1
|
Skolasinska P, Qin S, Voss M, Lee HK, Basak C. Brain activations elicited during task-switching generalize beyond the task: A partial least squares correlation approach to combine fMRI signals and cognition. Hum Brain Mapp 2024; 45:e26804. [PMID: 39126346 PMCID: PMC11316247 DOI: 10.1002/hbm.26804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
An underlying hypothesis for broad transfer from cognitive training is that the regional brain signals engaged during the training task are related to the transfer tasks. However, it is unclear whether the brain activations elicited from a specific cognitive task can generalize to performance of other tasks, esp. in normal aging where cognitive training holds much promise. In this large dual-site functional magnetic resonance imaging (fMRI) study, we aimed to characterize the neurobehavioral correlates of task-switching in normal aging and examine whether the task-switching-related fMRI-blood-oxygen-level-dependent (BOLD) signals, engaged during varieties of cognitive control, generalize to other tasks of executive control and general cognition. We therefore used a hybrid blocked and event-related fMRI task-switching paradigm to investigate brain regions associated with multiple types of cognitive control on 129 non-demented older adults (65-85 years). This large dataset provided a unique opportunity for a data-driven partial least squares-correlation approach to investigate the generalizability of multiple fMRI-BOLD signals associated with task-switching costs to other tasks of executive control, general cognition, and demographic characteristics. While some fMRI signals generalized beyond the scanned task, others did not. Results indicate right middle frontal brain activation as detrimental to task-switching performance, whereas inferior frontal and caudate activations were related to faster processing speed during the fMRI task-switching, but activations of these regions did not predict performance on other tasks of executive control or general cognition. However, BOLD signals from the right lateral occipital cortex engaged during the fMRI task positively predicted performance on a working memory updating task, and BOLD signals from the left post-central gyrus that were disengaged during the fMRI task were related to slower processing speed in the task as well as to lower general cognition. Together, these results suggest generalizability of these BOLD signals beyond the scanned task. The findings also provided evidence for the general slowing hypothesis of aging as most variance in the data were explained by low processing speed and global low BOLD signal in older age. As processing speed shared variance with task-switching and other executive control tasks, it might be a possible basis of generalizability between these tasks. Additional results support the dedifferentiation hypothesis of brain aging, as right middle frontal activations predicted poorer task-switching performance. Overall, we observed that the BOLD signals related to the fMRI task not only generalize to the performance of other executive control tasks, but unique brain predictors of out-of-scanner performance can be identified.
Collapse
Affiliation(s)
- Paulina Skolasinska
- Center for Vital Longevity, Department of PsychologyThe University of Texas at DallasDallasTexasUSA
| | - Shuo Qin
- Center for Sleep and CognitionYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Michelle Voss
- Department of Psychological and Brain SciencesUniversity of IowaIowa CityIowaUSA
| | | | - Chandramallika Basak
- Center for Vital Longevity, Department of PsychologyThe University of Texas at DallasDallasTexasUSA
| |
Collapse
|
2
|
Chen Y, Chaudhary S, Li G, Fucito LM, Bi J, Li CSR. Deficient sleep, altered hypothalamic functional connectivity, depression and anxiety in cigarette smokers. NEUROIMAGE. REPORTS 2024; 4:100200. [PMID: 38605733 PMCID: PMC11008573 DOI: 10.1016/j.ynirp.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Background Deficient sleep is implicated in nicotine dependence as well as depressive and anxiety disorders. The hypothalamus regulates the sleep-wake cycle and supports motivated behavior, and hypothalamic dysfunction may underpin comorbid nicotine dependence, depression and anxiety. We aimed to investigate whether and how the resting state functional connectivities (rsFCs) of the hypothalamus relate to cigarette smoking, deficient sleep, depression and anxiety. Methods We used the data of 64 smokers and 198 age- and sex-matched adults who never smoked, curated from the Human Connectome Project. Deficient sleep and psychiatric problems were each assessed with Pittsburgh Sleep Quality Index (PSQI) and Achenbach Adult Self-Report. We processed the imaging data with published routines and evaluated the results at a corrected threshold, all with age, sex, and the severity of alcohol use as covariates. Results Smokers vs. never smokers showed poorer sleep quality and greater severity of depression and anxiety. In smokers only, the total PSQI score, indicating more sleep deficits, was positively associated with hypothalamic rsFCs with the right inferior frontal/insula/superior temporal and postcentral (rPoCG) gyri. Stronger hypothalamus-rPoCG rsFCs were also associated with greater severity of depression and anxiety in smokers but not never smokers. Additionally, in smokers, the PSQI score completely mediated the relationships of hypothalamus-rPoCG rsFCs with depression and anxiety severity. Conclusions These findings associate hypothalamic circuit dysfunction to sleep deficiency and severity of depression and anxiety symptoms in adults who smoke. Future studies may investigate the roles of the hypothalamic circuit in motivated behaviors to better characterize the inter-related neural markers of smoking, deficient sleep, depression and anxiety.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Lisa M. Fucito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jinbo Bi
- Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
3
|
Bayat M, Hernandez M, Curzon M, Garic D, Graziano P, Dick AS. Reduced recruitment of inhibitory control regions in very young children with ADHD during a modified Kiddie Continuous Performance Task: a fMRI study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576033. [PMID: 38293209 PMCID: PMC10827162 DOI: 10.1101/2024.01.17.576033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) symptom profiles are known to undergo changes throughout development, rendering the neurobiological assessment of ADHD challenging across different developmental stages. Particularly in young children (ages 4 to 7 years), measuring inhibitory control network activity in the brain has been a formidable task due to the lack of child-friendly functional Magnetic Resonance Imaging (fMRI) paradigms. This study aims to address these difficulties by focusing on measuring inhibitory control in very young children within the MRI environment. A total of 56 children diagnosed with ADHD and 78 typically developing (TD) 4-7-year-old children were examined using a modified version of the Kiddie-Continuous Performance Test (K-CPT) during BOLD fMRI to assess inhibitory control. We concurrently evaluated their performance on the established and standardized K-CPT outside the MRI scanner. Our findings suggest that the modified K-CPT effectively elicited robust and expected brain activity related to inhibitory control in both groups. Comparisons between the two groups revealed subtle differences in brain activity, primarily observed in regions associated with inhibitory control, such as the inferior frontal gyrus, anterior insula, dorsal striatum, medial pre-supplementary motor area (pre-SMA), and cingulate cortex. Notably, increased activity in the right anterior insula was associated with improved response time (RT) and reduced RT variability on the K-CPT administered outside the MRI environment, although this did not survive statistical correction for multiple comparisons. In conclusion, our study successfully overcame the challenges of measuring inhibitory control in very young children within the MRI environment by utilizing a modified K-CPT during BOLD fMRI. These findings shed light on the neurobiological correlates of inhibitory control in ADHD and TD children, provide valuable insights for understanding ADHD across development, and potentially inform ADHD diagnosis and intervention strategies. The research also highlights remaining challenges with task fMRI in very young clinical samples.
Collapse
|
4
|
Sheynin J, Lokshina Y, Ahrari S, Nickelsen T, Duval ER, Ben-Zion Z, Shalev AY, Hendler T, Liberzon I. Greater Early Posttrauma Activation in the Right Inferior Frontal Gyrus Predicts Recovery From Posttraumatic Stress Disorder Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:91-100. [PMID: 37451548 PMCID: PMC10787040 DOI: 10.1016/j.bpsc.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) has been associated with altered emotion processing and modulation in specific brain regions, i.e., the amygdala, insula, and medial prefrontal and anterior cingulate cortices. Functional alterations in these regions, recorded shortly after trauma exposure, may predict changes in PTSD symptoms. METHODS Survivors (N = 104) of a traumatic event, predominantly a motor vehicle accident, were included. Functional magnetic resonance imaging was used to assess brain activation 1, 6, and 14 months after trauma exposure (T1, T2, and T3, respectively). Participants performed the Shifted-attention Emotional Appraisal Task, which probes 3 affective processes: implicit emotional processing (of emotional faces), emotion modulation by attention shifting (away from these faces), and emotion modulation by appraisal (of the participants' own emotional response to these faces). We defined regions of interest based on task-related activations, extracted beta weights from these regions of interest, and submitted them to a series of analyses to examine relationships between neural activation and PTSD severity over the 3 time points. RESULTS At T1, a regression model containing activations in the left dorsolateral prefrontal cortex, bilateral inferior frontal gyrus (IFG), and medial prefrontal cortex during emotion modulation by appraisal significantly predicted change in PTSD symptoms. More specifically, greater right IFG activation at T1 was associated with greater reduction in symptom severity (T1-T3). Exploratory analysis also found that activation of the right IFG increased from T1 to T3. CONCLUSIONS The results suggest that greater early posttrauma activation during emotion appraisal in the right IFG, a region previously linked to cognitive control in PTSD, predicts recovery from PTSD symptoms.
Collapse
Affiliation(s)
- Jony Sheynin
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, Texas
| | - Yana Lokshina
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, Texas; Department of Psychological & Brain Sciences, Texas A&M University, College Station, Texas; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Samira Ahrari
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, Texas
| | - Tetiana Nickelsen
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, Texas
| | - Elizabeth R Duval
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Ziv Ben-Zion
- Departments of Comparative Medicine and Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut; Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; United States Department of Veterans Affairs National Center for PTSD Clinical Neuroscience Division, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Arieh Y Shalev
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York
| | - Talma Hendler
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, Texas; Department of Psychological & Brain Sciences, Texas A&M University, College Station, Texas; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas.
| |
Collapse
|
5
|
Liang Y, Bo K, Meyyappan S, Ding M. Decoding fMRI data with support vector machines and deep neural networks. J Neurosci Methods 2024; 401:110004. [PMID: 37914001 DOI: 10.1016/j.jneumeth.2023.110004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Multivoxel pattern analysis (MVPA) examines fMRI activation patterns associated with different cognitive conditions. Support vector machines (SVMs) are the predominant method in MVPA. While SVM is intuitive and easy to apply, it is mainly suitable for analyzing data that are linearly separable. Convolutional neural networks (CNNs) are known to have the ability to approximate nonlinear relationships. Applications of CNN to fMRI data are beginning to appear with increasing frequency, but our understanding of the similarities and differences between CNN models and SVM models is limited. NEW METHOD We compared the two methods when they are applied to the same datasets. Two datasets were considered: (1) fMRI data collected from participants during a cued visual spatial attention task and (2) fMRI data collected from participants viewing natural images containing varying degrees of affective content. RESULTS We found that (1) both SVM and CNN are able to achieve above-chance decoding accuracies for attention control and emotion processing in both the primary visual cortex and the whole brain, (2) the CNN decoding accuracies are consistently higher than that of the SVM, (3) the SVM and CNN decoding accuracies are generally not correlated, and (4) the heatmaps derived from SVM and CNN are not significantly overlapping. COMPARISON WITH EXISTING METHODS By comparing SVM and CNN we pointed out the similarities and differences between the two methods. CONCLUSIONS SVM and CNN rely on different neural features for classification. Applying both to the same data may yield a more comprehensive understanding of neuroimaging data.
