35362460 PMCID: PMC8978118 DOI: 10.5056/jnm21242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| | - Muriel Larauche
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
27
|
Alderson J, Hamblin RP, Crowne EC. Psychological Care of Children and Families with Variations or Differences in Sex Development. Horm Res Paediatr 2022; 96:222-227. [PMID: 35390804 DOI: 10.1159/000524517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/01/2022] [Indexed: 11/19/2022] Open
Abstract
Paediatric clinical psychology literature provides applicable evidence for use in specialist health care settings and services. The general approach of psychological care of children and families with paediatric conditions is recognisable as preventative and de-stigmatising, aimed to maximise personal agency with shared responsibility for achieving best outcomes via multi-professional teamwork. Recent commentaries regarding healthcare for children with different sex development (DSD), have noted service-level pitfalls including poor teamwork and underuse of early and integrated psychological intervention. Psychological research regarding the variously termed DSD, Variations in Sex Development (VSD, Variation in Sex Characteristics (VSC), or intersex, has historically centred around the assessment of sex differences, gender identity and the impact of including hormone influences on brain and behaviour. Psychological research in this specialist area has not focussed on the evaluation of specific clinical interventions or psychotherapeutic models but has investigated psychological aspects of multi-professional healthcare provision. There are new goals for psychological care of children with variation or difference in sex development. These require a framework of good communication to enable those receiving care to come to know and articulate their own hopes for treatment and support. Paediatric psychological intervention studies involving larger clinical groups such as diabetes, provide evidence applicable to DSD populations. A risk of stigma is recognised as inherent to some physical interventions within routine paediatric care of people with variations or differences in sex development. Psychological care and intervention should be aimed at minimising these risks via questioning and examining their assumed need. Psychological approaches can provide a foundation for ethical and rights-based multi-professional care of children with variation or difference in sex development.
Collapse
|
28
|
Ponzi D. An introduction to the Special Issue on “Sports Science: Evolutionary Perspectives and Biological Mechanisms”. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2022. [DOI: 10.1007/s40750-022-00187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe goal of the special issue on “Sports science: evolutionary perspectives and biological mechanisms” was to build a bridge to help the development of a coherent and unifying approach to the study of sport science within an evolutionary framework. By focusing specifically on the biological and psychological dynamics of sport performance and competition, we asked if sports can be used to study the evolution of human behavior, biology and psychology. Likewise, we asked whether this evolutionary approach could improve our understandings of the physical and psychological limits of human athletic performance and health.
Collapse
|
29
|
Kelava I, Chiaradia I, Pellegrini L, Kalinka AT, Lancaster MA. Androgens increase excitatory neurogenic potential in human brain organoids. Nature 2022; 602:112-116. [PMID: 35046577 PMCID: PMC7612328 DOI: 10.1038/s41586-021-04330-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
The biological basis of male-female brain differences has been difficult to elucidate in humans. The most notable morphological difference is size, with male individuals having on average a larger brain than female individuals1,2, but a mechanistic understanding of how this difference arises remains unknown. Here we use brain organoids3 to show that although sex chromosomal complement has no observable effect on neurogenesis, sex steroids-namely androgens-lead to increased proliferation of cortical progenitors and an increased neurogenic pool. Transcriptomic analysis and functional studies demonstrate downstream effects on histone deacetylase activity and the mTOR pathway. Finally, we show that androgens specifically increase the neurogenic output of excitatory neuronal progenitors, whereas inhibitory neuronal progenitors are not increased. These findings reveal a role for androgens in regulating the number of excitatory neurons and represent a step towards understanding the origin of sex-related brain differences in humans.
