1
|
Commère J, Glanc M, Bourdieu L, Galicher R, Gendron É, Rousset G. Experimental characterization of an isoplanatic patch in mouse cortex using adaptive optics. BIOMEDICAL OPTICS EXPRESS 2024; 15:5645-5659. [PMID: 39421772 PMCID: PMC11482162 DOI: 10.1364/boe.527313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 10/19/2024]
Abstract
Optical microscopy techniques have become essential tools for studying normal and pathological biological systems. However, in many situations, image quality deteriorates rapidly in the field of view due to optical aberrations and scattering induced by thick tissues. To compensate for these aberrations and restore the microscope's image quality, adaptive optics (AO) techniques have been proposed for the past 15 years. A key parameter for the AO implementation lies in the limited isoplanatic dimension over which the image quality remains uniform. Here, we propose a method for measuring this dimension and deducing the anisoplanatism and intensity transmission of the samples. We apply this approach to fixed slices of mouse cortices as a function of their thickness. We find a typical mid-maximum width of 20 µm for the isoplanatic spot, which is independent of sample thickness.
Collapse
Affiliation(s)
- Jean Commère
- Observatoire de Paris, LESIA, 5 place Jules Janssen, 92195 Meudon cedex, France
| | - Marie Glanc
- Observatoire de Paris, LESIA, 5 place Jules Janssen, 92195 Meudon cedex, France
| | - Laurent Bourdieu
- IBENS, UMR 8197 CNRS and INSERM, Ecole Normale Supérieure, 46, Rue d’Ulm, 75005 Paris, France
| | - Raphaël Galicher
- Observatoire de Paris, LESIA, 5 place Jules Janssen, 92195 Meudon cedex, France
| | - Éric Gendron
- Observatoire de Paris, LESIA, 5 place Jules Janssen, 92195 Meudon cedex, France
| | - Gérard Rousset
- Observatoire de Paris, LESIA, 5 place Jules Janssen, 92195 Meudon cedex, France
| |
Collapse
|
2
|
Lewis CM, Hoffmann A, Helmchen F. Linking brain activity across scales with simultaneous opto- and electrophysiology. NEUROPHOTONICS 2024; 11:033403. [PMID: 37662552 PMCID: PMC10472193 DOI: 10.1117/1.nph.11.3.033403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
The brain enables adaptive behavior via the dynamic coordination of diverse neuronal signals across spatial and temporal scales: from fast action potential patterns in microcircuits to slower patterns of distributed activity in brain-wide networks. Understanding principles of multiscale dynamics requires simultaneous monitoring of signals in multiple, distributed network nodes. Combining optical and electrical recordings of brain activity is promising for collecting data across multiple scales and can reveal aspects of coordinated dynamics invisible to standard, single-modality approaches. We review recent progress in combining opto- and electrophysiology, focusing on mouse studies that shed new light on the function of single neurons by embedding their activity in the context of brain-wide activity patterns. Optical and electrical readouts can be tailored to desired scales to tackle specific questions. For example, fast dynamics in single cells or local populations recorded with multi-electrode arrays can be related to simultaneously acquired optical signals that report activity in specified subpopulations of neurons, in non-neuronal cells, or in neuromodulatory pathways. Conversely, two-photon imaging can be used to densely monitor activity in local circuits while sampling electrical activity in distant brain areas at the same time. The refinement of combined approaches will continue to reveal previously inaccessible and under-appreciated aspects of coordinated brain activity.
Collapse
Affiliation(s)
| | - Adrian Hoffmann
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
- University of Zurich, University Research Priority Program, Adaptive Brain Circuits in Development and Learning, Zurich, Switzerland
| |
Collapse
|
3
|
Meitav N, Brosh I, Freifeld L, Shoham S. Multifocal microscopy for functional imaging of neural systems. NEUROPHOTONICS 2024; 11:S11515. [PMID: 39290443 PMCID: PMC11407684 DOI: 10.1117/1.nph.11.s1.s11515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Significance Rapid acquisition of large imaging volumes with microscopic resolution is an essential unmet need in biological research, especially for monitoring rapid dynamical processes such as fast activity in distributed neural systems. Aim We present a multifocal strategy for fast, volumetric, diffraction-limited resolution imaging over relatively large and scalable fields of view (FOV) using single-camera exposures. Approach Our multifocal microscopy approach leverages diffraction to image multiple focal depths simultaneously. It is based on a custom-designed diffractive optical element suited to low magnification and large FOV applications and customized prisms for chromatic correction, allowing for wide bandwidth fluorescence imaging. We integrate this system within a conventional microscope and demonstrate that our design can be used flexibly with a variety of magnification/numerical aperture (NA) objectives. Results We first experimentally and numerically validate this system for large FOV microscope imaging (three orders-of-magnitude larger volumes than previously shown) at resolutions compatible with cellular imaging. We then demonstrate the utility of this approach by visualizing high resolution three-dimensional (3D) distributed neural network at volume rates up to 100 Hz. These demonstrations use genetically encodedCa 2 + indicators to measure functional neural imaging both in vitro and in vivo. Finally, we explore its potential in other important applications, including blood flow visualization and real-time, microscopic, volumetric rendering. Conclusions Our study demonstrates the advantage of diffraction-based multifocal imaging techniques for 3D imaging of mm-scale objects from a single-camera exposure, with important applications in functional neural imaging and other areas benefiting from volumetric imaging.
Collapse
Affiliation(s)
- Nizan Meitav
- Technion - Israel Institute of Technology, Department of Biomedical Engineering, Kiryat HaTechnion, Haifa, Israel
| | - Inbar Brosh
- Technion - Israel Institute of Technology, Department of Biomedical Engineering, Kiryat HaTechnion, Haifa, Israel
| | - Limor Freifeld
- Technion - Israel Institute of Technology, Department of Biomedical Engineering, Kiryat HaTechnion, Haifa, Israel
| | - Shy Shoham
- NYU Grossman School of Medicine, Tech4Health Institute and Departments of Neuroscience and Ophthalmology, New York, New York, United States
| |
Collapse
|
4
|
Xu C, Nedergaard M, Fowell DJ, Friedl P, Ji N. Multiphoton fluorescence microscopy for in vivo imaging. Cell 2024; 187:4458-4487. [PMID: 39178829 PMCID: PMC11373887 DOI: 10.1016/j.cell.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024]
Abstract
Multiphoton fluorescence microscopy (MPFM) has been a game-changer for optical imaging, particularly for studying biological tissues deep within living organisms. MPFM overcomes the strong scattering of light in heterogeneous tissue by utilizing nonlinear excitation that confines fluorescence emission mostly to the microscope focal volume. This enables high-resolution imaging deep within intact tissue and has opened new avenues for structural and functional studies. MPFM has found widespread applications and has led to numerous scientific discoveries and insights into complex biological processes. Today, MPFM is an indispensable tool in many research communities. Its versatility and effectiveness make it a go-to technique for researchers investigating biological phenomena at the cellular and subcellular levels in their native environments. In this Review, the principles, implementations, capabilities, and limitations of MPFM are presented. Three application areas of MPFM, neuroscience, cancer biology, and immunology, are reviewed in detail and serve as examples for applying MPFM to biological research.
Collapse
Affiliation(s)
- Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 3B, 2200 Copenhagen, Denmark; University of Rochester Medical School, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Deborah J Fowell
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Peter Friedl
- Department of Medical BioSciences, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen HB 6500, the Netherlands
| | - Na Ji
- Department of Neuroscience, Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Chen H, Mirg S, Gaddale P, Agrawal S, Li M, Nguyen V, Xu T, Li Q, Liu J, Tu W, Liu X, Drew PJ, Zhang N, Gluckman BJ, Kothapalli S. Multiparametric Brain Hemodynamics Imaging Using a Combined Ultrafast Ultrasound and Photoacoustic System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401467. [PMID: 38884161 PMCID: PMC11336909 DOI: 10.1002/advs.202401467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/25/2024] [Indexed: 06/18/2024]
Abstract
Studying brain-wide hemodynamic responses to different stimuli at high spatiotemporal resolutions can help gain new insights into the mechanisms of neuro- diseases and -disorders. Nonetheless, this task is challenging, primarily due to the complexity of neurovascular coupling, which encompasses interdependent hemodynamic parameters including cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral oxygen saturation (SO2). The current brain imaging technologies exhibit inherent limitations in resolution, sensitivity, and imaging depth, restricting their capacity to comprehensively capture the intricacies of cerebral functions. To address this, a multimodal functional ultrasound and photoacoustic (fUSPA) imaging platform is reported, which integrates ultrafast ultrasound and multispectral photoacoustic imaging methods in a compact head-mountable device, to quantitatively map individual dynamics of CBV, CBF, and SO2 as well as contrast agent enhanced brain imaging at high spatiotemporal resolutions. Following systematic characterization, the fUSPA system is applied to study brain-wide cerebrovascular reactivity (CVR) at single-vessel resolution via relative changes in CBV, CBF, and SO2 in response to hypercapnia stimulation. These results show that cortical veins and arteries exhibit differences in CVR in the stimulated state and consistent anti-correlation in CBV oscillations during the resting state, demonstrating the multiparametric fUSPA system's unique capabilities in investigating complex mechanisms of brain functions.