Collapse
Affiliation(s)
- Yun Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ke Bo
- The Cognitive and Affective Neuroscience Lab, Dartmouth College, Hanover, NH, USA
| | | | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Wang D, Fan Q, Xiao X, He H, Yang Y, Li Y. Structural Fingerprinting of the Frontal Aslant Tract: Predicting Cognitive Control Capacity and Obsessive-Compulsive Symptoms. J Neurosci 2023; 43:7016-7027. [PMID: 37696666 PMCID: PMC10586535 DOI: 10.1523/jneurosci.0628-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
White matter of the human brain is influenced by common genetic variations and shaped by neural activity-dependent experiences. Variations in microstructure of cerebral white matter across individuals and even across fiber tracts might underlie differences in cognitive capacity and vulnerabilities to mental disorders. The frontoparietal and cingulo-opercular networks of the brain constitute the central system supporting cognitive functions, and functional connectivity of these networks has been used to distinguish individuals known as "functional fingerprinting." The frontal aslant tract (FAT) that passes through the two networks has been implicated in executive functions. However, whether FAT can be used as a "structural fingerprint" to distinguish individuals and predict an individual's cognitive function and dysfunction is unknown. Here we investigated the fingerprinting property of FAT microstructural profiles using three independent diffusion MRI datasets with repeated scans on human participants including both females and males. We found that diffusion and geometric profiles of FAT can be used to distinguish individuals with a high accuracy. Next, we demonstrated that fractional anisotropy in different FAT segments predicted distinct cognitive functions, including working memory, inhibitory control, and relational reasoning. Finally, we assessed the contribution of altered FAT microstructural profiles to cognitive dysfunction in unmedicated patients with obsessive-compulsive disorders. We found that the altered microstructure in FAT was associated with the severity of obsessive-compulsive symptoms. Collectively, our findings suggest that the microstructural profiles of FAT can identify individuals with a high accuracy and may serve as an imaging marker for predicting an individual's cognitive capacity and disease severity.SIGNIFICANCE STATEMENT The frontoparietal network and cingulo-opercular network of the brain constitute a dual-network architecture for human cognitive functions, and functional connectivity of these two networks can be used as a "functional fingerprint" to distinguish individuals. However, the structural underpinnings of these networks subserving individual heterogeneities in their functional connectivity and cognitive ability remain unknown. We show here that the frontal aslant tract (FAT) that passes through the two networks distinguishes individuals with a high accuracy. Further, we demonstrate that the diffusion profiles of FAT predict distinct cognitive functions in healthy subjects and are associated with the clinical symptoms in patients with obsessive-compulsive disorders. Our findings suggest that the FAT may serve as a unique structural fingerprint underlying individual cognitive capability.
Collapse
Affiliation(s)
- Danni Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, People's Republic of China
| | - Xiang Xiao
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou 310027, People's Republic of China
- School of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| |
Collapse
|
7
|
Ferreira J, Roelofs A, Freches GB, Piai V. An fMRI study of inflectional encoding in spoken word production: Role of domain-general inhibition. Neuropsychologia 2023; 188:108653. [PMID: 37499792 DOI: 10.1016/j.neuropsychologia.2023.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
A major issue concerning inflectional encoding in spoken word production is whether or not regular forms (e.g., past tense walked) are encoded by rule application and irregular forms (e.g., swam) by retrieval from associative memory and inhibition of the regular rule. We used functional magnetic resonance imaging (fMRI) to examine the involvement of domain-general inhibition, thought to be underpinned by right inferior frontal gyrus (IFG), right pre-supplementary motor area (SMA), and right basal ganglia. Participants were presented with infinitive verbs that take either regular or irregular past tense. They switched between producing the past tense of these regular and irregular verbs in one block, and between inflecting or reading these infinitive verbs aloud in another block. As concerns corticobasal areas, compared to reading, inflecting activated left IFG and left preSMA/SMA. Regulars yielded higher activation than irregulars in these frontal areas, both on switch and repeat trials, which did not differ in activation. Switching between inflecting and reading activated left preSMA/SMA. These results indicate that inflectional encoding, and switching between inflecting and reading, engage frontal areas in the left hemisphere, including left preSMA/SMA for both and left IFG for inflecting, without recruiting the domain-general inhibition circuitry in the right hemisphere. We advance an account of inflectional encoding in spoken word production that assumes a distinction between regulars and irregulars, but without engaging domain-general inhibition.
Collapse
Affiliation(s)
- João Ferreira
- Radboud University, Donders Centre for Cognition, Maria Montessori Building, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands.
| | - Ardi Roelofs
- Radboud University, Donders Centre for Cognition, Maria Montessori Building, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands.
| | - Guilherme Blazquez Freches
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands; Radboud University, Donders Centre for Neuroscience, Heyendaalseweg, 135 6525, AJ Nijmegen, the Netherlands.
| | - Vitória Piai
- Radboud University, Donders Centre for Cognition, Maria Montessori Building, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands; Radboudumc, Donders Centre for Medical Neuroscience, Dept. of Medical Psychology, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Xing Z, Guo T, Ren L, Schwieter JW, Liu H. Spatiotemporal evidence uncovers differential neural activity patterns in cognitive and affective conflict control. Behav Brain Res 2023; 451:114522. [PMID: 37268253 DOI: 10.1016/j.bbr.2023.114522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Studies have shown that there are overlapping neural bases for cognitive and affective conflict control, but whether the neural activity patterns caused by the two types of conflict are similar remains to be explored. The present study utilizes electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) to temporally and spatially analyze the differences between cognitive and affective conflict control. We employ a semantic conflict task which includes blocks of cognitive and affective judgements primed by conflicting and non-conflicting contexts. The results showed a typical neural conflict effect in the cognitive judgment blocks as reflected by greater amplitudes of P2, N400, and the late positive potential (LPP), as well as greater activation of the left pre-supplementary motor area (pre-SMA) and the right inferior frontal gyrus (IFG) in the conflict condition relative to the non-conflict condition. These patterns did not emerge in the affective judgments, but instead, showed reversed effects of the LPP and in the left SMA. Taken together, these findings suggest that cognitive and affective conflict control result in different neural activity patterns.
Collapse
Affiliation(s)
- Zehui Xing
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 116029 Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| | - Tingting Guo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 116029 Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| | - Lanlan Ren
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 116029 Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| | - John W Schwieter
- Language Acquisition, Multilingualism, and Cognition Laboratory / Bilingualism Matters @ Wilfrid Laurier University, Canada; Department of Linguistics and Languages, McMaster University, Canada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 116029 Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China.
| |
Collapse
|
9
|
Liang Y, Bo K, Meyyappan S, Ding M. Decoding fMRI Data: A Comparison Between Support Vector Machines and Deep Neural Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542882. [PMID: 37398470 PMCID: PMC10312615 DOI: 10.1101/2023.05.30.542882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Multivoxel pattern analysis (MVPA) examines the differences in fMRI activation patterns associated with different cognitive conditions and provides information not possible with the conventional univariate analysis. Support vector machines (SVMs) are the predominant machine learning method in MVPA. SVMs are intuitive and easy to apply. The limitation is that it is a linear method and mainly suitable for analyzing data that are linearly separable. Convolutional neural networks (CNNs), a class of AI models originally developed for object recognition, are known to have the ability to approximate nonlinear relationships. CNNs are rapidly becoming an alternative to SVMs. The purpose of this study is to compare the two methods when they are applied to the same datasets. Two datasets were considered: (1) fMRI data collected from participants during a cued visual spatial attention task (the attention dataset) and (2) fMRI data collected from participants viewing natural images containing varying degrees of affective content (the emotion dataset). We found that (1) both SVM and CNN are able to achieve above chance level decoding accuracies for attention control and emotion processing in both the primary visual cortex and the whole brain with, (2) the CNN decoding accuracies are consistently higher than that of the SVM, (3) the SVM and CNN decoding accuracies are generally not correlated with each other, and (4) the heatmaps derived from SVM and CNN are not significantly overlapping. These results suggest that (1) there are both linearly separable features and nonlinearly separable features in fMRI data that distinguish cognitive conditions and (2) applying both SVM and CNN to the same data may yield a more comprehensive understanding of neuroimaging data. Key points We compared the performance and characteristics of SVM and CNN, two major methods in MVPA analysis of neuroimaging data, by applying them to the same two fMRI datasets.Both SVM and CNN achieved decoding accuracies above chance level for both datasets in the chosen ROIs and the CNN decoding accuracies were consistently higher than those of SVM.The heatmaps derived from SVM and CNN, which assess the contribution of voxels or brain regions to MVPA decoding performance, showed no significant overlap, providing evidence that the two methods depend on distinct brain activity patterns for decoding cognitive conditions.
Collapse
|
10
|
Kaufmann BC, Cazzoli D, Pastore-Wapp M, Vanbellingen T, Pflugshaupt T, Bauer D, Müri RM, Nef T, Bartolomeo P, Nyffeler T. Joint impact on attention, alertness and inhibition of lesions at a frontal white matter crossroad. Brain 2023; 146:1467-1482. [PMID: 36200399 PMCID: PMC10115237 DOI: 10.1093/brain/awac359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
In everyday life, information from different cognitive domains-such as visuospatial attention, alertness and inhibition-needs to be integrated between different brain regions. Early models suggested that completely segregated brain networks control these three cognitive domains. However, more recent accounts, mainly based on neuroimaging data in healthy participants, indicate that different tasks lead to specific patterns of activation within the same, higher-order and 'multiple-demand' network. If so, then a lesion to critical substrates of this common network should determine a concomitant impairment in all three cognitive domains. The aim of the present study was to critically investigate this hypothesis, i.e. to identify focal stroke lesions within the network that can concomitantly affect visuospatial attention, alertness and inhibition. We studied an unselected sample of 60 first-ever right-hemispheric, subacute stroke patients using a data-driven, bottom-up approach. Patients performed 12 standardized neuropsychological and oculomotor tests, four per cognitive domain. A principal component analysis revealed a strong relationship between all three cognitive domains: 10 of 12 tests loaded on a first, common component. Analysis of the neuroanatomical lesion correlates using different approaches (i.e. voxel-based and tractwise lesion-symptom mapping, disconnectome maps) provided convergent evidence on the association between severe impairment of this common component and lesions at the intersection of superior longitudinal fasciculus II and III, frontal aslant tract and, to a lesser extent, the putamen and inferior fronto-occipital fasciculus. Moreover, patients with a lesion involving this region were significantly more impaired in daily living cognition, which provides an ecological validation of our results. A probabilistic functional atlas of the multiple-demand network was performed to confirm the potential relationship between patients' lesion substrates and observed cognitive impairments as a function of the multiple-demand network connectivity disruption. These findings show, for the first time, that a lesion to a specific white matter crossroad can determine a concurrent breakdown in all three considered cognitive domains. Our results support the multiple-demand network model, proposing that different cognitive operations depend on specific collaborators and their interaction, within the same underlying neural network. Our findings also extend this hypothesis by showing (i) the contribution of superior longitudinal fasciculus and frontal aslant tract to the multiple-demand network; and (ii) a critical neuroanatomical intersection, crossed by a vast amount of long-range white matter tracts, many of which interconnect cortical areas of the multiple-demand network. The vulnerability of this crossroad to stroke has specific cognitive and clinical consequences; this has the potential to influence future rehabilitative approaches.
Collapse
Affiliation(s)
- Brigitte C Kaufmann
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, Paris, France
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
| | - Dario Cazzoli
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Manuela Pastore-Wapp
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
| | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
| | | | - Daniel Bauer
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
| | - René M Müri
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
- Department of Neurology, Inselspital, University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Tobias Nef
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
| | - Paolo Bartolomeo
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, Paris, France
| | - Thomas Nyffeler
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
- Department of Neurology, Inselspital, University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
11
|
Litwińczuk MC, Trujillo-Barreto N, Muhlert N, Cloutman L, Woollams A. Relating Cognition to both Brain Structure and Function: A Systematic Review of Methods. Brain Connect 2023; 13:120-132. [PMID: 36106601 PMCID: PMC10079251 DOI: 10.1089/brain.2022.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Cognitive neuroscience explores the mechanisms of cognition by studying its structural and functional brain correlates. Many studies have combined structural and functional neuroimaging techniques to uncover the complex relationship between them. In this study, we report the first systematic review that assesses how information from structural and functional neuroimaging methods can be integrated to investigate the brain substrates of cognition. Procedure: Web of Science and Scopus databases were searched for studies of healthy young adult populations that collected cognitive data and structural and functional neuroimaging data. Results: Five percent of screened studies met all inclusion criteria. Next, 50% of included studies related cognitive performance to brain structure and function without quantitative analysis of the relationship. Finally, 31% of studies formally integrated structural and functional brain data. Overall, many studies consider either structural or functional neural correlates of cognition, and of those that consider both, they have rarely been integrated. We identified four emergent approaches to the characterization of the relationship between brain structure, function, and cognition; comparative, predictive, fusion, and complementary. Discussion: We discuss the insights provided in each approach about the relationship between brain structure and function and how it impacts cognitive performance. In addition, we discuss how authors can select approaches to suit their research questions. Impact statement The relationship between structural and functional brain networks and their relationship to cognition is a matter of current investigations. This work surveys how researchers have studied the relationship between brain structure and function and its impact on cognitive function in healthy adult populations. We review four emergent approaches of quantitative analysis of this multivariate problem; comparative, predictive, fusion, and complementary. We explain the characteristics of each approach, discuss the insights provided in each approach, and how authors can combine approaches to suit their research questions.
