1
|
Liu W, Zhou W, Zhao P, Wu T, Gu H, Li Y, Zhong C, Bai H, Zhao N, Huang X. PD-Like Pathogenesis in Caenorhabditis elegans Intestinally Infected with Nocardia farcinica and the Underlying Molecular Mechanisms. Mol Neurobiol 2025; 62:2641-2654. [PMID: 38546929 DOI: 10.1007/s12035-024-04076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/27/2024] [Indexed: 02/04/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the abnormal aggregation of α-synuclein (α-syn) and the loss of dopaminergic neurons. Although microbial infection has been implicated in the pathogenesis of PD, the associated virulence factors and the underlying molecular mechanisms require further elucidation. Here, we found that intestinal infection with Nocardia farcinica induced a series of PD-like symptoms in Caenorhabditis elegans, such as the accelerated degeneration of dopaminergic neurons, impaired locomotion capacity, and enhanced α-syn aggregation, through the disturbance of mitochondrial functions. To identify the potential virulence factors involved in these effects, we knocked out the nbtB/C and nbtS genes in N. farcinica, which are localized in the gene clusters responsible for nocobactin biosynthesis. The deletion of either gene partially rescued the degenerative effects of wild-type N. farcinica on dopaminergic neurons by attenuating mitochondrial dysfunction. LC-MS analysis further identified a decrease in the abundance of several siderophores in the two mutants, including nocobactin NA-a, nocobactin NA-b, and nocardimicin B. Collectively, our results demonstrated that intestinal N. farcinica infection in C. elegans facilitates PD-like pathogenesis and provides novel evidence for the involvement of pathogenic bacteria in neurodegenerative diseases via non-neuroinvasive mechanisms.
Collapse
Affiliation(s)
- Wenwen Liu
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Wenhui Zhou
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Peiji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Tingting Wu
- Neurosurgery of the Second Hospital Affiliated With Kunming Medical University, Kunming, 650101, China
| | - Huan Gu
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Yixin Li
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Chidi Zhong
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Hua Bai
- School of Medicine, Yunnan University, Kunming, 650091, China
- College of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Ninghui Zhao
- Neurosurgery of the Second Hospital Affiliated With Kunming Medical University, Kunming, 650101, China.
| | - Xiaowei Huang
- School of Medicine, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
2
|
Shaik HA, Siaussat D, Mishra A. Interactions among Zinc, Iron, and Paraquat in the Physiological and Toxicological Responses of the Egyptian Cotton Leafworm Spodoptera littoralis. TOXICS 2025; 13:38. [PMID: 39853036 PMCID: PMC11769340 DOI: 10.3390/toxics13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
Agricultural pollutants co-interact and affect the vital functions, stress tolerance, resistance, immunity, and survival of insect pests. These metal-herbicide interactions have inevitable but remarkable effects on insects, which remain poorly understood. Here, we examined the effects of the interactions among zinc (Zn), iron (Fe), and paraquat (PQ) at a sublethal dose on the physiological response of the Egyptian cotton leafworm Spodoptera littoralis. Co-exposure to Zn and Fe improved leafworm survival (100% at 10-20 mg, 85% at 40 mg) compared to separate exposures. Low Zn/Fe/PQ toxicity likely stemmed from metal complexes having efficient chelating activity, enhancing resilience. Low exposure to Zn, Fe, and Zn/Fe increased food intake and larval weight and affected frass production. Interestingly, the combined application of Zn/Fe/PQ increased larval and pupal weight in surviving individuals. Zn/Fe was found to be crucial in the ecdysis of larvae into pupae, resulting in reduced larval mortality and a prolonged pupal ecdysis duration (% days). Providing important information regarding physiological responses and pest management, this study demonstrated the realistic conditions caused by the interactions of biological trace elements, such as Zn and Fe, with PQ. A disc diffusion susceptibility test in hemolymph bacteria revealed differences among Zn, Zn/Fe, and Zn/Fe/PQ, suggesting that their interaction might play an immunomodulatory role in S. littoralis.
Collapse
Affiliation(s)
- Haq Abdul Shaik
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - David Siaussat
- Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, CNRS, INRAe, IRD, Université Paris Créteil, Université Paris cité, F-75005 Paris, France;
| | | |
Collapse
|
3
|
Beigoli S, Hajizadeh AA, Taghavizadeh Yazdi ME, Zarei H, Vafaee F, Boskabady MH. The brain and systemic oxidative stress and memory changes induced by inhaled paraquat in rat improved by Crocus sativus. Leg Med (Tokyo) 2024; 71:102525. [PMID: 39243568 DOI: 10.1016/j.legalmed.2024.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The present study aimed to investigate the effect of Crocus sativus (Cs) on paraquat (PQ)-induced learning and memory deficits as well as brain and lung oxidative stress and systemic inflammation, and oxidative stress in rats. Rats were exposed to saline (Ctrl) or PQ (PQ groups) aerosols. PQ groups were treated with 0.03 mg/kg/day dexamethasone (Dexa), 20 and 80 mg/kg/day Cs-L and Cs-H, 5 mg/kg/day pioglitazone (Pio), and Cs-L+Pio for 16 days during PQ exposure period. Learning and memory abilities were assessed by Morris water maze (MWM) and passive avoidance tests. PQ group showed increased numbers of total and differential WBCs in blood, and increased malondialdehyde (MDA), in the serum, brain, and lung but reduced thiol, catalase (CAT), and superoxide dismutase (SOD) levels compared to the control group (for all, p < 0.001). The escape latency and traveled distance were increased in the PQ group. However, the time spent in the target quadrant in the MWM test and the latency to enter the dark room were reduced after receiving an electrical shock (p < 0.05 to P<0.001). In all treated groups, measured values were improved compared to PQ group (p < 0.05 to p < 0.001). The combination of Cs-L+Pio showed more pronounced effects compared to either treatment alone (p < 0.05 to p < 0.001). These findings suggest that Cs has neuroprotective properties and may be beneficial in the treatment of neurodegenerative diseases induced by noxious agents such as PQ.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Asghar Hajizadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossin Zarei
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Chen N, Hu H, Tang J, Zheng F, Guo Z, Lin X, Aschner M, Shao W, Yu G, Cai P, Chou WC, Wu S, Li H. LncRNA NR_030777 promotes mitophagy by targeting CDK1-related mitochondrial fission and ATG12 to attenuate paraquat-induced Parkinson's disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123875. [PMID: 38548152 DOI: 10.1016/j.envpol.2024.123875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
With the evidence emerging that abnormal expression of long noncoding RNAs (lncRNAs) are involved in onset of Parkinson's disease (PD), the role of NR_030777 contributing to this disease is of great interest. We recently found that a novel lncRNA "NR_030777" demonstrates protective effects on PQ-induced neurodegeneration. However, the underlying molecular mechanisms of NR_030777 in the regulation of mitochondrial fission and mitophagy involved in PQ-induced neuronal damage remain to be explored. NR_030777 brain conditional overexpressing mice as well as in vitro primary neuronal cells from cerebral cortex and Neuro2a cells were adopted. Immunofluorescence, Immunohistochemistry, qRT-PCR and Western blotting were used to evaluate the expression levels of RNA and proteins. RNA immunoprecipitation and RNA pulldown experiment were used to evaluate the interaction of NR_030777 with its target proteins. NR_030777 and mitophagy were increased, and tyrosine hydroxylase (TH) levels recovered after NR_030777 overexpression upon PQ treatment. The overexpression and knockdown of NR_030777 unveiled that NR_030777 positively regulated mitophagy such as the upregulation of LC3B-II:I, ATG12-ATG5, p62 and NBR1. Moreover, the application of mdivi-1, a DRP-1 inhibitor, in combination with NR_030777 genetic modified cells unveiled that NR_030777 promoted DRP1-mediated mitochondrial fission and mitophagy. Furthermore, NR_030777 were directly bound to CDK1 to increase p-DRP1 levels at the Ser616 site, leading to mitochondrial fission and mitophagy. On the other hand, NR_030777 acted directly on ATG12 within the ATG12-ATG5 complex in the 800-1400 nt region to modulate the membrane formation. Accordingly, NR_030777 deficiency in neuron cells compromised cell mitophagy. Finally, the above findings were confirmed using NR_030777-overexpressing mice. NR_030777 exerted a protective effect on PQ-exposed mice by enhancing mitophagy. Our data provide the first scientific evidence for the precise invention of PQ-induced PD. Our findings further propose a breakthrough for understanding the regulatory relationship between NR_030777, CDK1, ATG12 and mitophagy in PQ-induced PD.
Collapse
Affiliation(s)
- Nengzhou Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Labor Hygiene and Environmental Hygiene, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Jianping Tang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Ping Cai
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Wei-Chun Chou
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
5
|
Rocha E, Chamoli M, Chinta SJ, Andersen JK, Wallis R, Bezard E, Goldberg M, Greenamyre T, Hirst W, Kuan WL, Kirik D, Niedernhofer L, Rappley I, Padmanabhan S, Trudeau LE, Spillantini M, Scott S, Studer L, Bellantuono I, Mortiboys H. Aging, Parkinson's Disease, and Models: What Are the Challenges? AGING BIOLOGY 2023; 1:e20230010. [PMID: 38978807 PMCID: PMC11230631 DOI: 10.59368/agingbio.20230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative condition characterized by motor symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the substantia nigra. PD incidence increases sharply with age, suggesting a strong association between mechanisms driving biological aging and the development and progression of PD. However, the role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including cell models, toxin-induced models, and genetic models in rodents and nonhuman primates (NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain some aging features, but their characterization, particularly of aging markers and reproducibility of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models indicates an association, but this is likely in conjunction with other disease drivers. The biggest barrier to drawing firm conclusions is that each model lacks full characterization and appropriate time-course assessments. There is a need to systematically investigate whether aging increases the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of cell models. We propose that a significant investment in time and resources, together with the coordination and sharing of resources, knowledge, and data, is required to accelerate progress in understanding the role of biological aging in PD development and improve the reliability of models to test interventions.
Collapse
Affiliation(s)
- Emily Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, College of Pharmacy, Vallejo, CA, USA
| | | | - Ruby Wallis
- The Healthy Lifespan Institute, Sheffield, United Kingdom
| | | | | | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - We-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS), Lund, Sweden
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Irit Rappley
- Recursion pharmaceuticals, Salt Lake City, UT, USA
| | | | - Louis-Eric Trudeau
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maria Spillantini
- Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Ilaria Bellantuono
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Heather Mortiboys
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Neuroscience, Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kindgom
| |
Collapse
|
6
|
Khan E, Hasan I, Haque ME. Parkinson's Disease: Exploring Different Animal Model Systems. Int J Mol Sci 2023; 24:ijms24109088. [PMID: 37240432 DOI: 10.3390/ijms24109088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Disease modeling in non-human subjects is an essential part of any clinical research. To gain proper understanding of the etiology and pathophysiology of any disease, experimental models are required to replicate the disease process. Due to the huge diversity in pathophysiology and prognosis in different diseases, animal modeling is customized and specific accordingly. As in other neurodegenerative diseases, Parkinson's disease is a progressive disorder coupled with varying forms of physical and mental disabilities. The pathological hallmarks of Parkinson's disease are associated with the accumulation of misfolded protein called α-synuclein as Lewy body, and degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) area affecting the patient's motor activity. Extensive research has already been conducted regarding animal modeling of Parkinson's diseases. These include animal systems with induction of Parkinson's, either pharmacologically or via genetic manipulation. In this review, we will be summarizing and discussing some of the commonly employed Parkinson's disease animal model systems and their applications and limitations.