Collapse
Affiliation(s)
- Haoyang Chen
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Shubham Mirg
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Prameth Gaddale
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Sumit Agrawal
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Menghan Li
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Van Nguyen
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Tianbao Xu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Qiong Li
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Jinyun Liu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Wenyu Tu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xiao Liu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Institute for Computational and Data SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Patrick J. Drew
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of NeurosurgeryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Nanyin Zhang
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Bruce J. Gluckman
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of NeurosurgeryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Sri‐Rajasekhar Kothapalli
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Penn State Cancer InstituteThe Pennsylvania State UniversityHersheyPA17033USA
- Graduate Program in AcousticsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
6
|
Hsu KY, Shih CT, Chen NY, Lo CC. LYNSU: automated 3D neuropil segmentation of fluorescent images for Drosophila brains. Front Neuroinform 2024; 18:1429670. [PMID: 39135968 PMCID: PMC11317296 DOI: 10.3389/fninf.2024.1429670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
The brain atlas, which provides information about the distribution of genes, proteins, neurons, or anatomical regions, plays a crucial role in contemporary neuroscience research. To analyze the spatial distribution of those substances based on images from different brain samples, we often need to warp and register individual brain images to a standard brain template. However, the process of warping and registration may lead to spatial errors, thereby severely reducing the accuracy of the analysis. To address this issue, we develop an automated method for segmenting neuropils in the Drosophila brain for fluorescence images from the FlyCircuit database. This technique allows future brain atlas studies to be conducted accurately at the individual level without warping and aligning to a standard brain template. Our method, LYNSU (Locating by YOLO and Segmenting by U-Net), consists of two stages. In the first stage, we use the YOLOv7 model to quickly locate neuropils and rapidly extract small-scale 3D images as input for the second stage model. This stage achieves a 99.4% accuracy rate in neuropil localization. In the second stage, we employ the 3D U-Net model to segment neuropils. LYNSU can achieve high accuracy in segmentation using a small training set consisting of images from merely 16 brains. We demonstrate LYNSU on six distinct neuropils or structures, achieving a high segmentation accuracy comparable to professional manual annotations with a 3D Intersection-over-Union (IoU) reaching up to 0.869. Our method takes only about 7 s to segment a neuropil while achieving a similar level of performance as the human annotators. To demonstrate a use case of LYNSU, we applied it to all female Drosophila brains from the FlyCircuit database to investigate the asymmetry of the mushroom bodies (MBs), the learning center of fruit flies. We used LYNSU to segment bilateral MBs and compare the volumes between left and right for each individual. Notably, of 8,703 valid brain samples, 10.14% showed bilateral volume differences that exceeded 10%. The study demonstrated the potential of the proposed method in high-throughput anatomical analysis and connectomics construction of the Drosophila brain.
Collapse
Affiliation(s)
- Kai-Yi Hsu
- Institute of Systems Neuroscience, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Tin Shih
- Department of Applied Physics, Tunghai University, Taichung, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Nan-Yow Chen
- National Applied Research Laboratories, National Center for High-Performance Computing, Hsinchu, Taiwan
| | - Chung-Chuan Lo
- Institute of Systems Neuroscience, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
7
|
Onishi T, Hirose K, Sakaba T. Molecular tools to capture active neural circuits. Front Neural Circuits 2024; 18:1449459. [PMID: 39100199 PMCID: PMC11294111 DOI: 10.3389/fncir.2024.1449459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
To understand how neurons and neural circuits function during behaviors, it is essential to record neuronal activity in the brain in vivo. Among the various technologies developed for recording neuronal activity, molecular tools that induce gene expression in an activity-dependent manner have attracted particular attention for their ability to clarify the causal relationships between neuronal activity and behavior. In this review, we summarize recently developed activity-dependent gene expression tools and their potential contributions to the study of neural circuits.
Collapse
Affiliation(s)
- Taichi Onishi
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Bunkyo, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Bunkyo, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
8
|
Frei MS, Mehta S, Zhang J. Next-Generation Genetically Encoded Fluorescent Biosensors Illuminate Cell Signaling and Metabolism. Annu Rev Biophys 2024; 53:275-297. [PMID: 38346245 DOI: 10.1146/annurev-biophys-030722-021359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Genetically encoded fluorescent biosensors have revolutionized the study of cell signaling and metabolism, as they allow for live-cell measurements with high spatiotemporal resolution. This success has spurred the development of tailor-made biosensors that enable the study of dynamic phenomena on different timescales and length scales. In this review, we discuss different approaches to enhancing and developing new biosensors. We summarize the technologies used to gain structural insights into biosensor design and comment on useful screening technologies. Furthermore, we give an overview of different applications where biosensors have led to key advances over recent years. Finally, we give our perspective on where future work is bound to make a large impact.
Collapse
Affiliation(s)
- Michelle S Frei
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
McNulty P, Wu R, Yamaguchi A, Heckscher ES, Haas A, Nwankpa A, Skanata MM, Gershow M. CRASH2p: Closed-loop Two Photon Imaging in Freely Moving Animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595209. [PMID: 38826435 PMCID: PMC11142166 DOI: 10.1101/2024.05.22.595209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Direct measurement of neural activity in freely moving animals is essential for understanding how the brain controls and represents behaviors. Genetically encoded calcium indicators report neural activity as changes in fluorescence intensity, but brain motion confounds quantitative measurement of fluorescence. Translation, rotation, and deformation of the brain and the movements of intervening scattering or auto-fluorescent tissue all alter the amount of fluorescent light captured by a microscope. Compared to single-photon approaches, two photon microscopy is less sensitive to scattering and off-target fluorescence, but more sensitive to motion, and two photon imaging has always required anchoring the microscope to the brain. We developed a closed-loop resonant axial-scanning high-speed two photon (CRASH2p) microscope for real-time 3D motion correction in unrestrained animals, without implantation of reference markers. We complemented CRASH2p with a novel scanning strategy and a multistage registration pipeline. We performed volumetric ratiometrically corrected functional imaging in the CNS of freely moving Drosophila larvae and discovered previously unknown neural correlates of behavior.
Collapse
Affiliation(s)
- Paul McNulty
- Department of Physics,New York University, New York, USA
| | - Rui Wu
- Department of Physics,New York University, New York, USA
| | | | - Ellie S. Heckscher
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
| | - Andrew Haas
- Department of Physics,New York University, New York, USA
| | | | | | - Marc Gershow
- Department of Physics,New York University, New York, USA
- Center for Neural Science,New York University, New York, USA
- Neuroscience Institute, New York University, New York, USA
| |
Collapse
|
10
|
Curic D, Singh S, Nazari M, Mohajerani MH, Davidsen J. Spatial-Temporal Analysis of Neural Desynchronization in Sleeplike States Reveals Critical Dynamics. PHYSICAL REVIEW LETTERS 2024; 132:218403. [PMID: 38856286 DOI: 10.1103/physrevlett.132.218403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 02/26/2024] [Accepted: 04/10/2024] [Indexed: 06/11/2024]
Abstract
Sleep is characterized by nonrapid eye movement sleep, originating from widespread neuronal synchrony, and rapid eye movement sleep, with neuronal desynchronization akin to waking behavior. While these were thought to be global brain states, recent research suggests otherwise. Using time-frequency analysis of mesoscopic voltage-sensitive dye recordings of mice in a urethane-anesthetized model of sleep, we find transient neural desynchronization occurring heterogeneously across the cortex within a background of synchronized neural activity, in a manner reminiscent of a critical spreading process and indicative of an "edge-of-synchronization" phase transition.
Collapse
Affiliation(s)
- Davor Curic
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Surjeet Singh
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
11
|
Garrido-Peña A, Sanchez-Martin P, Reyes-Sanchez M, Levi R, Rodriguez FB, Castilla J, Tornero J, Varona P. Modulation of neuronal dynamics by sustained and activity-dependent continuous-wave near-infrared laser stimulation. NEUROPHOTONICS 2024; 11:024308. [PMID: 38764942 PMCID: PMC11100521 DOI: 10.1117/1.nph.11.2.024308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Significance Near-infrared laser illumination is a non-invasive alternative/complement to classical stimulation methods in neuroscience but the mechanisms underlying its action on neuronal dynamics remain unclear. Most studies deal with high-frequency pulsed protocols and stationary characterizations disregarding the dynamic modulatory effect of sustained and activity-dependent stimulation. The understanding of such modulation and its widespread dissemination can help to develop specific interventions for research applications and treatments for neural disorders. Aim We quantified the effect of continuous-wave near-infrared (CW-NIR) laser illumination on single neuron dynamics using sustained stimulation and an open-source activity-dependent protocol to identify the biophysical mechanisms underlying this modulation and its time course. Approach We characterized the effect by simultaneously performing long intracellular recordings of membrane potential while delivering sustained and closed-loop CW-NIR laser stimulation. We used waveform metrics and conductance-based models to assess the role of specific biophysical candidates on the modulation. Results We show that CW-NIR sustained illumination asymmetrically accelerates action potential dynamics and the spiking rate on single neurons, while closed-loop stimulation unveils its action at different phases of the neuron dynamics. Our model study points out the action of CW-NIR on specific ionic-channels and the key role of temperature on channel properties to explain the modulatory effect. Conclusions Both sustained and activity-dependent CW-NIR stimulation effectively modulate neuronal dynamics by a combination of biophysical mechanisms. Our open-source protocols can help to disseminate this non-invasive optical stimulation in novel research and clinical applications.
Collapse
Affiliation(s)
- Alicia Garrido-Peña
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Sanchez-Martin
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Reyes-Sanchez
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Levi
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco B. Rodriguez
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Castilla
- Hospital los Madroños, Center for Clinical Neuroscience, Brunete, Spain
| | - Jesus Tornero
- Hospital los Madroños, Center for Clinical Neuroscience, Brunete, Spain
| | - Pablo Varona
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Nozdriukhin D, Kalva SK, Özsoy C, Reiss M, Li W, Razansky D, Deán‐Ben XL. Multi-Scale Volumetric Dynamic Optoacoustic and Laser Ultrasound (OPLUS) Imaging Enabled by Semi-Transparent Optical Guidance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306087. [PMID: 38115760 PMCID: PMC10953719 DOI: 10.1002/advs.202306087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/05/2023] [Indexed: 12/21/2023]
Abstract
Major biological discoveries are made by interrogating living organisms with light. However, the limited penetration of un-scattered photons within biological tissues limits the depth range covered by optical methods. Deep-tissue imaging is achieved by combining light and ultrasound. Optoacoustic imaging exploits the optical generation of ultrasound to render high-resolution images at depths unattainable with optical microscopy. Recently, laser ultrasound has been suggested as a means of generating broadband acoustic waves for high-resolution pulse-echo ultrasound imaging. Herein, an approach is proposed to simultaneously interrogate biological tissues with light and ultrasound based on layer-by-layer coating of silica optical fibers with a controlled degree of transparency. The time separation between optoacoustic and ultrasound signals collected with a custom-made spherical array transducer is exploited for simultaneous 3D optoacoustic and laser ultrasound (OPLUS) imaging with a single laser pulse. OPLUS is shown to enable large-scale anatomical characterization of tissues along with functional multi-spectral imaging of chromophores and assessment of cardiac dynamics at ultrafast rates only limited by the pulse repetition frequency of the laser. The suggested approach provides a flexible and scalable means for developing a new generation of systems synergistically combining the powerful capabilities of optoacoustics and ultrasound imaging in biology and medicine.