Collapse
Affiliation(s)
- Marta Czime Litwińczuk
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nelson Trujillo-Barreto
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nils Muhlert
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lauren Cloutman
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Anna Woollams
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Smit D, Trevino L, Mohamed SMH, Enriquez-Geppert S. Theta power and functional connectivity as neurophysiological markers of executive functions in individuals with cognitive complaints in daily life. Biol Psychol 2023; 178:108503. [PMID: 36681295 DOI: 10.1016/j.biopsycho.2023.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
Impairments in executive functions (EFs) are common across psychological disorders. Research into the neural oscillations underlying EFs has the potential to help understand these impairments and contribute to the development of interventions. The aim of this study is to assess theta power and functional theta connectivity in the sensor space of the regions of the superordinate network for the core EFs: conflict monitoring, response inhibition, set-shifting, and working memory updating. We recruited adults with self-reported everyday EFs complaints and formed two groups: one with attention deficit hyperactivity disorder (ADHD) (n=27) and another without any diagnosis (n=22), and compared them to controls (n=21) on the Stroop, Stop-signal, Switching, and N-back task using EEG. Power and functional connectivity analyses were conducted for four regions of interest: frontal-midline, frontolateral left and right, and parietal region. For all four EFs, the groups showed a dynamical increase in theta power over time in the four regions of interest, as well as in functional theta connectivity between these regions. Group differences were found especially for conflict monitoring, with differences in theta power in the frontal-midline and frontolateral right region. These neural markers are also associated with behavioural performance and complaints in daily life. For set-shifting, group differences were less pronounced and for response inhibition and working memory updating no group differences were observed.
Collapse
Affiliation(s)
- Diede Smit
- Department of Clinical and Developmental Neuropsychology, University of Groningen, the Netherlands; Research School of Behavioural and Cognitive Neurosciences, University of Groningen, the Netherlands
| | - Lorena Trevino
- Department of Clinical and Developmental Neuropsychology, University of Groningen, the Netherlands
| | - Saleh M H Mohamed
- Department of Clinical and Developmental Neuropsychology, University of Groningen, the Netherlands
| | - Stefanie Enriquez-Geppert
- Department of Clinical and Developmental Neuropsychology, University of Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
13
|
Daniel PL, Bonaiuto JJ, Bestmann S, Aron AR, Little S. High precision magnetoencephalography reveals increased right-inferior frontal gyrus beta power during response conflict. Cortex 2023; 158:127-136. [PMID: 36521374 PMCID: PMC9840697 DOI: 10.1016/j.cortex.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
Flexibility of behavior and the ability to rapidly switch actions is critical for adaptive living in humans. It is well established that the right-inferior frontal gyrus (R-IFG) is recruited during outright action-stopping, relating to increased beta (12-30 Hz) power. It has also been posited that inhibiting incorrect response tendencies and switching is central to motor flexibility. However, it is not known if the commonly reported R-IFG beta signature of response inhibition in action-stopping is also recruited during response conflict, which would suggest overlapping networks for stopping and switching. In the current study, we analyzed high precision magnetoencephalography (hpMEG) data recorded with multiple within subject recording sessions (trials n > 10,000) from 8 subjects during different levels of response conflict. We hypothesized that a R-IFG-triggered network for response inhibition is domain general and therefore also involved in mediating response conflict. We tested whether R-IFG showed increased beta power dependent on the level of response conflict. Using event-related spectral perturbations and linear mixed modeling, we found that R-IFG beta power increased for response conflict trials. The R-IFG beta increase was specific to trials with strong response conflict, and increased R-IFG beta power related to less error. This supports a more generalized role for R-IFG beta, beyond simple stopping behavior towards response switching.
Collapse
Affiliation(s)
- Pria L. Daniel
- Department of Psychology, University of California San Diego, 92093
| | - James J. Bonaiuto
- Institut des Sciences Cognitives, Marc Jeannerod, CNRS UMR5229, 69500,Université Claude Bernard Lyon 1, Université de Lyon, 72501
| | - Sven Bestmann
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Adam R. Aron
- Department of Psychology, University of California San Diego, 92093
| | - Simon Little
- Department of Neurology, University of California San Francisco, CA, USA.
| |
Collapse
|
14
|
A macroscopic link between interhemispheric tract myelination and cortico-cortical interactions during action reprogramming. Nat Commun 2022; 13:4253. [PMID: 35869067 PMCID: PMC9307658 DOI: 10.1038/s41467-022-31687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Myelination has been increasingly implicated in the function and dysfunction of the adult human brain. Although it is known that axon myelination shapes axon physiology in animal models, it is unclear whether a similar principle applies in the living human brain, and at the level of whole axon bundles in white matter tracts. Here, we hypothesised that in humans, cortico-cortical interactions between two brain areas may be shaped by the amount of myelin in the white matter tract connecting them. As a test bed for this hypothesis, we use a well-defined interhemispheric premotor-to-motor circuit. We combined TMS-derived physiological measures of cortico-cortical interactions during action reprogramming with multimodal myelin markers (MT, R1, R2* and FA), in a large cohort of healthy subjects. We found that physiological metrics of premotor-to-motor interaction are broadly associated with multiple myelin markers, suggesting interindividual differences in tract myelination may play a role in motor network physiology. Moreover, we also demonstrate that myelination metrics link indirectly to action switching by influencing local primary motor cortex dynamics. These findings suggest that myelination levels in white matter tracts may influence millisecond-level cortico-cortical interactions during tasks. They also unveil a link between the physiology of the motor network and the myelination of tracts connecting its components, and provide a putative mechanism mediating the relationship between brain myelination and human behaviour. Myelination is a key regulator of brain function. Here the authors use MR-based myelin measures to examine if cortico-cortical interactions, as assessed by paired pulse transcranial magnetic stimulation, are affected by variations in myelin in the human brain.
Collapse
|
15
|
Kane JM, McDonnell JL, Neimat JS, Hedera P, van den Wildenberg WPM, Phibbs FT, Bradley EB, Wylie SA, van Wouwe NC. Essential tremor impairs the ability to suppress involuntary action impulses. Exp Brain Res 2022; 240:1957-1966. [PMID: 35562536 PMCID: PMC11150918 DOI: 10.1007/s00221-022-06373-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/13/2022] [Indexed: 11/04/2022]
Abstract
Essential tremor (ET) is a movement disorder characterized primarily by action tremor which affects the regulation of movements. Disruptions in cerebello-thalamocortical networks could interfere with cognitive control over actions in ET, for example, the ability to suppress a strong automatic impulse over a more appropriate action (conflict control). The current study investigated whether ET impacts conflict control proficiency. Forty-one ET patients and 29 age-matched healthy controls (HCs) performed a conflict control task (Simon task). Participants were instructed to give a left or right response to a spatially lateralized arrow (direction of the arrow). When the action signaled by the spatial location and direction of the arrow were non-corresponding (induced conflict), the inappropriate action impulse required suppression. Overall, ET patients responded slower and less accurately compared to HCs. ET patients were especially less accurate on non-corresponding conflict (Nc) versus corresponding (Cs) trials. A focused analysis on fast impulsive response rates (based on the accuracy rate at the fastest reaction times on Nc trials) showed that ET patients made more fast errors compared to HCs. Results suggest impaired conflict control in ET compared to HCs. The increased impulsive errors seen in the ET population may be a symptom of deficiencies in the cerebello-thalamocortical networks, or, be caused by indirect effects on the cortico-striatal pathways. Future studies into the functional networks impacted by ET (cortico-striatal and cerebello-thalamocortical pathways) could advance our understanding of inhibitory control in general and the cognitive deficits in ET.
Collapse
Affiliation(s)
- Jessi M Kane
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
- Department of Psychology, University of Louisville, Louisville, KY, USA
| | | | - Joseph S Neimat
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Peter Hedera
- Department of Neurology, University of Louisville, Louisville, KY, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wery P M van den Wildenberg
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Fenna T Phibbs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elise B Bradley
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott A Wylie
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Nelleke C van Wouwe
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
16
|
Asanowicz D, Kotlewska I, Panek B. Neural Underpinnings of Proactive and Preemptive Adjustments of Action Control. J Cogn Neurosci 2022; 34:1590-1615. [PMID: 35802602 DOI: 10.1162/jocn_a_01884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This study aimed to trace the neural basis of proactive and preemptive adjustments of executive control and their effects on online processing of response conflict. In two EEG experiments, participants performed the flanker task with predictive cueing of conflict. The following questions were addressed: "Does conflict cueing improve performance?" We observed improved behavioral performance in the predictive condition, suggesting that participants proactively utilized the cues to prepare for the upcoming demands. "How is conflict processing affected by predictive cueing?" Conflict-related modulations of midfrontal N2 and theta power were smaller in the predictive than in the neutral condition. This suggests that proactive control suppressed the impact of incongruent flankers so that the conflict was reduced, and so was the involvement of online control. "Is proactive control implemented through preactivation of online control?" Conflict cueing increased midfrontal theta power also before target onset, suggesting preactivation of the control processes beforehand. "Do proactive and reactive control depend on common or unique processes?" Unlike the online control, the proactive control triggered a burst of theta power in the right hemisphere's dorsal and ventral lateral prefrontal cortices, connected with the midfrontal area via theta phase coherence. This indicates that the two control modes involve partially unique but coordinated neural processes. "Is preemptive control implemented through modulations of visual processing?" Predictive cueing modulated both the pretarget preparatory alpha desynchronization and the target selection-related posterior contralateral negativity (N2pc and sustained posterior contralateral negativity), in line with the hypothesis of preemptive tuning of sensory selection aimed at reducing the impact of conflicting stimuli.
Collapse
|
17
|
Vaden KI, Teubner-Rhodes S, Ahlstrom JB, Dubno JR, Eckert MA. Evidence for cortical adjustments to perceptual decision criteria during word recognition in noise. Neuroimage 2022; 253:119042. [PMID: 35259524 PMCID: PMC9082296 DOI: 10.1016/j.neuroimage.2022.119042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 01/31/2023] Open
Abstract
Extensive increases in cingulo-opercular frontal activity are typically observed during speech recognition in noise tasks. This elevated activity has been linked to a word recognition benefit on the next trial, termed "adaptive control," but how this effect might be implemented has been unclear. The established link between perceptual decision making and cingulo-opercular function may provide an explanation for how those regions benefit subsequent word recognition. In this case, processes that support recognition such as raising or lowering the decision criteria for more accurate or faster recognition may be adjusted to optimize performance on the next trial. The current neuroimaging study tested the hypothesis that pre-stimulus cingulo-opercular activity reflects criterion adjustments that determine how much information to collect for word recognition on subsequent trials. Participants included middle-age and older adults (N = 30; age = 58.3 ± 8.8 years; m ± sd) with normal hearing or mild sensorineural hearing loss. During a sparse fMRI experiment, words were presented in multitalker babble at +3 dB or +10 dB signal-to-noise ratio (SNR), which participants were instructed to repeat aloud. Word recognition was significantly poorer with increasing participant age and lower SNR compared to higher SNR conditions. A perceptual decision-making model was used to characterize processing differences based on task response latency distributions. The model showed that significantly less sensory evidence was collected (i.e., lower criteria) for lower compared to higher SNR trials. Replicating earlier observations, pre-stimulus cingulo-opercular activity was significantly predictive of correct recognition on a subsequent trial. Individual differences showed that participants with higher criteria also benefitted the most from pre-stimulus activity. Moreover, trial-level criteria changes were significantly linked to higher versus lower pre-stimulus activity. These results suggest cingulo-opercular cortex contributes to criteria adjustments to optimize speech recognition task performance.