Collapse
Affiliation(s)
- Iva Kelava
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
| | - Ilaria Chiaradia
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Laura Pellegrini
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Alex T Kalinka
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
30
|
Luo Q, Sahakian BJ. Brain sex differences: the androgynous brain is advantageous for mental health and well-being. Neuropsychopharmacology 2022; 47:407-408. [PMID: 34400779 PMCID: PMC8616918 DOI: 10.1038/s41386-021-01141-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Qiang Luo
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Clinical Research Center for Aging and Medicine at Huashan Hospital, Fudan University, Shanghai, China
| | - Barbara J. Sahakian
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China ,grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Spires-Jones TL. OUP accepted manuscript. Brain Commun 2022; 4:fcac028. [PMID: 35261975 PMCID: PMC8896755 DOI: 10.1093/braincomms/fcac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
|
32
|
Burgund ED. Task-domain and hemisphere-asymmetry effects in cisgender and transmale individuals. PLoS One 2021; 16:e0260542. [PMID: 34874973 PMCID: PMC8651105 DOI: 10.1371/journal.pone.0260542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
The present research examined the extent to which transmale individuals’ functional brain organization resembles that of their assigned sex or gender identity. Cisgender-female, cisgender-male, and transmale participants, who were assigned female sex but did not have a female gender identity, were compared in terms of effects that have been observed in cisgender individuals: task-domain effects, in which males perform better than females on spatial tasks and females perform better than males on verbal tasks; and hemisphere-asymmetry effects, in which males show larger differences between the left and right hemispheres than females. In addition, the present research measured participants’ intelligence in order to control for potential moderating effects. Participants performed spatial (mental rotation) and verbal (lexical decision) tasks presented to each hemisphere using a divided-visual field paradigm, and then completed an intelligence assessment. In the mental-rotation task, cismale and transmale participants performed better than cisfemale participants, however this group difference was explained by intelligence scores, with higher scores predicting better performance. In the lexical-decision task, cismale and transmale participants exhibited a greater left-hemisphere advantage than cisfemales, and this difference was not affected by intelligence scores. Taken together, results do not support task-domain effects when intelligence is accounted for; however, they do demonstrate a hemisphere-asymmetry effect in the verbal domain that is moderated by gender identity and not assigned sex.
Collapse
Affiliation(s)
- E. Darcy Burgund
- Department of Psychology, Macalester College, Saint Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
33
|
Navarro-Pardo E, Suay F, Murphy M. Ageing: Not only an age-related issue. Mech Ageing Dev 2021; 199:111568. [PMID: 34536447 DOI: 10.1016/j.mad.2021.111568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Developments in the last century have led to an unprecedented increase in life expectancy. These changes open opportunities for humans to grow and develop in healthy and adaptive ways, adding life to years as well as years to life. There are also challenges, however - as we live longer, a greater number of people will experience chronic illness and disability, often linked to lifestyle factors. The current paper advances an argument that there are fundamental biological sex differences which, sometimes directly and sometime mediated by lifestyle factors, underpin the marked differences in morbidity and mortality that we find between the sexes. Furthermore, we argue that it is necessary to consider sex as a key factor in research on healthy ageing, allowing for the possibility that different patterns exist between males and females, and that therefore different approaches and interventions are required to optimise healthy ageing in both sexes.
Collapse
Affiliation(s)
- Esperanza Navarro-Pardo
- Department of Developmental and Educational Psychology, Universitat de València, Av. Blasco Ibañez, 21, 46008, València, Spain
| | - Ferran Suay
- Department of Biopsychology, Universitat de València, Av. Blasco Ibañez, 21, 46008, València, Spain
| | - Mike Murphy
- School of Applied Psychology, University College Cork, North Mall Campus, Cork, Ireland.
| |
Collapse
|
34
|
Li Y, Dong J, Xiao H, Wang B, Chen Z, Zhang S, Jin Y, Li Y, Fan S, Cui M. Caloric restriction alleviates radiation injuries in a sex-dependent fashion. FASEB J 2021; 35:e21787. [PMID: 34320242 DOI: 10.1096/fj.202100351rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Safe and effective regimens are still needed given the risk of radiation toxicity from iatrogenic irradiation. The gut microbiota plays an important role in radiation damage. Diet has emerged as a key determinant of the intestinal microbiome signature and function. In this report, we investigated whether a 30% caloric restriction (CR) diet may ameliorate radiation enteritis and hematopoietic toxicity. Experimental mice were either fed ad libitum (AL) or subjected to CR preconditioning for 10 days and then exposed to total body irradiation (TBI) or total abdominal irradiation (TAI). Gross examinations showed that short-term CR pretreatment restored hematogenic organs and improved the intestinal architecture in both male and female mice. Intriguingly, CR preconditioning mitigated radiation-induced systemic and enteric inflammation in female mice, while gut barrier function improved in irradiated males. 16S rRNA high-throughput sequencing showed that the frequency of pro-inflammatory microbes, including Helicobacter and Desulfovibrionaceae, was reduced in female mice after 10 days of CR preconditioning, while an enrichment of short-chain fatty acid (SCFA)-producing bacteria, such as Faecalibaculum, Clostridiales, and Lactobacillus, was observed in males. Using fecal microbiota transplantation (FMT) or antibiotic administration to alter the gut microbiota counteracted the short-term CR-elicited radiation tolerance of both male and female mice, further indicating that the radioprotection of a 30% CR diet depends on altering the gut microbiota. Together, our findings provide new insights into CR in clinical applications and indicate that a short-term CR diet prior to radiation modulates sex-specific gut microbiota configurations, protecting male and female mice against the side effects caused by radiation challenge.