Collapse
Affiliation(s)
- Engila Khan
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ikramul Hasan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Emdadul Haque
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
7
|
Kim SG, George NP, Hwang JS, Park S, Kim MO, Lee SH, Lee G. Human Bone Marrow-Derived Mesenchymal Stem Cell Applications in Neurodegenerative Disease Treatment and Integrated Omics Analysis for Successful Stem Cell Therapy. Bioengineering (Basel) 2023; 10:bioengineering10050621. [PMID: 37237691 DOI: 10.3390/bioengineering10050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Neurodegenerative diseases (NDDs), which are chronic and progressive diseases, are a growing health concern. Among the therapeutic methods, stem-cell-based therapy is an attractive approach to NDD treatment owing to stem cells' characteristics such as their angiogenic ability, anti-inflammatory, paracrine, and anti-apoptotic effects, and homing ability to the damaged brain region. Human bone-marrow-derived mesenchymal stem cells (hBM-MSCs) are attractive NDD therapeutic agents owing to their widespread availability, easy attainability and in vitro manipulation and the lack of ethical issues. Ex vivo hBM-MSC expansion before transplantation is essential because of the low cell numbers in bone marrow aspirates. However, hBM-MSC quality decreases over time after detachment from culture dishes, and the ability of hBM-MSCs to differentiate after detachment from culture dishes remains poorly understood. Conventional analysis of hBM-MSCs characteristics before transplantation into the brain has several limitations. However, omics analyses provide more comprehensive molecular profiling of multifactorial biological systems. Omics and machine learning approaches can handle big data and provide more detailed characterization of hBM-MSCs. Here, we provide a brief review on the application of hBM-MSCs in the treatment of NDDs and an overview of integrated omics analysis of the quality and differentiation ability of hBM-MSCs detached from culture dishes for successful stem cell therapy.
Collapse
Affiliation(s)
- Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Seokho Park
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Soo Hwan Lee
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
| |
Collapse
|
8
|
Hayley S, Vahid-Ansari F, Sun H, Albert PR. Mood disturbances in Parkinson's disease: From prodromal origins to application of animal models. Neurobiol Dis 2023; 181:106115. [PMID: 37037299 DOI: 10.1016/j.nbd.2023.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Parkinson's disease (PD) is a complex illness with a constellation of environmental insults and genetic vulnerabilities being implicated. Strikingly, many studies only focus on the cardinal motor symptoms of the disease and fail to appreciate the major non-motor features which typically occur early in the disease process and are debilitating. Common comorbid psychiatric features, notably clinical depression, as well as anxiety and sleep disorders are thought to emerge before the onset of prominent motor deficits. In this review, we will delve into the prodromal stage of PD and how early neuropsychiatric pathology might unfold, followed by later motor disturbances. It is also of interest to discuss how animal models of PD capture the complexity of the illness, including depressive-like characteristics along with motor impairment. It remains to be determined how the underlying PD disease processes contributes to such comorbidity. But some of the environmental toxicants and microbial pathogens implicated in PD might instigate pro-inflammatory effects favoring α-synuclein accumulation and damage to brainstem neurons fueling the evolution of mood disturbances. We posit that comprehensive animal-based research approaches are needed to capture the complexity and time-dependent nature of the primary and co-morbid symptoms. This will allow for the possibility of early intervention with more novel and targeted treatments that fit with not only individual patient variability, but also with changes that occur over time with the evolution of the disease.
Collapse
Affiliation(s)
- S Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada.
| | - F Vahid-Ansari
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| | - H Sun
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| | - P R Albert
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| |
Collapse
|
9
|
Atone J, Wagner K, Koike S, Yang J, Hwang SH, Hammock BD. Inhibition of soluble epoxide hydrolase reduces paraquat neurotoxicity in rodents. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104070. [PMID: 36682504 PMCID: PMC9992278 DOI: 10.1016/j.etap.2023.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Given the paucity of research surrounding the effect of chronic paraquat on striatal neurotoxicity, there is a need for further investigation into the neurotoxic effects of paraquat in mouse striatum. Furthermore, while previous studies have shown that inhibiting soluble epoxide hydrolase mitigates MPTP-mediated endoplasmic reticulum stress in mouse striatum, its effect on paraquat toxicity is still unknown. Thus, this study attempts to observe changes in inflammatory and endoplasmic reticulum stress markers in mouse striatum following chronic paraquat administration to determine whether inhibiting soluble epoxide hydrolase mitigates paraquat-induced neurotoxicity and whether it can reduce TLR4-mediated inflammation in primary astrocytes and microglia. Our results show that while the pro-inflammatory effect of chronic paraquat is small, there is a significant induction of inflammatory and cellular stress markers, such as COX2 and CHOP, that can be mitigated through a prophylactic administration of a soluble epoxide hydrolase inhibitor.
Collapse
Affiliation(s)
- Jogen Atone
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Karen Wagner
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Shinichiro Koike
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
10
|
Association between Heavy Metal Exposure and Parkinson's Disease: A Review of the Mechanisms Related to Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11122467. [PMID: 36552676 PMCID: PMC9774122 DOI: 10.3390/antiox11122467] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is a gradually progressing neurodegenerative condition that is marked by a loss of motor coordination along with non-motor features. Although the precise cause of PD has not been determined, the disease condition is mostly associated with the exposure to environmental toxins, such as metals, and their abnormal accumulation in the brain. Heavy metals, such as iron (Fe), mercury (Hg), manganese (Mn), copper (Cu), and lead (Pb), have been linked to PD and contribute to its progression. In addition, the interactions among the components of a metal mixture may result in synergistic toxicity. Numerous epidemiological studies have demonstrated a connection between PD and either single or mixed exposure to these heavy metals, which increase the prevalence of PD. Chronic exposure to heavy metals is related to the activation of proinflammatory cytokines resulting in neuronal loss through neuroinflammation. Similarly, metals disrupt redox homeostasis while inducing free radical production and decreasing antioxidant levels in the substantia nigra. Furthermore, these metals alter molecular processes and result in oxidative stress, DNA damage, mitochondrial dysfunction, and apoptosis, which can potentially trigger dopaminergic neurodegenerative disorders. This review focuses on the roles of Hg, Pb, Mn, Cu, and Fe in the development and progression of PD. Moreover, it explores the plausible roles of heavy metals in neurodegenerative mechanisms that facilitate the development of PD. A better understanding of the mechanisms underlying metal toxicities will enable the establishment of novel therapeutic approaches to prevent or cure PD.
Collapse
|
11
|
Gohari-Piran M, Omidifar N, Mohammadi M, Nili-Ahmadabadi A. Phlebotomy-induced iron deficiency attenuates the pulmonary toxicity of paraquat in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105278. [PMID: 36464381 DOI: 10.1016/j.pestbp.2022.105278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Phlebotomy is an effective method in the prevention and treatment of some poisonings, among which iron deficiency is a well-known consequence. Given the role of iron in paraquat (PQ) toxicity, the present study investigated the effectiveness of phlebotomy in PQ pulmonary toxicity. After conducting preliminary studies, the duration time of phlebotomy was set to be seven days. Then, the mice were divided into nine separate groups. Groups 1-3 received a single dose of normal saline, and 5 and 10 mg/kg of PQ, respectively, and phlebotomy was not performed on them (NPG status). The animals in groups 4-6 first underwent phlebotomy for seven days and then received a single dose of normal saline, and 5 and 10 mg/kg of PQ (PBPT status). Groups 7-9 first received a single dose of normal saline, and 5 and 10 mg/kg of PQ and then underwent phlebotomy for seven days (PAPT status). Seven days after acute exposure to PQ, the animals were anesthetized and biochemical biomarkers as well as lung tissue changes were evaluated. The findings showed that phlebotomy before and after PQ toxicity significantly decreased serum iron compared to NPG condition. In the PBPT status, phlebotomy could prevent PQ toxicity by increasing the activity of catalase and superoxide dismutase (SOD) and decreasing the activity of myeloperoxidase (MPO), and the levels of hydroxyproline and lipid peroxidation in the lung tissue. In the PAPT status, a significant improvement was observed in SOD and MPO activities compared to the NPG status. Confirming the biochemical findings, the histological results indicated higher effectiveness of phlebotomy in preventing PQ toxicity (PBPT) compared to its therapeutic effects (PAPT). Considering the role of iron in PQ toxicity, it appears that the reduction of serum iron levels during phlebotomy can be effective in preventing lung injuries caused by PQ and improving the performance of the pulmonary antioxidant system.
Collapse
Affiliation(s)
- Mahtab Gohari-Piran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Navid Omidifar
- Medical Education Research Center, Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojdeh Mohammadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Wal P, Dwivedi J, Wal A, Vig H, Singh Y. Detailed insight into the pathophysiology and the behavioral complications associated with the Parkinson's disease and its medications. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The loss of dopamine neurons in the substantia nigra, as well as other mostly catecholaminergic neurons, causes many of the motor symptoms that define Parkinson's disease. Parkinson's disease is commonly thought of as a movement disorder, the significant prevalence of psychiatric complications such as cognitive impairment, and psychosis suggests it should be considered a neuropsychiatric illness, and all behavioral complications are linked to growing disability and the medication.
Main body
Apart from the disease-induced abnormalities, there are several other side effects of the disease and also from the medication used to prevent the disease. This article focuses on the pathogenesis of Parkinson’s disease and also the behavioral abnormalities caused by the disease and its medication. The study's data were gathered by searching several review articles and research papers from a variety of sources, including Elsevier, PubMed, Research Gate, Journal of Pharmaceutical Science, etc., from the year 1985 to 2021. Parkinson's disease is a neurodegenerative disease caused by a variety of complex processes. It is responsible not just for motor symptoms, but also for a variety of behavioral symptoms that can arise as a result of the disease and/or medication.
Conclusion
Only symptomatic drugs are available; thus, finding treatments that directly address the disease mechanisms causing Parkinson’s disease is essential. To alleviate the disease's burden on patients and their families, better treatments for the neuropsychiatric repercussions of Parkinson's disease are required.
Graphical Abstract
Collapse
|
13
|
Jafari Fakhrabad M, Moshiri M, Ariakia F, Askari VR, Salmasi Z, Etemad L. Effect of cyanocobalamin (vitamin B12) on paraquat-induced brain injury in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:745-754. [PMID: 35949307 PMCID: PMC9320208 DOI: 10.22038/ijbms.2022.64164.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Objectives The goal of this study was to evaluate the neuroprotective effects of vit B12 on paraquat-induced neurotoxicity. Materials and Methods Thirty-six male mice were randomly divided into six groups. Three groups were treated intraperitoneally with paraquat (10 mg/kg) twice a week (with a 3-day interval) for 3 weeks. Normal saline, vit B12 (1 mg /kg), or vit C (50 mg/kg) was injected 30 min before paraquat administration. Other groups only received normal saline (control), vit B12, or vit C in the same protocol. Motor performance and coordination were assayed by challenging beam traversal, pole, open field, and rotarod tests. The hippocampus and serum samples were isolated to evaluate the oxidative stress (GSH and ROS), apoptosis (caspase 3), and inflammatory markers (TNF-α and IL-1β). Results Administration of paraquat leads to induction of motor deficits, which were improved by treatment with vit B12. In addition, vit B12 could prevent oxidative damage, apoptosis, and inflammation caused by paraquat. Conclusion It seems that vit B12 could be a novel therapeutic agent in the management of paraquat induced-neurotoxicity.