Collapse
Affiliation(s)
- Kenneth I. Vaden
- Hearing Research Program, Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave. MSC 550, Charleston, SC 29455-5500, United States,Corresponding author. (K.I. Vaden Jr)
| | - Susan Teubner-Rhodes
- Hearing Research Program, Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave. MSC 550, Charleston, SC 29455-5500, United States,Department of Psychological Sciences, 226 Thach Hall, Auburn University, AL 36849-9027
| | - Jayne B. Ahlstrom
- Hearing Research Program, Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave. MSC 550, Charleston, SC 29455-5500, United States
| | - Judy R. Dubno
- Hearing Research Program, Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave. MSC 550, Charleston, SC 29455-5500, United States
| | - Mark A. Eckert
- Hearing Research Program, Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave. MSC 550, Charleston, SC 29455-5500, United States
| |
Collapse
|
18
|
Duprez J, Tabbal J, Hassan M, Modolo J, Kabbara A, Mheich A, Drapier S, Vérin M, Sauleau P, Wendling F, Benquet P, Houvenaghel JF. Spatio-temporal dynamics of large-scale electrophysiological networks during cognitive action control in healthy controls and Parkinson's disease patients. Neuroimage 2022; 258:119331. [PMID: 35660459 DOI: 10.1016/j.neuroimage.2022.119331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022] Open
Abstract
Among the cognitive symptoms that are associated with Parkinson's disease (PD), alterations in cognitive action control (CAC) are commonly reported in patients. CAC enables the suppression of an automatic action, in favor of a goal-directed one. The implementation of CAC is time-resolved and arguably associated with dynamic changes in functional brain networks. However, the electrophysiological functional networks involved, their dynamic changes, and how these changes are affected by PD, still remain unknown. In this study, to address this gap of knowledge, 10 PD patients and 10 healthy controls (HC) underwent a Simon task while high-density electroencephalography (HD-EEG) was recorded. Source-level dynamic connectivity matrices were estimated using the phase-locking value in the beta (12-25 Hz) and gamma (30-45 Hz) frequency bands. Temporal independent component analyses were used as a dimension reduction tool to isolate the task-related brain network states. Typical microstate metrics were quantified to investigate the presence of these states at the subject-level. Our results first confirmed that PD patients experienced difficulties in inhibiting automatic responses during the task. At the group-level, we found three functional network states in the beta band that involved fronto-temporal, temporo-cingulate and fronto-frontal connections with typical CAC-related prefrontal and cingulate nodes (e.g., inferior frontal cortex). The presence of these networks did not differ between PD patients and HC when analyzing microstates metrics, and no robust correlations with behavior were found. In the gamma band, five networks were found, including one fronto-temporal network that was identical to the one found in the beta band. These networks also included CAC-related nodes previously identified in different neuroimaging modalities. Similarly to the beta networks, no subject-level differences were found between PD patients and HC. Interestingly, in both frequency bands, the dominant network at the subject-level was never the one that was the most durably modulated by the task. Altogether, this study identified the dynamic functional brain networks observed during CAC, but did not highlight PD-related changes in these networks that might explain behavioral changes. Although other new methods might be needed to investigate the presence of task-related networks at the subject-level, this study still highlights that task-based dynamic functional connectivity is a promising approach in understanding the cognitive dysfunctions observed in PD and beyond.
Collapse
Key Words
- Cognitive control
- DIFFIT, Difference in data fitting
- DLPFC, Dorso-lateral prefrontal cortex
- EEG, Electroencephalography
- FC, Functional connectivity
- Functional connectivity
- HC, Healthy controls
- HD-EEG, High-density EEG
- ICA, Independent component analysis
- IFC, Inferior frontal cortex
- MEG, Magnetoencephalography
- Networks, Dynamics
- PD, Parkinson's disease
- PLV, Phase locking value
- Parkinson's disease Abbreviations CAC, Cognitive action control
- ROIS, Regions of interest
- RT, Reaction time
- Simon task
- dBNS, Dynamic brain network state
- dFC, Dynamic functional connectivity
- fMRI, Functional magnetic resonance imaging
- high density EEG
- pre-SMA, Pre-supplementary motor area
- tICA, Temporal ICA
Collapse
Affiliation(s)
- Joan Duprez
- Univ Rennes, LTSI - U1099, F-35000 Rennes, France
| | - Judie Tabbal
- Univ Rennes, LTSI - U1099, F-35000 Rennes, France; Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Mahmoud Hassan
- MINDig, F-35000 Rennes, France; School of Engineering, Reykjavik University, Iceland
| | | | | | | | - Sophie Drapier
- CIC INSERM 1414, Rennes, France; Neurology Department, Pontchaillou Hospital, Rennes University Hospital, France
| | - Marc Vérin
- Neurology Department, Pontchaillou Hospital, Rennes University Hospital, France; Behavioral and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, France
| | - Paul Sauleau
- Behavioral and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, France; Neurophysiology department, Rennes University Hospital, France
| | | | | | - Jean-François Houvenaghel
- Neurology Department, Pontchaillou Hospital, Rennes University Hospital, France; Behavioral and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, France
| |
Collapse
|
19
|
Chabin T, Pazart L, Gabriel D. Vocal melody and musical background are simultaneously processed by the brain for musical predictions. Ann N Y Acad Sci 2022; 1512:126-140. [PMID: 35229293 DOI: 10.1111/nyas.14755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022]
Abstract
Musical pleasure is related to the capacity to predict and anticipate the music. By recording early cerebral responses of 16 participants with electroencephalography during periods of silence inserted in known and unknown songs, we aimed to measure the contribution of different musical attributes to musical predictions. We investigated the mismatch between past encoded musical features and the current sensory inputs when listening to lyrics associated with vocal melody, only background instrumental material, or both attributes grouped together. When participants were listening to chords and lyrics for known songs, the brain responses related to musical violation produced event-related potential responses around 150-200 ms that were of a larger amplitude than for chords or lyrics only. Microstate analysis also revealed that for chords and lyrics, the global field power had an increased stability and a longer duration. The source localization identified that the right superior temporal and frontal gyri and the inferior and medial frontal gyri were activated for a longer time for chords and lyrics, likely caused by the increased complexity of the stimuli. We conclude that grouped together, a broader integration and retrieval of several musical attributes at the same time recruit larger neuronal networks that lead to more accurate predictions.
Collapse
Affiliation(s)
- Thibault Chabin
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France
| | - Lionel Pazart
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation Neuraxess, Centre Hospitalier Universitaire de Besançon, Université de Bourgogne Franche-Comté, Bourgogne Franche-Comté, France
| | - Damien Gabriel
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
20
|
Kuhlen AK, Abdel Rahman R. Mental chronometry of speaking in dialogue: Semantic interference turns into facilitation. Cognition 2021; 219:104962. [PMID: 34875399 DOI: 10.1016/j.cognition.2021.104962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022]
Abstract
Numerous studies demonstrate that the production of words is delayed when speakers process in temporal proximity semantically related words. Yet the experimental settings underlying this effect are different from those under which we typically speak. This study demonstrates that semantic interference disappears, and can even turn into facilitation, when semantically related words are embedded in a meaningful communicative exchange. Experiment 1 and 3 (each N = 32 university students) implemented a picture-word interference task in a game played between two participants: one named the distractor word and, after a stimulus-onset-asynchrony of -150 ms or -650 ms, the other named a semantically related or unrelated target picture. Semantic interference reappeared with identical experimental parameters in a single-person picture-word interference setting (Experiment 2, N = 32). We conclude that the inhibitory context effects leading to semantic interference in single-subject settings are attenuated whereas facilitatory effects are enhanced in communicative settings.
Collapse
Affiliation(s)
- Anna K Kuhlen
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Rasha Abdel Rahman
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
21
|
Maxfield ND. Cognitive control of action naming in adults who stutter. JOURNAL OF FLUENCY DISORDERS 2021; 70:105841. [PMID: 33667938 PMCID: PMC8390602 DOI: 10.1016/j.jfludis.2021.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE Based on previous evidence that cognitive control of lexical selection in object (noun) naming operates differently in adults who stutter (AWS) versus typically-fluent adults (TFA), the aim was to investigate cognitive control of lexical selection in action (verb) naming in AWS. METHOD 12 AWS and 12 TFA named line drawings depicting actions using verbs. Half of the pictures had high-agreement action names and the other half low-agreement action names. Naming accuracy and reaction times (RT), and event-related potentials (ERPs) time-locked to picture onset, were compared between groups. RESULTS Naming RTs were slower for low- versus high-agreement trials, and the magnitude of this effect was larger in AWS versus TFA. Delta-plot analysis of naming RTs revealed that individual differences in selective inhibition were associated with the agreement effect on naming RTs in AWS but not TFA. Action naming elicited frontal-central N2 activity in both agreement conditions in TFA but not AWS. Additionally, a later, posterior P3b component was affected by agreement in TFA only. In AWS, low-agreement action naming elicited frontal P3a activation. CONCLUSIONS Results suggest that cognitive control of action name selection was qualitatively different between groups. In TFA, cognitive control of lexical selection in action naming involved nonselective inhibition, as well as more efficient working memory updating on high- versus low-agreement trials. In AWS, cognitive control of low-agreement action naming involved increased focal attention. Individual differences in selective inhibition may have moderated cognitive control of action naming in AWS.
Collapse
Affiliation(s)
- Nathan D Maxfield
- University of South Florida, Department of Communication Sciences & Disorders, 4202 East Fowler Avenue, PCD1017, Tampa, FL, 33620, United States.
| |
Collapse
|
22
|
Alderson Myers AB, Arienzo D, Molnar SM, Marinkovic K. Local and network-level dysregulation of error processing is associated with binge drinking. NEUROIMAGE-CLINICAL 2021; 32:102879. [PMID: 34768146 PMCID: PMC8591397 DOI: 10.1016/j.nicl.2021.102879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/22/2023]
Abstract
Go/NoGo performance does not differ between binge (BDs) and light drinkers. BDs show greater BOLD activity to inhibition errors primarily in prefrontal areas. Greater functional connectivity in the frontal cortex correlates with drinking. Observed increase in error-related activity may serve a compensatory role. This is consistent with allostatic hyperexcitability reflecting neuroadaptation.
Binge drinking refers to the pattern of alcohol consumption that brings blood alcohol levels to or above legal intoxication levels. Commonly practiced by young adults, it is associated with neurofunctional alterations, raising health-related concerns. Executive deficits may contribute to the inability to refrain from excessive alcohol intake. As a facet of cognitive control, error processing allows for flexible modification of behavior to optimize future outcomes. It is highly relevant to addiction research, as a failure to inhibit excessive drinking results in relapses, which is a hallmark of alcohol use disorder. However, research on local and system-level neural underpinnings of inhibition failures as a function of binge drinking is limited. To address these gaps, functional magnetic resonance imaging (fMRI) was used to examine local changes and interregional functional connectivity during response inhibition errors on a Go/NoGo task. Young adult binge drinkers (BDs) performed equally well as light drinkers (LDs), a group of demographically matched individuals who drink regularly but in low-risk patterns. In contrast, BDs exhibited greater fMRI activity to inhibition errors contrasted with correct NoGo trials in the rostral anterior (rACC) and posterior cingulate cortices (PCC), as well as right middle frontal gyrus (R-MFG). Furthermore, BDs showed increased connectivity between the rACC and right lateral prefrontal cortex, in addition to greater connectivity between the R-MFG and the left ventrolateral and superior frontal cortices. Imaging indices were positively correlated only with alcohol-related measures, but not with those related to moods, disposition, or cognitive capacity. Taken together, greater error-related activity and expanded functional connectivity among prefrontal regions may serve a compensatory role to maintain efficiency of inhibitory control. Aligned with prominent models of addiction, these findings accentuate the importance of top-down control in maintaining low-risk drinking levels. They provide insight into potentially early signs of deteriorating cognitive control functions in BDs and may help guide intervention strategies aimed at preventing excessive drinking habits.