Collapse
Affiliation(s)
- Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huiwen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhiyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuxiao Jin
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
35
|
Moretti B, Spinarelli A, Varrassi G, Massari L, Gigante A, Iolascon G, Benedetti MG, Moretti AM. Influence of sex and gender on the management of late-stage knee osteoarthritis. Musculoskelet Surg 2021; 106:457-467. [PMID: 34363604 DOI: 10.1007/s12306-021-00725-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/25/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The exact nature of sex and gender differences in knee osteoarthritis (OA) among patient candidates for total knee arthroplasty (TKA) remains unclear and requires better elucidation to guide clinical practice. The purpose of this investigation was to survey physician practices and perceptions about the influence of sex and gender on knee OA presentation, care, and outcomes after TKA. METHODS The survey questions were elaborated by a multidisciplinary scientific board composed of 1 pain specialist, 4 orthopedic specialists, 2 physiatrists, and 1 expert in gender medicine. The survey included 5 demographic questions and 20 topic questions. Eligible physician respondents were those who treat patients during all phases of care (pain specialists, orthopedic specialists, and physiatrists). All survey responses were anonymized and handled via remote dispersed geographic participation. RESULTS Fifty-six physicians (71% male) accepted the invitation to complete the survey. In general, healthcare professionals expressed that women presented worse symptomology, higher pain intensity, and lower pain tolerance and necessitated a different pharmacological approach compared to men. Pain and orthopedic specialists were more likely to indicate sex and gender differences in knee OA than physiatrists. Physicians expressed that the absence of sex and gender-specific instruments and indications is an important limitation on available studies. CONCLUSIONS Healthcare professionals perceive multiple sex and gender-related differences in patients with knee OA, especially in the pre- and perioperative phases of TKA. Sex and gender bias sensitivity training for physicians can potentially improve the objectivity of care for knee OA among TKA candidates.
Collapse
Affiliation(s)
- B Moretti
- Department of Medical Sciences of Basis, Neurosciences and Organs of Sense, General Hospital, Faculty of Medicine and Surgery, University of Study of Bari, Bari, Italy
| | - A Spinarelli
- Department of Orthopedic and Trauma Unit, AOU Policlinico Consorziale Hospital, P.zza G. Cesare 11, 70124, Bari, BA, Italy.
| | | | - L Massari
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - A Gigante
- Clinical Orthopedics, Department of Clinical and Molecular Science, Università Politecnica Delle Marche and Ospedali Riuniti Ancona, Ancona, Italy
| | - G Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - M G Benedetti
- Physical Medicine and Rehabilitation Unit, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - A M Moretti
- Italian Group for Health and Gender, Bari, Italy
| |
Collapse
|
36
|
Kung KTF, Thankamony A, Ong KKL, Acerini CL, Dunger DB, Hughes IA, Hines M. No relationship between prenatal or early postnatal androgen exposure and autistic traits: evidence using anogenital distance and penile length measurements at birth and 3 months of age. J Child Psychol Psychiatry 2021; 62:876-883. [PMID: 33049073 DOI: 10.1111/jcpp.13335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Autism is more prevalent in males than in females. Hypotheses related to the extreme male brain theory of autism suggest that heightened androgen exposure during early development contributes to autistic traits. Whilst prior research focused mostly on the prenatal period, the current study tests the influences of androgen exposure during both the prenatal and the early postnatal periods on autistic traits during childhood. METHODS Anthropometric measures that are putative biomarkers of early androgen exposure were employed. Anogenital distance (AGD) was measured at birth and 3 months of age in boys and girls. Penile length at birth and 3 months of age was also measured in boys. When the children were 9-13 years old, a parent-reported questionnaire (the 10-item children's version of the Autism Spectrum Quotient; AQ-10 Child) was used to assess autistic traits in 97 boys and 110 girls. RESULTS There were no significant associations between any of the AGD or penile length measures and scores on the AQ-10 Child in boys, girls or the entire sample. CONCLUSIONS The current study provides the first test of whether early measurements of AGD and/or penile length predict subsequent autistic traits. The current findings do not support a relationship between prenatal or early postnatal androgen exposure and autistic traits. The current study augments prior research showing no consistent relationship between early androgen exposure and autistic traits.