Collapse
Affiliation(s)
- Daniil Nozdriukhin
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Cagla Özsoy
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Weiye Li
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Xosé Luís Deán‐Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| |
Collapse
|
13
|
Lees RM, Bianco IH, Campbell RAA, Orlova N, Peterka DS, Pichler B, Smith SL, Yatsenko D, Yu CH, Packer AM. Standardised Measurements for Monitoring and Comparing Multiphoton Microscope Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576417. [PMID: 38328224 PMCID: PMC10849699 DOI: 10.1101/2024.01.23.576417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The goal of this protocol is to enable better characterisation of multiphoton microscopy hardware across a large user base. The scope of this protocol is purposefully limited to focus on hardware, touching on software and data analysis routines only where relevant. The intended audiences are scientists using and building multiphoton microscopes in their laboratories. The goal is that any scientist, not only those with optical expertise, can test whether their multiphoton microscope is performing well and producing consistent data over the lifetime of their system.
Collapse
Affiliation(s)
- Robert M Lees
- Science and Technology Facilities Council, Octopus imaging facility, Research Complex at Harwell, Harwell Campus, Oxfordshire, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, University College London, UK
| | | | | | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Bruno Pichler
- Independent NeuroScience Services INSS Ltd, Lewes, East Sussex, UK
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, USA
| | | | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California Santa Barbara, USA
| | - Adam M Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Blanc H, Kaddour G, David NB, Supatto W, Livet J, Beaurepaire E, Mahou P. Chromatically Corrected Multicolor Multiphoton Microscopy. ACS PHOTONICS 2023; 10:4104-4111. [PMID: 38145164 PMCID: PMC10739991 DOI: 10.1021/acsphotonics.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Indexed: 12/26/2023]
Abstract
Simultaneous imaging of multiple labels in tissues is key to studying complex biological processes. Although strategies for color multiphoton excitation have been established, chromatic aberration remains a major problem when multiple excitation wavelengths are used in a scanning microscope. Chromatic aberration introduces a spatial shift between the foci of beams of different wavelengths that varies across the field of view, severely degrading the performance of color imaging. In this work, we propose an adaptive correction strategy that solves this problem in two-beam microscopy techniques. Axial chromatic aberration is corrected by a refractive phase mask that introduces pure defocus into one beam, while lateral chromatic aberration is corrected by a piezoelectric mirror that dynamically compensates for lateral shifts during scanning. We show that this light-efficient approach allows seamless chromatic correction over the entire field of view of different multiphoton objectives without compromising spatial and temporal resolution and that the effective area for beam-mixing processes can be increased by more than 1 order of magnitude. We illustrate this approach with simultaneous three-color, two-photon imaging of developing zebrafish embryos and fixed Brainbow mouse brain slices over large areas. These results establish a robust and efficient method for chromatically corrected multiphoton imaging.
Collapse
Affiliation(s)
- Hugo Blanc
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Gabriel Kaddour
- Sorbonne
Université, INSERM, CNRS, Institut
de la Vision, 75012 Paris, France
| | - Nicolas B. David
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Willy Supatto
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Jean Livet
- Sorbonne
Université, INSERM, CNRS, Institut
de la Vision, 75012 Paris, France
| | - Emmanuel Beaurepaire
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Pierre Mahou
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
15
|
Blochet B, Akemann W, Gigan S, Bourdieu L. Fast wavefront shaping for two-photon brain imaging with multipatch correction. Proc Natl Acad Sci U S A 2023; 120:e2305593120. [PMID: 38100413 PMCID: PMC10743372 DOI: 10.1073/pnas.2305593120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/19/2023] [Indexed: 12/17/2023] Open
Abstract
Nonlinear fluorescence microscopy promotes in-vivo optical imaging of cellular structure at diffraction-limited resolution deep inside scattering biological tissues. Active compensation of tissue-induced aberrations and light scattering through adaptive wavefront correction further extends the accessible depth by restoring high resolution at large depth. However, those corrections are only valid over a very limited field of view within the angular memory effect. To overcome this limitation, we introduce an acousto-optic light modulation technique for fluorescence imaging with simultaneous wavefront correction at pixel scan speed. Biaxial wavefront corrections are first learned by adaptive optimization at multiple locations in the image field. During image acquisition, the learned corrections are then switched on the fly according to the position of the excitation focus during the raster scan. The proposed microscope is applied to in vivo transcranial neuron imaging and demonstrates multi-patch correction of thinned skull-induced aberrations and scattering at 40-kHz data acquisition speed.
Collapse
Affiliation(s)
- Baptiste Blochet
- Institut de Biologie de l’École Normale Supérieure, École Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres, Paris75005, France
- Laboratoire Kastler Brossel, École Normale Supérieure-Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Collège de France, Paris75005, France
| | - Walther Akemann
- Institut de Biologie de l’École Normale Supérieure, École Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres, Paris75005, France
- Laboratoire Kastler Brossel, École Normale Supérieure-Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Collège de France, Paris75005, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, École Normale Supérieure-Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Collège de France, Paris75005, France
| | - Laurent Bourdieu
- Institut de Biologie de l’École Normale Supérieure, École Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres, Paris75005, France
| |
Collapse
|
16
|
Zhou ZC, Gordon-Fennell A, Piantadosi SC, Ji N, Smith SL, Bruchas MR, Stuber GD. Deep-brain optical recording of neural dynamics during behavior. Neuron 2023; 111:3716-3738. [PMID: 37804833 PMCID: PMC10843303 DOI: 10.1016/j.neuron.2023.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
In vivo fluorescence recording techniques have produced landmark discoveries in neuroscience, providing insight into how single cell and circuit-level computations mediate sensory processing and generate complex behaviors. While much attention has been given to recording from cortical brain regions, deep-brain fluorescence recording is more complex because it requires additional measures to gain optical access to harder to reach brain nuclei. Here we discuss detailed considerations and tradeoffs regarding deep-brain fluorescence recording techniques and provide a comprehensive guide for all major steps involved, from project planning to data analysis. The goal is to impart guidance for new and experienced investigators seeking to use in vivo deep fluorescence optical recordings in awake, behaving rodent models.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Adam Gordon-Fennell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Chen H, Mirg S, Gaddale P, Agrawal S, Li M, Nguyen V, Xu T, Li Q, Liu J, Tu W, Liu X, Drew PJ, Zhang N, Gluckman BJ, Kothapalli SR. Dissecting Multiparametric Cerebral Hemodynamics using Integrated Ultrafast Ultrasound and Multispectral Photoacoustic Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566048. [PMID: 37986863 PMCID: PMC10659547 DOI: 10.1101/2023.11.07.566048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Understanding brain-wide hemodynamic responses to different stimuli at high spatiotemporal resolutions can help study neuro-disorders and brain functions. However, the existing brain imaging technologies have limited resolution, sensitivity, imaging depth and provide information about only one or two hemodynamic parameters. To address this, we propose a multimodal functional ultrasound and photoacoustic (fUSPA) imaging platform, which integrates ultrafast ultrasound and multispectral photoacoustic imaging methods in a compact head-mountable device, to quantitatively map cerebral blood volume (CBV), cerebral blood flow (CBF), oxygen saturation (SO2) dynamics as well as contrast agent enhanced brain imaging with high spatiotemporal resolutions. After systematic characterization, the fUSPA system was applied to quantitatively study the changes in brain hemodynamics and vascular reactivity at single vessel resolution in response to hypercapnia stimulation. Our results show an overall increase in brain-wide CBV, CBF, and SO2, but regional differences in singular cortical veins and arteries and a reproducible anti-correlation pattern between venous and cortical hemodynamics, demonstrating the capabilities of the fUSPA system for providing multiparametric cerebrovascular information at high-resolution and sensitivity, that can bring insights into the complex mechanisms of neurodiseases.
Collapse
Affiliation(s)
- Haoyang Chen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shubham Mirg
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Prameth Gaddale
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sumit Agrawal
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Menghan Li
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Van Nguyen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tianbao Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Qiong Li
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jinyun Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wenyu Tu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bruce J. Gluckman
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, The Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
18
|
Li S, Xu X, Li C, Xu Z, Wu K, Ye Q, Zhang Y, Jiang X, Cang C, Tian C, Wen J. In vivo labeling and quantitative imaging of neuronal populations using MRI. Neuroimage 2023; 281:120374. [PMID: 37729795 DOI: 10.1016/j.neuroimage.2023.120374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The study of neural circuits, which underlies perception, cognition, emotion, and behavior, is essential for understanding the mammalian brain, a complex organ consisting of billions of neurons. To study the structure and function of the brain, in vivo neuronal labeling and imaging techniques are crucial as they provide true physiological information that ex vivo methods cannot offer. In this paper, we present a new strategy for in vivo neuronal labeling and quantification using MRI. We demonstrate the efficacy of this method by delivering the oatp1a1 gene to the target neurons using rAAV2-retro virus. OATP1A1 protein expression on the neuronal membrane increased the uptake of a specific MRI contrast agent (Gd-EOB-DTPA), leading to hyperintense signals on T1W images of labeled neuronal populations. We also used dynamic contrast enhancement-based methods to obtain quantitative information on labeled neuronal populations in vivo.