Collapse
Affiliation(s)
- Austin B Alderson Myers
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| | - Donatello Arienzo
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| | - Sean M Molnar
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| | - Ksenija Marinkovic
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA; Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Diesburg DA, Wessel JR. The Pause-then-Cancel model of human action-stopping: Theoretical considerations and empirical evidence. Neurosci Biobehav Rev 2021; 129:17-34. [PMID: 34293402 PMCID: PMC8574992 DOI: 10.1016/j.neubiorev.2021.07.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
The ability to stop already-initiated actions is a key cognitive control ability. Recent work on human action-stopping has been dominated by two controversial debates. First, the contributions (and neural signatures) of attentional orienting and motor inhibition after stop-signals are near-impossible to disentangle. Second, the timing of purportedly inhibitory (neuro)physiological activity after stop-signals has called into question which neural signatures reflect processes that actually contribute to action-stopping. Here, we propose that a two-stage model of action-stopping - proposed by Schmidt and Berke (2017) based on subcortical rodent recordings - may resolve these controversies. Translating this model to humans, we first argue that attentional orienting and motor inhibition are inseparable because orienting to salient events like stop-signals automatically invokes broad motor inhibition, reflecting a fast-acting, ubiquitous Pause process. We then argue that inhibitory signatures after stop-signals differ in latency because they map onto two sequential stages: the salience-related Pause and a slower, stop-specific Cancel process. We formulate the model, discuss recent supporting evidence in humans, and interpret existing data within its context.
Collapse
Affiliation(s)
- Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
24
|
Treleaven SB, Coalson GA. Verbal Response Inhibition in Adults Who Stutter. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:3382-3397. [PMID: 34403265 PMCID: PMC8642087 DOI: 10.1044/2021_jslhr-20-00739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 05/09/2021] [Indexed: 05/30/2023]
Abstract
Purpose Adults who stutter (AWS) often attempt, with varying degrees of success, to suppress their stuttered speech. The ability to effectively suppress motoric behavior after initiation relies on executive functions such as nonselective inhibition. Although previous studies found that AWS were slower to inhibit manual, button-press response than adults who do not stutter (AWNS), research has yet to confirm a consistent relationship between manual and verbal inhibition. No study has examined verbal inhibition ability in AWS. The purpose of this study, therefore, is to compare verbal response inhibition between AWS and AWNS, and compare verbal response inhibition to both the overt stuttering and the lived experience of stuttering. Method Thirty-four adults (17 AWNS, 17 AWS) completed one manual and three verbal stop-signal tasks. AWS were assessed for stuttering severity (Stuttering Severity Instrument-Fourth Edition: SSI-4) and experience with stuttering (Overall Assessment of the Speaker's Experience With Stuttering [OASES]). Results Results indicate no correlation between manual and verbal inhibition for either group. Generalized linear mixed-model analyses suggested no significant group differences in manual or verbal inhibition. Manual and verbal inhibition did not predict SSI-4 in AWS. However, verbal inhibition was uniquely associated with OASES scores. Conclusion Although underlying manual and verbal inhibition was comparable between AWS and AWNS, verbal inhibition may be linked to the adverse experience of stuttering rather than the overt symptoms of stuttering severity. Supplemental Material https://doi.org/10.23641/asha.15145185.
Collapse
|
25
|
Rieck JR, Baracchini G, Grady CL. Contributions of Brain Function and Structure to Three Different Domains of Cognitive Control in Normal Aging. J Cogn Neurosci 2021; 33:1811-1832. [PMID: 34375414 DOI: 10.1162/jocn_a_01685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cognitive control involves the flexible allocation of mental resources during goal-directed behavior and comprises three correlated but distinct domains-inhibition, shifting, and working memory. The work of Don Stuss and others has demonstrated that frontal and parietal cortices are crucial to cognitive control, particularly in normal aging, which is characterized by reduced control mechanisms. However, the structure-function relationships specific to each domain and subsequent impact on performance are not well understood. In the current study, we examined both age and individual differences in functional activity associated with core domains of cognitive control in relation to fronto-parietal structure and task performance. Participants (n = 140, aged 20-86 years) completed three fMRI tasks: go/no-go (inhibition), task switching (shifting), and n-back (working memory), in addition to structural and diffusion imaging. All three tasks engaged a common set of fronto-parietal regions; however, the contributions of age, brain structure, and task performance to functional activity were unique to each domain. Aging was associated with differences in functional activity for all tasks, largely in regions outside common fronto-parietal control regions. Shifting and inhibition showed greater contributions of structure to overall decreases in brain activity, suggesting that more intact fronto-parietal structure may serve as a scaffold for efficient functional response. Working memory showed no contribution of structure to functional activity but had strong effects of age and task performance. Together, these results provide a comprehensive and novel examination of the joint contributions of aging, performance, and brain structure to functional activity across multiple domains of cognitive control.
Collapse
Affiliation(s)
| | | | - Cheryl L Grady
- Rotman Research Institute at Baycrest.,University of Toronto
| |
Collapse
|
26
|
Cong L, Miyaguchi H, Ishizuki C. Comparison of Activation in the Prefrontal Cortex of Native Speakers of Mandarin by Ability of Japanese as a Second Language Using a Novel Speaking Task. Healthcare (Basel) 2021; 9:healthcare9040412. [PMID: 33918495 PMCID: PMC8065755 DOI: 10.3390/healthcare9040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
Evidence shows that second language (L2) learning affects cognitive function. Here in this work, we compared brain activation in native speakers of Mandarin (L1) who speak Japanese (L2) between and within two groups (high and low L2 ability) to determine the effect of L2 ability in L1 and L2 speaking tasks, and to map brain regions involved in both tasks. The brain activation during task performance was determined using prefrontal cortex blood flow as a proxy, measured by functional near-infrared spectroscopy (fNIRS). People with low L2 ability showed much more brain activation when speaking L2 than when speaking L1. People with high L2 ability showed high-level brain activation when speaking either L2 or L1. Almost the same high-level brain activation was observed in both ability groups when speaking L2. The high level of activation in people with high L2 ability when speaking either L2 or L1 suggested strong inhibition of the non-spoken language. A wider area of brain activation in people with low compared with high L2 ability when speaking L2 is considered to be attributed to the cognitive load involved in code-switching L1 to L2 with strong inhibition of L1 and the cognitive load involved in using L2.
Collapse
Affiliation(s)
- Li Cong
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima City 734-8551, Japan;
- Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima City 739-2695, Japan
| | - Hideki Miyaguchi
- Department of Human Behavior Science of Occupational Therapy, Health Sciences Major, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima City 734-8551, Japan;
- Correspondence: ; Tel.: +81-82-257-5440
| | - Chinami Ishizuki
- Department of Human Behavior Science of Occupational Therapy, Health Sciences Major, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima City 734-8551, Japan;
| |
Collapse
|
27
|
Korko M, Coulson M, Jones A, de Mornay Davies P. Types of interference and their resolution in monolingual word production. Acta Psychol (Amst) 2021; 214:103251. [PMID: 33485153 DOI: 10.1016/j.actpsy.2021.103251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/10/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022] Open
Abstract
There is growing evidence that speakers recruit inhibitory control in situations of high within-language interference, e.g., when selecting from among competing lexical entries or when tailoring utterances to the communicative needs of the addressee. However, little is known about the types of cognitive control mechanisms that are involved in the speech production process. This study examines the relative contribution of various forms of interference arising at different stages of information processing as well as their control to object naming under conditions of prepotent and underdetermined competition. Eighty-nine unimpaired native English speakers completed three inhibitory control tasks (arrow flanker, Simon arrow and anti-saccade) and two object naming tasks (picture-word interference, PWI, and name agreement, NA). Analyses of mean RT and RT distribution (delta plots) showed that only the flanker effect was a significant predictor of the PWI but not NA effect, while the remaining inhibitory measures made no significant contribution to either the PWI or NA effect. Participants with smaller flanker effects, indicative of better resolution of representational conflict, were faster to name objects in the face of competing stimuli. The pattern of results suggests that delays in production can be an outcome of inefficient resolution of interference traced to intermediate rather than late stages of processing, at least as far as the PWI task is concerned.
Collapse
|
28
|
Ridderinkhof KR, Wylie SA, van den Wildenberg WPM, Bashore TR, van der Molen MW. The arrow of time: Advancing insights into action control from the arrow version of the Eriksen flanker task. Atten Percept Psychophys 2021; 83:700-721. [PMID: 33099719 PMCID: PMC7884358 DOI: 10.3758/s13414-020-02167-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
Since its introduction by B. A. Eriksen and C. W. Eriksen (Perception & Psychophysics, 16, 143-49, 1974), the flanker task has emerged as one of the most important experimental tasks in the history of cognitive psychology. The impact of a seemingly simple task design involving a target stimulus flanked on each side by a few task-irrelevant stimuli is astounding. It has inspired research across the fields of cognitive neuroscience, psychophysiology, neurology, psychiatry, and sports science. In our tribute to Charles W. ("Erik") Eriksen, we (1) review the seminal papers originating from his lab in the 1970s that launched the paradigmatic task and laid the foundation for studies of action control, (2) describe the inception of the arrow version of the Eriksen flanker task, (3) articulate the conceptual and neural models of action control that emerged from studies of the arrows flanker task, and (4) illustrate the influential role of the arrows flanker task in disclosing developmental trends in action control, fundamental deficits in action control due to neuropsychiatric disorders, and enhanced action control among elite athletes.
Collapse
Affiliation(s)
| | - Scott A Wylie
- Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | | |
Collapse
|
29
|
Korucuoglu O, Harms MP, Astafiev SV, Golosheykin S, Kennedy JT, Barch DM, Anokhin AP. Test-Retest Reliability of Neural Correlates of Response Inhibition and Error Monitoring: An fMRI Study of a Stop-Signal Task. Front Neurosci 2021; 15:624911. [PMID: 33584190 PMCID: PMC7875883 DOI: 10.3389/fnins.2021.624911] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Response inhibition (RI) and error monitoring (EM) are important processes of adaptive goal-directed behavior, and neural correlates of these processes are being increasingly used as transdiagnostic biomarkers of risk for a range of neuropsychiatric disorders. Potential utility of these purported biomarkers relies on the assumption that individual differences in brain activation are reproducible over time; however, available data on test-retest reliability (TRR) of task-fMRI are very mixed. This study examined TRR of RI and EM-related activations using a stop signal task in young adults (n = 56, including 27 pairs of monozygotic (MZ) twins) in order to identify brain regions with high TRR and familial influences (as indicated by MZ twin correlations) and to examine factors potentially affecting reliability. We identified brain regions with good TRR of activations related to RI (inferior/middle frontal, superior parietal, and precentral gyri) and EM (insula, medial superior frontal and dorsolateral prefrontal cortex). No subcortical regions showed significant TRR. Regions with higher group-level activation showed higher TRR; increasing task duration improved TRR; within-session reliability was weakly related to the long-term TRR; motion negatively affected TRR, but this effect was abolished after the application of ICA-FIX, a data-driven noise removal method.