Collapse
Affiliation(s)
- Marzieh Jafari Fakhrabad
- Department of Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Ariakia
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Leila Etemad. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel/ Fax: +98-5137112611;
| |
Collapse
|
14
|
Thirugnanam T, Santhakumar K. Chemically induced models of Parkinson's disease. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109213. [PMID: 34673252 DOI: 10.1016/j.cbpc.2021.109213] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Environmental toxins are harmful substances detrimental to humans. Constant exposure to these fatal neurotoxins can cause various neurodegenerative disorders. Although poisonous, specific neurotoxins at optimal concentrations mimic the clinical features of neurodegenerative diseases in several animal models. Such chemically-induced model systems are beneficial in deciphering the molecular mechanisms of neurodegeneration and drug screening for these disorders. One such neurotoxin is 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a widely used chemical that recapitulates Parkinsonian features in various animal models. Apart from MPTP, other neurotoxins like 6-hydroxydopamine (6-OHDA), paraquat, rotenone also induce specific clinical features of Parkinson's disease in animal models. These chemically-induced Parkinson's disease models are playing a crucial role in understanding Parkinson's disease onset, pathology, and novel therapeutics. In this review, we provide a concise overview of various neurotoxins that can recapitulate Parkinsonian features in different in vivo and in vitro model systems specifically focusing on the different treatment methodologies of neurotoxins.
Collapse
Affiliation(s)
- Thilaga Thirugnanam
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kirankumar Santhakumar
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
15
|
Wang EW, Trojano ML, Lewis MM, Du G, Chen H, Brown GL, Jellen LC, Song I, Neely E, Kong L, Connor JR, Huang X. HFE H63D Limits Nigral Vulnerability to Paraquat in Agricultural Workers. Toxicol Sci 2021; 181:47-57. [PMID: 33739421 DOI: 10.1093/toxsci/kfab020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Paraquat is an herbicide whose use is associated with Parkinson's disease (PD), a neurodegenerative disorder marked by neuron loss in the substantia nigra pars compacta (SNc). We recently observed that the murine homolog to the human H63D variant of the homeostatic iron regulator (HFE) may decrease paraquat-associated nigral neurotoxicity in mice. The present study examined the potential influence of H63D on paraquat-associated neurotoxicity in humans. Twenty-eight paraquat-exposed workers were identified from exposure histories and compared with 41 unexposed controls. HFE genotypes, and serum iron and transferrin were measured from blood samples. MRI was used to assess the SNc transverse relaxation rate (R2*), a marker for iron, and diffusion tensor imaging scalars of fractional anisotropy (FA) and mean diffusivity, markers of microstructural integrity. Twenty-seven subjects (9 exposed and 18 controls) were H63D heterozygous. After adjusting for age and use of other PD-associated pesticides and solvents, serum iron and transferrin were higher in exposed H63D carriers than in unexposed carriers and HFE wildtypes. SNc R2* was lower in exposed H63D carriers than in unexposed carriers, whereas SNc FA was lower in exposed HFE wildtypes than in either unexposed HFE wildtypes or exposed H63D carriers. Serum iron and SNc FA measures correlated positively among exposed, but not unexposed, subjects. These data suggest that H63D heterozygosity is associated with lower neurotoxicity presumptively linked to paraquat. Future studies with larger cohorts are warranted to replicate these findings and examine potential underlying mechanisms, especially given the high prevalence of the H63D allele in humans.
Collapse
Affiliation(s)
- Ernest W Wang
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Max L Trojano
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Mechelle M Lewis
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA.,Department of Pharmacology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Guangwei Du
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Hairong Chen
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Gregory L Brown
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Leslie C Jellen
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Insung Song
- Department of Neurosurgery, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Elizabeth Neely
- Department of Neurosurgery, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Lan Kong
- Department of Public Health Sciences, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - James R Connor
- Department of Neurosurgery, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA.,Department of Pharmacology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA.,Department of Neurosurgery, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA.,Department of Radiology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA.,Department of Kinesiology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| |
Collapse
|
16
|
Yang H, Lin Q, Chen N, Luo Z, Zheng C, Li J, Zheng F, Guo Z, Cai P, Wu S, Wang YL, Li H. LncRNA NR_030777 Alleviates Paraquat-Induced Neurotoxicity by Regulating Zfp326 and Cpne5. Toxicol Sci 2021; 178:173-188. [PMID: 32735315 DOI: 10.1093/toxsci/kfaa121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Paraquat (PQ) is herbicide widely used in agricultural production. It is identified as an environmental toxicant that could lead to neurodegeneration damage. Parkinson's disease (PD) is a central nervous system degenerative disease that occurs in the elderly. Main risk factors for PD include genetic and environmental variables, but its specific mechanism is still not well understood. Emerging evidence suggests that long noncoding RNAs (lncRNAs) play an important role in PD. LncRNA NR_030777 has a full length of 2208 bp and is highly conserved among species. RNA profiling showed a significant alteration in lncRNA NR_030777 expression upon PQ-induced neurotoxicity. However, little is known on the functional relevance of lncRNA NR_030777 in the development of PQ. In this study, we discovered a vital protective role of lncRNA NR_030777 in PQ-induced neurotoxicity. The expression of NR_030777 correlates with elevated level of reactive oxygen species induced by PQ. In addition, activated expression of NR_030777 alleviates neurotoxicity by regulating the expression of Zfp326 and Copine 5. We report that lncRNA NR_030777 has a vital protective role in neurotoxicity induced by environmental toxicants such as PQ. This study could serve as an exemplary case for lncRNAs to be considered as a potential target for the prevention and treatment of PQ-induced neurodegenerative disorders such as PD.
Collapse
Affiliation(s)
- Hongyu Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Department of Labor Hygiene and Environmental Hygiene, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qingxia Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Nengzhou Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhousong Luo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Chunyan Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jing Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health.,Fujian Provincial Key Laboratory of Environment Factors and Cancer
| | - Ping Cai
- The Key Laboratory of Environment and Health.,Fujian Provincial Key Laboratory of Environment Factors and Cancer.,Department of Health Inspection and Quarantine
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environment Factors and Cancer.,Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health.,Fujian Provincial Key Laboratory of Environment Factors and Cancer
| |
Collapse
|
17
|
Ferritinophagy-Mediated Ferroptosis Involved in Paraquat-Induced Neurotoxicity of Dopaminergic Neurons: Implication for Neurotoxicity in PD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9961628. [PMID: 34394837 PMCID: PMC8355964 DOI: 10.1155/2021/9961628] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023]
Abstract
Parkinson's disease (PD) is a progressive nervous system disorder. Until now, the molecular mechanism of its occurrence is not fully understood. Paraquat (PQ) was identified as a neurotoxicant and is linked to increased PD risk and PD-like neuropathology. Ferroptosis is recognized as a new form of regulated cell death. Here, we revealed a new underlying mechanism by which ferritinophagy-mediated ferroptosis is involved in PD induced by PQ. The effect of PQ on movement injury in mice was investigated by the bar fatigue and pole-climbing test. SH-SY5Y human neuroblastoma cells were used to evaluate the mechanism of ferroptosis. Our results showed that PQ induced movement injury by causing the decrease in tyrosine hydroxylase in mice. In vitro, PQ significantly caused the iron accumulation in cytoplasm and mitochondria through ferritinophagy pathway induced by NCOA4. Iron overload initiated lipid peroxidation through 12Lox, further inducing ferroptosis by producing lipid ROS. PQ downregulated SLC7A11 and GPX4 expression and upregulated Cox2 expression significantly, which were important markers in ferroptosis. Fer-1, an inhibitor of ferroptosis, could significantly ameliorate the ferroptosis induced by PQ. Meanwhile, Bcl2, Bax, and p-38 were involved in apoptosis induced by PQ. In conclusion, ferritinophagy-mediated ferroptosis pathway played an important role in PD occurrence. Bcl2/Bax and P-p38/p38 pathways mediated the cross-talk between ferroptosis and apoptosis induced by PQ. These data further demonstrated the complexity of PD occurrence. The inhibition of the ferroptosis and apoptosis together may be a new strategy for the prevention of neurotoxicity or PD in the future.
Collapse
|
18
|
Guo JJ, Yue F, Song DY, Bousset L, Liang X, Tang J, Yuan L, Li W, Melki R, Tang Y, Chan P, Guo C, Li JY. Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of Macaca fascicularis. Cell Death Dis 2021; 12:81. [PMID: 33441545 PMCID: PMC7807015 DOI: 10.1038/s41419-020-03369-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
Iron deposition is present in main lesion areas in the brains of patients with Parkinson's disease (PD) and an abnormal iron content may be associated with dopaminergic neuronal cytotoxicity and degeneration in the substantia nigra of the midbrain. However, the cause of iron deposition and its role in the pathological process of PD are unclear. In the present study, we investigated the effects of the nasal mucosal delivery of synthetic human α-synuclein (α-syn) preformed fibrils (PFFs) on the pathogenesis of PD in Macaca fascicularis. We detected that iron deposition was clearly increased in a time-dependent manner from 1 to 17 months in the substantia nigra and globus pallidus, highly contrasting to other brain regions after treatments with α-syn PFFs. At the cellular level, the iron deposits were specifically localized in microglia but not in dopaminergic neurons, nor in other types of glial cells in the substantia nigra, whereas the expression of transferrin (TF), TF receptor 1 (TFR1), TF receptor 2 (TFR2), and ferroportin (FPn) was increased in dopaminergic neurons. Furthermore, no clear dopaminergic neuron loss was observed in the substantia nigra, but with decreased immunoreactivity of tyrosine hydroxylase (TH) and appearance of axonal swelling in the putamen. The brain region-enriched and cell-type-dependent iron localizations indicate that the intranasal α-syn PFFs treatment-induced iron depositions in microglia in the substantia nigra may appear as an early cellular response that may initiate neuroinflammation in the dopaminergic system before cell death occurs. Our data suggest that the inhibition of iron deposition may be a potential approach for the early prevention and treatment of PD.
Collapse
Affiliation(s)
- Jian-Jun Guo
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Feng Yue
- Beijing Key Laboratory of Parkinson's Disease, National Clinical Research Center for Geriatric Disorders, Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Dong-Yan Song
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Luc Bousset
- Laboratory of Neurodegenerative Diseases, CNRS and Institut François Jacob (MIRCen), CEA, Fontenay-aux-Roses, 92260, France
| | - Xin Liang
- Department of Histology, Chongqing Medical University, Chongqing, 400000, China
| | - Jing Tang
- Department of Histology, Chongqing Medical University, Chongqing, 400000, China
| | - Lin Yuan
- Unit of Neurodegenerative Diseases and Repair, Institute of Health Sciences, China Medical University, Shenyang, 110112, China
| | - Wen Li
- Unit of Neurodegenerative Diseases and Repair, Institute of Health Sciences, China Medical University, Shenyang, 110112, China
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, Lund, 22184, Sweden
| | - Ronald Melki
- Laboratory of Neurodegenerative Diseases, CNRS and Institut François Jacob (MIRCen), CEA, Fontenay-aux-Roses, 92260, France
| | - Yong Tang
- Department of Histology, Chongqing Medical University, Chongqing, 400000, China
| | - Piu Chan
- Beijing Key Laboratory of Parkinson's Disease, National Clinical Research Center for Geriatric Disorders, Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Chuang Guo
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.
- Unit of Neurodegenerative Diseases and Repair, Institute of Health Sciences, China Medical University, Shenyang, 110112, China.
