1
|
Chen YN, Kostka JK. Beyond anosmia: olfactory dysfunction as a common denominator in neurodegenerative and neurodevelopmental disorders. Front Neurosci 2024; 18:1502779. [PMID: 39539496 PMCID: PMC11557544 DOI: 10.3389/fnins.2024.1502779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Olfactory dysfunction has emerged as a hallmark feature shared among several neurological conditions, including both neurodevelopmental and neurodegenerative disorders. While diseases of both categories have been extensively studied for decades, their association with olfaction has only recently gained attention. Olfactory deficits often manifest already during prodromal stages of these diseases, yet it remains unclear whether common pathophysiological changes along olfactory pathways cause such impairments. Here we probe into the intricate relationship between olfactory dysfunction and neurodegenerative and neurodevelopmental disorders, shedding light on their commonalities and underlying mechanisms. We begin by providing a brief overview of the olfactory circuit and its connections to higher-associated brain areas. Additionally, we discuss olfactory deficits in these disorders, focusing on potential common mechanisms that may contribute to olfactory dysfunction across both types of disorders. We further debate whether olfactory deficits contribute to the disease propagation or are simply an epiphenomenon. We conclude by emphasizing the significance of olfactory function as a potential pre-clinical diagnostic tool to identify individuals with neurological disorders that offers the opportunity for preventive intervention before other symptoms manifest.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Katharina Kostka
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Lindeman S, Fu X, Reinert JK, Fukunaga I. Value-related learning in the olfactory bulb occurs through pathway-dependent perisomatic inhibition of mitral cells. PLoS Biol 2024; 22:e3002536. [PMID: 38427708 PMCID: PMC10936853 DOI: 10.1371/journal.pbio.3002536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/13/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024] Open
Abstract
Associating values to environmental cues is a critical aspect of learning from experiences, allowing animals to predict and maximise future rewards. Value-related signals in the brain were once considered a property of higher sensory regions, but their wide distribution across many brain regions is increasingly recognised. Here, we investigate how reward-related signals begin to be incorporated, mechanistically, at the earliest stage of olfactory processing, namely, in the olfactory bulb. In head-fixed mice performing Go/No-Go discrimination of closely related olfactory mixtures, rewarded odours evoke widespread inhibition in one class of output neurons, that is, in mitral cells but not tufted cells. The temporal characteristics of this reward-related inhibition suggest it is odour-driven, but it is also context-dependent since it is absent during pseudo-conditioning and pharmacological silencing of the piriform cortex. Further, the reward-related modulation is present in the somata but not in the apical dendritic tuft of mitral cells, suggesting an involvement of circuit components located deep in the olfactory bulb. Depth-resolved imaging from granule cell dendritic gemmules suggests that granule cells that target mitral cells receive a reward-related extrinsic drive. Thus, our study supports the notion that value-related modulation of olfactory signals is a characteristic of olfactory processing in the primary olfactory area and narrows down the possible underlying mechanisms to deeper circuit components that contact mitral cells perisomatically.
Collapse
Affiliation(s)
- Sander Lindeman
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Xiaochen Fu
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Janine Kristin Reinert
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Izumi Fukunaga
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
3
|
Kuruppath P, Xue L, Pouille F, Jones ST, Schoppa NE. Hyperexcitability in the Olfactory Bulb and Impaired Fine Odor Discrimination in the Fmr1 KO Mouse Model of Fragile X Syndrome. J Neurosci 2023; 43:8243-8258. [PMID: 37788940 PMCID: PMC10697393 DOI: 10.1523/jneurosci.0584-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/28/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
Fragile X syndrome (FXS) is the single most common monogenetic cause of autism spectrum disorders (ASDs) in humans. FXS is caused by loss of expression of the fragile X mental retardation protein (FMRP), an mRNA-binding protein encoded on the X chromosome involved in suppressing protein translation. Sensory processing deficits have been a major focus of studies of FXS in both humans and rodent models of FXS, but olfactory deficits remain poorly understood. Here, we conducted experiments in wild-type (WT) and Fmr1 knock-out (KO; Fmr1-/y ) mice (males) that lack expression of the gene encoding FMRP to assess olfactory circuit and behavioral abnormalities. In patch-clamp recordings conducted in slices of the olfactory bulb, output mitral cells (MCs) in Fmr1 KO mice displayed greatly enhanced excitation under baseline conditions, as evidenced by a much higher rate of occurrence of spontaneous network-level events known as long-lasting depolarizations (LLDs). The higher probability of spontaneous LLDs (sLLDs), which appeared to be because of a decrease in GABAergic synaptic inhibition in glomeruli leading to more feedforward excitation, caused a reduction in the reliability of stimulation-evoked responses in MCs. In addition, in a go/no-go operant discrimination paradigm, we found that Fmr1 KO mice displayed impaired discrimination of odors in difficult tasks that involved odor mixtures but not altered discrimination of monomolecular odors. We suggest that the Fmr1 KO-induced reduction in MC response reliability is one plausible mechanism for the impaired fine odor discrimination.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) in humans is associated with a range of debilitating deficits including aberrant sensory processing. One sensory system that has received comparatively little attention in studies in animal models of FXS is olfaction. Here, we report the first comprehensive physiological analysis of circuit defects in the olfactory bulb in the commonly-used Fmr1 knock-out (KO) mouse model of FXS. Our studies indicate that Fmr1 KO alters the local excitation/inhibition balance in the bulb, similar to what Fmr1 KO does in other brain circuits, but through a novel mechanism that involves enhanced feedforward excitation. Furthermore, Fmr1 KO mice display behavioral impairments in fine odor discrimination, an effect that may be explained by changes in neural response reliability.
Collapse
Affiliation(s)
- Praveen Kuruppath
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Lin Xue
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Frederic Pouille
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Shelly T Jones
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Nathan E Schoppa
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
4
|
Maier JX, Zhang Z. Early development of olfactory circuit function. Front Cell Neurosci 2023; 17:1225186. [PMID: 37565031 PMCID: PMC10410114 DOI: 10.3389/fncel.2023.1225186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
During early development, brains undergo profound changes in structure at the molecular, synaptic, cellular and circuit level. At the same time, brains need to perform adaptive function. How do structurally immature brains process information? How do brains perform stable and reliable function despite massive changes in structure? The rodent olfactory system presents an ideal model for approaching these poorly understood questions. Rodents are born deaf and blind, and rely completely on their sense of smell to acquire resources essential for survival during the first 2 weeks of life, such as food and warmth. Here, we review decades of work mapping structural changes in olfactory circuits during early development, as well as more recent studies performing in vivo electrophysiological recordings to characterize functional activity patterns generated by these circuits. The findings demonstrate that neonatal olfactory processing relies on an interacting network of brain areas including the olfactory bulb and piriform cortex. Circuits in these brain regions exhibit varying degrees of structural maturity in neonatal animals. However, despite substantial ongoing structural maturation of circuit elements, the neonatal olfactory system produces dynamic network-level activity patterns that are highly stable over protracted periods during development. We discuss how these findings inform future work aimed at elucidating the circuit-level mechanisms underlying information processing in the neonatal olfactory system, how they support unique neonatal behaviors, and how they transition between developmental stages.
Collapse
Affiliation(s)
- Joost X. Maier
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | |
Collapse
|
5
|
Sato K, Momose-Sato Y. Optical recording of oscillatory activity in the absence of external Ca 2+ in the embryonic chick olfactory bulb. Neurosci Lett 2023; 809:137310. [PMID: 37225118 DOI: 10.1016/j.neulet.2023.137310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
We applied 464/1020-site optical recording systems with a voltage-sensitive dye (NK2761) to the embryonic chick olfactory system and detected oscillatory activity in the olfactory bulb (OB) in the absence of synaptic transmission. In embryonic day 8-10 (E8-E10) chick olfactory nerve (N.I)-OB-forebrain preparations, the removal of Ca2+ from the external solution completely blocked the glutamatergic excitatory postsynaptic potential (EPSP) from the N.I to the OB as well as oscillations following the EPSP. However, a novel type of oscillatory activity was detected in the OB with the long-term perfusion of a Ca2+-free solution. The characteristics of oscillatory activity in the Ca2+-free solution differed from those in normal physiological solution. The present results suggest the existence of a neural communication system in the absence of synaptic transmission at the early stage of embryonic development.
Collapse
Affiliation(s)
- Katsushige Sato
- Department of Health and Nutrition Sciences, Komazawa Women's University Faculty of Human Health, Inagi-shi, Tokyo 206-8511, Japan.
| | - Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama 236-8503, Japan
| |
Collapse
|
6
|
Kocsis B, Pittman-Polletta B. Neuropsychiatric consequences of COVID-19 related olfactory dysfunction: could non-olfactory cortical-bound inputs from damaged olfactory bulb also contribute to cognitive impairment? Front Neurosci 2023; 17:1164042. [PMID: 37425004 PMCID: PMC10323442 DOI: 10.3389/fnins.2023.1164042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Bernat Kocsis
- Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | |
Collapse
|
7
|
Duan Y, Wang S, Yuan Q, Shi Y, Jiang N, Jiang D, Song J, Wang P, Zhuang L. Long-Term Flexible Neural Interface for Synchronous Recording of Cross-Regional Sensory Processing along the Olfactory Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205768. [PMID: 37035943 DOI: 10.1002/smll.202205768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/04/2023] [Indexed: 06/19/2023]
Abstract
Humans perceive the world through five senses, of which olfaction is the oldest evolutionary sense that enables the detection of chemicals in the external environment. Recent progress in bioinspired electronics has boosted the development of artificial sensory systems. Here, a biohybrid olfactory system is proposed by integrating living mammals with implantable flexible neural electrodes, to employ the outstanding properties of mammalian olfactory system. In olfactory perception, the peripheral organ-olfactory epithelium (OE) projects axons into the olfactory relay station-olfactory bulb (OB). The olfactory information encoded in the neural activity is recorded from both OE and OB simultaneously using flexible neural electrodes. Results reveal that spontaneous slow oscillations (<12 Hz) in both OE and OB closely follow respiration. This respiration-locked rhythm modulates the amplitude of fast oscillations (>20 Hz), which are associated with odor perception. Further, by extracting the characteristics of odor-evoked oscillatory signals, responses of different odors are identified and classified with 80% accuracy. This study demonstrates for the first time that the flexible electrode enables chronic stable electrophysiological recordings of the peripheral and central olfactory system in vivo. Overall, the method provides a novel neural interface for olfactory biosensing and cognitive processing.