Collapse
Affiliation(s)
- Ozlem Korucuoglu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael P. Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Serguei V. Astafiev
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Semyon Golosheykin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - James T. Kennedy
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, United States
| | - Andrey P. Anokhin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
30
|
Maxfield ND. Inhibitory Control of Lexical Selection in Adults who Stutter. JOURNAL OF FLUENCY DISORDERS 2020; 66:105780. [PMID: 32950028 PMCID: PMC7704578 DOI: 10.1016/j.jfludis.2020.105780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 06/01/2023]
Abstract
PURPOSE Based on previous evidence that lexical selection may operate differently in adults who stutter (AWS) versus typically-fluent adults (TFA), and that atypical attentional processing may be a contributing factor, the purpose of this study was to investigate inhibitory control of lexical selection in AWS. METHOD 12 AWS and 12 TFA completed two tasks. One was a picture naming task featuring High and Low Agreement object naming. Naming accuracy and reaction times (RT), and event-related potentials (ERPs) time-locked to picture onset, were recorded. Second was a flanker task featuring Congruent and Incongruent arrow arrays. Push-button accuracy and RTs, and ERPs time-locked to arrow array onset, were recorded. RESULTS Low Agreement pictures were named less accurately and slower than High Agreement pictures in both Groups. The magnitude of the Agreement effect on naming RTs was larger in AWS versus TFA. Delta-plot analysis revealed that the Agreement effect was positively correlated with individual differences in inhibition in TFA but not in AWS. Moreover, Low Agreement pictures elicited negative-going ERP activity relative to High Agreement pictures in both Groups. However, the scalp topography of this effect was markedly reduced in AWS versus TFA. For the Flanker task, Congruency affected push-button accuracy and RTs, and N2 amplitudes, similarly between groups. CONCLUSIONS Results point to a selective deficit in inhibitory control of lexical selection in AWS. Potential pathways between diminished inhibitory control of lexical selection, speech motor control and stuttering are discussed.
Collapse
Affiliation(s)
- Nathan D Maxfield
- University of South Florida, Department of Communication Sciences & Disorders, 4202 East Fowler Avenue, PCD1017, Tampa, FL, 33620, United States.
| |
Collapse
|
31
|
Control of response interference: caudate nucleus contributes to selective inhibition. Sci Rep 2020; 10:20977. [PMID: 33262369 PMCID: PMC7708449 DOI: 10.1038/s41598-020-77744-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/03/2020] [Indexed: 11/19/2022] Open
Abstract
While the role of cortical regions in cognitive control processes is well accepted, the contribution of subcortical structures (e.g., the striatum), especially to the control of response interference, remains controversial. Therefore, the present study aimed to investigate the cortical and particularly subcortical neural mechanisms of response interference control (including selective inhibition). Thirteen healthy young participants underwent event-related functional magnetic resonance imaging while performing a unimanual version of the Simon task. In this task, successful performance required the resolution of stimulus–response conflicts in incongruent trials by selectively inhibiting interfering response tendencies. The behavioral results show an asymmetrical Simon effect that was more pronounced in the contralateral hemifield. Contrasting incongruent trials with congruent trials (i.e., the overall Simon effect) significantly activated clusters in the right anterior cingulate cortex, the right posterior insula, and the caudate nucleus bilaterally. Furthermore, a region of interest analysis based on previous patient studies revealed that activation in the bilateral caudate nucleus significantly co-varied with a parameter of selective inhibition derived from distributional analyses of response times. Our results corroborate the notion that the cognitive control of response interference is supported by a fronto-striatal circuitry, with a functional contribution of the caudate nucleus to the selective inhibition of interfering response tendencies.
Collapse
|
32
|
The Influence of Response Inhibition Training on Food Consumption and Implicit Attitudes toward Food among Female Restrained Eaters. Nutrients 2020; 12:nu12123609. [PMID: 33255361 PMCID: PMC7760709 DOI: 10.3390/nu12123609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/04/2022] Open
Abstract
Restrained eaters display difficulties engaging in self-control in the presence of food. Undergoing cognitive training to form associations between palatable food and response inhibition was found to improve self-control and influence eating behaviors. The present study assessed the impact of two such response inhibition trainings on food consumption, food-related anxiety, and implicit attitudes toward food among female restrained eaters (Dutch Eating Behavior Questionnaire-restrained eating subscale ≥ 2.5). In Experiment 1, 64 restrained eaters completed either one of two training procedures in which they were asked to classify food vs. non-food images: a food-response training, in which stop cues were always associated with non-food images, or a balanced food-response/inhibition training, in which participants inhibited motor actions to food and non-food stimuli equally. The results revealed reduced snack consumption following the food-response/inhibition training compared to the food-response training. The food-response training was associated with increased levels of food-related anxiety. In Experiment 2, the same training procedures were administered to 47 restrained eaters, and implicit attitudes toward palatable foods were assessed. The results revealed an increase in positive implicit attitudes toward palatable foods in the food-response/inhibition group but not in the food-response training group. The results suggest that balancing response inhibition and execution across food and non-food stimuli may reduce overeating while retaining positive attitudes toward food among female restrained eaters.
Collapse
|
33
|
Qian Z, Liu S, Zhu X, Kong L, Liu N, Wang D, Jiang C, Zhan Z, Yuan F. Higher Trait Impulsivity and Altered Frontostriatal Connectivity in Betel-Quid Dependent Individuals. Front Hum Neurosci 2020; 14:578913. [PMID: 33192412 PMCID: PMC7658367 DOI: 10.3389/fnhum.2020.578913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: Betel quid dependency (BQD) is characterized by functional and structural brain alterations. Trait impulsivity may influence substance dependence by impacting its neurobiological underpinnings in the frontostriatal circuit. However, little is known about the trait impulsivity and its neural correlates in individuals with BQD. Methods: Forty-eight participants with BQD and 22 normal controls (NCs) were recruited and scanned on a 3T MRI scanner. Barratt impulsiveness scale (BIS) was used to measure trait impulsivity: motor, attention, and no plan impulsivity. We used voxel-based morphometry (VBM) to assess the relationship between trait impulsivity and gray matter volumes. The relevant clusters identified were served as regions of interest (ROI) seeds. The whole-volume psycho-physiological interactions (PPI) analysis was used to investigate the changes of functional connectivity related to ROI seeds in the cue-reactivity task condition (BQ and control images). Results: Behaviorally, the BQD group showed significantly higher trait impulsivity including motor and no plan impulsivity than the NCs group. VBM analyses showed that motor impulsivity was negatively associated with gray matter volume of right caudate in the whole sample. No difference in gray matter volume between the two groups was observed. PPI analyses showed that there was a significantly decreased functional connectivity between the right caudate and right dorsolateral prefrontal cortex (DLPFC) when watching BQ related images than control images in individuals with BQD. Furthermore, functional connectivity between the right caudate and right DLPFC was negatively correlated with BQ dependency scores. Conclusions: Our study demonstrated the structural basis of trait impulsivity in the caudate and provided evidence for abnormal interactions within frontostriatal circuitsin individuals with BQD, which may provide insight into the selection of potential novel therapeutic targets for the treatment of BQ dependency.
Collapse
Affiliation(s)
- Zhaoxin Qian
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
| | - Shaohui Liu
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xueling Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lingyu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Neng Liu
- Department of Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongyuan Zhan
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
The neurocognitive underpinnings of the Simon effect: An integrative review of current research. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:1133-1172. [PMID: 33025513 DOI: 10.3758/s13415-020-00836-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
For as long as half a century the Simon task - in which participants respond to a nonspatial stimulus feature while ignoring its position - has represented a very popular tool to study a variety of cognitive functions, such as attention, cognitive control, and response preparation processes. In particular, the task generates two theoretically interesting effects: the Simon effect proper and the sequential modulations of this effect. In the present study, we review the main theoretical explanations of both kinds of effects and the available neuroscientific studies that investigated the neural underpinnings of the cognitive processes underlying the Simon effect proper and its sequential modulation using electroencephalogram (EEG) and event-related brain potentials (ERP), transcranial magnetic stimulation (TMS), and functional magnetic resonance imaging (fMRI). Then, we relate the neurophysiological findings to the main theoretical accounts and evaluate their validity and empirical plausibility, including general implications related to processing interference and cognitive control. Overall, neurophysiological research supports claims that stimulus location triggers the creation of a spatial code, which activates a spatially compatible response that, in incompatible conditions, interferes with the response based on the task instructions. Integration of stimulus-response features plays a major role in the occurrence of the Simon effect (which is manifested in the selection of the response) and its modulation by sequential congruency effects. Additional neural mechanisms are involved in supporting the correct and inhibiting the incorrect response.
Collapse
|
35
|
Suda A, Osada T, Ogawa A, Tanaka M, Kamagata K, Aoki S, Hattori N, Konishi S. Functional Organization for Response Inhibition in the Right Inferior Frontal Cortex of Individual Human Brains. Cereb Cortex 2020; 30:6325-6335. [PMID: 32666077 PMCID: PMC7609925 DOI: 10.1093/cercor/bhaa188] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/10/2023] Open
Abstract
The right inferior frontal cortex (IFC) is critical to response inhibition. The right IFC referred in the human studies of response inhibition is located in the posterior part of the inferior frontal gyrus and the surrounding regions and consists of multiple areas that implement distinct functions. Recent studies using resting-state functional connectivity have parcellated the cerebral cortex and revealed across-subject variability of parcel-based cerebrocortical networks. However, how the right IFC of individual brains is functionally organized and what functional properties the IFC parcels possess regarding response inhibition remain elusive. In the present functional magnetic resonance imaging study, precision functional mapping of individual human brains was adopted to the parcels in the right IFC to evaluate their functional properties related to response inhibition. The right IFC consisted of six modules or subsets of subregions, and the spatial organization of the modules varied considerably across subjects. Each module revealed unique characteristics of brain activity and its correlation to behavior related to response inhibition. These results provide updated functional features of the IFC and demonstrate the importance of individual-focused approaches in studying response inhibition in the right IFC.
Collapse
Affiliation(s)
- Akimitsu Suda
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan.,Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan.,Sportology Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan.,Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
36
|
White matter injury and neurodevelopmental disabilities: A cross-disease (dis)connection. Prog Neurobiol 2020; 193:101845. [PMID: 32505757 DOI: 10.1016/j.pneurobio.2020.101845] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
White matter (WM) injury, once known primarily in preterm newborns, is emerging in its non-focal (diffused), non-necrotic form as a critical component of subtle brain injuries in many early-life diseases like prematurity, intrauterine growth restriction, congenital heart defects, and hypoxic-ischemic encephalopathy. While advances in medical techniques have reduced the number of severe outcomes, the incidence of tardive impairments in complex cognitive functions or psychopathology remains high, with lifelong detrimental effects. The importance of WM in coordinating neuronal assemblies firing and neural groups synchronizing within multiple frequency bands through myelination, even mild alterations in WM structure, may interfere with the cognitive performance that increasing social and learning demands would exploit tardively during children growth. This phenomenon may contribute to explaining longitudinally the high incidence of late-appearing impairments that affect children with a history of perinatal insults. Furthermore, WM abnormalities have been highlighted in several neuropsychiatric disorders, such as autism and schizophrenia. In this review, we gather and organize evidence on how diffused WM injuries contribute to neurodevelopmental disorders through different perinatal diseases and insults. An insight into a possible common, cross-disease, mechanism, neuroimaging and monitoring, biomarkers, and neuroprotective strategies will also be presented.
Collapse
|
37
|
Inhibition is associated with whole-brain structural brain connectivity on network level in school-aged children born very preterm and at term. Neuroimage 2020; 218:116937. [PMID: 32416228 DOI: 10.1016/j.neuroimage.2020.116937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/31/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Inhibition abilities are often impaired in children born very preterm. In typically-developing individuals, inhibition has been associated with structural brain connectivity (SC). As SC is frequently altered following preterm birth, this study investigated whether aberrant SC underlies inhibition deficits in school-aged children born very preterm. In a group of 67 very preterm participants aged 8-13 years and 69 term-born peers, inhibition abilities were assessed with two tasks. In a subgroup of 50 very preterm and 62 term-born participants, diffusion tensor imaging (DTI) data were collected. Using network-based statistics (NBS), mean fractional anisotropy (FAmean) was compared between groups. Associations of FAmean and inhibition abilities were explored through linear regression. The composite score of inhibition abilities was lower in the very preterm group (M = -0.4, SD = 0.8) than in the term-born group (M = 0.0, SD = 0.8) but group differences were not significant when adjusting for age, sex and socio-economic status (β = -0.13, 95%-CI [-0.30, 0.04], p = 0.13). In the very preterm group, FAmean was significantly lower in a network comprising thalamo-frontal, thalamo-temporal, frontal, cerebellar and intra-hemispheric connections than in the term-born group (t = 5.21, lowest p-value = 0.001). Irrespective of birth status, a network comprising parietal, cerebellar and subcortical connections was positively associated with inhibition abilities (t = 4.23, lowest p-value = 0.02). Very preterm birth results in long-term alterations of SC at network-level. As networks underlying inhibition abilities do not overlap with those differing between the groups, FAmean may not be adequate to explain inhibition problems in very preterm children. Future studies should combine complementary measures of brain connectivity to address neural correlates of inhibition abilities.