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, Lund, 22184, Sweden.
| |
Collapse
|
19
|
Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2360872. [PMID: 33101584 PMCID: PMC7576349 DOI: 10.1155/2020/2360872] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) occurs in approximately 1% of the population over 65 years of age and has become increasingly more common with advances in age. The number of individuals older than 60 years has been increasing in modern societies, as well as life expectancy in developing countries; therefore, PD may pose an impact on the economic, social, and health structures of these countries. Oxidative stress is highlighted as an important factor in the genesis of PD, involving several enzymes and signaling molecules in the underlying mechanisms of the disease. This review presents updated data on the involvement of oxidative stress in the disease, as well as the use of antioxidant supplements in its therapy.
Collapse
|
20
|
Marchetti B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson's disease. Redox Biol 2020; 36:101664. [PMID: 32863224 PMCID: PMC7395594 DOI: 10.1016/j.redox.2020.101664] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and inflammation have long been recognized to contribute to Parkinson's disease (PD), a common movement disorder characterized by the selective loss of midbrain dopaminergic neurons (mDAn) of the substantia nigra pars compacta (SNpc). The causes and mechanisms still remain elusive, but a complex interplay between several genes and a number of interconnected environmental factors, are chiefly involved in mDAn demise, as they intersect the key cellular functions affected in PD, such as the inflammatory response, mitochondrial, lysosomal, proteosomal and autophagic functions. Nuclear factor erythroid 2 -like 2 (NFE2L2/Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/β-catenin signaling cascade, a vital pathway for mDAn neurogenesis and neuroprotection, emerge as critical intertwinned actors in mDAn physiopathology, as a decline of an Nrf2/Wnt/β-catenin prosurvival axis with age underlying PD mutations and a variety of noxious environmental exposures drive PD neurodegeneration. Unexpectedly, astrocytes, the so-called "star-shaped" cells, harbouring an arsenal of "beneficial" and "harmful" molecules represent the turning point in the physiopathological and therapeutical scenario of PD. Fascinatingly, "astrocyte's fil rouge" brings back to Nrf2/Wnt resilience, as boosting the Nrf2/Wnt resilience program rejuvenates astrocytes, in turn (i) mitigating nigrostriatal degeneration of aged mice, (ii) reactivating neural stem progenitor cell proliferation and neuron differentiation in the brain and (iii) promoting a beneficial immunomodulation via bidirectional communication with mDAns. Then, through resilience of Nrf2/Wnt/β-catenin anti-ageing, prosurvival and proregenerative molecular programs, it seems possible to boost the inherent endogenous self-repair mechanisms. Here, the cellular and molecular aspects as well as the therapeutical options for rejuvenating glia-neuron dialogue will be discussed together with major glial-derived mechanisms and therapies that will be fundamental to the identification of novel diagnostic tools and treatments for neurodegenerative diseases (NDs), to fight ageing and nigrostriatal DAergic degeneration and promote functional recovery.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology Section, Medical School, University of Catania, Via S. Sofia 65, 95125, Catania, Italy; Oasi Research Institute-IRCCS, Neuropharmacology Section, Via Conte Ruggero 73, 94018, Troina, EN, Italy.
| |
Collapse
|
21
|
Coullery R, Pacchioni AM, Rosso SB. Exposure to glyphosate during pregnancy induces neurobehavioral alterations and downregulation of Wnt5a-CaMKII pathway. Reprod Toxicol 2020; 96:390-398. [PMID: 32805371 DOI: 10.1016/j.reprotox.2020.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023]
Abstract
Glyphosate-based formulations are the most popular herbicide used around the world. These herbicides are widely applied in agriculture to control weeds on genetically modified crops. Although there is much evidence showing that glyphosate-based herbicides induce toxic effect on reproductive and hepatic systems, and also cause oxidative damage on cells, studies from recent years revealed that the nervous system may represent a key target for their toxicity. In the present work, we evaluated the effect of glyphosate (without adjuvants) in neonate rats after gestational exposure. Particularly, we examined whether glyphosate during gestation affected the nervous system function at early development. Pregnant Wistar rats were treated with 24 or 35 mg/kg of pure glyphosate every 48 h and neurobehavioral studies were performed. Our results indicated that gestational exposure to glyphosate induced changes in reflexes development, motor activity and cognitive function, in a dose-dependent manner. To go further, we evaluated whether prenatal exposure to glyphosate affected the Ca+2-mediated Wnt non-canonical signaling pathway. Results indicated that embryos exposed to glyphosate showed an inhibition of Wnt5a-CaMKII signaling pathway, an essential cascade controlling the formation and integration of neural circuits. Taken together, these findings suggest that gestational exposure to glyphosate leads to a downregulation of Wnt/Ca+2 pathway that could induce a developmental neurotoxicity evidenced by deficits at behavioral and cognitive levels in rat pups.
Collapse
Affiliation(s)
- Romina Coullery
- Área Toxicología, Departamento de Ciencias de los Alimentos y Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
| | - Alejandra M Pacchioni
- Área Toxicología, Departamento de Ciencias de los Alimentos y Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
| | - Silvana B Rosso
- Área Toxicología, Departamento de Ciencias de los Alimentos y Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina.
| |
Collapse
|
22
|
Singh T, Yadav S. Role of microRNAs in neurodegeneration induced by environmental neurotoxicants and aging. Ageing Res Rev 2020; 60:101068. [PMID: 32283224 DOI: 10.1016/j.arr.2020.101068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
The progressive loss of neuronal structure and functions resulting in the death of neurons is considered as neurodegeneration. Environmental toxicants induced degeneration of neurons is accelerated with aging. In adult brains, most of the neurons are post-mitotic, and their loss results in the development of diseases like amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Neurodegenerative diseases have several similarities at the sub-cellular and molecular levels, such as synaptic degeneration, oxidative stress, inflammation, and cognitive decline, which are also known in brain aging. Identification of these similarities at the molecular level offers hope for the development of new therapeutics to ameliorate all neurodegenerative diseases simultaneously. Aging is known as the most strongly associated additive factor in the pathogenesis of neurodegenerative diseases. Studies carried out so far identified several genes, which are responsible for selective degeneration of neurons in different neurodegenerative diseases. Countless efforts have been made in identifying therapeutics for neurodegenerative diseases; however, the discovery of effective therapy remains elusive. Findings made in the last two decades identified microRNAs (miRNAs) as the most potent post-transcription regulatory RNA molecule, which can condition protein levels in the cell and tissue-specific manner. Identification of miRNAs, which regulate both neurotoxicant and aging-associated degeneration of brain cells, raises the possibility that roads leading to aging and neurotoxicant induced neurodegeneration cross at some point. Identification of miRNAs, which are common to aging and neurotoxicant induced neurodegeneration, will help in understanding the complex mechanism of neurodegenerative disease development. In the future, the use of natural miRNAs in vivo in therapy will be able to tackle several issues of aging and neurodegeneration. In the present review, we have provided a summary of findings made on the role of miRNAs in neurodegeneration and explored the common link made by miRNAs between aging and neurotoxicants induced neurodegeneration.
Collapse
Affiliation(s)
- Tanisha Singh
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, Pennsylvania-15213, USA.
| | - Sanjay Yadav
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, Munsiganj, Raebareli 229405, UP, India.
| |
Collapse
|
23
|
Historical Perspective: Models of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21072464. [PMID: 32252301 PMCID: PMC7177377 DOI: 10.3390/ijms21072464] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023] Open
Abstract
Parkinson’s disease (PD) is the most common movement disorder with motor and nonmotor signs. The current therapeutic regimen for PD is mainly symptomatic as the etio-pathophysiology has not been fully elucidated. A variety of animal models has been generated to study different aspects of the disease for understanding the pathogenesis and therapeutic development. The disease model can be generated through neurotoxin-based or genetic-based approaches in a wide range of animals such as non-human primates (NHP), rodents, zebrafish, Caenorhabditis (C.) elegans, and drosophila. Cellular-based disease model is frequently used because of the ease of manipulation and suitability for large-screen assays. In neurotoxin-induced models, chemicals such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, and paraquat are used to recapitulate the disease. Genetic manipulation of PD-related genes, such as α-Synuclein(SNCA), Leucine-rich repeat kinase 2 (LRRK2), Pten-Induced Kinase 1 (PINK1), Parkin(PRKN), and Protein deglycase (DJ-1) Are used in the transgenic models. An emerging model that combines both genetic- and neurotoxin-based methods has been generated to study the role of the immune system in the pathogenesis of PD. Here, we discuss the advantages and limitations of the different PD models and their utility for different research purposes.
Collapse
|
24
|
Postnatal zinc or paraquat administration increases paraquat or zinc-induced loss of dopaminergic neurons: insight into augmented neurodegeneration. Mol Cell Biochem 2020; 467:27-43. [PMID: 32060784 DOI: 10.1007/s11010-020-03694-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/29/2020] [Indexed: 12/25/2022]
Abstract
Epidemiological evidences have shown an association of exposure to pesticides or heavy metals with increased incidences of Parkinson's disease (PD) in humans. Exposure to pesticides or metals during the decisive period of the brain development increases the susceptibility of dopaminergic neurons upon re-exposure in adult rodents. However, the effect of early life exposure to pesticide on the heavy metal-induced neurodegeneration or heavy metal on pesticide-induced neurodegeneration is not yet explored. The current study explored the effect of developmental exposure to zinc (Zn), a metal or paraquat (PQ), a pesticide on the nigrostriatal dopaminergic neurons of rats challenged to Zn or PQ during adulthood. Exposure of Zn or PQ during adulthood alone exhibited marked reduction in motor activities, striatal dopamine and metabolites, glutathione content and number of dopaminergic neurons. However, the levels of lipid peroxidation, protein carbonyls, superoxide dismutase activity, pro-inflammatory cytokines and 4-hydroxynonenal-protein adducts were increased. While the expression of vesicular monoamine transporter-2 and tyrosine hydroxylase were attenuated, dopamine transporter and microglial marker Iba-1 expression, activated microglia, nuclear factor-kappa B activation, mitochondrial cytochrome c release and caspase-3/9 activation were augmented following Zn or PQ exposure. Albeit postnatal alone exposure did not alter any of the studied parameters, the developmental administration of Zn/PQ in re-challenged adult rats produced more pronounced changes in the aforementioned variables as compared with adulthood Zn or PQ alone intoxicated animals. The results demonstrate that postnatal Zn/PQ intoxication dents the oxidative stress, inflammation, cell death and dopamine metabolism and storage regulating machineries, which speed up the toxicant-induced degeneration during adulthood.