Collapse
Affiliation(s)
- Yan Duan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- The MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310027, China
| | - Suhao Wang
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310027, China
| | - Yingqian Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310027, China
| | - Jizhou Song
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- The MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- The MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
8
|
Kuruppath P, Xue L, Pouille F, Jones ST, Schoppa NE. Hyperexcitability in the olfactory bulb and impaired fine odor discrimination in the Fmr1 KO mouse model of fragile X syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536251. [PMID: 37090519 PMCID: PMC10120685 DOI: 10.1101/2023.04.10.536251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Fragile X syndrome (FXS) is the single most common monogenetic cause of autism spectrum disorders in humans. FXS is caused by loss of expression of the Fragile X mental retardation protein (FMRP), an mRNA-binding protein encoded on the X chromosome involved in suppressing protein translation. Sensory processing deficits have been a major focus of studies of FXS in both humans and rodent models of FXS, but olfactory deficits remain poorly understood. Here we conducted experiments in wild-type and Fmr1 KO ( Fmr1 -/y ) mice (males) that lack expression of the gene encoding FMRP to assess olfactory circuit and behavioral abnormalities. In patch-clamp recordings conducted in slices of the olfactory bulb, output mitral cells (MCs) in Fmr1 KO mice displayed greatly enhanced excitation, as evidenced by a much higher rate of occurrence of spontaneous network-level events known as long-lasting depolarizations (LLDs). The higher probability of LLDs did not appear to reflect changes in inhibitory connections onto MCs but rather enhanced spontaneous excitation of external tufted cells (eTCs) that provide feedforward excitation onto MCs within glomeruli. In addition, in a go/no-go operant discrimination paradigm, we found that Fmr1 KO mice displayed impaired discrimination of odors in difficult tasks that involved odor mixtures but not altered discrimination of monomolecular odors. We suggest that the higher excitability of MCs in Fmr1 KO mice may impair fine odor discrimination by broadening odor tuning curves of MCs and/or altering synchronized oscillations through changes in transient inhibition. Significance Statement Fragile X syndrome (FXS) in humans is associated with a range of debilitating deficits including aberrant sensory processing. One sensory system that has received comparatively little attention in studies in animal models of FXS is olfaction. Here, we report the first comprehensive physiological analysis of circuit defects in the olfactory bulb in the commonly-used Fmr1 knockout (KO) mouse model of FXS. Our studies indicate that Fmr1 KO alters the local excitation/inhibition balance in the bulb - similar to what Fmr1 KO does in other brain circuits - but through a novel mechanism that involves enhanced feedforward excitatory drive. Furthermore, Fmr1 KO mice display behavioral impairments in fine odor discrimination, an effect that may be explained by enhanced neural excitability.
Collapse
|
9
|
Fernandez-Ruiz A, Sirota A, Lopes-Dos-Santos V, Dupret D. Over and above frequency: Gamma oscillations as units of neural circuit operations. Neuron 2023; 111:936-953. [PMID: 37023717 PMCID: PMC7614431 DOI: 10.1016/j.neuron.2023.02.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/08/2023]
Abstract
Gamma oscillations (∼30-150 Hz) are widespread correlates of neural circuit functions. These network activity patterns have been described across multiple animal species, brain structures, and behaviors, and are usually identified based on their spectral peak frequency. Yet, despite intensive investigation, whether gamma oscillations implement causal mechanisms of specific brain functions or represent a general dynamic mode of neural circuit operation remains unclear. In this perspective, we review recent advances in the study of gamma oscillations toward a deeper understanding of their cellular mechanisms, neural pathways, and functional roles. We discuss that a given gamma rhythm does not per se implement any specific cognitive function but rather constitutes an activity motif reporting the cellular substrates, communication channels, and computational operations underlying information processing in its generating brain circuit. Accordingly, we propose shifting the attention from a frequency-based to a circuit-level definition of gamma oscillations.
Collapse
Affiliation(s)
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Cansler HL, in ’t Zandt EE, Carlson KS, Khan WT, Ma M, Wesson DW. Organization and engagement of a prefrontal-olfactory network during olfactory selective attention. Cereb Cortex 2023; 33:1504-1526. [PMID: 35511680 PMCID: PMC9930634 DOI: 10.1093/cercor/bhac153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Sensory perception is profoundly shaped by attention. Attending to an odor strongly regulates if and how it is perceived - yet the brain systems involved in this process are unknown. Here we report integration of the medial prefrontal cortex (mPFC), a collection of brain regions integral to attention, with the olfactory system in the context of selective attention to odors. METHODS First, we used tracing methods to establish the tubular striatum (TuS, also known as the olfactory tubercle) as the primary olfactory region to receive direct mPFC input in rats. Next, we recorded (i) local field potentials from the olfactory bulb (OB), mPFC, and TuS, or (ii) sniffing, while rats completed an olfactory selective attention task. RESULTS Gamma power and coupling of gamma oscillations with theta phase were consistently high as rats flexibly switched their attention to odors. Beta and theta synchrony between mPFC and olfactory regions were elevated as rats switched their attention to odors. Finally, we found that sniffing was consistent despite shifting attentional demands, suggesting that the mPFC-OB theta coherence is independent of changes in active sampling. CONCLUSIONS Together, these findings begin to define an olfactory attention network wherein mPFC activity, as well as that within olfactory regions, are coordinated based upon attentional states.
Collapse
Affiliation(s)
- Hillary L Cansler
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Estelle E in ’t Zandt
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Kaitlin S Carlson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Waseh T Khan
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 110 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, United States
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, Norman Fixel Institute for Neurological Diseases, University of Florida, 1200 Newell Dr., Gainesville, FL 32610, United States
| |
Collapse
|
11
|
Hook C, Puche AC. Bulbar projecting subcortical GABAergic neurons send collateral branches extensively and selectively to primary olfactory cortical regions. J Comp Neurol 2023; 531:451-460. [PMID: 36463397 PMCID: PMC9795336 DOI: 10.1002/cne.25434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022]
Abstract
Circuit operations of the olfactory bulb are modulated by higher order projections from multiple regions, many of which are themselves targets of bulbar output. Multiple glutamatergic regions project to the olfactory bulb, including the anterior olfactory nucleus (AON), prefrontal cortex (PFC), piriform cortex (PC), entorhinal cortex (EC), and tenia tecta (TT). In contrast, only one region provides GABAergic projections to the bulb. These GABA neurons are located in the horizontal limb of the diagonal band of Broca extending posteriorly through the magnocellular preoptic nucleus to the nucleus of the lateral olfactory bulb. However, it was unclear whether bulbar projecting GABAergic neurons collaterallize projecting to other brain regions. To address this, we mapped collateral projections from bulbar projecting GABAergic neurons using intersectional strategies of viral and traditional tract tracers. This approach revealed bulbar projecting GABAergic neurons show remarkable specificity targeting other primary olfactory cortical regions exhibiting abundant collateral projections into the accessory olfactory bulb, AON, PFC, PC, and TT. The only "nonolfactory" region receiving collateral projections was sparse connectivity to the medial prefrontal orbital cortex. This suggests that basal forebrain inhibitory feedback also modulates glutamatergic feedback areas that are themselves prominent bulbar projection regions. Thus, inhibitory feedback may be simultaneously modulating both synaptic processing of olfactory information in the bulb and associational processing of olfactory information from primary olfactory cortex. We hypothesize that these olfactory GABAergic feedback neurons are a regulator of the entire olfactory system.
Collapse
Affiliation(s)
- Chelsea Hook
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adam C Puche
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Gansel KS. Neural synchrony in cortical networks: mechanisms and implications for neural information processing and coding. Front Integr Neurosci 2022; 16:900715. [PMID: 36262373 PMCID: PMC9574343 DOI: 10.3389/fnint.2022.900715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Synchronization of neuronal discharges on the millisecond scale has long been recognized as a prevalent and functionally important attribute of neural activity. In this article, I review classical concepts and corresponding evidence of the mechanisms that govern the synchronization of distributed discharges in cortical networks and relate those mechanisms to their possible roles in coding and cognitive functions. To accommodate the need for a selective, directed synchronization of cells, I propose that synchronous firing of distributed neurons is a natural consequence of spike-timing-dependent plasticity (STDP) that associates cells repetitively receiving temporally coherent input: the “synchrony through synaptic plasticity” hypothesis. Neurons that are excited by a repeated sequence of synaptic inputs may learn to selectively respond to the onset of this sequence through synaptic plasticity. Multiple neurons receiving coherent input could thus actively synchronize their firing by learning to selectively respond at corresponding temporal positions. The hypothesis makes several predictions: first, the position of the cells in the network, as well as the source of their input signals, would be irrelevant as long as their input signals arrive simultaneously; second, repeating discharge patterns should get compressed until all or some part of the signals are synchronized; and third, this compression should be accompanied by a sparsening of signals. In this way, selective groups of cells could emerge that would respond to some recurring event with synchronous firing. Such a learned response pattern could further be modulated by synchronous network oscillations that provide a dynamic, flexible context for the synaptic integration of distributed signals. I conclude by suggesting experimental approaches to further test this new hypothesis.
Collapse
|
13
|
Meng JH, Riecke H. Structural spine plasticity: Learning and forgetting of odor-specific subnetworks in the olfactory bulb. PLoS Comput Biol 2022; 18:e1010338. [PMID: 36279303 PMCID: PMC9632792 DOI: 10.1371/journal.pcbi.1010338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/03/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Learning to discriminate between different sensory stimuli is essential for survival. In rodents, the olfactory bulb, which contributes to odor discrimination via pattern separation, exhibits extensive structural synaptic plasticity involving the formation and removal of synaptic spines, even in adult animals. The network connectivity resulting from this plasticity is still poorly understood. To gain insight into this connectivity we present here a computational model for the structural plasticity of the reciprocal synapses between the dominant population of excitatory principal neurons and inhibitory interneurons. It incorporates the observed modulation of spine stability by odor exposure. The model captures the striking experimental observation that the exposure to odors does not always enhance their discriminability: while training with similar odors enhanced their discriminability, training with dissimilar odors actually reduced the discriminability of the training stimuli. Strikingly, this differential learning does not require the activity-dependence of the spine stability and occurs also in a model with purely random spine dynamics in which the spine density is changed homogeneously, e.g., due to a global signal. However, the experimentally observed odor-specific reduction in the response of principal cells as a result of extended odor exposure and the concurrent disinhibition of a subset of principal cells arise only in the activity-dependent model. Moreover, this model predicts the experimentally testable recovery of odor response through weak but not through strong odor re-exposure and the forgetting of odors via exposure to interfering odors. Combined with the experimental observations, the computational model provides strong support for the prediction that odor exposure leads to the formation of odor-specific subnetworks in the olfactory bulb. A key feature of the brain is its ability to learn through the plasticity of its network. The olfactory bulb in the olfactory system is a remarkable brain area whose anatomical structure evolves substantially still in adult animals by establishing new synaptic connections and removing existing ones. We present a computational model for this process and employ it to interpret recent experimental results. By comparing the results of our model with those of a random control model we identify various experimental observations that lend strong support to the notion that the network of the olfactory bulb comprises learned, odor-specific subnetworks. Moreover, our model explains the recent observation that the learning of odors does not always improve their discriminability and provides testable predictions for the recovery of odor response after repeated odor exposure and for when the learning of new odors interferes with retaining the memory of familiar odors.