Collapse
|
38
|
McIntosh JR, Sajda P. Decomposing Simon task BOLD activation using a drift-diffusion model framework. Sci Rep 2020; 10:3938. [PMID: 32127617 PMCID: PMC7054266 DOI: 10.1038/s41598-020-60943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/16/2020] [Indexed: 11/09/2022] Open
Abstract
The Simon effect is observed in spatial conflict tasks where the response time of subjects is increased if stimuli are presented in a lateralized manner so that they are incongruous with the response information that they represent symbolically. Previous studies have used fMRI to investigate this phenomenon, and while some have been driven by considerations of an underlying model, none have attempted to directly tie model and BOLD response together. It is likely that this is due to Simon models having been predominantly descriptive of the phenomenon rather than capturing the full spectrum of behavior at the level of individual subjects. Sequential sampling models (SSM) which capture full response distributions for correct and incorrect responses have recently been extended to capture conflict tasks. In this study we use our freely available framework for fitting and comparing non-standard SSMs to fit the Simon effect SSM (SE-SSM) to behavioral data. This model extension includes specific estimates of automatic response bias and a conflict counteraction parameter to individual subject behavioral data. We apply this approach in order to investigate whether our task specific model parameters have a correlate in BOLD response. Under the assumption that the SE-SSM reflects aspects of neural processing in this task, we go on to examine the BOLD correlates with the within trial expected decision-variable. We find that the SE-SSM captures the behavioral data and that our two conflict specific model parameters have clear across subject BOLD correlates, while other model parameters, as well as more standard behavioral measures do not. We also find that examining BOLD in terms of the expected decision-variable leads to a specific pattern of activation that would not be otherwise possible to extract.
Collapse
Affiliation(s)
- James R McIntosh
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Data Science Institute, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
39
|
Yuk V, Urbain C, Anagnostou E, Taylor MJ. Frontoparietal Network Connectivity During an N-Back Task in Adults With Autism Spectrum Disorder. Front Psychiatry 2020; 11:551808. [PMID: 33033481 PMCID: PMC7509600 DOI: 10.3389/fpsyt.2020.551808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Short-term and working memory (STM and WM) deficits have been demonstrated in individuals with autism spectrum disorder (ASD) and may emerge through atypical functional activity and connectivity of the frontoparietal network, which exerts top-down control necessary for successful STM and WM processes. Little is known regarding the spectral properties of the frontoparietal network during STM or WM processes in ASD, although certain neural frequencies have been linked to specific neural mechanisms. METHODS We analysed magnetoencephalographic data from 39 control adults (26 males; 27.15 ± 5.91 years old) and 40 adults with ASD (26 males; 27.17 ± 6.27 years old) during a 1-back condition (STM) of an n-back task, and from a subset of this sample during a 2-back condition (WM). We performed seed-based connectivity analyses using regions of the frontoparietal network. Interregional synchrony in theta, alpha, and beta bands was assessed with the phase difference derivative and compared between groups during periods of maintenance and recognition. RESULTS During maintenance of newly presented vs. repeated stimuli, the two groups did not differ significantly in theta, alpha, or beta phase synchrony for either condition. Adults with ASD showed alpha-band synchrony in a network containing the right dorsolateral prefrontal cortex, bilateral inferior parietal lobules (IPL), and precuneus in both 1- and 2-back tasks, whereas controls demonstrated alpha-band synchrony in a sparser set of regions, including the left insula and IPL, in only the 1-back task. During recognition of repeated vs. newly presented stimuli, adults with ASD exhibited decreased theta-band connectivity compared to controls in a network with hubs in the right inferior frontal gyrus and left IPL in the 1-back condition. Whilst there were no group differences in connectivity in the 2-back condition, adults with ASD showed no frontoparietal network recruitment during recognition, whilst controls activated networks in the theta and beta bands. CONCLUSIONS Our findings suggest that since adults with ASD performed well on the n-back task, their appropriate, but effortful recruitment of alpha-band mechanisms in the frontoparietal network to maintain items in STM and WM may compensate for atypical modulation of this network in the theta band to recognise previously presented items in STM.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Charline Urbain
- Neuropsychology and Functional Neuroimaging Research Group, Center for Research in Cognition & Neurosciences and ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Laboratoire de Cartographie Fonctionnelle du Cerveau, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
van Maanen L, Katsimpokis D, van Campen AD. Fast and slow errors: Logistic regression to identify patterns in accuracy-response time relationships. Behav Res Methods 2019; 51:2378-2389. [PMID: 30187434 PMCID: PMC6797658 DOI: 10.3758/s13428-018-1110-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Understanding error and response time patterns is essential for making inferences in several domains of cognitive psychology. Crucial insights on cognitive performance and typical behavioral patterns are disclosed by using distributional analyses such as conditional accuracy functions (CAFs) instead of mean statistics. Several common behavioral error patterns revealed by CAFs are frequently described in the literature: response capture (associated with relatively fast errors), time pressure or urgency paradigms (slow errors), or cue-induced speed-accuracy trade-off (evenly distributed errors). Unfortunately, the standard way of computing CAFs is problematic, because accuracy is averaged in RT bins. Here we present a novel way of analyzing accuracy-RT relationships on the basis of nonlinear logistic regression, to handle these problematic aspects of RT binning. First we evaluate the parametric robustness of the logistic regression CAF through parameter recovery. Second, we apply the function to three existing data sets showing that specific parametric changes in the logistic regression CAF can consistently describe common behavioral patterns (such as response capture, time pressure, and speed-accuracy trade-off). Finally, we discuss potential modifications for future research.
Collapse
Affiliation(s)
- Leendert van Maanen
- Department of Psychology, University of Amsterdam, P.O. Box 15906, 1001 NK, Amsterdam, Netherlands.
| | - Dimitris Katsimpokis
- Department of Psychology, University of Amsterdam, P.O. Box 15906, 1001 NK, Amsterdam, Netherlands
| | - A Dilene van Campen
- Department of Psychology, University of Amsterdam, P.O. Box 15906, 1001 NK, Amsterdam, Netherlands
- Donders Center for Brain and Cognition, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
41
|
Delineating conditions and subtypes in chronic pain using neuroimaging. Pain Rep 2019; 4:e768. [PMID: 31579859 PMCID: PMC6727994 DOI: 10.1097/pr9.0000000000000768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022] Open
Abstract
Differentiating subtypes of chronic pain still remains a challenge—both from a subjective and objective point of view. Personalized medicine is the current goal of modern medical care and is limited by the subjective nature of patient self-reporting of symptoms and behavioral evaluation. Physiology-focused techniques such as genome and epigenetic analyses inform the delineation of pain groups; however, except under rare circumstances, they have diluted effects that again, share a common reliance on behavioral evaluation. The application of structural neuroimaging towards distinguishing pain subtypes is a growing field and may inform pain-group classification through the analysis of brain regions showing hypertrophic and atrophic changes in the presence of pain. Analytical techniques such as machine-learning classifiers have the capacity to process large volumes of data and delineate diagnostically relevant information from neuroimaging analysis. The issue of defining a “brain type” is an emerging field aimed at interpreting observed brain changes and delineating their clinical identity/significance. In this review, 2 chronic pain conditions (migraine and irritable bowel syndrome) with similar clinical phenotypes are compared in terms of their structural neuroimaging findings. Independent investigations are compared with findings from application of machine-learning algorithms. Findings are discussed in terms of differentiating patient subgroups using neuroimaging data in patients with chronic pain and how they may be applied towards defining a personalized pain signature that helps segregate patient subgroups (eg, migraine with and without aura, with or without nausea; irritable bowel syndrome vs other functional gastrointestinal disorders).
Collapse
|
42
|
Puglisi G, Sciortino T, Rossi M, Leonetti A, Fornia L, Conti Nibali M, Casarotti A, Pessina F, Riva M, Cerri G, Bello L. Preserving executive functions in nondominant frontal lobe glioma surgery: an intraoperative tool. J Neurosurg 2019; 131:474-480. [PMID: 30265193 DOI: 10.3171/2018.4.jns18393] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The goal of surgery for gliomas is maximal tumor removal while preserving the patient's full functional integrity. At present during frontal tumor removal, this goal is mostly achieved, although the risk of impairing the executive functions (EFs), and thus the quality of life, remains significant. The authors investigated the accuracy of an intraoperative version of the Stroop task (iST), adapted for intraoperative mapping, to detect EF-related brain sites by evaluating the impact of the iST brain mapping on preserving functional integrity following a maximal tumor resection. METHODS Forty-five patients with nondominant frontal gliomas underwent awake surgery; brain mapping was used to establish the functional boundaries for the resection. In 18 patients language, praxis, and motor functions, but not EFs (control group), were mapped intraoperatively at the cortical-subcortical level. In 27 patients, in addition to language, praxis, and motor functions, EFs were mapped with the iST at the cortical-subcortical level (Stroop group). In both groups the EF performance was evaluated preoperatively, at 7 days and 3 months after surgery. RESULTS The iST was successfully administered in all patients. Consistent interferences, such as color-word inversion/latency, were obtained by stimulating precise white matter sites below the inferior and middle frontal gyri, anterior to the insula and over the putamen, and these were used to establish the posterior functional limit of the resection. Procedures implemented with iST dramatically reduced the EF deficits at 3 months. The EOR was similar in Stroop and control groups. CONCLUSIONS Brain mapping with the iST allows identification and preservation of the frontal lobe structures involved in inhibition of automatic responses, reducing the incidence of postoperative EF deficits and enhancing the further posterior and inferior margin of tumor resection.
Collapse
Affiliation(s)
- Guglielmo Puglisi
- 2Laboratory of Motor Control, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, and Humanitas Research Hospital, IRCCS, Milano, Italy
- 3Neurosurgical Oncology Unit, Humanitas Research Hospital, IRCCS, Milano, Italy; and
| | - Tommaso Sciortino
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, and Humanitas Research Hospital, IRCCS, Milano, Italy
| | - Marco Rossi
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, and Humanitas Research Hospital, IRCCS, Milano, Italy
| | - Antonella Leonetti
- 2Laboratory of Motor Control, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, and Humanitas Research Hospital, IRCCS, Milano, Italy
- 3Neurosurgical Oncology Unit, Humanitas Research Hospital, IRCCS, Milano, Italy; and
| | - Luca Fornia
- 2Laboratory of Motor Control, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, and Humanitas Research Hospital, IRCCS, Milano, Italy
| | - Marco Conti Nibali
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, and Humanitas Research Hospital, IRCCS, Milano, Italy
| | - Alessandra Casarotti
- 3Neurosurgical Oncology Unit, Humanitas Research Hospital, IRCCS, Milano, Italy; and
| | - Federico Pessina
- 3Neurosurgical Oncology Unit, Humanitas Research Hospital, IRCCS, Milano, Italy; and
| | - Marco Riva
- 3Neurosurgical Oncology Unit, Humanitas Research Hospital, IRCCS, Milano, Italy; and
- 4Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, and Humanitas Research Hospital, IRCCS, Milano, Italy
| | - Gabriella Cerri
- 2Laboratory of Motor Control, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, and Humanitas Research Hospital, IRCCS, Milano, Italy
| | - Lorenzo Bello
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, and Humanitas Research Hospital, IRCCS, Milano, Italy
| |
Collapse
|
43
|
Individual differences in the effect of menstrual cycle on basal ganglia inhibitory control. Sci Rep 2019; 9:11063. [PMID: 31363112 PMCID: PMC6667495 DOI: 10.1038/s41598-019-47426-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
Basal ganglia (BG) are involved in inhibitory control (IC) and known to change in structure and activation along the menstrual cycle. Therefore, we investigated BG activation and connectivity patterns related to IC during different cycle phases. Thirty-six naturally cycling women were scanned three times performing a Stop Signal Task and hormonal levels analysed from saliva samples. We found an impaired Stop signal reaction time (SSRT) during pre-ovulatory compared to menses the higher the baseline IC of women. Blood oxygen level dependent (BOLD)-response in bilateral putamen significantly decreased during the luteal phase. Connectivity strength from the left putamen displayed an interactive effect of cycle and IC. During pre-ovulatory the connectivity with anterior cingulate cortex and left inferior parietal lobe was significantly stronger the higher the IC, and during luteal with left supplementary motor area. Right putamen's activation and left hemisphere's connectivity predicted the SSRT across participants. Therefore, we propose a compensatory mechanism for the hormonal changes across the menstrual cycle based on a lateralized pattern.