Collapse
Affiliation(s)
- Karson T F Kung
- Department of Psychology, University of Hong Kong, Pokfulam, Hong Kong.,School of Psychology, University of Kent, Canterbury, UK.,Department of Psychology, University of Cambridge, Cambridge, UK
| | - Ajay Thankamony
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Ken K L Ong
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Carlo L Acerini
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Ieuan A Hughes
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Melissa Hines
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Proverbio AM. Sex differences in the social brain and in social cognition. J Neurosci Res 2021; 101:730-738. [PMID: 33608982 DOI: 10.1002/jnr.24787] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 11/11/2022]
Abstract
Many studies have reported sex differences in empathy and social skills. In this review, several lines of empirical evidences about sex differences in functions and anatomy of social brain are discussed. The most relevant differences involve face processing, facial expression recognition, response to baby schema, the ability to see faces in things, the processing of social interactions, the response to the others' pain, interest in social information, processing of gestures and actions, biological motion, erotic, and affective stimuli. Sex differences in oxytocin-based parental response are also reported. In conclusion, the female and male brains show several neuro-functional differences in various aspects of social cognition, and especially in emotional coding, face processing, and response to baby schema. An interpretation of this sexual dimorphism is provided in the view of evolutionary psychobiology.
Collapse
Affiliation(s)
- Alice Mado Proverbio
- Milan Center for Neuroscience, Department of Psychology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
38
|
Maylott SE, Sansone JR, Jakobsen KV, Simpson EA. Superior Detection of Faces in Male Infants at 2 Months. Child Dev 2021; 92:e621-e634. [PMID: 33492747 DOI: 10.1111/cdev.13543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Females generally attend more to social information than males; however, little is known about the early development of these sex differences. With eye tracking, 2-month olds' (N = 101; 44 females) social orienting to faces was measured within four-item image arrays. Infants were more likely to detect human faces compared to objects, suggesting a functional face detection system. Unexpectedly, males looked longer at human faces than females, and only males looked faster and longer at human faces compared to objects. Females, in contrast, looked less at human faces relative to animal faces and objects, appearing socially disinterested. Notably, this is the first report of a male face detection advantage at any age. These findings suggest a unique stage in early infant social development.
Collapse
|
39
|
Zhang Y, Luo Q, Huang CC, Lo CYZ, Langley C, Desrivières S, Quinlan EB, Banaschewski T, Millenet S, Bokde ALW, Flor H, Garavan H, Gowland P, Heinz A, Ittermann B, Martinot JL, Artiges E, Paillère-Martinot ML, Nees F, Orfanos DP, Poustka L, Fröhner JH, Smolka MN, Walter H, Whelan R, Tsai SJ, Lin CP, Bullmore E, Schumann G, Sahakian BJ, Feng J. The Human Brain Is Best Described as Being on a Female/Male Continuum: Evidence from a Neuroimaging Connectivity Study. Cereb Cortex 2021; 31:3021-3033. [PMID: 33471126 PMCID: PMC8107794 DOI: 10.1093/cercor/bhaa408] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 12/25/2020] [Indexed: 12/30/2022] Open
Abstract
Psychological androgyny has long been associated with greater cognitive flexibility, adaptive behavior, and better mental health, but whether a similar concept can be defined using neural features remains unknown. Using the neuroimaging data from 9620 participants, we found that global functional connectivity was stronger in the male brain before middle age but became weaker after that, when compared with the female brain, after systematic testing of potentially confounding effects. We defined a brain gender continuum by estimating the likelihood of an observed functional connectivity matrix to represent a male brain. We found that participants mapped at the center of this continuum had fewer internalizing symptoms compared with those at the 2 extreme ends. These findings suggest a novel hypothesis proposing that there exists a neuroimaging concept of androgyny using the brain gender continuum, which may be associated with better mental health in a similar way to psychological androgyny.