Collapse
Affiliation(s)
- Shana Li
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xiang Xu
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Canjun Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Ziyan Xu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Ke Wu
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Qiong Ye
- Key Laboratory of High Field Magnetic Resonance Image of Anhui Province, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Yan Zhang
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xiaohua Jiang
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Chunlei Cang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Changlin Tian
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China; Key Laboratory of High Field Magnetic Resonance Image of Anhui Province, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Jie Wen
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
19
|
Lecoq JA, Podgorski K, Grewe BF. AI to the rescue of voltage imaging. CELL REPORTS METHODS 2023; 3:100505. [PMID: 37426751 PMCID: PMC10326374 DOI: 10.1016/j.crmeth.2023.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In a recent issue of Nature Methods, Platisa et al. present an approach for long-term, in vivo population voltage imaging with single spike resolution across a local population of 100 neurons.1 Key to this step forward was the combination of a customized high-speed two-photon microscope with an optimized, positive-going, genetically encoded voltage indicator and a tailored machine learning denoising algorithm.
Collapse
Affiliation(s)
| | | | - Benjamin F. Grewe
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- ETH AI Center, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Yamaguchi A, Wu R, McNulty P, Karagyozov D, Mihovilovic Skanata M, Gershow M. Multi-neuronal recording in unrestrained animals with all acousto-optic random-access line-scanning two-photon microscopy. Front Neurosci 2023; 17:1135457. [PMID: 37389365 PMCID: PMC10303936 DOI: 10.3389/fnins.2023.1135457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
To understand how neural activity encodes and coordinates behavior, it is desirable to record multi-neuronal activity in freely behaving animals. Imaging in unrestrained animals is challenging, especially for those, like larval Drosophila melanogaster, whose brains are deformed by body motion. A previously demonstrated two-photon tracking microscope recorded from individual neurons in freely crawling Drosophila larvae but faced limits in multi-neuronal recording. Here we demonstrate a new tracking microscope using acousto-optic deflectors (AODs) and an acoustic GRIN lens (TAG lens) to achieve axially resonant 2D random access scanning, sampling along arbitrarily located axial lines at a line rate of 70 kHz. With a tracking latency of 0.1 ms, this microscope recorded activities of various neurons in moving larval Drosophila CNS and VNC including premotor neurons, bilateral visual interneurons, and descending command neurons. This technique can be applied to the existing two-photon microscope to allow for fast 3D tracking and scanning.
Collapse
Affiliation(s)
- Akihiro Yamaguchi
- Department of Physics, New York University, New York, NY, United States
| | - Rui Wu
- Department of Physics, New York University, New York, NY, United States
| | - Paul McNulty
- Department of Physics, New York University, New York, NY, United States
| | - Doycho Karagyozov
- Department of Physics, New York University, New York, NY, United States
| | | | - Marc Gershow
- Department of Physics, New York University, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
- Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
21
|
Gillon CJ, Lecoq JA, Pina JE, Ahmed R, Billeh YN, Caldejon S, Groblewski P, Henley TM, Kato I, Lee E, Luviano J, Mace K, Nayan C, Nguyen TV, North K, Perkins J, Seid S, Valley MT, Williford A, Bengio Y, Lillicrap TP, Zylberberg J, Richards BA. Responses of pyramidal cell somata and apical dendrites in mouse visual cortex over multiple days. Sci Data 2023; 10:287. [PMID: 37198203 DOI: 10.1038/s41597-023-02214-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
The apical dendrites of pyramidal neurons in sensory cortex receive primarily top-down signals from associative and motor regions, while cell bodies and nearby dendrites are heavily targeted by locally recurrent or bottom-up inputs from the sensory periphery. Based on these differences, a number of theories in computational neuroscience postulate a unique role for apical dendrites in learning. However, due to technical challenges in data collection, little data is available for comparing the responses of apical dendrites to cell bodies over multiple days. Here we present a dataset collected through the Allen Institute Mindscope's OpenScope program that addresses this need. This dataset comprises high-quality two-photon calcium imaging from the apical dendrites and the cell bodies of visual cortical pyramidal neurons, acquired over multiple days in awake, behaving mice that were presented with visual stimuli. Many of the cell bodies and dendrite segments were tracked over days, enabling analyses of how their responses change over time. This dataset allows neuroscientists to explore the differences between apical and somatic processing and plasticity.
Collapse
Affiliation(s)
- Colleen J Gillon
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Mila, Montréal, Québec, Canada
| | | | - Jason E Pina
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Ruweida Ahmed
- Allen Institute, MindScope Program, Seattle, WA, USA
| | | | | | | | - Timothy M Henley
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - India Kato
- Allen Institute, MindScope Program, Seattle, WA, USA
| | - Eric Lee
- Allen Institute, MindScope Program, Seattle, WA, USA
| | | | - Kyla Mace
- Allen Institute, MindScope Program, Seattle, WA, USA
| | - Chelsea Nayan
- Allen Institute, MindScope Program, Seattle, WA, USA
| | | | - Kat North
- Allen Institute, MindScope Program, Seattle, WA, USA
| | - Jed Perkins
- Allen Institute, MindScope Program, Seattle, WA, USA
| | - Sam Seid
- Allen Institute, MindScope Program, Seattle, WA, USA
| | | | - Ali Williford
- Allen Institute, MindScope Program, Seattle, WA, USA
| | - Yoshua Bengio
- Mila, Montréal, Québec, Canada
- Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Timothy P Lillicrap
- DeepMind, Inc, London, UK
- Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK
| | - Joel Zylberberg
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada.
- Centre for Vision Research, York University, Toronto, Ontario, Canada.
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada.
| | - Blake A Richards
- Mila, Montréal, Québec, Canada.
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
- School of Computer Science, McGill University, Montréal, Québec, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montréal, Québec, Canada.
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
22
|
Daetwyler S, Fiolka RP. Light-sheets and smart microscopy, an exciting future is dawning. Commun Biol 2023; 6:502. [PMID: 37161000 PMCID: PMC10169780 DOI: 10.1038/s42003-023-04857-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Light-sheet fluorescence microscopy has transformed our ability to visualize and quantitatively measure biological processes rapidly and over long time periods. In this review, we discuss current and future developments in light-sheet fluorescence microscopy that we expect to further expand its capabilities. This includes smart and adaptive imaging schemes to overcome traditional imaging trade-offs, i.e., spatiotemporal resolution, field of view and sample health. In smart microscopy, a microscope will autonomously decide where, when, what and how to image. We further assess how image restoration techniques provide avenues to overcome these tradeoffs and how "open top" light-sheet microscopes may enable multi-modal imaging with high throughput. As such, we predict that light-sheet microscopy will fulfill an important role in biomedical and clinical imaging in the future.
Collapse
Affiliation(s)
- Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto Paul Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Kim J, Kang MS, Jun SW, Jo HJ, Han DW, Kim CS. A systematic study on the use of multifunctional nanodiamonds for neuritogenesis and super-resolution imaging. Biomater Res 2023; 27:37. [PMID: 37106432 PMCID: PMC10134586 DOI: 10.1186/s40824-023-00384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Regeneration of defective neurons in central nervous system is a highlighted issue for neurodegenerative disease treatment. Various tissue engineering approaches have focused on neuritogenesis to achieve the regeneration of damaged neuronal cells because damaged neurons often fail to achieve spontaneous restoration of neonatal neurites. Meanwhile, owing to the demand for a better diagnosis, studies of super-resolution imaging techniques in fluorescence microscopy have triggered the technological development to surpass the classical resolution dictated by the optical diffraction limit for precise observations of neuronal behaviors. Herein, the multifunctional nanodiamonds (NDs) as neuritogenesis promoters and super-resolution imaging probes were studied. METHODS To investigate the neuritogenesis-inducing capability of NDs, ND-containing growing medium and differentiation medium were added to the HT-22 hippocampal neuronal cells and incubated for 10 d. In vitro and ex vivo images were visualized through custom-built two-photon microscopy using NDs as imaging probes and the direct stochastic optical reconstruction microscopy (dSTORM) process was performed for the super-resolution reconstruction owing to the photoblinking properties of NDs. Moreover, ex vivo imaging of the mouse brain was performed 24 h after the intravenous injection of NDs. RESULTS NDs were endocytosed by the cells and promoted spontaneous neuritogenesis without any differentiation factors, where NDs exhibited no significant toxicity with their outstanding biocompatibility. The images of ND-endocytosed cells were reconstructed into super-resolution images through dSTORM, thereby addressing the problem of image distortion due to nano-sized particles, including size expansion and the challenge in distinguishing the nearby located particles. Furthermore, the ex vivo images of NDs in mouse brain confirmed that NDs could penetrate the blood-brain barrier (BBB) and retain their photoblinking property for dSTORM application. CONCLUSIONS It was demonstrated that the NDs are capable of dSTORM super-resolution imaging, neuritogenic facilitation, and BBB penetration, suggesting their remarkable potential in biological applications.
Collapse
Affiliation(s)
- Jaeheung Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Seung Won Jun
- Agency for Defense Development, Ground Technology Research Institute, Daejeon, 34186, Republic of Korea
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea.
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea.
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
24
|
Egashira T, Nakagawa-Tamagawa N, Abzhanova E, Kawae Y, Kohara A, Koitabashi R, Mizuno H, Mizuno H. In vivo two-photon calcium imaging of cortical neurons in neonatal mice. STAR Protoc 2023; 4:102245. [PMID: 37119143 PMCID: PMC10173855 DOI: 10.1016/j.xpro.2023.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/30/2023] Open
Abstract
In vivo calcium imaging is essential to elucidate unique synchronous activities observed in the developing brain. Here, we present a protocol to image and analyze activity patterns in neonatal mouse neocortex in a single-cell level. We describe steps for in utero electroporation, cranial window surgery, two-photon imaging, and activity correlation analysis. This protocol facilitates the understanding of neuronal activities and activity-dependent circuit formation during development. For complete details on the use and execution of this protocol, please refer to Mizuno et al. (2014),1 Mizuno et al. (2018a),2 and Mizuno et al. (2018b).3.