Collapse
|
25
|
The Role of Xenobiotics and Trace Metals in Parkinson’s Disease. Mol Neurobiol 2019; 57:1405-1417. [DOI: 10.1007/s12035-019-01832-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022]
|
26
|
Angelova DM, Brown DR. Microglia and the aging brain: are senescent microglia the key to neurodegeneration? J Neurochem 2019; 151:676-688. [PMID: 31478208 DOI: 10.1111/jnc.14860] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Abstract
The single largest risk factor for etiology of neurodegenerative diseases like Alzheimer's disease is increased age. Therefore, understanding the changes that occur as a result of aging is central to any possible prevention or cure for such conditions. Microglia, the resident brain glial population most associated with both protection of neurons in health and their destruction is disease, could be a significant player in age related changes. Microglia can adopt an aberrant phenotype sometimes referred to either as dystrophic or senescent. While aged microglia have been frequently identified in neurodegenerative diseases such as Alzheimer's disease, there is no conclusive evidence that proves a causal role. This has been hampered by a lack of models of aged microglia. We have recently generated a model of senescent microglia based on the observation that all dystrophic microglia show iron overload. Iron-overloading cultured microglia causes them to take on a senescent phenotype and can cause changes in models of neurodegeneration similar to those observed in patients. This review considers how this model could be used to determine the role of senescent microglia in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dafina M Angelova
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - David R Brown
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
27
|
Iron and other metals in the pathogenesis of Parkinson's disease: Toxic effects and possible detoxification. J Inorg Biochem 2019; 199:110717. [DOI: 10.1016/j.jinorgbio.2019.110717] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022]
|
28
|
Multi-copper ferroxidase deficiency leads to iron accumulation and oxidative damage in astrocytes and oligodendrocytes. Sci Rep 2019; 9:9437. [PMID: 31263155 PMCID: PMC6603037 DOI: 10.1038/s41598-019-46019-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Accumulation of iron has been associated with the pathobiology of various disorders of the central nervous system. Our previous work has shown that hephaestin (Heph) and ceruloplasmin (Cp) double knockout (KO) mice induced iron accumulation in multiple brain regions and that this was paralleled by increased oxidative damage and deficits in cognition and memory. In this study, we enriched astrocytes and oligodendrocytes from the cerebral cortex of neonatal wild-type (WT), Heph KO and Cp KO mice. We demonstrated that Heph is highly expressed in oligodendrocytes, while Cp is mainly expressed in astrocytes. Iron efflux was impaired in Cp KO astrocytes and Heph KO oligodendrocytes and was associated with increased oxidative stress. The expression of Heph, Cp, and other iron-related genes was examined in astrocytes and oligodendrocytes both with and without iron treatment. Interestingly, we found that the expression of the mRNA encoding ferroportin 1, a transmembrane protein that cooperates with CP and HEPH to export iron from cells, was positively correlated with Cp expression in astrocytes, and with Heph expression in oligodendrocytes. Our findings collectively demonstrate that HEPH and CP are important for the prevention of glial iron accumulation and thus may be protective against oxidative damage.
Collapse
|
29
|
Rudyk C, Dwyer Z, McNeill J, Salmaso N, Farmer K, Prowse N, Hayley S. Chronic unpredictable stress influenced the behavioral but not the neurodegenerative impact of paraquat. Neurobiol Stress 2019; 11:100179. [PMID: 31304199 PMCID: PMC6599913 DOI: 10.1016/j.ynstr.2019.100179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/03/2019] [Accepted: 05/30/2019] [Indexed: 01/09/2023] Open
Abstract
The impact of psychological stressors on the progression of motor and non-motor disturbances observed in Parkinson's disease (PD) has received little attention. Given that PD likely results from many different environmental “hits”, we were interested in whether a chronic unpredictable stressor regimen would act additively or possibly even synergistically to augment the impact of the toxicant, paraquat, which has previously been linked to PD. Our findings support the contention that paraquat itself acted as a systemic stressor, with the pesticide increasing plasma corticosterone, as well as altering glucocorticoid receptor (GR) expression in the hippocampus. Furthermore, stressed mice that also received paraquat displayed synergistic motor coordination impairment on a rotarod test and augmented signs of anhedonia (sucrose preference test). The individual stressor and paraquat treatments also caused a range of non-motor (e.g. open field, Y and plus mazes) deficits, but there were no signs of an interaction (neither additive nor synergistic) between the insults. Similarly, paraquat caused the expected loss of substantia nigra dopamine neurons and microglial activation, but this effect was not further influenced by the chronic stressor. Taken together, these results indicate that paraquat has many effects comparable to that of a more traditional stressor and that at least some behavioral measures (i.e. sucrose preference and rotarod) are augmented by the combined pesticide and stress treatments. Thus, although psychological stressors might not necessarily increase the neurodegenerative effects of the toxicant exposure, they may promote co-morbid behaviors pathology. Paraquat induced behavioral and neurochemical alterations similar to those induced by a chronic unpredictable stressor. Chronic unpredictable stress did not influence the degeneration of midbrain dopamine neurons or microglia activation. The paraquat and chronic stressor exposure resulted in augmented motor impairment and anhedonic-like behavior.
Collapse
Key Words
- AAR, alternate arm return
- ANOVA, analysis of variance
- BCA, bicinchoninic acid
- BDNF, brain derived neurotrophic factor
- CUS, chronic unpredictable stress
- Cytokine
- EDTA, ethylenediaminetetraacetic acid
- ELISA, enzyme-linked immunosorbent assay
- EPM, elevated plus maze
- FST, forced swim test
- GR, glucocorticoid receptor
- HPA, hypothalamus-pituitary adrenal
- IBA1, ionized calcium-binding adapter molecule 1
- Inflammatory
- MMx, Micromax
- Microglia
- PB, phosphate buffer
- PBS, phosphate buffered saline
- PD, Parkinson's disease
- PFA, paraformaldehyde
- PVDF, polyvinylidene difluoride
- Parkinson's
- RIPA, Radio Immuno Precipitation Assay
- RR, rotarod
- SAB, spontaneous alternation behavior
- SAR, same arm return
- SDS, sodium dodecyl sulphate
- SNc, substantia nigra pars compacta
- SPT, sucrose preference test
- Stress
- TH, tyrosine hydroxylase
- Toxicity
- VTA, ventral tegmental area
- pGR, phosphate glucocorticoid receptor
Collapse
Affiliation(s)
- Chris Rudyk
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
| | - Zach Dwyer
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
| | - Jessica McNeill
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
| | - Kyle Farmer
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Natalie Prowse
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
| |
Collapse
|
30
|
Paraquat as an Environmental Risk Factor in Parkinson's Disease Accelerates Age-Related Degeneration Via Rapid Influx of Extracellular Zn 2+ into Nigral Dopaminergic Neurons. Mol Neurobiol 2019; 56:7789-7799. [PMID: 31119555 DOI: 10.1007/s12035-019-01642-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
On the basis of the evidence that paraquat (PQ)-induced extracellular Zn2+ influx causes PQ-induced pathogenesis in the substantia nigra pars compacta (SNpc) of rats, we postulated that the transient receptor potential melastatin 2 (TRPM2) cation channels activated with PQ-induced reactive oxygen species (ROS) are linked with extracellular glutamate accumulation in the SNpc, followed by age-related intracellular Zn2+ dysregulation. Presynaptic activity (glutamate exocytosis), which was determined with FM4-64, was enhanced in the SNpc after exposure to PQ, and the enhancement was inhibited in the presence of N-(p-amylcinnamoyl)anthranilic acid (ACA), a blocker of TRPM2 cation channels, suggesting that PQ-induced ROS enhances presynaptic activity in the SNpc, probably via TRPM2 channel activation. Extracellular glutamate concentration in the SNpc was increased almost to the same extent under the SNpc perfusion with PQ of young and aged rats, and was suppressed by co-perfusion with ACA, suggesting that PQ-induced TRPM2 cation channel activation enhances glutamate exocytosis in the SNpc. Interestingly, PQ more markedly increased intracellular Zn2+ in the aged SNpc, which was also blocked by co-injection of ACA and CaEDTA, an extracellular Zn2+ chelator. Loss of nigrostriatal dopaminergic neurons was more severely increased in aged rats and completely blocked by co-injection of PQ and CaEDTA into the SNpc. The present study indicates that rapid influx of extracellular Zn2+ into dopaminergic neurons via PQ-induced TRPM2 cation channel activation accelerates nigrostriatal dopaminergic degeneration in aged rats. It is likely that vulnerability to PQ-induced pathogenesis in the aged SNpc is due to accelerated intracellular Zn2+ dysregulation.
Collapse
|
31
|
Jadavji NM, Murray LK, Emmerson JT, Rudyk CA, Hayley S, Smith PD. Paraquat Exposure Increases Oxidative Stress Within the Dorsal Striatum of Male Mice With a Genetic Deficiency in One-carbon Metabolism. Toxicol Sci 2019; 169:25-33. [PMID: 30726997 PMCID: PMC6484892 DOI: 10.1093/toxsci/kfz034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Paraquat is an herbicide that is commonly used worldwide. Exposure to paraquat results in Parkinson's disease (PD)-like symptoms including dopaminergic cell loss. Nutrition has also been linked in the pathogenesis of PD, such as reduced levels of folic acid, a B-vitamin, and component of one-carbon metabolism. Within one-carbon metabolism, methylenetetrahydrofolate reductase (MTHFR) catalyzes the irreversible conversion of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. A polymorphism in MTHFR (677 C&→T) has been reported in 5%-15% of North American and European human populations. The MTHFR polymorphism is also prevalent in PD patients. The goal of this study was to investigate the impact of paraquat-induced PD-like pathology in the context of reduced levels of MTHFR. Three-month-old male Mthfr+/- mice, which model the MTHFR polymorphism observed in humans, were administered intraperitoneal injections of paraquat (10 mg/kg) or saline 6 times over 3 weeks. At the end of paraquat treatment, motor and memory function were assessed followed by collection of brain tissue for biochemical analysis. Mthfr+/- mice treated with paraquat showed impaired motor function. There was increased microglial activation within the substantia nigra (SN) of Mthfr+/- mice treated with paraquat. Additionally, all Mthfr+/- mice that were treated with paraquat showed increased oxidative stress within the dorsal striatum, but not the SN. The present results show that paraquat exposure increases PD-like pathology in mice deficient in one-carbon metabolism.
Collapse
Affiliation(s)
- Nafisa M Jadavji
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauren K Murray
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Joshua T Emmerson
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Chris A Rudyk
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Patrice D Smith
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
32
|
Tamano H, Morioka H, Nishio R, Takeuchi A, Takeda A. Blockade of Rapid Influx of Extracellular Zn 2+ into Nigral Dopaminergic Neurons Overcomes Paraquat-Induced Parkinson's Disease in Rats. Mol Neurobiol 2018; 56:4539-4548. [PMID: 30341553 DOI: 10.1007/s12035-018-1398-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/14/2018] [Indexed: 02/02/2023]
Abstract
The herbicide paraquat (PQ) has been reported to enhance the risk of developing Parkinson's disease (PD) from epidemiological studies. PQ-induced reactive oxygen species (ROS) are linked with a selective loss of nigrostriatal dopaminergic neurons. Here, we first report a unique mechanism of nigrostriatal dopaminergic degeneration, in which rapid intracellular Zn2+ dysregulation via PQ-induced ROS production causes PD in rats. When the substantia nigra pars compacta (SNpc) of rats was perfused with PQ, extracellular concentrations of glutamate and Zn2+ were increased and decreased, respectively, in the SNpc. These changes were ameliorated by co-perfusion with Trolox, an antioxidative agent. In in vitro slice experiments, PQ rapidly increased extracellular Zn2+ influx via AMPA receptor activation. Both loss of nigrostriatal dopaminergic neurons and increase in turning behavior in response to apomorphine were markedly reduced by coinjection of PQ and intracellular Zn2+ chelator, i.e., ZnAF-2DA into the SNpc. Furthermore, loss of nigrostriatal dopaminergic neurons induced with a low dose of PQ, which did not induce any behavioral abnormality, was completely blocked by coinjection of ZnAF-2DA. The present study indicates that rapid influx of extracellular Zn2+ into dopaminergic neurons via AMPA receptor activation, which is initially induced by PQ-mediated ROS production in the SNpc, induces nigrostriatal dopaminergic degeneration, resulting in PQ-induced PD in rats. Intracellular Zn2+ dysregulation in dopaminergic neurons is the cause of PQ-induced pathogenesis in the SNpc, and the block of intracellular Zn2+ toxicity leads to defending PQ-induced pathogenesis.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiroki Morioka
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryusuke Nishio
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Azusa Takeuchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
33
|
Aaseth J, Dusek P, Roos PM. Prevention of progression in Parkinson's disease. Biometals 2018; 31:737-747. [PMID: 30030679 PMCID: PMC6133181 DOI: 10.1007/s10534-018-0131-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
Abstract
Environmental influences affecting genetically susceptible individuals seem to contribute significantly to the development of Parkinson’s disease (PD). Xenobiotic exposure including transitional metal deposition into vulnerable CNS regions appears to interact with PD genes. Such exposure together with mitochondrial dysfunction evokes a destructive cascade of biochemical events, including oxidative stress and degeneration of the sensitive dopamine (DA) production system in the basal ganglia. Recent research indicates that the substantia nigra degeneration can be decelerated by treatment with iron binding compounds such as deferiprone. Interestingly compounds known to decrease PD risk including caffeine, niacin, nicotine and salbutamol also possess iron binding properties. Adequate function of antioxidative mechanisms in the vulnerable brain cells can be restored by acetylcysteine supplementation to normalize intracellular glutathione activity. Other preventive measures to reduce deterioration of dopaminergic neurons may involve life-style changes such as intake of natural antioxidants and physical exercise. Further research is recommended to identify therapeutic targets of the proposed interventions, in particular protection of the DA biosynthesis by oxygen radical scavengers and iron binding agents.