Collapse
Affiliation(s)
- Yi Zhang
- Shanghai Centre for Mathematical Sciences, Fudan University, Shanghai, 200433, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and Research and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200433, China.,Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Qiang Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and Research and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200433, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Chu-Chung Huang
- Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and Research and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200433, China
| | - Christelle Langley
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Sylvane Desrivières
- Medical Research Council-Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Erin Burke Quinlan
- Medical Research Council-Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, 69117, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, 69117, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Manheim, 69117, Germany.,Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, 68131, Germany
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT 05405, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2, 10587 Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 ``Developmental trajectories & psychiatry''; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; 91190 Gif-sur-Yvette, France.,Etablissement Public de Santé (EPS) Barthélemy Durand, 91700 Sainte-Geneviève-des-Bois, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 ``Developmental trajectories & psychiatry''; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; 91190 Gif-sur-Yvette, France.,Etablissement Public de Santé (EPS) Barthélemy Durand, 91700 Sainte-Geneviève-des-Bois, France
| | - Marie-Laure Paillère-Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 ``Developmental trajectories & psychiatry''; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; 91190 Gif-sur-Yvette, France.,Assistance Publique-Hêpitaux de Paris, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, 75006, France
| | - Frauke Nees
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland.,Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Manheim, 69117, Germany.,Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, 24118, Germany
| | - Dimitri Papadopoulos Orfanos
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Luise Poustka
- Clinic for Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, 1090 Wien, Austria.,Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, 01087, Germany
| | - Juliane H Fröhner
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Michael N Smolka
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ching-Po Lin
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and Research and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200433, China.,Institute of Neuroscience, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ed Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.,Cambridgeshire and Peterborough National Health Service (NHS) Foundation Trust, Huntingdon, CB21 5EF, UK
| | - Gunter Schumann
- PONS Research Group, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, 10117, Germany.,PONS Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and Research and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200433, China.,Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jianfeng Feng
- Shanghai Centre for Mathematical Sciences, Fudan University, Shanghai, 200433, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and Research and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200433, China.,Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200433, China
| | | |
Collapse
|
40
|
A Multi-Modal MRI Analysis of Cortical Structure in Relation to Gender Dysphoria, Sexual Orientation, and Age in Adolescents. J Clin Med 2021; 10:jcm10020345. [PMID: 33477567 PMCID: PMC7831120 DOI: 10.3390/jcm10020345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 01/18/2023] Open
Abstract
Gender dysphoria (GD) is characterized by distress due to an incongruence between experienced gender and sex assigned at birth. Sex-differentiated brain regions are hypothesized to reflect the experienced gender in GD and may play a role in sexual orientation development. Magnetic resonance brain images were acquired from 16 GD adolescents assigned female at birth (AFAB) not receiving hormone therapy, 17 cisgender girls, and 14 cisgender boys (ages 12–17 years) to examine three morphological and microstructural gray matter features in 76 brain regions: surface area (SA), cortical thickness (CT), and T1 relaxation time. Sexual orientation was represented by degree of androphilia-gynephilia and sexual attraction strength. Multivariate analyses found that cisgender boys had larger SA than cisgender girls and GD AFAB. Shorter T1, reflecting denser, macromolecule-rich tissue, correlated with older age and stronger gynephilia in cisgender boys and GD AFAB, and with stronger attractions in cisgender boys. Thus, cortical morphometry (mainly SA) was related to sex assigned at birth, but not experienced gender. Effects of experienced gender were found as similarities in correlation patterns in GD AFAB and cisgender boys in age and sexual orientation (mainly T1), indicating the need to consider developmental trajectories and sexual orientation in brain studies of GD.