Collapse
Affiliation(s)
- John Hongyu Meng
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
| | - Hermann Riecke
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
14
|
Zhu P, Liu S, Tian Y, Chen Y, Chen W, Wang P, Du L, Wu C. Odor-induced modification of oscillations and related theta-higher gamma coupling in olfactory bulb neurons of awake and anesthetized rats. Front Chem 2022; 10:865006. [PMID: 35978860 PMCID: PMC9376862 DOI: 10.3389/fchem.2022.865006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Olfactory gamma oscillations (40–100 Hz) are generated spontaneously in animals and represent the activity of local olfactory bulb (OB) networks, which play important roles in cognitive mechanisms. In addition, high-frequency oscillations (HFO, 130–180 Hz) have attracted widespread attention and are novel neuronal oscillations with a frequency range closer to high gamma oscillations (60–100 Hz, HGOs). Both HGOs and HFOs are distinctly regulated by θ rhythm in the hippocampus. To understand their mediation mechanisms in the OB, we investigated whether local field potential (LFP) oscillations including HGOs and HFOs and even their coupling with theta rhythm are modified by odor stimulation in both freely moving and anesthetized rats. Therefore, we combined electrophysiological technology and cross-frequency coupling analysis approaches to determine the difference in the odor-modulated LFP oscillations between awake and anesthetized rats. The obtained results indicate that LFP oscillations including HGOs and HFOs were differently modified by odor stimulation in animals of both states. However, θ-HGO and θ-HFO coupling were modified in only awake animals. It is suggested that these oscillations and their interactions with theta oscillations may play crucial roles in olfactory network activity. This could pave the way for further understanding the underlying mechanisms of oscillations in OB neurons towards odor sensation.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Shuge Liu
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Yulan Tian
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Yating Chen
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Wei Chen
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Ping Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Liping Du
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- *Correspondence: Liping Du, ; Chunsheng Wu,
| | - Chunsheng Wu
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Liping Du, ; Chunsheng Wu,
| |
Collapse
|
15
|
Kay LM. COVID-19 and olfactory dysfunction: a looming wave of dementia? J Neurophysiol 2022; 128:436-444. [PMID: 35894511 PMCID: PMC9377782 DOI: 10.1152/jn.00255.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
Olfactory dysfunction is a hallmark symptom of COVID-19 disease resulting from the SARS-CoV-2 virus. The cause of the sudden and usually temporary anosmia that most people suffer from COVID-19 is likely entirely peripheral-inflammation and other damage caused by the virus in the sensory epithelium inside the upper recesses of the nasal cavity can damage or prevent chemicals from properly activating the olfactory sensory neurons. However, persistent olfactory dysfunction from COVID-19, in the form of hyposmia and parosmia (decreased or altered smell) may affect as many as 15 million people worldwide. This epidemic of olfactory dysfunction is thus a continuing public health concern. Mounting evidence suggests that the SARS-CoV-2 virus itself or inflammation from the immune response in the nasal sensory epithelium may invade the olfactory bulb, likely via non-neuronal transmission. COVID-19-related long-term olfactory dysfunction and early damage to olfactory and limbic brain regions suggest a pattern of degeneration similar to that seen in early stages of Alzheimer's disease, Parkinson's disease, and Lewy body dementia. Thus, long-term olfactory dysfunction coupled with cognitive and emotional disturbance from COVID-19 may be the first signs of delayed onset dementia from neurodegeneration. Few treatments are known to be effective to prevent further degeneration, but the first line of defense against degeneration may be olfactory and environmental enrichment. There is a pressing need for more research on treatments for olfactory dysfunction and longitudinal studies including cognitive and olfactory function from patients who have recovered from even mild COVID-19.NEW & NOTEWORTHY More than 15 million people worldwide experience persistent COVID-19 olfactory dysfunction, possibly caused by olfactory bulb damage. SARS-CoV-2 can cause inflammation and viral invasion of the olfactory bulb, initiating a cascade of degeneration similar to Alzheimer's disease and Lewy body disease. People who have had even mild cases of COVID-19 show signs of degeneration in cortical areas connected with the olfactory system. These data suggest a wave of post-COVID dementia in the coming decades.
Collapse
Affiliation(s)
- Leslie M Kay
- Institute for Mind and Biology, Department of Psychology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
16
|
Salimi M, Tabasi F, Abdolsamadi M, Dehghan S, Dehdar K, Nazari M, Javan M, Mirnajafi-Zadeh J, Raoufy MR. Disrupted connectivity in the olfactory bulb-entorhinal cortex-dorsal hippocampus circuit is associated with recognition memory deficit in Alzheimer's disease model. Sci Rep 2022; 12:4394. [PMID: 35292712 PMCID: PMC8924156 DOI: 10.1038/s41598-022-08528-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
Neural synchrony in brain circuits is the mainstay of cognition, including memory processes. Alzheimer's disease (AD) is a progressive neurodegenerative disorder that disrupts neural synchrony in specific circuits, associated with memory dysfunction before a substantial neural loss. Recognition memory impairment is a prominent cognitive symptom in the early stages of AD. The entorhinal-hippocampal circuit is critically engaged in recognition memory and is known as one of the earliest circuits involved due to AD pathology. Notably, the olfactory bulb is closely connected with the entorhinal-hippocampal circuit and is suggested as one of the earliest regions affected by AD. Therefore, we recorded simultaneous local field potential from the olfactory bulb (OB), entorhinal cortex (EC), and dorsal hippocampus (dHPC) to explore the functional connectivity in the OB-EC-dHPC circuit during novel object recognition (NOR) task performance in a rat model of AD. Animals that received amyloid-beta (Aβ) showed a significant impairment in task performance and a marked reduction in OB survived cells. We revealed that Aβ reduced coherence and synchrony in the OB-EC-dHPC circuit at theta and gamma bands during NOR performance. Importantly, our results exhibit that disrupted functional connectivity in the OB-EC-dHPC circuit was correlated with impaired recognition memory induced by Aβ. These findings can elucidate dynamic changes in neural activities underlying AD, helping to find novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Morteza Salimi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran
| | - Farhad Tabasi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran
- Faculty of Medical Sciences, Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Maryam Abdolsamadi
- Department of Mathematics, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kolsoum Dehdar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran
- Faculty of Medical Sciences, Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran
- Faculty of Medical Sciences, Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran
- Faculty of Medical Sciences, Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran.
- Faculty of Medical Sciences, Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
17
|
Recent insights into respiratory modulation of brain activity offer new perspectives on cognition and emotion. Biol Psychol 2022; 170:108316. [PMID: 35292337 PMCID: PMC10155500 DOI: 10.1016/j.biopsycho.2022.108316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
Over the past six years, a rapidly growing number of studies have shown that respiration exerts a significant influence on sensory, affective, and cognitive processes. At the same time, an increasing amount of experimental evidence indicates that this influence occurs via modulation of neural oscillations and their synchronization between brain areas. In this article, we review the relevant findings and discuss whether they might inform our understanding of a variety of disorders that have been associated with abnormal patterns of respiration. We review literature on the role of respiration in chronic obstructive pulmonary disease (COPD), anxiety (panic attacks), and autism spectrum disorder (ASD), and we conclude that the new insights into respiratory modulation of neuronal activity may help understand the relationship between respiratory abnormalities and cognitive and affective deficits.
Collapse
|
18
|
Ahnaou A, Chave L, Manyakov NV, Drinkenburg WHIM. Odour Retrieval Processing in Mice: Cholinergic Modulation of Oscillatory Coupling in Olfactory Bulb-Piriform Networks. Neuropsychobiology 2022; 80:374-392. [PMID: 33588406 DOI: 10.1159/000513511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/26/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Olfactory dysfunction can provide valuable insight into early pathophysiological processes of brain disorders. Olfactory processing of chemosensory and odour sensitivity relies on segregating salient odours from background odours cues. Odour-evoked fast oscillations in the olfactory bulb (OB) are hypothesized to be an important index of odour quality coding. The present preclinical work aimed at better understanding connectivity associated with odour coding and behavioural odour discrimination. METHODS Network oscillations and functional connectivity (FC) were measured in C57BL/6 mice performing the olfactory associative odour learning (OL) test, using multichannel local field potential recordings in key olfactory networks. Cholinergic modulation of odour processing was investigated using the muscarinic antagonist scopolamine. RESULTS At the behavioural level, olfactory memory, which refers to the acquisition and recollection of a reference odour by reduced exploration time, was observed in animals that correctly learned the task. Significant decrease in mean investigation and retrieval time of the associated odour-food reward was observed between trials. At the network level, the associated odour during sniffing behaviour was associated with enhanced coherence in the β and γ frequency oscillations across the olfactory pathway, with marked changes observed between the OB and anterior piriform cortex (PC). The enhanced phase-amplitude cross-frequency coupling in the OB and the weak coupling index in the hippocampal CA1 suggests a role of the OB network in olfaction encoding and processing. Scopolamine impaired behavioural and FC underlying recall and retrieval of the associated odour. CONCLUSION The results suggest that the acquisition and formation of odour reference memory rely primarily on FC at the OB-PC network and confirm the role of muscarinic receptors in olfactory retrieval processing.
Collapse
Affiliation(s)
- Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium,
| | - Lucile Chave
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nikolay V Manyakov
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus H I M Drinkenburg
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
19
|
Smell-induced gamma oscillations in human olfactory cortex are required for accurate perception of odor identity. PLoS Biol 2022; 20:e3001509. [PMID: 34986157 PMCID: PMC8765613 DOI: 10.1371/journal.pbio.3001509] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/18/2022] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
Studies of neuronal oscillations have contributed substantial insight into the mechanisms of visual, auditory, and somatosensory perception. However, progress in such research in the human olfactory system has lagged behind. As a result, the electrophysiological properties of the human olfactory system are poorly understood, and, in particular, whether stimulus-driven high-frequency oscillations play a role in odor processing is unknown. Here, we used direct intracranial recordings from human piriform cortex during an odor identification task to show that 3 key oscillatory rhythms are an integral part of the human olfactory cortical response to smell: Odor induces theta, beta, and gamma rhythms in human piriform cortex. We further show that these rhythms have distinct relationships with perceptual behavior. Odor-elicited gamma oscillations occur only during trials in which the odor is accurately perceived, and features of gamma oscillations predict odor identification accuracy, suggesting that they are critical for odor identity perception in humans. We also found that the amplitude of high-frequency oscillations is organized by the phase of low-frequency signals shortly following sniff onset, only when odor is present. Our findings reinforce previous work on theta oscillations, suggest that gamma oscillations in human piriform cortex are important for perception of odor identity, and constitute a robust identification of the characteristic electrophysiological response to smell in the human brain. Future work will determine whether the distinct oscillations we identified reflect distinct perceptual features of odor stimuli. Intracranial recordings from human olfactory cortex reveal a characteristic spectrotemporal response to odors, including theta, beta and gamma oscillations, and show that high-frequency responses are critical for accurate perception of odors.
Collapse
|
20
|
Symanski CA, Bladon JH, Kullberg ET, Miller P, Jadhav SP. Rhythmic coordination and ensemble dynamics in the hippocampal-prefrontal network during odor-place associative memory and decision making. eLife 2022; 11:79545. [PMID: 36480255 PMCID: PMC9799972 DOI: 10.7554/elife.79545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Memory-guided decision making involves long-range coordination across sensory and cognitive brain networks, with key roles for the hippocampus and prefrontal cortex (PFC). In order to investigate the mechanisms of such coordination, we monitored activity in hippocampus (CA1), PFC, and olfactory bulb (OB) in rats performing an odor-place associative memory guided decision task on a T-maze. During odor sampling, the beta (20-30 Hz) and respiratory (7-8 Hz) rhythms (RR) were prominent across the three regions, with beta and RR coherence between all pairs of regions enhanced during the odor-cued decision making period. Beta phase modulation of phase-locked CA1 and PFC neurons during this period was linked to accurate decisions, with a key role of CA1 interneurons in temporal coordination. Single neurons and ensembles in both CA1 and PFC encoded and predicted animals' upcoming choices, with different cell ensembles engaged during decision-making and decision execution on the maze. Our findings indicate that rhythmic coordination within the hippocampal-prefrontal-olfactory bulb network supports utilization of odor cues for memory-guided decision making.