Collapse
Affiliation(s)
- Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway.,Inland Norway University of Applied Sciences, Elverum, Norway
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, Praha 2, Czech Republic.,General University Hospital in Prague, Prague, Czech Republic.,Department of Radiology, First Faculty of Medicine, Charles University, Praha 2, Czech Republic
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden. .,Department of Clinical Physiology, Capio St. Görans Hospital, Stockholm, Sweden.
| |
Collapse
|
34
|
Wang L, Yang H, Wang Q, Zhang Q, Wang Z, Zhang Q, Wu S, Li H. Paraquat and MPTP induce alteration in the expression profile of long noncoding RNAs in the substantia nigra of mice: Role of the transcription factor Nrf2. Toxicol Lett 2018; 291:11-28. [PMID: 29627306 DOI: 10.1016/j.toxlet.2018.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is a common age-related degenerative disease of the central nervous system caused mainly by hereditary, pesticides, metals, and polychlorinated biphenyls. Paraquat (PQ), a widely used herbicide, causes PD. Long noncoding RNAs (lncRNAs) are nonprotein-coding transcripts, expressed in the brain and play irreplaceable roles in neurodegenerative diseases. NF-E2-related factor-2 (Nrf2) is an important genetic transcription regulator in oxidative stress. We aimed to discover novel PQ or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-Nrf2-related lncRNAs and explore their association with PD. 17157 lncRNAs and 13707 mRNAs (fold change ≥2, P < 0.05) were identified by Microarray. And the expressions of six lncRNAs were confirmed by using qRT-PCR and two by FISH. Coding-noncoding analysis and qRT-PCR were applied to discover the functions of lncRNAs and predict the targeted genes. In mice, PQ and MPTP exposure caused alteration of the lncRNA expression profile, suggesting lncRNAs may be involved in PQ- and MPTP-induced neurotoxicity. The changes in their lncRNA expression were distinct but related. PQ caused lncRNA expression profiling alteration in the substantia nigra (SN) through an interaction with Nrf2, thus changing the NR_027648/Zc3h14/Cybb and NR_030777/Zfp326/Cpne5 mRNA pathways. Similarly, MPTP caused lncRNA expression profiling alteration in SN through an interaction with Nrf2. Nrf2 may be involved in the development of neurodegeneration induced by PQ and MPTP via interaction with lncRNAs as the molecular mechanism. Our findings indicate the potential roles of lncRNAs in the development of PD by PQ or MPTP and provide positive insights into future mechanism studies.
Collapse
Affiliation(s)
- Lijin Wang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Endemic Disease Prevention and Control, Fujian Center For Disease Control & Prevention, Fuzhou 350122, China
| | - Hongyu Yang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qingqing Wang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qiaohui Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhangjing Wang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qunwei Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Environmental and Occupational Health Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202, USA
| | - Siying Wu
- Department of Epidemiology and Health Statistics, The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
35
|
L'Episcopo F, Tirolo C, Serapide MF, Caniglia S, Testa N, Leggio L, Vivarelli S, Iraci N, Pluchino S, Marchetti B. Microglia Polarization, Gene-Environment Interactions and Wnt/β-Catenin Signaling: Emerging Roles of Glia-Neuron and Glia-Stem/Neuroprogenitor Crosstalk for Dopaminergic Neurorestoration in Aged Parkinsonian Brain. Front Aging Neurosci 2018; 10:12. [PMID: 29483868 PMCID: PMC5816064 DOI: 10.3389/fnagi.2018.00012] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/11/2018] [Indexed: 12/29/2022] Open
Abstract
Neuroinflammatory processes are recognized key contributory factors in Parkinson's disease (PD) physiopathology. While the causes responsible for the progressive loss of midbrain dopaminergic (mDA) neuronal cell bodies in the subtantia nigra pars compacta are poorly understood, aging, genetics, environmental toxicity, and particularly inflammation, represent prominent etiological factors in PD development. Especially, reactive astrocytes, microglial cells, and infiltrating monocyte-derived macrophages play dual beneficial/harmful effects, via a panel of pro- or anti-inflammatory cytokines, chemokines, neurotrophic and neurogenic transcription factors. Notably, with age, microglia may adopt a potent neurotoxic, pro-inflammatory “primed” (M1) phenotype when challenged with inflammatory or neurotoxic stimuli that hamper brain's own restorative potential and inhibit endogenous neurorepair mechanisms. In the last decade we have provided evidence for a major role of microglial crosstalk with astrocytes, mDA neurons and neural stem progenitor cells (NSCs) in the MPTP- (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-) mouse model of PD, and identified Wnt/β-catenin signaling, a pivotal morphogen for mDA neurodevelopment, neuroprotection, and neuroinflammatory modulation, as a critical actor in glia-neuron and glia-NSCs crosstalk. With age however, Wnt signaling and glia-NSC-neuron crosstalk become dysfunctional with harmful consequences for mDA neuron plasticity and repair. These findings are of importance given the deregulation of Wnt signaling in PD and the emerging link between most PD related genes, Wnt signaling and inflammation. Especially, in light of the expanding field of microRNAs and inflammatory PD-related genes as modulators of microglial-proinflammatory status, uncovering the complex molecular circuitry linking PD and neuroinflammation will permit the identification of new druggable targets for the cure of the disease. Here we summarize recent findings unveiling major microglial inflammatory and oxidative stress pathways converging in the regulation of Wnt/β-catenin signaling, and reciprocally, the ability of Wnt signaling pathways to modulate microglial activation in PD. Unraveling the key factors and conditons promoting the switch of the proinflammatory M1 microglia status into a neuroprotective and regenerative M2 phenotype will have important consequences for neuroimmune interactions and neuronal outcome under inflammatory and/or neurodegenerative conditions.
Collapse
Affiliation(s)
| | | | - Maria F Serapide
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | | | | | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | - Stefano Pluchino
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Bianca Marchetti
- Oasi ResearchInstitute-IRCCS, Troina, Italy.,Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| |
Collapse
|
36
|
Lipopolysaccharide-Induced Striatal Nitrosative Stress and Impaired Social Recognition Memory Are Not Magnified by Paraquat Coexposure. Neurochem Res 2018; 43:745-759. [PMID: 29362970 DOI: 10.1007/s11064-018-2477-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/18/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Abstract
Systemic inflammation triggered by lipopolysaccharide (LPS) administration disrupts blood-brain barrier (BBB) homeostasis in animal models. This event leads to increased susceptibility of several encephalic structures to potential neurotoxicants present in the bloodstream. In this study, we investigated the effects of alternate intraperitoneal injections of LPS on BBB permeability, social recognition memory and biochemical parameters in the striatum 24 h and 60 days after treatments. In addition, we investigated whether the exposure to a moderate neurotoxic dose of the herbicide paraquat could potentiate LPS-induced neurotoxicity. LPS administration caused a transient disruption of BBB integrity, evidenced by increased levels of exogenously administered sodium fluorescein in the striatum. Also, LPS exposure caused delayed impairment in social recognition memory (evaluated at day 38 after treatments) and increase in the striatal levels of 3-nitrotyrosine. These events were observed in the absence of significant changes in motor coordination and in the levels of tyrosine hydroxylase (TH) in the striatum and substantia nigra. PQ exposure, which caused a long-lasting decrease of striatal mitochondrial complex I activity, did not modify LPS-induced behavioral and striatal biochemical changes. The results indicate that systemic administration of LPS causes delayed social recognition memory deficit and striatal nitrosative stress in adult mice and that the coexposure to a moderately toxic dose of PQ did not magnify these events. In addition, PQ-induced inhibition of striatal mitochondrial complex I was also not magnified by LPS exposure, indicating the absence of synergic neurotoxic effects of LPS and PQ in this experimental model.
Collapse
|
37
|
Won SY, Park MH, You ST, Choi SW, Kim HK, McLean C, Bae SC, Kim SR, Jin BK, Lee KH, Shin EY, Kim EG. Nigral dopaminergic PAK4 prevents neurodegeneration in rat models of Parkinson's disease. Sci Transl Med 2017; 8:367ra170. [PMID: 27903866 DOI: 10.1126/scitranslmed.aaf1629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive loss of dopaminergic (DA) neurons in the substantia nigra. No neuroprotective treatments have successfully prevented the progression of this disease. We report that p21-activated kinase 4 (PAK4) is a key survival factor for DA neurons. We observed PAK4 immunoreactivity in rat and human DA neurons in brain tissue, but not in microglia or astrocytes. PAK4 activity was markedly decreased in postmortem brain tissue from PD patients and in rodent models of PD. Expression of constitutively active PAK4S445N/S474E (caPAK4) protected DA neurons in both the 6-hydroxydopamine and α-synuclein rat models of PD and preserved motor function. This neuroprotective effect of caPAK4 was mediated by phosphorylation of CRTC1 [CREB (adenosine 3',5'-monophosphate response element-binding protein)-regulated transcription coactivator] at S215. The nonphosphorylated form of CRTC1S215A compromised the ability of caPAK4 to induce the expression of the CREB target proteins Bcl-2, BDNF, and PGC-1α. Our results support a neuroprotective role for the PAK4-CRTC1S215-CREB signaling pathway and suggest that this pathway may be a useful therapeutic target in PD.
Collapse
Affiliation(s)
- So-Yoon Won
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Mee-Hee Park
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Soon-Tae You
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Seung-Won Choi
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Hyong-Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Catriona McLean
- Department of Pathology, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, South Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, South Korea
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Kun Ho Lee
- National Research Center for Dementia, Chosun University, Gwangju 61452, South Korea.,Department of Biomedical Science, Chosun University, Gwangju 61452, South Korea
| | - Eun-Young Shin
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Eung-Gook Kim
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea.
| |
Collapse
|
38
|
Phosphorylated α-Synuclein-Copper Complex Formation in the Pathogenesis of Parkinson's Disease. PARKINSONS DISEASE 2017; 2017:9164754. [PMID: 29333317 PMCID: PMC5733240 DOI: 10.1155/2017/9164754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/11/2017] [Indexed: 11/17/2022]
Abstract
Parkinson's disease is the second most important neurodegenerative disorder worldwide. It is characterized by the presence of Lewy bodies, which are mainly composed of α-synuclein and ubiquitin-bound proteins. Both the ubiquitin proteasome system (UPS) and autophagy-lysosomal pathway (ALS) are altered in Parkinson's disease, leading to aggregation of proteins, particularly α-synuclein. Interestingly, it has been observed that copper promotes the protein aggregation process. Additionally, phosphorylation of α-synuclein along with copper also affects the protein aggregation process. The interrelation among α-synuclein phosphorylation and its capability to interact with copper, with the subsequent disruption of the protein degradation systems in the neurodegenerative process of Parkinson's disease, will be analyzed in detail in this review.