Collapse
Affiliation(s)
- Takamitsu Egashira
- Laboratory of Multi-Dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Nao Nakagawa-Tamagawa
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Elvira Abzhanova
- Laboratory of Multi-Dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuzuki Kawae
- Laboratory of Multi-Dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Ayami Kohara
- Laboratory of Multi-Dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryoko Koitabashi
- Laboratory of Multi-Dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Hiromi Mizuno
- Laboratory of Multi-Dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Hidenobu Mizuno
- Laboratory of Multi-Dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
25
|
Bijoch Ł, Włodkowska U, Kasztelanic R, Pawłowska M, Pysz D, Kaczmarek L, Lapkiewicz R, Buczyński R, Czajkowski R. Novel Design and Application of High-NA Fiber Imaging Bundles for In Vivo Brain Imaging with Two-Photon Scanning Fluorescence Microscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12831-12841. [PMID: 36880640 PMCID: PMC10020965 DOI: 10.1021/acsami.2c22985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Here, we provide experimental verification supporting the use of short-section imaging bundles for two-photon microscopy imaging of the mouse brain. The 8 mm long bundle is made of a pair of heavy-metal oxide glasses with a refractive index contrast of 0.38 to ensure a high numerical aperture NA = 1.15. The bundle is composed of 825 multimode cores, ordered in a hexagonal lattice with a pixel size of 14 μm and a total diameter of 914 μm. We demonstrate successful imaging through custom-made bundles with 14 μm resolution. As the input, we used a 910 nm Ti-sapphire laser with 140 fs pulse and a peak power of 9 × 104 W. The excitation beam and fluorescent image were transferred through the fiber imaging bundle. As test samples, we used 1 μm green fluorescent latex beads, ex vivo hippocampal neurons expressing green fluorescent protein and cortical neurons in vivo expressing the fluorescent reporter GCaMP6s or immediate early gene Fos fluorescent reporter. This system can be used for minimal-invasive in vivo imaging of the cerebral cortex, hippocampus, or deep brain areas as a part of a tabletop system or an implantable setup. It is a low-cost solution, easy to integrate and operate for high-throughput experiments.
Collapse
Affiliation(s)
- Łukasz Bijoch
- BRAINCITY, Nencki Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warszawa, Poland
| | - Urszula Włodkowska
- Nencki
Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warszawa, Poland
| | - Rafał Kasztelanic
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Institute
of Microelectronics and Photonics, Lukasiewicz
Research Network, Al.
Lotników 32/46, 02-668 Warsaw, Poland
| | - Monika Pawłowska
- BRAINCITY, Nencki Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warszawa, Poland
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Dariusz Pysz
- Institute
of Microelectronics and Photonics, Lukasiewicz
Research Network, Al.
Lotników 32/46, 02-668 Warsaw, Poland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warszawa, Poland
| | - Radek Lapkiewicz
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Ryszard Buczyński
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Institute
of Microelectronics and Photonics, Lukasiewicz
Research Network, Al.
Lotników 32/46, 02-668 Warsaw, Poland
| | - Rafał Czajkowski
- Nencki
Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warszawa, Poland
| |
Collapse
|
26
|
Ravichandran NK, Hur H, Kim H, Hyun S, Bae JY, Kim DU, Kim IJ, Nam KH, Chang KS, Lee KS. Label-free photothermal optical coherence microscopy to locate desired regions of interest in multiphoton imaging of volumetric specimens. Sci Rep 2023; 13:3625. [PMID: 36869084 PMCID: PMC9984493 DOI: 10.1038/s41598-023-30524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Biochip-based research is currently evolving into a three-dimensional and large-scale basis similar to the in vivo microenvironment. For the long-term live and high-resolution imaging in these specimens, nonlinear microscopy capable of label-free and multiscale imaging is becoming increasingly important. Combination with non-destructive contrast imaging will be useful for effectively locating regions of interest (ROI) in large specimens and consequently minimizing photodamage. In this study, a label-free photothermal optical coherence microscopy (OCM) serves as a new approach to locate the desired ROI within biological samples which are under investigation by multiphoton microscopy (MPM). The weak photothermal perturbation in sample by the MPM laser with reduced power was detected at the endogenous photothermal particles within the ROI using the highly sensitive phase-differentiated photothermal (PD-PT) OCM. By monitoring the temporal change of the photothermal response signal of the PD-PT OCM, the hotspot generated within the sample focused by the MPM laser was located on the ROI. Combined with automated sample movement in the x-y axis, the focal plane of MPM could be effectively navigated to the desired portion of a volumetric sample for high-resolution targeted MPM imaging. We demonstrated the feasibility of the proposed method in second harmonic generation microscopy using two phantom samples and a biological sample, a fixed insect on microscope slide, with dimensions of 4 mm wide, 4 mm long, and 1 mm thick.
Collapse
Affiliation(s)
- Naresh Kumar Ravichandran
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Hwan Hur
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Hyemi Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Sangwon Hyun
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Ji Yong Bae
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Dong Uk Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - I Jong Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Ki-Hwan Nam
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Ki Soo Chang
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea.
| | - Kye-Sung Lee
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea.
| |
Collapse
|
27
|
Xiao Y, Deng P, Zhao Y, Yang S, Li B. Three-photon excited fluorescence imaging in neuroscience: From principles to applications. Front Neurosci 2023; 17:1085682. [PMID: 36891460 PMCID: PMC9986337 DOI: 10.3389/fnins.2023.1085682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
The development of three-photon microscopy (3PM) has greatly expanded the capability of imaging deep within biological tissues, enabling neuroscientists to visualize the structure and activity of neuronal populations with greater depth than two-photon imaging. In this review, we outline the history and physical principles of 3PM technology. We cover the current techniques for improving the performance of 3PM. Furthermore, we summarize the imaging applications of 3PM for various brain regions and species. Finally, we discuss the future of 3PM applications for neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Bo Li
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Ministry of Education (MOE), Frontiers Center for Brain Science, Institute for Translational Brain Research, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Fekete Z, Zátonyi A, Kaszás A, Madarász M, Slézia A. Transparent neural interfaces: challenges and solutions of microengineered multimodal implants designed to measure intact neuronal populations using high-resolution electrophysiology and microscopy simultaneously. MICROSYSTEMS & NANOENGINEERING 2023; 9:66. [PMID: 37213820 PMCID: PMC10195795 DOI: 10.1038/s41378-023-00519-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 05/23/2023]
Abstract
The aim of this review is to present a comprehensive overview of the feasibility of using transparent neural interfaces in multimodal in vivo experiments on the central nervous system. Multimodal electrophysiological and neuroimaging approaches hold great potential for revealing the anatomical and functional connectivity of neuronal ensembles in the intact brain. Multimodal approaches are less time-consuming and require fewer experimental animals as researchers obtain denser, complex data during the combined experiments. Creating devices that provide high-resolution, artifact-free neural recordings while facilitating the interrogation or stimulation of underlying anatomical features is currently one of the greatest challenges in the field of neuroengineering. There are numerous articles highlighting the trade-offs between the design and development of transparent neural interfaces; however, a comprehensive overview of the efforts in material science and technology has not been reported. Our present work fills this gap in knowledge by introducing the latest micro- and nanoengineered solutions for fabricating substrate and conductive components. Here, the limitations and improvements in electrical, optical, and mechanical properties, the stability and longevity of the integrated features, and biocompatibility during in vivo use are discussed.
Collapse
Affiliation(s)
- Z. Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience & Psychology, Eotvos Lorand Research Network, Budapest, Hungary
| | - A. Zátonyi
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - A. Kaszás
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541 Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005 Marseille, France
| | - M. Madarász
- János Szentágothai PhD Program of Semmelweis University, Budapest, Hungary
- BrainVision Center, Budapest, Hungary
| | - A. Slézia
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
29
|
Practical considerations for quantitative light sheet fluorescence microscopy. Nat Methods 2022; 19:1538-1549. [PMID: 36266466 DOI: 10.1038/s41592-022-01632-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022]
Abstract
Fluorescence microscopy has evolved from a purely observational tool to a platform for quantitative, hypothesis-driven research. As such, the demand for faster and less phototoxic imaging modalities has spurred a rapid growth in light sheet fluorescence microscopy (LSFM). By restricting the excitation to a thin plane, LSFM reduces the overall light dose to a specimen while simultaneously improving image contrast. However, the defining characteristics of light sheet microscopes subsequently warrant unique considerations in their use for quantitative experiments. In this Perspective, we outline many of the pitfalls in LSFM that can compromise analysis and confound interpretation. Moreover, we offer guidance in addressing these caveats when possible. In doing so, we hope to provide a useful resource for life scientists seeking to adopt LSFM to quantitatively address complex biological hypotheses.
Collapse
|
30
|
Tippani M, Pattie EA, Davis BA, Nguyen CV, Wang Y, Sripathy SR, Maher BJ, Martinowich K, Jaffe AE, Page SC. CaPTure: Calcium PeakToolbox for analysis of in vitro calcium imaging data. BMC Neurosci 2022; 23:71. [PMID: 36451089 PMCID: PMC9710137 DOI: 10.1186/s12868-022-00751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Calcium imaging is a powerful technique for recording cellular activity across large populations of neurons. However, analysis methods capable of single-cell resolution in cultured neurons, especially for cultures derived from human induced pluripotent stem cells (hiPSCs), are lacking. Existing methods lack scalability to accommodate high-throughput comparisons between multiple lines, across developmental timepoints, or across pharmacological manipulations. RESULTS To address this need we developed CaPTure, a scalable, automated Ca2+ imaging analysis pipeline ( https://github.com/LieberInstitute/CaPTure ). CaPTuredetects neurons, classifies and quantifies spontaneous activity, quantifies synchrony metrics, and generates cell- and network-specific metrics that facilitate phenotypic discovery. The method is compatible with parallel processing on computing clusters without requiring significant user input or parameter modification. CONCLUSION CaPTure allows for rapid assessment of neuronal activity in cultured cells at cellular resolution, rendering it amenable to high-throughput screening and phenotypic discovery. The platform can be applied to both human- and rodent-derived neurons and is compatible with many imaging systems.