Collapse
|
44
|
Hinault T, Larcher K, Bherer L, Courtney SM, Dagher A. Age-related differences in the structural and effective connectivity of cognitive control: a combined fMRI and DTI study of mental arithmetic. Neurobiol Aging 2019; 82:30-39. [PMID: 31377538 DOI: 10.1016/j.neurobiolaging.2019.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/06/2019] [Accepted: 06/30/2019] [Indexed: 11/19/2022]
Abstract
Cognitive changes with aging are highly variable across individuals. This study investigated whether cognitive control performance might depend on preservation of structural and effective connectivity in older individuals. Specifically, we tested inhibition following working memory (WM) updating and maintenance. We analyzed diffusion tensor imaging and functional magnetic resonance imaging data in thirty-four young adults and thirty-four older adults, who performed an arithmetic verification task during functional magnetic resonance imaging. Results revealed larger arithmetic interference in older adults relative to young adults after WM updating, whereas both groups showed similar interference after WM maintenance. In both groups, arithmetic interference was associated with larger activations and stronger effective connectivity among bilateral anterior cingulate, bilateral inferior frontal gyrus, and left angular gyrus, with larger activations of frontal regions in older adults than in younger adults. In older adults, preservation of frontoparietal structural microstructure, especially involving the inferior frontaloccipital fasciculus, was associated with reduced interference, and stronger task-related effective connectivity. These results highlight how both structural and functional changes in the cognitive control network contribute to individual variability in performance during aging.
Collapse
Affiliation(s)
- Thomas Hinault
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| | - Kevin Larcher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Louis Bherer
- Departement de Médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche de l'institut de cardiologie de Montréal, Montréal, QC, Canada; Centre de recherche de l'institut universitaire de gériatrie de Montréal, Montréal, QC, Canada
| | - Susan M Courtney
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
45
|
Emch M, von Bastian CC, Koch K. Neural Correlates of Verbal Working Memory: An fMRI Meta-Analysis. Front Hum Neurosci 2019; 13:180. [PMID: 31244625 PMCID: PMC6581736 DOI: 10.3389/fnhum.2019.00180] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/17/2019] [Indexed: 02/05/2023] Open
Abstract
Verbal Working memory (vWM) capacity measures the ability to maintain and manipulate verbal information for a short period of time. The specific neural correlates of this construct are still a matter of debate. The aim of this study was to conduct a coordinate-based meta-analysis of 42 fMRI studies on visual vWM in healthy subjects (n = 795, males = 459, females = 325, unknown = 11; age range: 18-75). The studies were obtained after an exhaustive literature search on PubMed, Scopus, Web of Science, and Brainmap database. We analyzed regional activation differences during fMRI tasks with the anisotropic effect-size version of seed-based d mapping software (ES-SDM). The results were further validated by performing jackknife sensitivity analyses and heterogeneity analyses. We investigated the effect of numerous relevant influencing factors by fitting corresponding linear regression models. We isolated consistent activation in a network containing fronto-parietal areas, right cerebellum, and basal ganglia structures. Regarding lateralization, the results pointed toward a bilateral frontal activation, a left-lateralization of parietal regions and a right-lateralization of the cerebellum, indicating that the left-hemisphere concept of vWM should be reconsidered. We also isolated activation in regions important for response inhibition, emphasizing the role of attentional control in vWM. Moreover, we found a significant influence of mean reaction time, load, and age on activation associated with vWM. Activation in left medial frontal gyrus, left precentral gyrus, and left precentral gyrus turned out to be positively associated with mean reaction time whereas load was associated with activation across the PFC, fusiform gyrus, parietal cortex, and parts of the cerebellum. In the latter case activation was mainly detectable in both hemispheres whereas the influence of age became manifest predominantly in the left hemisphere. This led us to conclude that future vWM studies should take these factors into consideration.
Collapse
Affiliation(s)
- Mónica Emch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| | | | - Kathrin Koch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| |
Collapse
|
46
|
Soni S, Muthukrishnan SP, Samanchi R, Sood M, Kaur S, Sharma R. Pre-trial and pre-response EEG microstates in schizophrenia: An endophenotypic marker. Behav Brain Res 2019; 371:111964. [PMID: 31129232 DOI: 10.1016/j.bbr.2019.111964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/17/2019] [Accepted: 05/18/2019] [Indexed: 01/15/2023]
Abstract
Cognitive deficits in Schizophrenia interfere with everyday functioning and social functioning. Strong familial associations in schizophrenia might serve to establish cognitive impairments as endophenotypic markers. Therefore, visuo-spatial working memory simulating day-to-day activities at high memory load was assessed in patients with schizophrenia, their first-degree relatives and healthy controls to explore pre-trial and pre-response EEG microstates and their intracranial generators. Twenty-eight patients with schizophrenia, first-degree relatives and matched healthy controls participated in the study. Brain activity during visuo-spatial working memory task was recorded using 128-channel electroencephalography. Pre-trial and pre-response microstate maps of correct and error trials were clustered across groups according to their topography. Microstate map parameters and underlying cortical sources were compared among groups. Pre-trial (correct) microstate Map 1 was significantly different between controls and patients which could qualify it as a state marker with its intracranial generator localized to right inferior frontal gyrus (rIFG). Pre-response (correct) microstate map was significantly different between controls and first-degree relatives which could be considered an endophenotypic marker for schizophrenia. No significant differences were observed for error trials between groups. rIFG which is involved in the execution of multi-component behaviour and selective inhibitory control could distinguish patients with schizophrenia from their first-degree relatives and healthy controls. Further, microstate based biomarkers have the potential to facilitate diagnosis of schizophrenia at a preclinical stage resulting in efficient diagnosis and better prognosis.
Collapse
Affiliation(s)
- Sunaina Soni
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Suriya Prakash Muthukrishnan
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Rupesh Samanchi
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India.
| | - Simran Kaur
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
47
|
Madden DL, Sale MV, Robinson GA. Differentiating Beyond Name Agreement for Picture Naming: Insight From Age-Related Selection Deficits. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:1373-1380. [PMID: 31021678 DOI: 10.1044/2018_jslhr-l-18-0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Purpose Pictures consistently referred to by the same name (high agreement) are named faster than pictures that elicit inconsistent responses across individuals (low agreement). Although this effect is more pronounced in older adults apparently due to slower lexical selection, it is unclear whether this is consistent for different types of low agreement pictures. We investigated whether pictures with different sources of disagreement have differing selection requirements, as indexed by naming latencies. Method Picture naming latencies were compared for 20 young (ages 18-35 years) and 20 older adults (ages 60-80 years) across 3 object naming conditions: high name agreement, low name agreement due to multiple correct names, and low agreement due to abbreviations and elaborations. Results Compared to high agreement items, responses were slower specifically for low agreement items with multiple names, and to a lesser extent, items with abbreviations and elaborations ( p < .001). Older adults were slower than younger adults, especially for low agreement items with abbreviations and elaborations ( p = .031). Conclusions Our findings indicate differential lexical selection requirements for low agreement pictures, depending on the reason for agreement being low. This demonstrates the importance of differentiating the source of disagreement in any experimental or clinical assessment of picture naming.
Collapse
Affiliation(s)
- Daniel L Madden
- Neuropsychology Research Clinic, School of Psychology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Martin V Sale
- School of Health and Rehabilitation Sciences and Queensland Brain Institute, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Gail A Robinson
- Neuropsychology Research Clinic, School of Psychology, The University of Queensland, St. Lucia, Brisbane, Australia
- Queensland Institute of Medical Research Berghofer, Brisbane, Australia
| |
Collapse
|
48
|
Ziaei M, Togha M, Rahimian E, Persson J. The Causal Role of Right Frontopolar Cortex in Moral Judgment, Negative Emotion Induction, and Executive Control. Basic Clin Neurosci 2019; 10:37-48. [PMID: 31031892 PMCID: PMC6484187 DOI: 10.32598/bcn.9.10.225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/05/2017] [Accepted: 12/04/2017] [Indexed: 11/30/2022] Open
Abstract
Introduction: Converging evidence suggests that both emotional and cognitive processes are critically involved in moral judgment, and may be mediated by discrete parts of the prefrontal cortex. The current study aimed at investigating the mediatory effect of right Frontopolar Cortex (rFPC) on the way that emotions affect moral judgments. Methods: Six adult patients affected by rFPC and 10 healthy controls were included in the study. Participants made judgements on moral dilemmas after being shown either neutral or emotional pictures. The role of rFPC in executive control and emotional experience was also examined. Results: The study results showed that inducing an emotional state increased the number of utilitarian responses both in the patients and controls. However, no significant differences were observed between the patients and controls in response time or the number of utilitarian responses. Also, no significant differences were observed in personal and impersonal dilemmas before and after the emotion induction in intergroup comparisons. Results of the executive control tasks showed reduced performance in patients affected by rFPC compared with the controls. Conclusion: The results of the current study suggested that rFPC might not have a direct role in mediating emotional processes during moral judgments, but possibly this region is important in a network supporting executive control functions.
Collapse
Affiliation(s)
- Maryam Ziaei
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia.,School of Psychology, The University of Queensland, Brisbane, Australia
| | - Mansoureh Togha
- Department of Headache, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Jonas Persson
- Aging Research Center (ARC), Karolinska Institute and Stockholm University, Stockholm, Sweden
| |
Collapse
|
49
|
Salzer Y, de Hollander G, van Maanen L, Forstmann BU. A neural substrate of early response capture during conflict tasks in sensory areas. Neuropsychologia 2019; 124:226-235. [DOI: 10.1016/j.neuropsychologia.2018.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
50
|
Trujillo P, van Wouwe NC, Lin YC, Stark AJ, Petersen KJ, Kang H, Zald DH, Donahue MJ, Claassen DO. Dopamine effects on frontal cortical blood flow and motor inhibition in Parkinson's disease. Cortex 2019; 115:99-111. [PMID: 30776736 DOI: 10.1016/j.cortex.2019.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/15/2018] [Accepted: 01/17/2019] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is characterized by dysfunction in frontal cortical and striatal networks that regulate action control. We investigated the pharmacological effect of dopamine agonist replacement therapy on frontal cortical activity and motor inhibition. Using Arterial Spin Labeling MRI, we examined 26 PD patients in the off- and on-dopamine agonist medication states to assess the effect of dopamine agonists on frontal cortical regional cerebral blood flow. Motor inhibition was measured by the Simon task in both medication states. We applied the dual process activation suppression model to dissociate fast response impulses from motor inhibition of incorrect responses. General linear regression model analyses determined the medication effect on regional cerebral blood flow and motor inhibition, and the relationship between regional cerebral blood flow and motor inhibitory proficiency. We show that dopamine agonist administration increases frontal cerebral blood flow, particularly in the pre-supplementary motor area (pre-SMA) and the dorsolateral prefrontal cortex (DLPFC). Higher regional blood flow in the pre-SMA, DLPFC and motor cortex was associated with better inhibitory control, suggesting that treatments which improve frontal cortical activity could ameliorate motor inhibition deficiency in PD patients.
Collapse
Affiliation(s)
- Paula Trujillo
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Ya-Chen Lin
- Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam J Stark
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kalen J Petersen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hakmook Kang
- Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David H Zald
- Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Claassen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|