Collapse
|
39
|
Gao G, You LH, Chang YZ. Iron Metabolism in Parkinson’s Disease. OXIDATIVE STRESS AND REDOX SIGNALLING IN PARKINSON’S DISEASE 2017. [DOI: 10.1039/9781782622888-00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the central nervous system, iron is involved in many biologically important processes such as oxygen transport and storage, electron transport, energy metabolism, and antioxidant and DNA synthesis. Parkinson’s disease (PD) is a common neurodegenerative disease characterized by loss of dopaminergic neurons in the substantia nigra. Extensive research has reported that iron is heavily accumulated in the dopaminergic neurons in substantia nigra (SN) of PD patients. Changes in the expression of key iron transporters have also been observed in PD patients. Excessive iron accumulation can induce neuronal damage through reactive oxygen species production, which can cause oxidative stress increased membrane lipid peroxidation, DNA damage and protein oxidation and misfolding. This chapter provides a review about brain iron metabolism in PD, the role of iron transporters expression and function on brain iron homeostasis and distribution of intracellular iron. This knowledge will be of benefit to novel therapeutic targets for PD.
Collapse
Affiliation(s)
- Guofen Gao
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang Hebei Province 050024 China
| | - Lin-Hao You
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang Hebei Province 050024 China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang Hebei Province 050024 China
| |
Collapse
|
40
|
Rudyk CA, McNeill J, Prowse N, Dwyer Z, Farmer K, Litteljohn D, Caldwell W, Hayley S. Age and Chronicity of Administration Dramatically Influenced the Impact of Low Dose Paraquat Exposure on Behavior and Hypothalamic-Pituitary-Adrenal Activity. Front Aging Neurosci 2017; 9:222. [PMID: 28769783 PMCID: PMC5509760 DOI: 10.3389/fnagi.2017.00222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/26/2017] [Indexed: 01/19/2023] Open
Abstract
Little is known of the age-dependent and long-term consequences of low exposure levels of the herbicide and dopaminergic toxicant, paraquat. Thus, we assessed the dose-dependent effects of paraquat using a typical short-term (3 week) exposure procedure, followed by an assessment of the effects of chronic (16 weeks) exposure to a very low dose (1/10th of what previously induced dopaminergic neuronal damage). Short term paraquat treatment dose-dependently induced deficits in locomotion, sucrose preference and Y-maze performance. Chronic low dose paraquat treatment had a very different pattern of effects that were also dependent upon the age of the animal: in direct contrast to the short-term effects, chronic low dose paraquat increased sucrose consumption and reduced forced swim test (FST) immobility. Yet these effects were age-dependent, only emerging in mice older than 13 months. Likewise, Y-maze spontaneous alternations and home cage activity were dramatically altered as a function of age and paraquat chronicity. In both the short and long-term exposure studies, increased corticosterone and altered hippocampal glucocorticoid receptor (GR) levels were induced by paraquat, but surprisingly these effects were blunted in the older mice. Thus, paraquat clearly acts as a systemic stressor in terms of corticoid signaling and behavioral outcomes, but that paradoxical effects may occur with: (a) repeated exposure at; (b) very low doses; and (c) older age. Collectively, these data raise the possibility that repeated “hits” with low doses of paraquat in combination with aging processes might have promoted compensatory outcomes.
Collapse
Affiliation(s)
- Chris A Rudyk
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Jessica McNeill
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Natalie Prowse
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Zach Dwyer
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Kyle Farmer
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Darcy Litteljohn
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Warren Caldwell
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Shawn Hayley
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| |
Collapse
|
41
|
Sanders LH, Paul KC, Howlett EH, Lawal H, Boppana S, Bronstein JM, Ritz B, Greenamyre JT. Editor's Highlight: Base Excision Repair Variants and Pesticide Exposure Increase Parkinson's Disease Risk. Toxicol Sci 2017; 158:188-198. [PMID: 28460087 PMCID: PMC6075191 DOI: 10.1093/toxsci/kfx086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Exposure to certain pesticides induces oxidative stress and increases Parkinson's disease (PD) risk. Mitochondrial DNA (mtDNA) damage is found in dopaminergic neurons in idiopathic PD and following pesticide exposure in experimental models thereof. Base excision repair (BER) is the major pathway responsible for repairing oxidative DNA damage in cells. Whether single nucleotide polymorphisms (SNPs) in BER genes alone or in combination with pesticide exposure influence PD risk is unknown. We investigated the contributions of functional SNPs in 2 BER genes (APEX1 and OGG1) and mitochondrial dysfunction- or oxidative stress-related pesticide exposure, including paraquat, to PD risk. We also studied the effect of paraquat on levels of mtDNA damage and mitochondrial bioenergetics. 619 PD patients and 854 population-based controls were analyzed for the 2 SNPs, APEX1 rs1130409 and OGG1 rs1052133. Ambient pesticide exposures were assessed with a geographic information system. Individually, or in combination, the BER SNPs did not influence PD risk. Mitochondrial-inhibiting (OR = 1.79, 95% CI [1.32, 2.42]), oxidative stress-inducing pesticides (OR = 1.61, 95% CI [1.22, 2.11]), and paraquat (OR = 1.54, 95% CI [1.23, 1.93]) were associated with PD. Statistical interactions were detected, including for a genetic risk score based on rs1130409 and rs1052133 and oxidative stress inducing pesticides, where highly exposed carriers of both risk genotypes were at the highest risk of PD (OR = 2.21, 95% CI [1.25, 3.86]); similar interactions were estimated for mitochondrial-inhibiting pesticides and paraquat alone. Additionally, paraquat exposure was found to impair mitochondrial respiration and increase mtDNA damage in in vivo and in vitro systems. Our findings provide insight into possible mechanisms involved in increased PD risk due to pesticide exposure in the context of BER genotype variants.
Collapse
Affiliation(s)
- Laurie H. Sanders
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Kimberly C. Paul
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, California 90095
| | - Evan H. Howlett
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hakeem Lawal
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, Delaware 19901
| | - Sridhar Boppana
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, Delaware 19901
| | - Jeff M. Bronstein
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, California 90095
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - J. Timothy Greenamyre
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
42
|
Du K, Liu MY, Zhong X, Wei MJ. Decreased circulating Zinc levels in Parkinson's disease: a meta-analysis study. Sci Rep 2017; 7:3902. [PMID: 28634347 PMCID: PMC5478669 DOI: 10.1038/s41598-017-04252-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
There is no consensus on the involvement of zinc (Zn) dysfunctions in Parkinson's Disease (PD). We performed a meta-analysis to evaluate whether circulating Zn levels in the serum, plasma, and cerebrospinal fluid (CSF) are altered in PD. Twenty-three published studies were selected by searching the databases of PubMed and China National Knowledge Infrastructure (CNKI). A total of 803 PD patients and 796 controls, 342 PD patients and 392 controls, and 135 PD patients and 93 controls were included to study Zn levels in the serum, plasma, and CSF, respectively. Our meta-analysis showed that the serum Zn levels were significantly lower in PD patients compared with health controls (SMD = -0.59; 95% CI [-1.06, -0.12]; P = 0.014). A reduced Zn levels in PD patients were found when serum and plasma studies were analyzed together (SMD = -0.60, 95% CI [-0.98; -0.22]; p = 0.002). PD patients had a tendency toward reduced CSF Zn levels compared with health controls (SMD = -0.50; 95% CI [-1.76, 0.76]; P = 0.439), but no statistical significance was obtained and this data did not allow conclusions due to a small sample size of CSF studies. This study suggests that reduced Zn levels in the serum and plasma are associated with an increased risk for PD.
Collapse
Affiliation(s)
- Ke Du
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Shenyang, Liaoning, 110122, China
| | - Ming-Yan Liu
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Shenyang, Liaoning, 110122, China
| | - Xin Zhong
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Shenyang, Liaoning, 110122, China
| | - Min-Jie Wei
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, 110122, China.
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
43
|
Agrawal S, Berggren KL, Marks E, Fox JH. Impact of high iron intake on cognition and neurodegeneration in humans and in animal models: a systematic review. Nutr Rev 2017; 75:456-470. [PMID: 28505363 PMCID: PMC5914328 DOI: 10.1093/nutrit/nux015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Context Accumulation of brain iron is linked to aging and protein-misfolding neurodegenerative diseases. High iron intake may influence important brain health outcomes in later life. Objective The aim of this systematic review was to examine evidence from animal and human studies of the effects of high iron intake or peripheral iron status on adult cognition, brain aging, and neurodegeneration. Data Sources MEDLINE, Scopus, CAB Abstracts, the Cochrane Central Register of Clinical Trials, and OpenGrey databases were searched. Study Selection Studies investigating the effect of elevated iron intake at all postnatal life stages in mammalian models and humans on measures of adult brain health were included. Data Extraction Data were extracted and evaluated by two authors independently, with discrepancies resolved by discussion. Neurodegenerative disease diagnosis and/or behavioral/cognitive, biochemical, and brain morphologic findings were used to study the effects of iron intake or peripheral iron status on brain health. Risk of bias was assessed for animal and human studies. PRISMA guidelines for reporting systematic reviews were followed. Results Thirty-four preclinical and 14 clinical studies were identified from database searches. Thirty-three preclinical studies provided evidence supporting an adverse effect of nutritionally relevant high iron intake in neonates on brain-health-related outcomes in adults. Human studies varied considerably in design, quality, and findings; none investigated the effects of high iron intake in neonates/infants. Conclusions Human studies are needed to verify whether dietary iron intake levels used in neonates/infants to prevent iron deficiency have effects on brain aging and neurodegenerative disease outcomes.