Collapse
Affiliation(s)
| | - John H Bladon
- Neuroscience Program, Brandeis UniversityWalthamUnited States,Department of Psychology, Brandeis UniversityWalthamUnited States
| | - Emi T Kullberg
- Neuroscience Program, Brandeis UniversityWalthamUnited States,Department of Psychology, Brandeis UniversityWalthamUnited States
| | - Paul Miller
- Neuroscience Program, Brandeis UniversityWalthamUnited States,Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | | |
Collapse
|
21
|
Peter A, Stauch BJ, Shapcott K, Kouroupaki K, Schmiedt JT, Klein L, Klon-Lipok J, Dowdall JR, Schölvinck ML, Vinck M, Schmid MC, Fries P. Stimulus-specific plasticity of macaque V1 spike rates and gamma. Cell Rep 2021; 37:110086. [PMID: 34879273 PMCID: PMC8674536 DOI: 10.1016/j.celrep.2021.110086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/28/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022] Open
Abstract
When a visual stimulus is repeated, average neuronal responses typically decrease, yet they might maintain or even increase their impact through increased synchronization. Previous work has found that many repetitions of a grating lead to increasing gamma-band synchronization. Here, we show in awake macaque area V1 that both repetition-related reductions in firing rate and increases in gamma are specific to the repeated stimulus. These effects show some persistence on the timescale of minutes. Gamma increases are specific to the presented stimulus location. Further, repetition effects on gamma and on firing rates generalize to images of natural objects. These findings support the notion that gamma-band synchronization subserves the adaptive processing of repeated stimulus encounters.
Collapse
Affiliation(s)
- Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany.
| | - Benjamin Johannes Stauch
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany
| | - Katharine Shapcott
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt, Germany
| | - Kleopatra Kouroupaki
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Joscha Tapani Schmiedt
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Liane Klein
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Johanna Klon-Lipok
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Jarrod Robert Dowdall
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany
| | - Marieke Louise Schölvinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michael Christoph Schmid
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; University of Fribourg, Faculty of Science and Medicine, Chemin du Musée 5, 1700 Fribourg, Switzerland; Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Framlington Place, Newcastle NE2 4HH, UK
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands.
| |
Collapse
|
22
|
Narrow and Broad γ Bands Process Complementary Visual Information in Mouse Primary Visual Cortex. eNeuro 2021; 8:ENEURO.0106-21.2021. [PMID: 34663617 PMCID: PMC8570688 DOI: 10.1523/eneuro.0106-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
γ Band plays a key role in the encoding of visual features in the primary visual cortex (V1). In rodents V1 two ranges within the γ band are sensitive to contrast: a broad γ band (BB) increasing with contrast, and a narrow γ band (NB), peaking at ∼60 Hz, decreasing with contrast. The functional roles of the two bands and the neural circuits originating them are not completely clear yet. Here, we show, combining experimental and simulated data, that in mice V1 (1) BB carries information about high contrast and NB about low contrast; (2) BB modulation depends on excitatory-inhibitory interplay in the cortex, while NB modulation is because of entrainment to the thalamic drive. In awake mice presented with alternating gratings, NB power progressively decreased from low to intermediate levels of contrast where it reached a plateau. Conversely, BB power was constant across low levels of contrast, but it progressively increased from intermediate to high levels of contrast. Furthermore, BB response was stronger immediately after contrast reversal, while the opposite held for NB. These complementary modulations were reproduced by a recurrent excitatory-inhibitory leaky integrate-and-fire network provided that the thalamic inputs were composed of a sustained and a periodic component having complementary sensitivity ranges. These results show that in rodents the thalamic-driven NB plays a specific key role in encoding visual contrast. Moreover, we propose a simple and effective network model of response to visual stimuli in rodents that might help in investigating network dysfunctions of pathologic visual information processing.
Collapse
|
23
|
Stauch BJ, Peter A, Schuler H, Fries P. Stimulus-specific plasticity in human visual gamma-band activity and functional connectivity. eLife 2021; 10:e68240. [PMID: 34473058 PMCID: PMC8412931 DOI: 10.7554/elife.68240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Under natural conditions, the visual system often sees a given input repeatedly. This provides an opportunity to optimize processing of the repeated stimuli. Stimulus repetition has been shown to strongly modulate neuronal-gamma band synchronization, yet crucial questions remained open. Here we used magnetoencephalography in 30 human subjects and find that gamma decreases across ≈10 repetitions and then increases across further repetitions, revealing plastic changes of the activated neuronal circuits. Crucially, increases induced by one stimulus did not affect responses to other stimuli, demonstrating stimulus specificity. Changes partially persisted when the inducing stimulus was repeated after 25 minutes of intervening stimuli. They were strongest in early visual cortex and increased interareal feedforward influences. Our results suggest that early visual cortex gamma synchronization enables adaptive neuronal processing of recurring stimuli. These and previously reported changes might be due to an interaction of oscillatory dynamics with established synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- Benjamin J Stauch
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
- Brain Imaging Center, Goethe University FrankfurtFrankfurtGermany
| | - Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
| | - Heike Schuler
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
- Brain Imaging Center, Goethe University FrankfurtFrankfurtGermany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| |
Collapse
|
24
|
Strauch C, Hoang TH, Angenstein F, Manahan-Vaughan D. Olfactory Information Storage Engages Subcortical and Cortical Brain Regions That Support Valence Determination. Cereb Cortex 2021; 32:689-708. [PMID: 34379749 PMCID: PMC8841565 DOI: 10.1093/cercor/bhab226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
The olfactory bulb (OB) delivers sensory information to the piriform cortex (PC) and other components of the olfactory system. OB-PC synapses have been reported to express short-lasting forms of synaptic plasticity, whereas long-term potentiation (LTP) of the anterior PC (aPC) occurs predominantly by activating inputs from the prefrontal cortex. This suggests that brain regions outside the olfactory system may contribute to olfactory information processing and storage. Here, we compared functional magnetic resonance imaging BOLD responses triggered during 20 or 100 Hz stimulation of the OB. We detected BOLD signal increases in the anterior olfactory nucleus (AON), PC and entorhinal cortex, nucleus accumbens, dorsal striatum, ventral diagonal band of Broca, prelimbic–infralimbic cortex (PrL-IL), dorsal medial prefrontal cortex, and basolateral amygdala. Significantly stronger BOLD responses occurred in the PrL-IL, PC, and AON during 100 Hz compared with 20 Hz OB stimulation. LTP in the aPC was concomitantly induced by 100 Hz stimulation. Furthermore, 100 Hz stimulation triggered significant nuclear immediate early gene expression in aPC, AON, and PrL-IL. The involvement of the PrL-IL in this process is consistent with its putative involvement in modulating behavioral responses to odor experience. Furthermore, these results indicate that OB-mediated information storage by the aPC is embedded in a connectome that supports valence evaluation.
Collapse
Affiliation(s)
- Christina Strauch
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | - Thu-Huong Hoang
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 39118 Magdeburg, Germany.,Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.,Medical Faculty, Otto-von Guericke University, 39118 Magdeburg, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
25
|
Byron N, Semenova A, Sakata S. Mutual Interactions between Brain States and Alzheimer's Disease Pathology: A Focus on Gamma and Slow Oscillations. BIOLOGY 2021; 10:707. [PMID: 34439940 PMCID: PMC8389330 DOI: 10.3390/biology10080707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
Brain state varies from moment to moment. While brain state can be defined by ongoing neuronal population activity, such as neuronal oscillations, this is tightly coupled with certain behavioural or vigilant states. In recent decades, abnormalities in brain state have been recognised as biomarkers of various brain diseases and disorders. Intriguingly, accumulating evidence also demonstrates mutual interactions between brain states and disease pathologies: while abnormalities in brain state arise during disease progression, manipulations of brain state can modify disease pathology, suggesting a therapeutic potential. In this review, by focusing on Alzheimer's disease (AD), the most common form of dementia, we provide an overview of how brain states change in AD patients and mouse models, and how controlling brain states can modify AD pathology. Specifically, we summarise the relationship between AD and changes in gamma and slow oscillations. As pathological changes in these oscillations correlate with AD pathology, manipulations of either gamma or slow oscillations can modify AD pathology in mouse models. We argue that neuromodulation approaches to target brain states are a promising non-pharmacological intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicole Byron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Anna Semenova
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
26
|
Caffeine - treat or trigger? Disparate behavioral and long-term dopaminergic changes in control and schizophrenia-like Wisket rats. Physiol Behav 2021; 236:113410. [PMID: 33819453 DOI: 10.1016/j.physbeh.2021.113410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022]
Abstract
The influence of caffeine on behavioral functions in both healthy and schizophrenic subjects is controversial. Here we aimed to reveal the effects of repeated caffeine pre- and post-training treatments on motor and exploratory activities and cognitive functions in a reward-based test (Ambitus) along with a brain region-specific dopamine D2 receptor profile in control and schizophrenia-like WISKET model rats. In the control animals, pre-treatment caused temporary enhancement in motor activity, while permanent improvement in learning function was detected in the WISKET animals. Post-treatment produced significant impairments in both groups. Caffeine caused short-lasting hyperactivity followed by a rebound in the inactive phase determined in undisturbed circumstance. Caffeine treatment substantially enhanced the dopamine D2 receptor mediated G-protein activation in the prefrontal cortex and olfactory bulb of both groups, while it increased in the dorsal striatum and cerebral cortex only in the WISKET animals. Caffeine enhanced the maximal binding capacity in the hippocampus and cerebral cortex of WISKET animals, but it decreased in the prefrontal cortex of the control animals. Regarding the dopamine D2 receptor mRNA expression, caffeine treatment caused significant enhancement in the prefrontal cortex of WISKET animals, while it increased the hippocampal dopamine D2 receptor protein amount in both groups. This study highlights the disparate effects of caffeine pre- versus post-training treatments on behavioral parameters in both control and schizophrenia-like animals and the prolonged changes in the dopaminergic system. It is supposed that the delayed depressive effects of caffeine might be compensated by frequent coffee intake, as observed in schizophrenic patients.