Collapse
|
41
|
Treichler EBH, Palmer BW, Wu TC, Thomas ML, Tu XM, Daly R, Lee EE, Jeste DV. Women and Men Differ in Relative Strengths in Wisdom Profiles: A Study of 659 Adults Across the Lifespan. Front Psychol 2021; 12:769294. [PMID: 35185678 PMCID: PMC8850272 DOI: 10.3389/fpsyg.2021.769294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023] Open
Abstract
Wisdom is a multi-component trait that is important for mental health and well-being. In this study, we sought to understand gender differences in relative strengths in wisdom. A total of 659 individuals aged 27-103 years completed surveys including the 3-Dimensional Wisdom Scale (3D-WS) and the San Diego Wisdom Scale (SD-WISE). Analyses assessed gender differences in wisdom and gender's moderating effect on the relationship between wisdom and associated constructs including depression, loneliness, well-being, optimism, and resilience. Women scored higher on average on the 3D-WS but not on the SD-WISE. Women scored higher on compassion-related domains and on SD-WISE Self-Reflection. Men scored higher on cognitive-related domains and on SD-WISE Emotion Regulation. There was no impact of gender on the relationships between wisdom and associated constructs. Women and men have different relative strengths in wisdom, likely driven by sociocultural and biological factors. Tailoring wisdom interventions to individuals based on their profiles is an important next step.
Collapse
Affiliation(s)
- Emily B H Treichler
- VA Desert Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), San Diego, CA, United States.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, San Diego, CA, United States
| | - Barton W Palmer
- VA Desert Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), San Diego, CA, United States.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| | - Tsung-Chin Wu
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, San Diego, CA, United States.,Department of Family Medicine and Public Health, University of California, San Diego, San Diego, CA, United States
| | - Michael L Thomas
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| | - Xin M Tu
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, San Diego, CA, United States.,Department of Family Medicine and Public Health, University of California, San Diego, San Diego, CA, United States
| | - Rebecca Daly
- VA Desert Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), San Diego, CA, United States.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Ellen E Lee
- VA Desert Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), San Diego, CA, United States.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| | - Dilip V Jeste
- VA Desert Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), San Diego, CA, United States.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
42
|
Abstract
Human gender-related behavior/psychology is shaped by a developmental system that involves numerous influences interacting over time. Understanding of the full range of elements in the system and how they interact is currently incomplete. The available evidence suggests, however, that early exposure to testosterone, postnatal socialization, e.g., by parents and peers, and self-socialization related to cognitive understanding of gender are important elements. This article focuses on prenatal and early neonatal influences of testosterone on gender-related psychological/behavioral outcomes, and contextualizes these hormonal influences within an understanding of socialization influences. There is consistent evidence that early testosterone exposure influences childhood gender role behavior, including sex-typical toy play, as well as gender identity and sexual orientation. Evidence for similar hormonal influences on spatial ability and on traits related to autism, or autistic spectrum disorder, is inconsistent. Evidence from girls exposed to elevated testosterone prenatally suggests that they experience alterations in processes of external socialization, as well as self-socialization, and that these, along with early testosterone exposure, shape gender-related outcomes.
Collapse
Affiliation(s)
- Melissa Hines
- Department of Psychology, University of Cambridge, Free School Lane, Cambridge, CB2 3RQ, UK.
| |
Collapse
|
43
|
Chad-Friedman E, Botdorf M, Riggins T, Dougherty LR. Parental hostility predicts reduced cortical thickness in males. Dev Sci 2020; 24:e13052. [PMID: 33091205 DOI: 10.1111/desc.13052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023]
Abstract
Although impacts of negative parenting on children's brain development are well-documented, little is known about how these associations may differ for males and females in childhood. We examined interactions between child sex and early and concurrent parental hostility on children's cortical thickness and surface area. Participants included 63 children (50.8% female) assessed during early childhood (Wave 1: M age = 4.23 years, SD = 0.84) and again three years later (Wave 2: M age = 7.19 years, SD = 0.89) using an observational parent-child interaction task. At Wave 2, children completed a structural MRI scan. Analyses focused on regions of interest. After correcting for multiple comparisons, Wave 1 parental hostility predicted males' reduced thickness in middle frontal and fusiform cortices, and Wave 2 parental hostility was concurrently associated with males' reduced thickness in the middle frontal cortex. Interactions between sex and parenting on children's surface area did not survive corrections for multiple comparisons. Our findings provide support for a male-specific neural vulnerability of hostile parenting across development. Results have important implications for uncovering neural pathways to sex-differences in psychopathology, learning, and cognitive disabilities.