Collapse
Affiliation(s)
- Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Elizabeth A Pattie
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Brittany A Davis
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Claudia V Nguyen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Srinidhi Rao Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Stephanie Cerceo Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA.
| |
Collapse
|
31
|
Development of an Endoscopic Auto-Fluorescent Sensing Device to Aid in the Detection of Breast Cancer and Inform Photodynamic Therapy. Metabolites 2022; 12:metabo12111097. [PMID: 36422237 PMCID: PMC9697641 DOI: 10.3390/metabo12111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most diagnosed cancer type in women, with it being the second most deadly cancer in terms of total yearly mortality. Due to the prevalence of this disease, better methods are needed for both detection and treatment. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent biomarkers that lend insight into cell and tissue metabolism. As such, we developed an endoscopic device to measure these metabolites in tissue to differentiate between malignant tumors and normal tissue. We performed initial validations in liquid phantoms as well as compared to a previously validated redox imaging system. We also imaged ex vivo tissue samples after modulation with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) and a combination of rotenone and antimycin A. We then imaged the rim and the core of MDA-MB-231 breast cancer tumors, with our results showing that the core of a cancerous lesion has a significantly higher optical redox ratio ([FAD]/([FAD] + [NADH])) than the rim, which agrees with previously published results. The mouse muscle tissues exhibited a significantly lower FAD, higher NADH, and lower redox ratio compared to the tumor core or rim. We also used the endoscope to measure NADH and FAD after photodynamic therapy treatment, a light-activated treatment methodology. Our results found that the NADH signal increases in the malignancy rim and core, while the core of cancers demonstrated a significant increase in the FAD signal.
Collapse
|
32
|
Feng Z, Ducos B, Scerbo P, Aujard I, Jullien L, Bensimon D. The Development and Application of Opto-Chemical Tools in the Zebrafish. Molecules 2022; 27:6231. [PMID: 36234767 PMCID: PMC9572478 DOI: 10.3390/molecules27196231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
The zebrafish is one of the most widely adopted animal models in both basic and translational research. This popularity of the zebrafish results from several advantages such as a high degree of similarity to the human genome, the ease of genetic and chemical perturbations, external fertilization with high fecundity, transparent and fast-developing embryos, and relatively low cost-effective maintenance. In particular, body translucency is a unique feature of zebrafish that is not adequately obtained with other vertebrate organisms. The animal's distinctive optical clarity and small size therefore make it a successful model for optical modulation and observation. Furthermore, the convenience of microinjection and high embryonic permeability readily allow for efficient delivery of large and small molecules into live animals. Finally, the numerous number of siblings obtained from a single pair of animals offers large replicates and improved statistical analysis of the results. In this review, we describe the development of opto-chemical tools based on various strategies that control biological activities with unprecedented spatiotemporal resolution. We also discuss the reported applications of these tools in zebrafish and highlight the current challenges and future possibilities of opto-chemical approaches, particularly at the single cell level.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Bertrand Ducos
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- High Throughput qPCR Core Facility, Ecole Normale Supérieure, Paris Sciences Letters University, 46 Rue d’Ulm, 75005 Paris, France
| | - Pierluigi Scerbo
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Isabelle Aujard
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - Ludovic Jullien
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - David Bensimon
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Matsuura H, Kawakami R, Isoe M, Hoshihara M, Minami Y, Yatsuzuka K, Tsuda T, Murakami M, Suzuki Y, Kawamata J, Imamura T, Hadano S, Watanabe S, Niko Y. NIR-II-Excitable Dye-Loaded Nanoemulsions for Two-Photon Microscopy Imaging of Capillary Blood Vessels in the Entire Hippocampal CA1 Region of Living Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40481-40490. [PMID: 36063083 DOI: 10.1021/acsami.2c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For in vivo two-photon fluorescence microscopy (2PM) imaging, the development of techniques that can improve the observable depth and temporal resolution is an important challenge to address biological and biomedical concerns such as vascular dynamics in the deep brain (typically the hippocampal region) of living animals. Improvements have been achieved through two approaches: an optical approach using a highly tissue-penetrating excitation laser oscillating in the second near-infrared wavelength region (NIR-II, 1100-1350 nm) and a chemical approach employing fluorescent probes with high two-photon brightness (characterized by the product of the two-photon absorption cross section, σ2, and the fluorescence quantum yield, Φ). To integrate these two approaches, we developed a fluorescent dye exhibiting a sufficiently high σ2Φ value of 68 Goeppert-Mayer units at 1100 nm. When a nanoemulsion encapsulating >1000 dye molecules per particle and a 1100 nm laser were employed for 2PM imaging, capillary blood vessels in almost the entire hippocampal CA1 region of the mouse brain (approximately 1.1-1.5 mm below the surface) were clearly visualized at a frame rate of 30 frames s-1 (averaged over eight frames, practically 3.75 frames s-1). This observable depth and frame rate are much higher than those in previous reports on 2PM imaging. Furthermore, this nanoemulsion allowed for the visualization of blood vessels at a depth of 1.8 mm, corresponding to the hippocampal dentate gyrus. These results highlight the advantage of combining bright probes with NIR-II lasers. Our probe is a promising tool for studying the vascular dynamics of living animals and related diseases.
Collapse
Affiliation(s)
- Hitomi Matsuura
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
- TOSA Innovative Human Development Programs, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Maki Isoe
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Masaharu Hoshihara
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Yuya Minami
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Kazuki Yatsuzuka
- Department of Dermatology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Teruko Tsuda
- Department of Dermatology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masamoto Murakami
- Department of Dermatology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yasutaka Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Jun Kawamata
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Shingo Hadano
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Shigeru Watanabe
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| |
Collapse
|
34
|
Grienberger C, Giovannucci A, Zeiger W, Portera-Cailliau C. Two-photon calcium imaging of neuronal activity. NATURE REVIEWS. METHODS PRIMERS 2022; 2:67. [PMID: 38124998 PMCID: PMC10732251 DOI: 10.1038/s43586-022-00147-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/23/2023]
Abstract
In vivo two-photon calcium imaging (2PCI) is a technique used for recording neuronal activity in the intact brain. It is based on the principle that, when neurons fire action potentials, intracellular calcium levels rise, which can be detected using fluorescent molecules that bind to calcium. This Primer is designed for scientists who are considering embarking on experiments with 2PCI. We provide the reader with a background on the basic concepts behind calcium imaging and on the reasons why 2PCI is an increasingly powerful and versatile technique in neuroscience. The Primer explains the different steps involved in experiments with 2PCI, provides examples of what ideal preparations should look like and explains how data are analysed. We also discuss some of the current limitations of the technique, and the types of solutions to circumvent them. Finally, we conclude by anticipating what the future of 2PCI might look like, emphasizing some of the analysis pipelines that are being developed and international efforts for data sharing.
Collapse
Affiliation(s)
- Christine Grienberger
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Andrea Giovannucci
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Zeiger
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
35
|
A set of hub neurons and non-local connectivity features support global brain dynamics in C. elegans. Curr Biol 2022; 32:3443-3459.e8. [PMID: 35809568 DOI: 10.1016/j.cub.2022.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
The wiring architecture of neuronal networks is assumed to be a strong determinant of their dynamical computations. An ongoing effort in neuroscience is therefore to generate comprehensive synapse-resolution connectomes alongside brain-wide activity maps. However, the structure-function relationship, i.e., how the anatomical connectome and neuronal dynamics relate to each other on a global scale, remains unsolved. Systematically, comparing graph features in the C. elegans connectome with correlations in nervous system-wide neuronal dynamics, we found that few local connectivity motifs and mostly other non-local features such as triplet motifs and input similarities can predict functional relationships between neurons. Surprisingly, quantities such as connection strength and amount of common inputs do not improve these predictions, suggesting that the network's topology is sufficient. We demonstrate that hub neurons in the connectome are key to these relevant graph features. Consistently, inhibition of multiple hub neurons specifically disrupts brain-wide correlations. Thus, we propose that a set of hub neurons and non-local connectivity features provide an anatomical substrate for global brain dynamics.
Collapse
|
36
|
Lake EMR, Higley MJ. Building bridges: simultaneous multimodal neuroimaging approaches for exploring the organization of brain networks. NEUROPHOTONICS 2022; 9:032202. [PMID: 36159712 PMCID: PMC9506627 DOI: 10.1117/1.nph.9.3.032202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Brain organization is evident across spatiotemporal scales as well as from structural and functional data. Yet, translating from micro- to macroscale (vice versa) as well as between different measures is difficult. Reconciling disparate observations from different modes is challenging because each specializes within a restricted spatiotemporal milieu, usually has bounded organ coverage, and has access to different contrasts. True intersubject biological heterogeneity, variation in experiment implementation (e.g., use of anesthesia), and true moment-to-moment variations in brain activity (maybe attributable to different brain states) also contribute to variability between studies. Ultimately, for a deeper and more actionable understanding of brain organization, an ability to translate across scales, measures, and species is needed. Simultaneous multimodal methods can contribute to bettering this understanding. We consider four modes, three optically based: multiphoton imaging, single-photon (wide-field) imaging, and fiber photometry, as well as magnetic resonance imaging. We discuss each mode as well as their pairwise combinations with regard to the definition and study of brain networks.
Collapse
Affiliation(s)
- Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Michael J. Higley
- Yale School of Medicine, Departments of Neuroscience and Psychiatry, New Haven, Connecticut, United States
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, New Haven, Connecticut, United States
| |
Collapse
|
37
|
Brondi M, Bruzzone M, Lodovichi C, dal Maschio M. Optogenetic Methods to Investigate Brain Alterations in Preclinical Models. Cells 2022; 11:1848. [PMID: 35681542 PMCID: PMC9180859 DOI: 10.3390/cells11111848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Investigating the neuronal dynamics supporting brain functions and understanding how the alterations in these mechanisms result in pathological conditions represents a fundamental challenge. Preclinical research on model organisms allows for a multiscale and multiparametric analysis in vivo of the neuronal mechanisms and holds the potential for better linking the symptoms of a neurological disorder to the underlying cellular and circuit alterations, eventually leading to the identification of therapeutic/rescue strategies. In recent years, brain research in model organisms has taken advantage, along with other techniques, of the development and continuous refinement of methods that use light and optical approaches to reconstruct the activity of brain circuits at the cellular and system levels, and to probe the impact of the different neuronal components in the observed dynamics. These tools, combining low-invasiveness of optical approaches with the power of genetic engineering, are currently revolutionizing the way, the scale and the perspective of investigating brain diseases. The aim of this review is to describe how brain functions can be investigated with optical approaches currently available and to illustrate how these techniques have been adopted to study pathological alterations of brain physiology.