Collapse
|
27
|
Tort AB, Hammer M, Zhang J, Brankačk J, Draguhn A. Temporal Relations between Cortical Network Oscillations and Breathing Frequency during REM Sleep. J Neurosci 2021; 41:5229-5242. [PMID: 33963051 PMCID: PMC8211551 DOI: 10.1523/jneurosci.3067-20.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/29/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
Nasal breathing generates a rhythmic signal which entrains cortical network oscillations in widespread brain regions on a cycle-to-cycle time scale. It is unknown, however, how respiration and neuronal network activity interact on a larger time scale: are breathing frequency and typical neuronal oscillation patterns correlated? Is there any directionality or temporal relationship? To address these questions, we recorded field potentials from the posterior parietal cortex of mice together with respiration during REM sleep. In this state, the parietal cortex exhibits prominent θ and γ oscillations while behavioral activity is minimal, reducing confounding signals. We found that the instantaneous breathing frequency strongly correlates with the instantaneous frequency and amplitude of both θ and γ oscillations. Cross-correlograms and Granger causality revealed specific directionalities for different rhythms: changes in θ activity precede and Granger-cause changes in breathing frequency, suggesting control by the functional state of the brain. On the other hand, the instantaneous breathing frequency Granger causes changes in γ frequency, suggesting that γ is influenced by a peripheral reafference signal. These findings show that changes in breathing frequency temporally relate to changes in different patterns of rhythmic brain activity. We hypothesize that such temporal relations are mediated by a common central drive likely to be located in the brainstem.
Collapse
Affiliation(s)
- Adriano B.L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056-450, Brazil
| | - Maximilian Hammer
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, 69120, Germany
| | - Jiaojiao Zhang
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, 69120, Germany
| | - Jurij Brankačk
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, 69120, Germany
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, 69120, Germany
| |
Collapse
|
28
|
Findley TM, Wyrick DG, Cramer JL, Brown MA, Holcomb B, Attey R, Yeh D, Monasevitch E, Nouboussi N, Cullen I, Songco JO, King JF, Ahmadian Y, Smear MC. Sniff-synchronized, gradient-guided olfactory search by freely moving mice. eLife 2021; 10:e58523. [PMID: 33942713 PMCID: PMC8169121 DOI: 10.7554/elife.58523] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 04/22/2021] [Indexed: 01/18/2023] Open
Abstract
For many organisms, searching for relevant targets such as food or mates entails active, strategic sampling of the environment. Finding odorous targets may be the most ancient search problem that motile organisms evolved to solve. While chemosensory navigation has been well characterized in microorganisms and invertebrates, spatial olfaction in vertebrates is poorly understood. We have established an olfactory search assay in which freely moving mice navigate noisy concentration gradients of airborne odor. Mice solve this task using concentration gradient cues and do not require stereo olfaction for performance. During task performance, respiration and nose movement are synchronized with tens of milliseconds precision. This synchrony is present during trials and largely absent during inter-trial intervals, suggesting that sniff-synchronized nose movement is a strategic behavioral state rather than simply a constant accompaniment to fast breathing. To reveal the spatiotemporal structure of these active sensing movements, we used machine learning methods to parse motion trajectories into elementary movement motifs. Motifs fall into two clusters, which correspond to investigation and approach states. Investigation motifs lock precisely to sniffing, such that the individual motifs preferentially occur at specific phases of the sniff cycle. The allocentric structure of investigation and approach indicates an advantage to sampling both sides of the sharpest part of the odor gradient, consistent with a serial-sniff strategy for gradient sensing. This work clarifies sensorimotor strategies for mouse olfactory search and guides ongoing work into the underlying neural mechanisms.
Collapse
Affiliation(s)
- Teresa M Findley
- Department of Biology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - David G Wyrick
- Department of Biology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Jennifer L Cramer
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Morgan A Brown
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Blake Holcomb
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Robin Attey
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Dorian Yeh
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Eric Monasevitch
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Nelly Nouboussi
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Isabelle Cullen
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Jeremea O Songco
- Department of Biology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Jared F King
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Yashar Ahmadian
- Department of Biology and Institute of Neuroscience, University of OregonEugeneUnited States
- Computational & Biological Learning Lab, University of CambridgeCambridgeUnited Kingdom
| | - Matthew C Smear
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| |
Collapse
|
29
|
Odor identity can be extracted from the reciprocal connectivity between olfactory bulb and piriform cortex in humans. Neuroimage 2021; 237:118130. [PMID: 33951509 DOI: 10.1016/j.neuroimage.2021.118130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023] Open
Abstract
Neuronal oscillations route external and internal information across brain regions. In the olfactory system, the two central nodes-the olfactory bulb (OB) and the piriform cortex (PC)-communicate with each other via neural oscillations to shape the olfactory percept. Communication between these nodes have been well characterized in non-human animals but less is known about their role in the human olfactory system. Using a recently developed and validated EEG-based method to extract signals from the OB and PC sources, we show in healthy human participants that there is a bottom-up information flow from the OB to the PC in the beta and gamma frequency bands, while top-down information from the PC to the OB is facilitated by delta and theta oscillations. Importantly, we demonstrate that there was enough information to decipher odor identity above chance from the low gamma in the OB-PC oscillatory circuit as early as 100 ms after odor onset. These data further our understanding of the critical role of bidirectional information flow in human sensory systems to produce perception. However, future studies are needed to determine what specific odor information is extracted and communicated in the information exchange.
Collapse
|
30
|
Villar PS, Hu R, Araneda RC. Long-Range GABAergic Inhibition Modulates Spatiotemporal Dynamics of the Output Neurons in the Olfactory Bulb. J Neurosci 2021; 41:3610-3621. [PMID: 33687961 PMCID: PMC8055075 DOI: 10.1523/jneurosci.1498-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/21/2022] Open
Abstract
Local interneurons of the olfactory bulb (OB) are densely innervated by long-range GABAergic neurons from the basal forebrain (BF), suggesting that this top-down inhibition regulates early processing in the olfactory system. However, how GABAergic inputs modulate the OB output neurons, the mitral/tufted cells, is unknown. Here, in male and female mice acute brain slices, we show that optogenetic activation of BF GABAergic inputs produced distinct local circuit effects that can influence the activity of mitral/tufted cells in the spatiotemporal domains. Activation of the GABAergic axons produced a fast disinhibition of mitral/tufted cells consistent with a rapid and synchronous release of GABA onto local interneurons in the glomerular and inframitral circuits of the OB, which also reduced the spike precision of mitral/tufted cells in response to simulated stimuli. In addition, BF GABAergic inhibition modulated local oscillations in a layer-specific manner. The intensity of locally evoked θ oscillations was decreased on activation of top-down inhibition in the glomerular circuit, while evoked γ oscillations were reduced by inhibition of granule cells. Furthermore, BF GABAergic input reduced dendrodendritic inhibition in mitral/tufted cells. Together, these results suggest that long-range GABAergic neurons from the BF are well suited to influence temporal and spatial aspects of processing by OB circuits.SIGNIFICANCE STATEMENT Disruption of GABAergic inhibition from the basal forebrain (BF) to the olfactory bulb (OB) impairs the discrimination of similar odors, yet how this centrifugal inhibition influences neuronal circuits in the OB remains unclear. Here, we show that the BF GABAergic neurons exclusively target local inhibitory neurons in the OB, having a functional disinhibitory effect on the output neurons, the mitral cells. Phasic inhibition by BF GABAergic neurons reduces spike precision of mitral cells and lowers the intensity of oscillatory activity in the OB, while directly modulating the extent of dendrodendritic inhibition. These circuit-level effects of this centrifugal inhibition can influence the temporal and spatial dynamics of odor coding in the OB.
Collapse
Affiliation(s)
- Pablo S Villar
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Ruilong Hu
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Ricardo C Araneda
- Department of Biology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
31
|
Chen M, Chen Y, Huo Q, Wang L, Tan S, Misrani A, Jiang J, Chen J, Chen S, Zhang J, Tabassum S, Wang J, Chen X, Long C, Yang L. Enhancing GABAergic signaling ameliorates aberrant gamma oscillations of olfactory bulb in AD mouse models. Mol Neurodegener 2021; 16:14. [PMID: 33663578 PMCID: PMC7934466 DOI: 10.1186/s13024-021-00434-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Before the deposition of amyloid-beta plaques and the onset of learning memory deficits, patients with Alzheimer’s disease (AD) experience olfactory dysfunction, typified by a reduced ability to detect, discriminate, and identify odors. Rodent models of AD, such as the Tg2576 and APP/PS1 mice, also display impaired olfaction, accompanied by aberrant in vivo or in vitro gamma rhythms in the olfactory pathway. However, the mechanistic relationships between the electrophysiological, biochemical and behavioral phenomena remain unclear. Methods To address the above issues in AD models, we conducted in vivo measurement of local field potential (LFP) with a combination of in vitro electro-olfactogram (EOG), whole-cell patch and field recordings to evaluate oscillatory and synaptic function and pharmacological regulation in the olfactory pathway, particularly in the olfactory bulb (OB). Levels of protein involved in excitation and inhibition of the OB were investigated by western blotting and fluorescence staining, while behavioral studies assessed olfaction and memory function. Results LFP measurements demonstrated an increase in gamma oscillations in the OB accompanied by altered olfactory behavior in both APP/PS1 and 3xTg mice at 3–5 months old, i.e. an age before the onset of plaque formation. Fewer olfactory sensory neurons (OSNs) and a reduced EOG contributed to a decrease in the excitatory responses of M/T cells, suggesting a decreased ability of M/T cells to trigger interneuron GABA release indicated by altered paired-pulse ratio (PPR), a presynaptic parameter. Postsynaptically, there was a compensatory increase in levels of GABAAR α1 and β3 subunits and subsequent higher amplitude of inhibitory responses. Strikingly, the GABA uptake inhibitor tiagabine (TGB) ameliorated abnormal gamma oscillations and levels of GABAAR subunits, suggesting a potential therapeutic strategy for early AD symptoms. These findings reveal increased gamma oscillations in the OB as a core indicator prior to onset of AD and uncover mechanisms underlying aberrant gamma activity in the OB. Conclusions This study suggests that the concomitant dysfunction of both olfactory behavior and gamma oscillations have important implications for early AD diagnosis: in particular, awareness of aberrant GABAergic signaling mechanisms might both aid diagnosis and suggest therapeutic strategies for olfactory damage in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00434-7.
Collapse
Affiliation(s)
- Ming Chen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.,Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yunan Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Qingwei Huo
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Shuyi Tan
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jinxiang Jiang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jian Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shiyuan Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiawei Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jichen Wang
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Xi Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
32
|
Hernández-Soto R, Villasana-Salazar B, Pinedo-Vargas L, Peña-Ortega F. Chronic intermittent hypoxia alters main olfactory bulb activity and olfaction. Exp Neurol 2021; 340:113653. [PMID: 33607078 DOI: 10.1016/j.expneurol.2021.113653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 02/08/2023]
Abstract
Olfactory dysfunction is commonly observed in patients with obstructive sleep apnea (OSA), which is related to chronic intermittent hypoxia (CIH). OSA patients exhibit alterations in discrimination, identification and odor detection threshold. These olfactory functions strongly rely on neuronal processing within the main olfactory bulb (MOB). However, a direct evaluation of the effects of controlled CIH on olfaction and MOB network activity has not been performed. Here, we used electrophysiological field recordings in vivo to evaluate the effects of 21-day-long CIH on MOB network activity and its response to odors. In addition, we assessed animals´ olfaction with the buried food and habituation/dishabituation tests. We found that mice exposed to CIH show alterations in MOB spontaneous activity in vivo, consisting of a reduction in beta and gamma frequency bands power along with an increase in the theta band power. Likewise, the MOB was less responsive to odor stimulation, since the proportional increase of the power of its population activity in response to four different odorants was smaller than the one observed in control animals. These CIH-induced MOB functional alterations correlate with a reduction in the ability to detect, habituate and discriminate olfactory stimuli. Our findings indicate that CIH generates alterations in the MOB neural network, which could be involved in the olfactory deterioration in patients with OSA.