Collapse
Affiliation(s)
- Sonal Agrawal
- S. Agrawal and J.H. Fox are with the Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, USA. K.L. Berggren is with the Department of Radiation Oncology, University of New Mexico Cancer Center, Albuquerque, New Mexico, USA. E. Marks is with the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kiersten L. Berggren
- S. Agrawal and J.H. Fox are with the Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, USA. K.L. Berggren is with the Department of Radiation Oncology, University of New Mexico Cancer Center, Albuquerque, New Mexico, USA. E. Marks is with the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eileen Marks
- S. Agrawal and J.H. Fox are with the Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, USA. K.L. Berggren is with the Department of Radiation Oncology, University of New Mexico Cancer Center, Albuquerque, New Mexico, USA. E. Marks is with the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jonathan H. Fox
- S. Agrawal and J.H. Fox are with the Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, USA. K.L. Berggren is with the Department of Radiation Oncology, University of New Mexico Cancer Center, Albuquerque, New Mexico, USA. E. Marks is with the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
44
|
Almeida LLD, Teixeira ÁAC, Soares AF, Cunha FMD, Silva VAD, Vieira Filho LD, Wanderley-Teixeira V. Effects of melatonin in rats in the initial third stage of pregnancy exposed to sub-lethal doses of herbicides. Acta Histochem 2017; 119:220-227. [PMID: 28202179 DOI: 10.1016/j.acthis.2017.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 11/22/2022]
Abstract
Exposure to the herbicides Paraquat (PQ) and Roundup® may cause cell lesions due to an increase in oxidative stress levels in different biological systems, even in the reproductive system. OBJECTIVE Evaluate the possible changes in reproductive parameters and hepatic, as well as its prevention by simultaneous application of melatonin. METHODS Thirty-five female rats at the age of 3 months were divided into seven groups: three groups exposed to sub-lethal doses of the herbicides PQ (50mg/kg) and Roundup® (500mg/kg) (n=5, G2, G3 and G4); three groups exposed to herbicides and simultaneous treatment with 10mg/kg of Melatonin (n=5, G5, G6 and G7) and control group (n=5, G1) from the first to the seventh day of pregnancy. On the seventh day of pregnancy, the rats were anesthetized and euthanized, followed by laparotomy to remove their reproductive tissues and liver. Body and ovary weights were taken and the number of implantation sites, corpora lutea, preimplantation losses, implantation rates were counted and histopathology of the implantation sites, morphometry of the surface and glandular epithelia of endometrium and hepatic oxidative stress were undertaken. RESULTS The present study shows the decrease in body and ovary weight, decrease in the number of implantation sites, implantation rate, in the total number of corpora lutea and increase of preimplantation percentages were observed when compared to the G1: Fig. 1 and Table 1, (p>0.001 ANOVA/Tukey). The histopathological analysis of the implantation sites showed a disorder of the cytotrophoblast and cell degeneration within the blastocyst cavity in Fig. 4. Morphometry revealed a reduction in surface and glandular epithelia and in the diameter of the endometrial glands (Table 2; p>0.05 ANOVA/Tukey), whereas in liver, serum levels of thiobarbituric acid reactive substances (TBARS) were found to be significantly elevated (Fig. 2; p>0.001; p>0.05 ANOVA/Tukey), and serum level of reduced glutathione (GSH) was significantly lower (Fig. 3; p>0.001 ANOVA/Tukey). However, treatments with melatonin exhibited improvements in reproductive parameters, as well as reduced lesions in the implantation sites (Fig. 4.) and in serum levels TBARS (Fig. 2; p>0.001 ANOVA/Tukey), serum levels GSH (Fig. 3; p>0.001; p>0.05 ANOVA/Tukey). CONCLUSIONS These results reveal that melatonin is a protective agent against experimentally induced maternal/embryo toxicity with herbicides and favoring normalization of reproductive parameters and hepatic.
Collapse
Affiliation(s)
| | | | - Anísio Francisco Soares
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Valdemiro Amaro da Silva
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
45
|
Hare DJ, Cardoso BR, Raven EP, Double KL, Finkelstein DI, Szymlek-Gay EA, Biggs BA. Excessive early-life dietary exposure: a potential source of elevated brain iron and a risk factor for Parkinson's disease. NPJ Parkinsons Dis 2017; 3:1. [PMID: 28649601 PMCID: PMC5460187 DOI: 10.1038/s41531-016-0004-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 11/28/2022] Open
Abstract
Iron accumulates gradually in the ageing brain. In Parkinson's disease, iron deposition within the substantia nigra is further increased, contributing to a heightened pro-oxidant environment in dopaminergic neurons. We hypothesise that individuals in high-income countries, where cereals and infant formulae have historically been fortified with iron, experience increased early-life iron exposure that predisposes them to age-related iron accumulation in the brain. Combined with genetic factors that limit iron regulatory capacity and/or dopamine metabolism, this may increase the risk of Parkinson's diseases. We propose to (a) validate a retrospective biomarker of iron exposure in children; (b) translate this biomarker to adults; (c) integrate it with in vivo brain iron in Parkinson's disease; and (d) longitudinally examine the relationships between early-life iron exposure and metabolism, brain iron deposition and Parkinson's disease risk. This approach will provide empirical evidence to support therapeutically addressing brain iron deposition in Parkinson's diseases and produce a potential biomarker of Parkinson's disease risk in preclinical individuals.
Collapse
Affiliation(s)
- Dominic J Hare
- Department of Medicine (Royal Melbourne Hospital) at the Doherty Institute, The University of Melbourne, Parkville, Melbourne, VIC Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC Australia
- Elemental Bio-imaging Facility, University of Technology Sydney, Broadway, NSW Australia
| | - Bárbara Rita Cardoso
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC Australia
- Department of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Erika P Raven
- Center for Functional and Molecular Imaging, Georgetown University Medical Centre, Washington DC, USA
- Advanced Magnetic Resonance Imaging Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Kay L Double
- Sydney Medical School, University of Sydney, Darlington, NSW Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC Australia
| | - Ewa A Szymlek-Gay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC Australia
| | - Beverley-Ann Biggs
- Department of Medicine (Royal Melbourne Hospital) at the Doherty Institute, The University of Melbourne, Parkville, Melbourne, VIC Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Melbourne, VIC Australia
| |
Collapse
|
46
|
Goldman SM, Musgrove RE, Jewell SA, Di Monte DA. Pesticides and Parkinson's Disease: Current Experimental and Epidemiological Evidence. ADVANCES IN NEUROTOXICOLOGY 2017. [DOI: 10.1016/bs.ant.2017.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Herraiz T. N-methyltetrahydropyridines and pyridinium cations as toxins and comparison with naturally-occurring alkaloids. Food Chem Toxicol 2016; 97:23-39. [DOI: 10.1016/j.fct.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
|
48
|
Jiang H, Wang J, Rogers J, Xie J. Brain Iron Metabolism Dysfunction in Parkinson's Disease. Mol Neurobiol 2016; 54:3078-3101. [PMID: 27039308 DOI: 10.1007/s12035-016-9879-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022]
Abstract
Dysfunction of iron metabolism, which includes its uptake, storage, and release, plays a key role in neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease, and Huntington's disease. Understanding how iron accumulates in the substantia nigra (SN) and why it specifically targets dopaminergic (DAergic) neurons is particularly warranted for PD, as this knowledge may provide new therapeutic avenues for a more targeted neurotherapeutic strategy for this disease. In this review, we begin with a brief introduction describing brain iron metabolism and its regulation. We then provide a detailed description of how iron accumulates specifically in the SN and why DAergic neurons are especially vulnerable to iron in PD. Furthermore, we focus on the possible mechanisms involved in iron-induced cell death of DAergic neurons in the SN. Finally, we present evidence in support that iron chelation represents a plausable therapeutic strategy for PD.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Jack Rogers
- Neurochemistry Laboratory, Division of Psychiatric Neurosciences and Genetics and Aging Research Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
49
|
Rudyk C, Litteljohn D, Syed S, Dwyer Z, Hayley S. Paraquat and psychological stressor interactions as pertains to Parkinsonian co-morbidity. Neurobiol Stress 2015; 2:85-93. [PMID: 26844243 PMCID: PMC4730791 DOI: 10.1016/j.ynstr.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/12/2015] [Indexed: 02/08/2023] Open
Abstract
A number of epidemiological and experimental studies have implicated the non-selective herbicide, paraquat, in the development of sporadic Parkinson's disease (PD). While preclinical research has focused mainly on elucidating the nigrostriatal effects of paraquat, relatively little data are available concerning non-motor brain systems and inflammatory immune processes (which have been implicated in PD). Hence, in the present study, we sought to take a multi-system approach to characterize the influence of paraquat upon extra-nigrostriatal brain regions, as well ascertain whether the impact of the pesticide might be enhanced in the context of chronic intermittent stressor exposure. Our findings support the contention that paraquat itself acted as a systemic stressor, with the pesticide increasing plasma corticosterone, as well as altering neurochemical activity in the locus coeruleus, paraventricular nucleus of the hypothalamus, nucleus accumbens, dorsal striatum, and central amygdala. However, with the important exception striatal dopamine turnover, the stressor treatment did not further augment these effects. Additionally, paraquat altered inter-cytokine correlations and, to a lesser extent, circulating cytokine levels, and concomitant stress exposure modulated some of these effects. Finally, paraquat provoked significant (albeit modest) reductions of sucrose preference and weight gain, hinting at possible anhendonic-like or sickness responses. These data suggest that, in addition to being a well known oxidative stress generator, paraquat can act as a systemic stressor affecting hormonal and neurochemical activity, but largely not interacting with a concomitant stressor regimen.
Collapse
Key Words
- 5-HIAA, 5-hydroxyindole acetic acid
- 5-HT, serotonin
- ANOVA, analysis of variance
- Anhedonia
- CIS, chronic intermittent immobilization/social defeat stressor
- Cytokine
- DA, dopamine
- DOPAC, 3,4-Dihydroxyphenylacetic acid
- EDTA, ethylenediaminetetraacetic acid
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HPLC, high-performance liquid chromatography
- HVA, homovanillic acid
- IFN-γ, interferon-γ
- IL, interleukin
- KO, knockout
- LC, locus coeruleus
- LLOQ, lower limit of quantification
- MCP, monocyte chemoatrractant protein
- MHPG, 3-methoxy-4-hydroexyphenylglycol
- MIP, macrophage inflammatory protein
- Monoamine
- NE, norepinephrine
- Neuroendocrine
- PD, Parkinson's disease
- PVN, paraventricular nucleus
- Pesticide
- Stressor
- TNF-α, tumour necrosis factor-alpha
Collapse
Affiliation(s)
- Chris Rudyk
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada
| | - Darcy Litteljohn
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada
| | - Shuaib Syed
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada
| | - Zach Dwyer
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada
| |
Collapse
|
50
|
Chen P, Chakraborty S, Mukhopadhyay S, Lee E, Paoliello MMB, Bowman AB, Aschner M. Manganese homeostasis in the nervous system. J Neurochem 2015; 134:601-10. [PMID: 25982296 DOI: 10.1111/jnc.13170] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/31/2022]
Abstract
Manganese (Mn) is an essential heavy metal that is naturally found in the environment. Daily intake through dietary sources provides the necessary amount required for several key physiological processes, including antioxidant defense, energy metabolism, immune function and others. However, overexposure from environmental sources can result in a condition known as manganism that features symptomatology similar to Parkinson's disease (PD). This disorder presents with debilitating motor and cognitive deficits that arise from a neurodegenerative process. In order to maintain a balance between its essentiality and neurotoxicity, several mechanisms exist to properly buffer cellular Mn levels. These include transporters involved in Mn uptake, and newly discovered Mn efflux mechanisms. This review will focus on current studies related to mechanisms underlying Mn import and export, primarily the Mn transporters, and their function and roles in Mn-induced neurotoxicity. Though and essential metal, overexposure to manganese may result in neurodegenerative disease analogous to Parkinson's disease. Manganese homeostasis is tightly regulated by transporters, including transmembrane importers (divalent metal transporter 1, transferrin and its receptor, zinc transporters ZIP8 and Zip14, dopamine transporter, calcium channels, choline transporters and citrate transporters) and exporters (ferroportin and SLC30A10), as well as the intracellular trafficking proteins (SPCA1 and ATP12A2). A manganese-specific sensor, GPP130, has been identified, which affords means for monitoring intracellular levels of this metal.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sudipta Chakraborty
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy; Institute for Cellular & Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Monica M B Paoliello
- Graduate Program in Public Health, Department of Pathology, Clinical and Toxicological Analysis, Center of Health Science, State University of Londrina, Parana, Brazil
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA.,Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|