Collapse
Affiliation(s)
- Marco Brondi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Matteo Bruzzone
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Claudia Lodovichi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Marco dal Maschio
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| |
Collapse
|
38
|
Iyer RR, Liu YZ, Renteria CA, Tibble BE, Choi H, Žurauskas M, Boppart SA. Ultra-parallel label-free optophysiology of neural activity. iScience 2022; 25:104307. [PMID: 35602935 PMCID: PMC9114528 DOI: 10.1016/j.isci.2022.104307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 01/21/2023] Open
Abstract
The electrical activity of neurons has a spatiotemporal footprint that spans three orders of magnitude. Traditional electrophysiology lacks the spatial throughput to image the activity of an entire neural network; besides, labeled optical imaging using voltage-sensitive dyes and tracking Ca2+ ion dynamics lack the versatility and speed to capture fast-spiking activity, respectively. We present a label-free optical imaging technique to image the changes to the optical path length and the local birefringence caused by neural activity, at 4,000 Hz, across a 200 × 200 μm2 region, and with micron-scale spatial resolution and 300-pm displacement sensitivity using Superfast Polarization-sensitive Off-axis Full-field Optical Coherence Microscopy (SPoOF OCM). The undulations in the optical responses from mammalian neuronal activity were matched with field-potential electrophysiology measurements and validated with channel blockers. By directly tracking the widefield neural activity at millisecond timescales and micrometer resolution, SPoOF OCM provides a framework to progress from low-throughput electrophysiology to high-throughput ultra-parallel label-free optophysiology.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carlos A. Renteria
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brian E. Tibble
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Honggu Choi
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mantas Žurauskas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Corresponding author
| |
Collapse
|
39
|
Imperato S, Harms F, Hubert A, Mercier M, Bourdieu L, Fragola A. Single-shot quantitative aberration and scattering length measurements in mouse brain tissues using an extended-source Shack-Hartmann wavefront sensor. OPTICS EXPRESS 2022; 30:15250-15265. [PMID: 35473251 DOI: 10.1364/oe.456651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 05/18/2023]
Abstract
Deep fluorescence imaging in mammalian brain tissues remains challenging due to scattering and optical aberration-induced loss in signal and resolution. Correction of aberrations using adaptive optics (AO) requires their reliable measurement in the tissues. Here, we show that an extended-source Shack-Hartmann wavefront sensor (ESSH) allows quantitative aberration measurements through fixed brain slices with a thickness up to four times their scattering length. We demonstrate in particular that this wavefront measurement method based on image correlation is more robust to scattering compared to the standard centroid-based approach. Finally, we obtain a measurement of the tissue scattering length taking advantage of the geometry of a Shack-Hartmann sensor.
Collapse
|
40
|
Serrano ME, Kim E, Petrinovic MM, Turkheimer F, Cash D. Imaging Synaptic Density: The Next Holy Grail of Neuroscience? Front Neurosci 2022; 16:796129. [PMID: 35401097 PMCID: PMC8990757 DOI: 10.3389/fnins.2022.796129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The brain is the central and most complex organ in the nervous system, comprising billions of neurons that constantly communicate through trillions of connections called synapses. Despite being formed mainly during prenatal and early postnatal development, synapses are continually refined and eliminated throughout life via complicated and hitherto incompletely understood mechanisms. Failure to correctly regulate the numbers and distribution of synapses has been associated with many neurological and psychiatric disorders, including autism, epilepsy, Alzheimer’s disease, and schizophrenia. Therefore, measurements of brain synaptic density, as well as early detection of synaptic dysfunction, are essential for understanding normal and abnormal brain development. To date, multiple synaptic density markers have been proposed and investigated in experimental models of brain disorders. The majority of the gold standard methodologies (e.g., electron microscopy or immunohistochemistry) visualize synapses or measure changes in pre- and postsynaptic proteins ex vivo. However, the invasive nature of these classic methodologies precludes their use in living organisms. The recent development of positron emission tomography (PET) tracers [such as (18F)UCB-H or (11C)UCB-J] that bind to a putative synaptic density marker, the synaptic vesicle 2A (SV2A) protein, is heralding a likely paradigm shift in detecting synaptic alterations in patients. Despite their limited specificity, novel, non-invasive magnetic resonance (MR)-based methods also show promise in inferring synaptic information by linking to glutamate neurotransmission. Although promising, all these methods entail various advantages and limitations that must be addressed before becoming part of routine clinical practice. In this review, we summarize and discuss current ex vivo and in vivo methods of quantifying synaptic density, including an evaluation of their reliability and experimental utility. We conclude with a critical assessment of challenges that need to be overcome before successfully employing synaptic density biomarkers as diagnostic and/or prognostic tools in the study of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Marija M Petrinovic
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
41
|
Ota K, Uwamori H, Ode T, Murayama M. Breaking trade-offs: development of fast, high-resolution, wide-field two-photon microscopes to reveal the computational principles of the brain. Neurosci Res 2022; 179:3-14. [PMID: 35390357 DOI: 10.1016/j.neures.2022.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
Information in the brain is represented by the collective and coordinated activity of single neurons. Activity is determined by a large amount of dynamic synaptic inputs from neurons in the same and/or distant brain regions. Therefore, the simultaneous recording of single neurons across several brain regions is critical for revealing the interactions among neurons that reflect the computational principles of the brain. Recently, several wide-field two-photon (2P) microscopes equipped with sizeable objective lenses have been reported. These microscopes enable large-scale in vivo calcium imaging and have the potential to make a significant contribution to the elucidation of information-processing mechanisms in the cerebral cortex. This review discusses recent reports on wide-field 2P microscopes and describes the trade-offs encountered in developing wide-field 2P microscopes. Large-scale imaging of neural activity allows us to test hypotheses proposed in theoretical neuroscience, and to identify rare but influential neurons that have potentially significant impacts on the whole-brain system.
Collapse
Affiliation(s)
- Keisuke Ota
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan; Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama351-0198, Japan.
| | - Hiroyuki Uwamori
- Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama351-0198, Japan
| | - Takahiro Ode
- Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama351-0198, Japan; FOV Corporation, 2-12-3 Taru-machi, Kouhoku-ku, Yokohama, Kanagawa222-0001, Japan
| | - Masanori Murayama
- Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama351-0198, Japan
| |
Collapse
|
42
|
Sità L, Brondi M, Lagomarsino de Leon Roig P, Curreli S, Panniello M, Vecchia D, Fellin T. A deep-learning approach for online cell identification and trace extraction in functional two-photon calcium imaging. Nat Commun 2022; 13:1529. [PMID: 35318335 PMCID: PMC8940911 DOI: 10.1038/s41467-022-29180-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
In vivo two-photon calcium imaging is a powerful approach in neuroscience. However, processing two-photon calcium imaging data is computationally intensive and time-consuming, making online frame-by-frame analysis challenging. This is especially true for large field-of-view (FOV) imaging. Here, we present CITE-On (Cell Identification and Trace Extraction Online), a convolutional neural network-based algorithm for fast automatic cell identification, segmentation, identity tracking, and trace extraction in two-photon calcium imaging data. CITE-On processes thousands of cells online, including during mesoscopic two-photon imaging, and extracts functional measurements from most neurons in the FOV. Applied to publicly available datasets, the offline version of CITE-On achieves performance similar to that of state-of-the-art methods for offline analysis. Moreover, CITE-On generalizes across calcium indicators, brain regions, and acquisition parameters in anesthetized and awake head-fixed mice. CITE-On represents a powerful tool to speed up image analysis and facilitate closed-loop approaches, for example in combined all-optical imaging and manipulation experiments.
Collapse
Affiliation(s)
- Luca Sità
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.
| | - Marco Brondi
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.
| | - Pedro Lagomarsino de Leon Roig
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- University of Genova, Genova, Italy
| | - Sebastiano Curreli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Mariangela Panniello
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
43
|
Lin L, He Z, Zhang T, Zuo Y, Chen X, Abdelrahman Z, Chen F, Wei Z, Si K, Gong W, Wang X, He S, Chen Z. A biocompatible two-photon absorbing fluorescent mitochondrial probe for deep in vivo bioimaging. J Mater Chem B 2022; 10:887-898. [DOI: 10.1039/d1tb02040d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We reported a mitochondria-targeted two-photon fluorescent dye with an excellent two-photon absorption cross-section. With this dye, we reached an imaging depth of ca. 640 μm during mitochondrial imaging of cortical cells in live animals.