Collapse
Affiliation(s)
- Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Laura Pinedo-Vargas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico.
| |
Collapse
|
33
|
Hanson E, Brandel-Ankrapp KL, Arenkiel BR. Dynamic Cholinergic Tone in the Basal Forebrain Reflects Reward-Seeking and Reinforcement During Olfactory Behavior. Front Cell Neurosci 2021; 15:635837. [PMID: 33603646 PMCID: PMC7884767 DOI: 10.3389/fncel.2021.635837] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Sensory perception underlies how we internalize and interact with the external world. In order to adapt to changing circumstances and interpret signals in a variety of contexts, sensation needs to be reliable, but perception of sensory input needs to be flexible. An important mediator of this flexibility is top-down regulation from the cholinergic basal forebrain. Basal forebrain projection neurons serve as pacemakers and gatekeepers for downstream neural networks, modulating circuit activity across diverse neuronal populations. This top-down control is necessary for sensory cue detection, learning, and memory, and is disproportionately disrupted in neurodegenerative diseases associated with cognitive decline. Intriguingly, cholinergic signaling acts locally within the basal forebrain to sculpt the activity of basal forebrain output neurons. To determine how local cholinergic signaling impacts basal forebrain output pathways that participate in top-down regulation, we sought to define the dynamics of cholinergic signaling within the basal forebrain during motivated behavior and learning. Toward this, we utilized fiber photometry and the genetically encoded acetylcholine indicator GAChR2.0 to define temporal patterns of cholinergic signaling in the basal forebrain during olfactory-guided, motivated behaviors and learning. We show that cholinergic signaling reliably increased during reward seeking behaviors, but was strongly suppressed by reward delivery in a go/no-go olfactory-cued discrimination task. The observed transient reduction in cholinergic tone was mirrored by a suppression in basal forebrain GABAergic neuronal activity. Together, these findings suggest that cholinergic tone in the basal forebrain changes rapidly to reflect reward-seeking behavior and positive reinforcement and may impact downstream circuitry that modulates olfaction.
Collapse
Affiliation(s)
- Elizabeth Hanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Katie L. Brandel-Ankrapp
- Postbaccalaureate Research Education Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
34
|
The Role of Gamma Oscillations in the Pathophysiology of Substance Use Disorders. J Pers Med 2020; 11:jpm11010017. [PMID: 33379187 PMCID: PMC7824040 DOI: 10.3390/jpm11010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
Substance use disorders (SUDs) are a major public health problem—with over 200 million people reporting drug use in 2016. Electroencephalography (EEG) is a powerful tool that can provide insights into the impact of SUDs on cognition. Specifically, modulated gamma activity may provide an index of the pathophysiology of SUDs. Thus, the purpose of this review was to investigate the impact of alcohol, tobacco, cannabis, cocaine, and amphetamine on gamma activity, among pre-clinical and clinical populations during acute and chronic exposure and withdrawal states. We searched multiple databases for key terms related to SUDs, EEG, and gamma and ensured rigorous methods by using a standardized review reporting tool. We included 30 studies in this review and found that all substances were associated with modulation of gamma activity, across states and in both preclinical and clinical populations. Gamma oscillations appeared to be differentially modulated in clinical versus preclinical populations and had the most complex relationship with alcohol, indicating that it may act differently than other substances. The findings of this review offer insights into the pathophysiology of SUDs, providing a potential window into novel treatments for SUDs via modulation of gamma activity.
Collapse
|
35
|
Imamura F, Ito A, LaFever BJ. Subpopulations of Projection Neurons in the Olfactory Bulb. Front Neural Circuits 2020; 14:561822. [PMID: 32982699 PMCID: PMC7485133 DOI: 10.3389/fncir.2020.561822] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Generation of neuronal diversity is a biological strategy widely used in the brain to process complex information. The olfactory bulb is the first relay station of olfactory information in the vertebrate central nervous system. In the olfactory bulb, axons of the olfactory sensory neurons form synapses with dendrites of projection neurons that transmit the olfactory information to the olfactory cortex. Historically, the olfactory bulb projection neurons have been classified into two populations, mitral cells and tufted cells. The somata of these cells are distinctly segregated within the layers of the olfactory bulb; the mitral cells are located in the mitral cell layer while the tufted cells are found in the external plexiform layer. Although mitral and tufted cells share many morphological, biophysical, and molecular characteristics, they differ in soma size, projection patterns of their dendrites and axons, and odor responses. In addition, tufted cells are further subclassified based on the relative depth of their somata location in the external plexiform layer. Evidence suggests that different types of tufted cells have distinct cellular properties and play different roles in olfactory information processing. Therefore, mitral and different types of tufted cells are considered as starting points for parallel pathways of olfactory information processing in the brain. Moreover, recent studies suggest that mitral cells also consist of heterogeneous subpopulations with different cellular properties despite the fact that the mitral cell layer is a single-cell layer. In this review, we first compare the morphology of projection neurons in the olfactory bulb of different vertebrate species. Next, we explore the similarities and differences among subpopulations of projection neurons in the rodent olfactory bulb. We also discuss the timing of neurogenesis as a factor for the generation of projection neuron heterogeneity in the olfactory bulb. Knowledge about the subpopulations of olfactory bulb projection neurons will contribute to a better understanding of the complex olfactory information processing in higher brain regions.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Brandon J LaFever
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
36
|
Aging Alters Olfactory Bulb Network Oscillations and Connectivity: Relevance for Aging-Related Neurodegeneration Studies. Neural Plast 2020; 2020:1703969. [PMID: 32774353 PMCID: PMC7396091 DOI: 10.1155/2020/1703969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 11/18/2022] Open
Abstract
The aging process eventually cause a breakdown in critical synaptic plasticity and connectivity leading to deficits in memory function. The olfactory bulb (OB) and the hippocampus, both regions of the brain considered critical for the processing of odors and spatial memory, are commonly affected by aging. Using an aged wild-type C57B/6 mouse model, we sought to define the effects of aging on hippocampal plasticity and the integrity of cortical circuits. Specifically, we measured the long-term potentiation of high-frequency stimulation (HFS-LTP) at the Shaffer-Collateral CA1 pyramidal synapses. Next, local field potential (LFP) spectra, phase-amplitude theta-gamma coupling (PAC), and connectivity through coherence were assessed in the olfactory bulb, frontal and entorhinal cortices, CA1, and amygdala circuits. The OB of aged mice showed a significant increase in the number of histone H2AX-positive neurons, a marker of DNA damage. While the input-output relationship measure of basal synaptic activity was found not to differ between young and aged mice, a pronounced decline in the slope of field excitatory postsynaptic potential (fEPSP) and the population spike amplitude (PSA) were found in aged mice. Furthermore, aging was accompanied by deficits in gamma network oscillations, a shift to slow oscillations, reduced coherence and theta-gamma PAC in the OB circuit. Thus, while the basal synaptic activity was unaltered in older mice, impairment in hippocampal synaptic transmission was observed only in response to HFS. However, age-dependent alterations in neural network appeared spontaneously in the OB circuit, suggesting the neurophysiological basis of synaptic deficits underlying olfactory processing. Taken together, the results highlight the sensitivity and therefore potential use of LFP quantitative network oscillations and connectivity at the OB level as objective electrophysiological markers that will help reveal specific dysfunctional circuits in aging-related neurodegeneration studies.
Collapse
|
37
|
Functional Alterations in the Olfactory Neuronal Circuit Occur before Hippocampal Plasticity Deficits in the P301S Mouse Model of Tauopathy: Implications for Early Diagnosis and Translational Research in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21155431. [PMID: 32751531 PMCID: PMC7432464 DOI: 10.3390/ijms21155431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by neuronal loss and impaired synaptic transmission, ultimately leading to cognitive deficits. Early in the disease, the olfactory track seems most sensitive to tauopathy, while most plasticity studies focused on the hippocampal circuits. Functional network connectivity (FC) and long-term potentiation (LTP), considered as the plasticity substrate of learning and memory, were longitudinally assessed in mice of the P301S model of tauopathy following the course (time and location) of progressively neurodegenerative pathology (i.e., at 3, 6, and 9 months of age) and in their wild type (WT) littermates. Using in vivo local field potential (LFP) recordings, early (at three months) dampening in the gamma oscillatory activity and impairments in the phase-amplitude theta-gamma coupling (PAC) were found in the olfactory bulb (OB) circuit of P301S mice, which were maintained through the whole course of pathology development. In contrast, LFP oscillatory activity and PAC indices were normal in the entorhinal cortex, hippocampal CA1 and CA3 nuclei. Field excitatory postsynaptic potential (fEPSP) recordings from the Shaffer collateral (SC)-CA1 hippocampal stratum pyramidal revealed a significant altered synaptic LTP response to high-frequency stimulation (HFS): at three months of age, no significant difference between genotypes was found in basal synaptic activity, while signs of a deficit in short term plasticity were revealed by alterations in the fEPSPs. At six months of age, a slight deviance was found in basal synaptic activity and significant differences were observed in the LTP response. The alterations in network oscillations at the OB level and impairments in the functioning of the SC-CA1 pyramidal synapses strongly suggest that the progression of tau pathology elicited a brain area, activity-dependent disturbance in functional synaptic transmission. These findings point to early major alterations of neuronal activity in the OB circuit prior to the disturbance of hippocampal synaptic plasticity, possibly involving tauopathy in the anomalous FC. Further research should determine whether those early deficits in the OB network oscillations and FC are possible mechanisms that potentially promote the emergence of hippocampal synaptic impairments during the progression of tauopathy.
Collapse
|
38
|
Wu J, Liu P, Chen F, Ge L, Lu Y, Li A. Excitability of Neural Activity is Enhanced, but Neural Discrimination of Odors is Slightly Decreased, in the Olfactory Bulb of Fasted Mice. Genes (Basel) 2020; 11:genes11040433. [PMID: 32316323 PMCID: PMC7230403 DOI: 10.3390/genes11040433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Olfaction and satiety status influence each other: cues from the olfactory system modulate eating behavior, and satiety affects olfactory abilities. However, the neural mechanisms governing the interactions between olfaction and satiety are unknown. Here, we investigate how an animal’s nutritional state modulates neural activity and odor representation in the mitral/tufted cells of the olfactory bulb, a key olfactory center that plays important roles in odor processing and representation. At the single-cell level, we found that the spontaneous firing rate of mitral/tufted cells and the number of cells showing an excitatory response both increased when mice were in a fasted state. However, the neural discrimination of odors slightly decreased. Although ongoing baseline and odor-evoked beta oscillations in the local field potential in the olfactory bulb were unchanged with fasting, the amplitude of odor-evoked gamma oscillations significantly decreased in a fasted state. These neural changes in the olfactory bulb were independent of the sniffing pattern, since both sniffing frequency and mean inhalation duration did not change with fasting. These results provide new information toward understanding the neural circuit mechanisms by which olfaction is modulated by nutritional status.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (J.W.); (P.L.); (F.C.)