Collapse
Affiliation(s)
| | - Morgan Botdorf
- University of Maryland College Park, College Park, MD, USA
| | - Tracy Riggins
- University of Maryland College Park, College Park, MD, USA
| | | |
Collapse
|
44
|
Kung KTF. Autistic traits, systemising, empathising, and theory of mind in transgender and non-binary adults. Mol Autism 2020; 11:73. [PMID: 32993801 PMCID: PMC7523342 DOI: 10.1186/s13229-020-00378-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Prior research examining autistic traits in gender minority adults has reported mixed findings. Most prior studies did not include non-binary individuals. Little is known about the mechanisms shaping autistic traits in gender minority adults. This study examined autistic traits, as well as constructs related to the extreme male brain theory of autism and the mindblindness theory, in transgender and non-binary adults. METHODS An online survey was conducted to assess autism-related traits in 323 gender minority adults, including 74 transgender men (individuals assigned female at birth and identify as a man), 95 transgender women (individuals assigned male at birth and identify as a woman), 104 non-binary AFAB (individuals assigned female at birth and identify as non-binary), and 50 non-binary AMAB (individuals assigned male at birth and identify as non-binary). Autistic traits, systemising, empathising, and Theory of Mind (ToM) were measured using the Autism Spectrum Quotient (AQ), the short forms of the Systemising Quotient (SQ-Short) and the Empathy Quotient (EQ-Short), the 10-item version of the Empathy Quotient (EQ-10) and the Reading the Mind in the Eyes Test (Eyes Test). Participants' scores on these measures were compared with previously published scores based on large-scale general population samples including thousands of participants. RESULTS On average, compared with control females in the general population samples, both transgender men and non-binary AFAB scored significantly higher on the AQ and the SQ-Short but scored significantly lower on the EQ-Short, the EQ-10, and the Eyes Test. No clear or consistent group differences emerged when transgender women and non-binary AMAB were compared with control males. LIMITATIONS The present study does not have a large sample of gender minority adults. It has been argued that the measures employed may not provide a precise assessment of the psychological constructs of interest. The present study has a "non-clinical" sample. However, not all gender minorities have access to or require clinical services, and so a "non-clinical" sample may be more representative of the gender minority community as a whole than samples recruited through clinics. CONCLUSIONS The current findings suggest a "masculinised" autism-related profile and reduced ToM in transgender men and in non-binary AFAB. These findings might be interpreted to support the extreme male brain theory of autism and the mindblindness theory. Further research is needed to corroborate these findings.
Collapse
Affiliation(s)
- Karson T F Kung
- Department of Psychology, University of Hong Kong, Pokfulam, Hong Kong.
- Gender Development Research Centre, Department of Psychology, University of Cambridge, Cambridge, UK.
- School of Psychology, University of Kent, Kent, UK.
| |
Collapse
|
45
|
Troisi R, Palmer JR, Hatch EE, Strohsnitter WC, Huo D, Hyer M, Fredriksen-Goldsen KI, Hoover R, Titus L. Gender Identity and Sexual Orientation Identity in Women and Men Prenatally Exposed to Diethylstilbestrol. ARCHIVES OF SEXUAL BEHAVIOR 2020; 49:447-454. [PMID: 31975033 PMCID: PMC7031187 DOI: 10.1007/s10508-020-01637-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 05/09/2023]
Abstract
We assessed the associations of prenatal diethylstilbestrol (DES) exposure, a potent estrogen, with sexual orientation and gender identity in 3306 women and 1848 men who participated in a study of prenatal DES exposure. Odds ratios (OR) and 95% confidence intervals (CI) were derived from logistic regression models adjusted for birth year, study cohort, and education. Among women, the OR for DES in relation to reporting sexual orientation identity as nonheterosexual was 0.61 (95% CI 0.40-0.92) primarily due to a strong inverse association with a lesbian identity (OR 0.44, 95% CI 0.25-0.76). Among men, the OR for DES in relation to reporting a nonheterosexual sexual orientation identity was 1.4 (95% CI 0.82-2.4), and ORs were similar for having a gay identity (1.4, 95% CI 0.72-2.85) and bisexual identity (1.4, 95% CI 0.57-3.5). Only five individuals reported a gender identity not conforming to that assigned at birth, preventing meaningful analysis. Women who were prenatally exposed to DES were less likely to have a lesbian or bisexual orientation, while DES-exposed men were somewhat more likely to report being gay or bisexual, but estimates were imprecise.
Collapse
Affiliation(s)
- Rebecca Troisi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Elizabeth E Hatch
- Department of Epidemiology and Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - William C Strohsnitter
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | | | | | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Linda Titus
- Departments of Epidemiology and Pediatrics, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|