Collapse
Affiliation(s)
- Lingmin Lin
- Department of Neurobiology and Department of Orthopedics, Zhejiang University School of Medicine, 2nd Affiliated Hospital, Hangzhou, Zhejiang Province 310009, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| | - Zewei He
- State Key Laboratory for Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, East Building No. 5, Zijingang Campus and Zhejiang University, Hangzhou 310058, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| | - Yanming Zuo
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| | - Xiangfeng Chen
- Department of Neurobiology and Department of Orthopedics, Zhejiang University School of Medicine, 2nd Affiliated Hospital, Hangzhou, Zhejiang Province 310009, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| | - Zeinab Abdelrahman
- Department of Neurobiology and Department of Orthopedics, Zhejiang University School of Medicine, 2nd Affiliated Hospital, Hangzhou, Zhejiang Province 310009, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| | - Feihong Chen
- State Key Laboratory for Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, East Building No. 5, Zijingang Campus and Zhejiang University, Hangzhou 310058, China
| | - Zhongcao Wei
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Ke Si
- State Key Laboratory for Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, East Building No. 5, Zijingang Campus and Zhejiang University, Hangzhou 310058, China
| | - Wei Gong
- Center for Neuroscience and Department of Neurobiology of the Second Affiliated Hospital, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuhua Wang
- Department of Neurobiology and Department of Orthopedics, Zhejiang University School of Medicine, 2nd Affiliated Hospital, Hangzhou, Zhejiang Province 310009, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001 Jiangsu, P. R. China
| | - Sailing He
- State Key Laboratory for Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, East Building No. 5, Zijingang Campus and Zhejiang University, Hangzhou 310058, China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| |
Collapse
|
44
|
Akbari N, Rebec MR, Xia F, Xu C. Imaging deeper than the transport mean free path with multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:452-463. [PMID: 35154884 PMCID: PMC8803047 DOI: 10.1364/boe.444696] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 05/05/2023]
Abstract
Multiphoton fluorescence microscopy enables deep in vivo imaging by using long excitation wavelengths to increase the penetration depth of ballistic photons and nonlinear excitation to suppress the out-of-focus fluorescence. However, the imaging depth of multiphoton microscopy is limited by tissue scattering and absorption. This fundamental depth limit for two-photon microscopy has been studied theoretically and experimentally. Long wavelength three-photon fluorescence microscopy was developed to image beyond the depth limit of two-photon microscopy and has achieved unprecedented in vivo imaging depth. Here we extend the theoretical framework for characterizing the depth limit of two-photon microscopy to three-photon microscopy. We further verify the theoretical predictions with experimental results from tissue phantoms. We demonstrate experimentally that high spatial resolution diffraction-limited imaging at a depth of 10 scattering mean free paths, which is nearly twice the transport mean free path, is possible with multiphoton microscopy. Our results indicate that the depth limit of three-photon microscopy is significantly beyond what has been achieved in biological tissues so far, and further technological development is required to reach the full potential of three-photon microscopy.
Collapse
Affiliation(s)
- Najva Akbari
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Mihailo R Rebec
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Fei Xia
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
45
|
Wang X, Zhang D, Zhang X, Xing Y, Wu J, Sui X, Huang X, Chang G, Li L. Application of Multiphoton Microscopic Imaging in Study of Gastric Cancer. Technol Cancer Res Treat 2022; 21:15330338221133244. [PMID: 36379591 PMCID: PMC9676310 DOI: 10.1177/15330338221133244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
Multiphoton microscopy (MPM) imaging relies on the nonlinear interaction between ultrashort optical pulses and the samples to achieve image contrast. Featuring larger penetration depth, less phototoxicity, 3-dimensional sectioning capability, no need for labeling, MPM become a powerful medical imaging technique that can identify structural characteristics of tissues at the cellular and subcellular levels. In this review paper, we introduce the working principle of MPM imaging, present the current results of MPM imaging applied to the study of gastric tumors, and discuss the future prospects of this interdisciplinary research field.
Collapse
Affiliation(s)
- Xiaoying Wang
- Strategic Support Force Medical Center, Beijing, China
| | - Di Zhang
- Ningxia Jingyuan County People's Hospital, Ningxia, China
| | - Xiaochun Zhang
- General Hospital of Ningxia Medical University, Ningxia, China
| | - Yuting Xing
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jihua Wu
- Strategic Support Force Medical Center, Beijing, China
| | - Xinke Sui
- Strategic Support Force Medical Center, Beijing, China
| | - Xin Huang
- Strategic Support Force Medical Center, Beijing, China
| | - Guoqing Chang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Lianyong Li
- Strategic Support Force Medical Center, Beijing, China
| |
Collapse
|
46
|
Chen ZS. Decoding pain from brain activity. J Neural Eng 2021; 18. [PMID: 34608868 DOI: 10.1088/1741-2552/ac28d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/12/2022]
Abstract
Pain is a dynamic, complex and multidimensional experience. The identification of pain from brain activity as neural readout may effectively provide a neural code for pain, and further provide useful information for pain diagnosis and treatment. Advances in neuroimaging and large-scale electrophysiology have enabled us to examine neural activity with improved spatial and temporal resolution, providing opportunities to decode pain in humans and freely behaving animals. This topical review provides a systematical overview of state-of-the-art methods for decoding pain from brain signals, with special emphasis on electrophysiological and neuroimaging modalities. We show how pain decoding analyses can help pain diagnosis and discovery of neurobiomarkers for chronic pain. Finally, we discuss the challenges in the research field and point to several important future research directions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY 10016, United States of America
| |
Collapse
|
47
|
Torigoe M, Islam T, Kakinuma H, Fung CCA, Isomura T, Shimazaki H, Aoki T, Fukai T, Okamoto H. Zebrafish capable of generating future state prediction error show improved active avoidance behavior in virtual reality. Nat Commun 2021; 12:5712. [PMID: 34588436 PMCID: PMC8481257 DOI: 10.1038/s41467-021-26010-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/06/2021] [Indexed: 11/08/2022] Open
Abstract
Animals make decisions under the principle of reward value maximization and surprise minimization. It is still unclear how these principles are represented in the brain and are reflected in behavior. We addressed this question using a closed-loop virtual reality system to train adult zebrafish for active avoidance. Analysis of the neural activity of the dorsal pallium during training revealed neural ensembles assigning rules to the colors of the surrounding walls. Additionally, one third of fish generated another ensemble that becomes activated only when the real perceived scenery shows discrepancy from the predicted favorable scenery. The fish with the latter ensemble escape more efficiently than the fish with the former ensembles alone, even though both fish have successfully learned to escape, consistent with the hypothesis that the latter ensemble guides zebrafish to take action to minimize this prediction error. Our results suggest that zebrafish can use both principles of goal-directed behavior, but with different behavioral consequences depending on the repertoire of the adopted principles.
Collapse
Affiliation(s)
- Makio Torigoe
- Lab. for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tanvir Islam
- Lab. for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
- RIKEN CBS-Kao Collaboration Center, Wako, Saitama, 351-0198, Japan
| | - Hisaya Kakinuma
- Lab. for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
- RIKEN CBS-Kao Collaboration Center, Wako, Saitama, 351-0198, Japan
| | - Chi Chung Alan Fung
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, 904-0495, Japan
| | - Takuya Isomura
- Brain Intelligence Theory Unit, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Hideaki Shimazaki
- Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Tazu Aoki
- Lab. for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tomoki Fukai
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, 904-0495, Japan
| | - Hitoshi Okamoto
- Lab. for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
- RIKEN CBS-Kao Collaboration Center, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
48
|
Jeong S, Yoo SW, Kim HJ, Park J, Kim JW, Lee C, Kim H. Recent Progress on Molecular Photoacoustic Imaging with Carbon-Based Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5643. [PMID: 34640053 PMCID: PMC8510032 DOI: 10.3390/ma14195643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
For biomedical imaging, the interest in noninvasive imaging methods is ever increasing. Among many modalities, photoacoustic imaging (PAI), which is a combination of optical and ultrasound imaging techniques, has received attention because of its unique advantages such as high spatial resolution, deep penetration, and safety. Incorporation of exogenous imaging agents further amplifies the effective value of PAI, since they can deliver other specified functions in addition to imaging. For these agents, carbon-based materials can show a large specific surface area and interesting optoelectronic properties, which increase their effectiveness and have proved their potential in providing a theragnostic platform (diagnosis + therapy) that is essential for clinical use. In this review, we introduce the current state of the PAI modality, address recent progress on PAI imaging that takes advantage of carbon-based agents, and offer a future perspective on advanced PAI systems using carbon-based agents.
Collapse
Affiliation(s)
- Songah Jeong
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun 58128, Jeollanam-do, Korea;
| | - Hea Ji Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Jieun Park
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Ji Woo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Changho Lee
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun 58128, Jeollanam-do, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju 61469, Korea
- Department of Artificial Intelligence Convergence, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| |
Collapse
|
49
|
Abstract
Visual images can be described in terms of the illuminants and objects that are causal to the light reaching the eye, the retinal image, its neural representation, or how the image is perceived. Respecting the differences among these distinct levels of description can be challenging but is crucial for a clear understanding of color vision. This article approaches color by reviewing what is known about its neural representation in the early visual cortex, with a brief description of signals in the eye and the thalamus for context. The review focuses on the properties of single neurons and advances the general theme that experimental approaches based on knowledge of feedforward signals have promoted greater understanding of the neural code for color than approaches based on correlating single-unit responses with color perception. New data from area V1 illustrate the strength of the feedforward approach. Future directions for progress in color neurophysiology are discussed: techniques for improved single-neuron characterization, for investigations of neural populations and small circuits, and for the analysis of natural image statistics.
Collapse
Affiliation(s)
- Gregory D Horwitz
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA; .,Washington National Primate Research Center, University of Washington, Seattle, Washington 98121, USA
| |
Collapse
|
50
|
Chen ZS, Pesaran B. Improving scalability in systems neuroscience. Neuron 2021; 109:1776-1790. [PMID: 33831347 PMCID: PMC8178195 DOI: 10.1016/j.neuron.2021.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/30/2022]
Abstract
Emerging technologies to acquire data at increasingly greater scales promise to transform discovery in systems neuroscience. However, current exponential growth in the scale of data acquisition is a double-edged sword. Scaling up data acquisition can speed up the cycle of discovery but can also misinterpret the results or possibly slow down the cycle because of challenges presented by the curse of high-dimensional data. Active, adaptive, closed-loop experimental paradigms use hardware and algorithms optimized to enable time-critical computation to provide feedback that interprets the observations and tests hypotheses to actively update the stimulus or stimulation parameters. In this perspective, we review important concepts of active and adaptive experiments and discuss how selectively constraining the dimensionality and optimizing strategies at different stages of discovery loop can help mitigate the curse of high-dimensional data. Active and adaptive closed-loop experimental paradigms can speed up discovery despite an exponentially increasing data scale, offering a road map to timely and iterative hypothesis revision and discovery in an era of exponential growth in neuroscience.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA.
| | - Bijan Pesaran
- Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neurology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|