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (J.W.); (P.L.); (F.C.)
| | - Fengjiao Chen
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (J.W.); (P.L.); (F.C.)
| | - Lingying Ge
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China; (L.G.); (Y.L.)
| | - Yifan Lu
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China; (L.G.); (Y.L.)
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (J.W.); (P.L.); (F.C.)
- Correspondence: ; Tel.: +86-516-83262621
| |
Collapse
|
39
|
Lane G, Zhou G, Noto T, Zelano C. Assessment of direct knowledge of the human olfactory system. Exp Neurol 2020; 329:113304. [PMID: 32278646 DOI: 10.1016/j.expneurol.2020.113304] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Gregory Lane
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Guangyu Zhou
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Torben Noto
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Christina Zelano
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
40
|
Fleming G, Wright BA, Wilson DA. The Value of Homework: Exposure to Odors in the Home Cage Enhances Odor-Discrimination Learning in Mice. Chem Senses 2020; 44:135-143. [PMID: 30590399 DOI: 10.1093/chemse/bjy083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Perceptual learning is an enhancement in discriminability of similar stimuli following experience with those stimuli. Here, we examined the efficacy of adding additional active training following a standard training session, compared with additional stimulus exposure in the absence of associated task performance. Mice were trained daily in an odor-discrimination task, and then, several hours later each day, received 1 of 3 different manipulations: 1) a second active-training session, 2) non-task-related odor exposure in the home cage, or 3) no second session. For home-cage exposure, odorants were presented in small tubes that mice could sniff and investigate for a similar period of time as in the active discrimination task each day. The results demonstrate that daily home-cage exposure was equivalent to active odor training in supporting improved odor discrimination. Daily home-cage exposure to odorants that did not match those used in the active task did not improve learning, yielding outcomes similar to those obtained with no second session. Piriform cortical local field potential recordings revealed that both sampling in the active learning task and investigation in the home cage evoked similar beta band oscillatory activity. Together the results suggest that odor-discrimination learning can be significantly enhanced by addition of odor exposure outside of the active training task, potentially because of the robust activity evoked in the olfactory system by both exposure paradigms. They further suggest that odorant exposure alone could enhance or maintain odor-discrimination abilities in conditions associated with olfactory impairment, such as aging or dementia.
Collapse
Affiliation(s)
- Gloria Fleming
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Beverly A Wright
- Department of Communication Sciences and Disorders, Knowles Hearing Center, Northwestern University, Evanston, IL, USA.,Center for Neural Science, New York University, New York, NY, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Center for Neural Science, New York University, New York, NY, USA.,Department of Child and Adolescent Psychiatry, New York Langone School of Medicine, New York, NY, USA
| |
Collapse
|
41
|
Losacco J, Ramirez-Gordillo D, Gilmer J, Restrepo D. Learning improves decoding of odor identity with phase-referenced oscillations in the olfactory bulb. eLife 2020; 9:e52583. [PMID: 31990271 PMCID: PMC6986879 DOI: 10.7554/elife.52583] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/30/2019] [Indexed: 01/04/2023] Open
Abstract
Local field potential oscillations reflect temporally coordinated neuronal ensembles-coupling distant brain regions, gating processing windows, and providing a reference for spike timing-based codes. In phase amplitude coupling (PAC), the amplitude of the envelope of a faster oscillation is larger within a phase window of a slower carrier wave. Here, we characterized PAC, and the related theta phase-referenced high gamma and beta power (PRP), in the olfactory bulb of mice learning to discriminate odorants. PAC changes throughout learning, and odorant-elicited changes in PRP increase for rewarded and decrease for unrewarded odorants. Contextual odorant identity (is the odorant rewarded?) can be decoded from peak PRP in animals proficient in odorant discrimination, but not in naïve mice. As the animal learns to discriminate the odorants the dimensionality of PRP decreases. Therefore, modulation of phase-referenced chunking of information in the course of learning plays a role in early sensory processing in olfaction.
Collapse
Affiliation(s)
- Justin Losacco
- Neuroscience Graduate ProgramUniversity of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Cell and Developmental BiologyUniversity of Colorado Anschutz Medical CampusAuroraUnited States
| | - Daniel Ramirez-Gordillo
- Department of Cell and Developmental BiologyUniversity of Colorado Anschutz Medical CampusAuroraUnited States
| | - Jesse Gilmer
- Neuroscience Graduate ProgramUniversity of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Physiology and BiophysicsUniversity of Colorado Anschutz Medical CampusAuroraUnited States
| | - Diego Restrepo
- Neuroscience Graduate ProgramUniversity of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Cell and Developmental BiologyUniversity of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
42
|
Fourcaud-Trocmé N, Lefèvre L, Garcia S, Messaoudi B, Buonviso N. High beta rhythm amplitude in olfactory learning signs a well-consolidated and non-flexible behavioral state. Sci Rep 2019; 9:20259. [PMID: 31889074 PMCID: PMC6937317 DOI: 10.1038/s41598-019-56340-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/07/2019] [Indexed: 02/04/2023] Open
Abstract
Beta rhythm (15-30 Hz) is a major candidate underlying long-range communication in the brain. In olfactory tasks, beta activity is strongly modulated by learning but its condition of expression and the network(s) responsible for its generation are unclear. Here we analyzed the emergence of beta activity in local field potentials recorded from olfactory, sensorimotor and limbic structures of rats performing an olfactory task. Rats performed successively simple discrimination, rule transfer, memory recall tests and contingency reversal. Beta rhythm amplitude progressively increased over learning in most recorded areas. Beta amplitude reduced to baseline when new odors were introduced, but remained high during memory recall. Intra-session analysis showed that even expert rats required several trials to reach a good performance level, with beta rhythm amplitude increasing in parallel. Notably, at the beginning of the reversal task, beta amplitude remained high while performance was low and, in all tested animals, beta amplitude decreased before rats were able to learn the new contingencies. Connectivity analysis showed that beta activity was highly coherent between all structures where it was expressed. Overall, our results suggest that beta rhythm is expressed in a highly coherent network when context learning - including both odors and reward - is consolidated and signals behavioral inflexibility.
Collapse
Affiliation(s)
- Nicolas Fourcaud-Trocmé
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France.
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, OX1 3TH, Oxford, United Kingdom
| | - Samuel Garcia
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France
| | - Belkacem Messaoudi
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France
| |
Collapse
|
43
|
Sun C, Tang K, Wu J, Xu H, Zhang W, Cao T, Zhou Y, Yu T, Li A. Leptin modulates olfactory discrimination and neural activity in the olfactory bulb. Acta Physiol (Oxf) 2019; 227:e13319. [PMID: 31144469 DOI: 10.1111/apha.13319] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
Abstract
AIM Leptin is an important peptide hormone that regulates food intake and plays a crucial role in modulating olfactory function. Although a few previous studies have investigated the effect of leptin on odor perception and discrimination in rodents, research on the neural basis underlying the behavioral changes is lacking. Here we study how leptin affects behavioral performance during a go/no-go task and how it modulates neural activity of mitral/tufted cells in the olfactory bulb, which plays an important role in odor information processing and representation. METHODS A go/no-go odor discrimination task was used in the behavioral test. For in vivo studies, single unit recordings, local field potential recordings and fiber photometry recordings were used. For in vitro studies, we performed patch clamp recordings in the slice of the olfactory bulb. RESULTS Behaviorally, leptin affects performance and reaction time in a difficult odor-discrimination task. Leptin decreases the spontaneous firing of single mitral/tufted cells, decreases the odor-evoked beta and high gamma local field potential response, and has bidirectional effects on the odor-evoked responses of single mitral/tufted cells. Leptin also inhibits the population calcium activity in genetically identified mitral/tufted cells and granule cells. Furthermore, in vitro slice recordings reveal that leptin inhibits mitral cell activity through direct modulation of the voltage-sensitive potassium channel. CONCLUSIONS The behavioral reduction in odor discrimination observed after leptin administration is likely due to decreased neural activity in mitral/tufted cells, caused by modulation of potassium channels in these cells.
Collapse
Affiliation(s)
- Changcheng Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Keke Tang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Han Xu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Wenfeng Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Tiantian Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Yang Zhou
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
- The Affiliated Changzhou NO.2 People's Hospital with Nanjing Medical University Changzhou China
| | - Tian Yu
- Department of Cell and Developmental Biology University of Colorado Anschutz Medical Campus Aurora Colorado
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| |
Collapse
|
44
|
Bjorefeldt A, Roshan F, Forsberg M, Zetterberg H, Hanse E, Fisahn A. Human cerebrospinal fluid promotes spontaneous gamma oscillations in the hippocampus in vitro. Hippocampus 2019; 30:101-113. [PMID: 31313871 DOI: 10.1002/hipo.23135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 01/23/2023]
Abstract
Gamma oscillations (30-80 Hz) are fast network activity patterns frequently linked to cognition. They are commonly studied in hippocampal brain slices in vitro, where they can be evoked via pharmacological activation of various receptor families. One limitation of this approach is that neuronal activity is studied in a highly artificial extracellular fluid environment, as provided by artificial cerebrospinal fluid (aCSF). Here, we examine the influence of human cerebrospinal fluid (hCSF) on kainate-evoked and spontaneous gamma oscillations in mouse hippocampus. We show that hCSF, as compared to aCSF of matched electrolyte and glucose composition, increases the power of kainate-evoked gamma oscillations and induces spontaneous gamma activity in areas CA3 and CA1 that is reversed by washout. Bath application of atropine entirely abolished hCSF-induced gamma oscillations, indicating critical contribution from muscarinic acetylcholine receptor-mediated signaling. In separate whole-cell patch clamp recordings from rat hippocampus, hCSF increased theta resonance frequency and strength in pyramidal cells along with enhancement of h-current (Ih ) amplitude. We found no evidence of intrinsic gamma frequency resonance at baseline (aCSF) among fast-spiking interneurons, and this was not altered by hCSF. However, hCSF increased the excitability of fast-spiking interneurons, which likely contributed to gamma rhythmogenesis. Our findings show that hCSF promotes network gamma oscillations in the hippocampus in vitro and suggest that neuromodulators distributed in CSF could have significant influence on neuronal network activity in vivo.
Collapse
Affiliation(s)
- Andreas Bjorefeldt
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Neuroscience, Brown University, Providence, Rhode Island
| | - Firoz Roshan
- Neuronal Oscillations Laboratory, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - My Forsberg
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Molndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Molndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Eric Hanse
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Kum J, Kim JW, Braubach O, Ha JG, Cho HJ, Kim CH, Han HB, Choi JH, Yoon JH. Neural Dynamics of Olfactory Perception: Low- and High-Frequency Modulations of Local Field Potential Spectra in Mice Revealed by an Oddball Stimulus. Front Neurosci 2019; 13:478. [PMID: 31191212 PMCID: PMC6546879 DOI: 10.3389/fnins.2019.00478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Recent brain connectome studies have evidenced distinct and overlapping brain regions involved in processing olfactory perception. However, neural correlates of hypo- or anosmia in olfactory disorder patients are poorly known. Furthermore, the bottom-up and top-down processing of olfactory perception have not been well-documented, resulting in difficulty in locating the disease foci of olfactory disorder patients. The primary aim of this study is to characterize the bottom-up process of the neural dynamics across peripheral and central brain regions in anesthetized mice. We particularly focused on the neural oscillations of local field potential (LFP) in olfactory epithelium (OE), olfactory blub (OB), prefrontal cortex (PFC), and hippocampus (HC) during an olfactory oddball paradigm in urethane anesthetized mice. Odorant presentations evoked neural oscillations across slow and fast frequency bands including delta (1-4 Hz), theta (6-10 Hz), beta (15-30 Hz), low gamma (30-50 Hz), and high gamma (70-100 Hz) in both peripheral and central nervous systems, and the increases were more prominent in the infrequently presented odorant. During 5 s odorant exposures, the oscillatory responses in power were persistent in OE, OB, and PFC, whereas neural oscillations of HC increased only for short time at stimulus onset. These oscillatory responses in power were insignificant in both peripheral and central regions of the ZnSO4-treated anosmia model. These results suggest that olfactory stimulation induce LFP oscillations both in the peripheral and central nervous systems and suggest the possibility of linkage of LFP oscillations in the brain to the oscillations in the peripheral olfactory system.
Collapse
Affiliation(s)
- Jeungeun Kum
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology, University of Science and Technology, Seoul, South Korea
| | - Jin Won Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Oliver Braubach
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jong-Gyun Ha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul, South Korea
| | - Hio-Been Han
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jee Hyun Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology, University of Science and Technology, Seoul, South Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul, South Korea
| |
Collapse
|
46
|
Perrier SP, Gleizes M, Fonta C, Nowak LG. Effect of adenosine on short-term synaptic plasticity in mouse piriform cortex in vitro: adenosine acts as a high-pass filter. Physiol Rep 2019; 7:e13992. [PMID: 30740934 PMCID: PMC6369103 DOI: 10.14814/phy2.13992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 02/01/2023] Open
Abstract
We examined the effect of adenosine and of adenosine A1 receptor blockage on short-term synaptic plasticity in slices of adult mouse anterior piriform cortex maintained in vitro in an in vivo-like ACSF. Extracellular recording of postsynaptic responses was performed in layer 1a while repeated electrical stimulation (5-pulse-trains, frequency between 3.125 and 100 Hz) was applied to the lateral olfactory tract. Our stimulation protocol was aimed at covering the frequency range of oscillatory activities observed in the olfactory bulb in vivo. In control condition, postsynaptic response amplitude showed a large enhancement for stimulation frequencies in the beta and gamma frequency range. A phenomenological model of short-term synaptic plasticity fitted to the data suggests that this frequency-dependent enhancement can be explained by the interplay between a short-term facilitation mechanism and two short-term depression mechanisms, with fast and slow recovery time constants. In the presence of adenosine, response amplitude evoked by low-frequency stimulation decreased in a dose-dependent manner (IC50 = 70 μmol/L). Yet short-term plasticity became more dominated by facilitation and less influenced by depression. Both changes compensated for the initial decrease in response amplitude in a way that depended on stimulation frequency: compensation was strongest at high frequency, up to restoring response amplitudes to values similar to those measured in control condition. The model suggested that the main effects of adenosine were to decrease neurotransmitter release probability and to attenuate short-term depression mechanisms. Overall, these results suggest that adenosine does not merely inhibit neuronal activity but acts in a more subtle, frequency-dependent manner.
Collapse
|
47
|
Li W, Li S, Shen L, Wang J, Wu X, Li J, Tu C, Ye X, Ling S. Impairment of Dendrodendritic Inhibition in the Olfactory Bulb of APP/PS1 Mice. Front Aging Neurosci 2019; 11:2. [PMID: 30740049 PMCID: PMC6357935 DOI: 10.3389/fnagi.2019.00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
Olfactory dysfunction is an early event in Alzheimer’s disease (AD). However, the mechanism underlying the AD-related changes in the olfactory bulb (OB) remains unknown. Granule cells (GCs) in the OB regulate the activity of mitral cells (MCs) through reciprocal dendrodendritic synapses, which is crucial for olfactory signal processing and odor discrimination. Nevertheless, the relationships between the morphological and functional changes of dendrodendritic synapses, particularly the local field potentials (LFPs) as a consequence of olfactory disorders in patients with AD have not been investigated. Here, we studied the morphological and functional changes induced by dendrodendritic inhibition in GCs onto MCs in the OB of amyloid precursor protein (APP)/PS1 mice and age-matched control mice during aging, particular, we focused on the effects of olfactory disorder in the dendrodendritic synaptic structures and the LFPs. We found that olfactory disorder was associated with increased amyloid-β (Aβ) deposits in the OB of APP/PS1 mice, and those mice also exhibited abnormal changes in the morphology of GCs and MCs, a decreased density of GC dendritic spines and impairments in the synaptic interface of dendrodendritic synapses between GCs and MCs. In addition, the aberrant enhancements in the γ oscillations and firing rates of MCs in the OB of APP/PS1 mice were recorded by multi-electrode arrays (MEAs). The local application of a GABAAR agonist nearly abolished the aberrant increase in γ oscillations in the external plexiform layer (EPL) at advanced stages of AD, whereas a GABAAR antagonist aggravated the γ oscillations. Based on our findings, we concluded that the altered morphologies of the synaptic structures of GCs, the dysfunction of reciprocal dendrodendritic synapses between MCs and GCs, and the abnormal γ oscillations in the EPL might contribute to olfactory dysfunction in AD.
Collapse
Affiliation(s)
- Weiyun Li
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
| | - Shanshan Li
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lianghua Shen
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junbo Wang
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
| | - Xuewei Wu
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Li
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chunlong Tu
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, China
| | - Shucai Ling
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Partial depletion of dopaminergic neurons in the substantia nigra impairs olfaction and alters neural activity in the olfactory bulb. Sci Rep 2019; 9:254. [PMID: 30670747 PMCID: PMC6342975 DOI: 10.1038/s41598-018-36538-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Olfactory dysfunction is a major non-motor symptom that appears during the early stages of Parkinson’s Disease (PD), a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra (SN). Depletion of SN dopaminergic neurons by 6-hydroxydopamine (6-OHDA) is widely used as a model for PD and ultimately results in motor deficits. However, it is largely unknown whether olfactory behavior and, more importantly, neural activity in the olfactory bulb (OB) are impaired prior to the appearance of motor deficits. We partially depleted the SN dopaminergic population in mice by injection of 6-OHDA. Seven days after injection of 6-OHDA, motor ability was unchanged but olfactory-driven behaviors were significantly impaired. Injection of 6-OHDA into the SN significantly increased the power of the ongoing local field potential in the OB for all frequency bands, and decreased odor-evoked excitatory beta responses and inhibitory high-gamma responses. Moreover, 6-OHDA treatment led to increased odor-evoked calcium responses in the mitral cells in the OB of awake mice. These data suggest that the olfactory deficits caused by depletion of the SN dopaminergic population are likely due to abnormal hyperactivity of the mitral cells in the OB.
Collapse
|
49
|
Müller Ewald VA, De Corte BJ, Gupta SC, Lillis KV, Narayanan NS, Wemmie JA, LaLumiere RT. Attenuation of cocaine seeking in rats via enhancement of infralimbic cortical activity using stable step-function opsins. Psychopharmacology (Berl) 2019; 236:479-490. [PMID: 30003306 PMCID: PMC6330160 DOI: 10.1007/s00213-018-4964-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/28/2018] [Indexed: 12/29/2022]
Abstract
RATIONALE The infralimbic cortex (IL) and its downstream projection target the nucleus accumbens shell (NAshell) mediate the active suppression of cocaine-seeking behavior. Although an optogenetic approach would be beneficial for stimulating the IL and its efferents to study their role during reinstatement of cocaine seeking, the use of channelrhodopsin introduces significant difficulties, as optimal stimulation parameters are not known. OBJECTIVES The present experiments utilized a stable step-function opsin (SSFO) to potentiate endogenous activity in the IL and in IL terminals in the NAshell during cocaine-seeking tests to determine how these manipulations affect cocaine-seeking behaviors. METHODS Rats first underwent 6-h access cocaine self-administration followed by 21-27 days in the homecage. Rats then underwent cue-induced and cocaine-primed drug-seeking tests during which the optogenetic manipulation was given. The same rats then underwent extinction training, followed by cue-induced and cocaine-primed reinstatements. RESULTS Potentiation of endogenous IL activity did not significantly alter cue-induced or cocaine-primed drug seeking following the homecage period. However, following extinction training, enhancement of endogenous IL activity attenuated cue-induced reinstatement by 35% and cocaine-primed reinstatement by 53%. Stimulation of IL terminals in the NAshell did not consistently alter cocaine-seeking behavior. CONCLUSION These results suggest the utility of an SSFO-based approach for enhancing activity in a structure without driving specific patterns of neuronal firing. However, the utility of an SSFO-based approach for axon terminal stimulation remains unclear. Moreover, these results suggest that the ability of the IL to reduce cocaine seeking depends, at least in part, on rats first having undergone extinction training.
Collapse
Affiliation(s)
- Victória A Müller Ewald
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA.
- W311 Seashore Hall, Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Benjamin J De Corte
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Subhash C Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242, USA
| | - Katherine V Lillis
- W311 Seashore Hall, Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Nandakumar S Narayanan
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - John A Wemmie
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Ryan T LaLumiere
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
- W311 Seashore Hall, Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
50
|
Zhuang L, Zhang B, Qin Z, Wang P. Nasal Respiration is Necessary for the Generation of γ Oscillation in the Olfactory Bulb. Neuroscience 2018; 398:218-230. [PMID: 30553790 DOI: 10.1016/j.neuroscience.2018.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 11/29/2022]
Abstract
γ oscillations (30-120 Hz) are generated intrinsically within local networks in the mammalian olfactory bulb (OB). The OB directly receives peripheral input from olfactory sensory neurons (OSNs) that can respond to nasal airflow, and centrifugal input from neuromodulatory systems whose activities are affected by the behavioral states of animal. How peripheral and centrifugal input dynamically modulate γ oscillations is unclear. By simultaneously recording respiration signal and local field potentials (LFPs) in the OB of freely moving mice throughout at least one sleep-wake cycle, we observed that γ oscillations were highest during awake exploratory (AE) state, and successively lower during awake resting (AR) state, rapid eye movement (REM) and non-REM (NREM) sleep. γ activity was further enhanced when animals were exposed to stress condition, which indicated that behavioral states may modulate γ oscillations. Moreover, γ amplitude was phase-locked to respiration-entrained rhythms (RR). RR-high γ (55-120 Hz) coupling strength was strongest during AR state, while RR-low γ (30-55 Hz) coupling strength was strongest during REM sleep. However, in the absence of nasal respiratory input, γ oscillations dramatically decreased or disappeared, and γ power was no longer modulated by behavioral states. Conversely, hippocampal γ oscillations were not altered by nasal respiratory input. These results reveal that nasal respiratory input is necessary for the generation and modulation of γ oscillations in the OB, suggesting that nasal respiration may modulate neural activity and further influence olfactory function.
Collapse
Affiliation(s)
- Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhen Qin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|