1
|
Gomez A, Wu Y, Zhang C, Boyd L, Wee TL, Gewolb J, Amor C, Cheadle L, Borniger JC. A brain-body feedback loop driving HPA-axis dysfunction in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612923. [PMID: 39314280 PMCID: PMC11419152 DOI: 10.1101/2024.09.13.612923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Breast cancer patients often exhibit disrupted circadian rhythms in circulating glucocorticoids (GCs), such as cortisol. This disruption correlates with reduced quality of life and higher cancer mortality 1-3 . The exact cause of this phenomenon - whether due to treatments, stress, age, co-morbidities, lifestyle factors, or the cancer itself remains unclear. Here, we demonstrate that primary breast cancer alone blunts host GC rhythms by disinhibiting neurons in the hypothalamus, and that circadian phase-specific neuromodulation of these neurons can attenuate tumor growth by enhancing anti-tumor immunity. We find that mice with mammary tumors exhibit blunted GC rhythms before tumors are palpable, alongside increased activity in paraventricular hypothalamic neurons expressing corticotropin-releasing hormone (i.e., PVN CRH neurons). Tumor-bearing mice have fewer inhibitory synapses contacting PVN CRH neurons and reduced miniature inhibitory post-synaptic current (mIPSC) frequency, leading to net excitation. Tumor-bearing mice experience impaired negative feedback on GC production, but adrenal and pituitary gland functions are largely unaffected, indicating that alterations in PVN CRH neuronal activity are likely a primary cause of hypothalamic-pituitary-adrenal (HPA) axis dysfunction in breast cancer. Using chemogenetics (hM3Dq) to stimulate PVN CRH neurons at different circadian phases, we show that stimulation just before the light-to-dark transition restores normal GC rhythms and reduces tumor progression. These mice have significantly more effector T cells (CD8+) within the tumor than non-stimulated controls, and the anti-tumor effect of PVN CRH neuronal stimulation is absent in mice lacking CD8+ T cells. Our findings demonstrate that breast cancer distally regulates neurons in the hypothalamus that control output of the HPA axis and provide evidence that therapeutic targeting of these neurons could mitigate tumor progression.
Collapse
|
2
|
Ruska Y, Peterfi Z, Szilvásy-Szabó A, Kővári D, Hrabovszky E, Dorogházi B, Gereben B, Tóth B, Matziari M, Wittmann G, Fekete C. GLP-1 Receptor Signaling Has Different Effects on the Perikarya and Axons of the Hypophysiotropic Thyrotropin-Releasing Hormone Synthesizing Neurons in Male Mice. Thyroid 2024; 34:252-260. [PMID: 38062754 DOI: 10.1089/thy.2023.0284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Background: Glucagon-like peptide 1 (GLP-1) is involved in the regulation of energy and glucose homeostasis. As GLP-1 has similar effects on the energy homeostasis as the hypophysiotropic thyrotropin-releasing hormone (TRH) neurons that regulate the hypothalamic-pituitary-thyroid (HPT) axis, we raised the possibility that the TRH neurons are involved in the mediation of the effects of GLP-1. Therefore, the relationship and interaction of the GLP-1 system and the TRH neurons of the hypothalamic paraventricular nucleus (PVN) were studied. Methods: To examine the anatomical and functional relationship of TRH neurons and the GLP-1 system in the PVN, immunocytochemistry, in situ hybridization, in vitro patch-clamp electrophysiology, metabolic phenotyping, and explant experiments were performed. Results: Our data demonstrate that the TRH neurons of the PVN are innervated by GLP-1 producing neurons and express the GLP-1 receptor (GLP-1R). However, not only do the GLP-1-innervated TRH neurons express GLP-1R but the receptor is also present in the axons of the hypophysiotropic TRH neurons in the blood-brain barrier free median eminence (ME) suggesting that peripherally derived GLP-1 may also influence the TRH neurons. In vitro, GLP-1 increased the firing rate of TRH neurons and depolarized them. In addition, GLP-1 directly stimulated the GABAergic input of a population of TRH neurons. Furthermore, GLP-1 inhibited the release of TRH from the hypophysiotropic axons in the ME. In vivo, peripheral GLP-1R agonist administration markedly inhibited the food intake and the energy expenditure, but had no effect on the TRH expression in the PVN and resulted in lower circulating free T4 levels. Conclusions: Our results indicate that GLP-1R activation has a direct stimulatory effect on TRH neurons in the PVN, but the activation of GLP-1R may also inhibit TRH neurons by facilitating their inhibitory inputs or by inhibiting the axon terminals of these cells in the ME. The innervation of TRH neurons by GLP-1 neurons suggests that TRH neurons might be influenced by both circulating GLP-1 and by GLP-1 neurons of the nucleus tractus solitarii. The lack of GLP-1R agonist-induced regulation of TRH neurons in vivo suggests that the HPT axis does not mediate the GLP-1R agonist-induced weight loss.
Collapse
Affiliation(s)
- Yvette Ruska
- Laboratory of Integrative Neuroendocrinology; Budapest, Hungary
| | - Zoltan Peterfi
- Laboratory of Integrative Neuroendocrinology; Budapest, Hungary
| | | | - Dóra Kővári
- Laboratory of Integrative Neuroendocrinology; Budapest, Hungary
| | | | - Beáta Dorogházi
- Laboratory of Molecular Cell Metabolism; HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Gereben
- Laboratory of Molecular Cell Metabolism; HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Magdalini Matziari
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Gábor Wittmann
- Laboratory of Integrative Neuroendocrinology; Budapest, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology; Budapest, Hungary
| |
Collapse
|
3
|
Sato T, Sugaya T, Talukder AH, Tsushima Y, Sasaki S, Uchida K, Sato T, Ikoma Y, Sakimura K, Fukuda A, Matsui K, Itoi K. Dual action of serotonin on local excitatory and inhibitory neural circuits regulating the corticotropin-releasing factor neurons in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 2023; 35:e13351. [PMID: 37901949 DOI: 10.1111/jne.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
Serotonergic neurons originating from the raphe nuclei have been proposed to regulate corticotropin-releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVH). Since glutamate- and γ-aminobutyric acid (GABA)-containing neurons, constituting the hypothalamic local circuits, innervate PVH CRF neurons, we examined whether they mediate the actions of serotonin (5-hydroxytryptamine [5-HT]) on CRF neurons. Spontaneous excitatory postsynaptic currents (sEPSCs) or spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in PVH CRF neurons, under whole cell patch-clamp, using the CRF-modified yellow fluorescent protein (Venus) ΔNeo mouse. Serotonin elicited an increase in the frequency of sEPSCs in 77% of the cells and a decrease in the frequency of sIPSCs in 71% of the cells, tested in normal medium. Neither the amplitude nor decay time of sEPSC and sIPSC was affected, thus the site(s) of action of serotonin may be presynaptic. In the presence of tetrodotoxin (TTX), serotonin had no significant effects on either parameter of sEPSC or sIPSC, indicating that the effects of serotonin are action potential-dependent, and that the presynaptic interneurons are largely intact within the slice; distant neurons may exist, though, since some 20%-30% of neurons did not respond to serotonin without TTX. We next examined through what receptor subtype(s) serotonin exerts its effects on presynaptic interneurons. DOI (5-HT2A/2C agonist) mimicked the action of serotonin on the sIPSCs, and the serotonin-induced decrease in sIPSC frequency was inhibited by a selective 5-HT2C antagonist RS102221. 8-OH-DPAT (5-HT1A/7 agonist) mimicked the action of serotonin on the sEPSCs, and the serotonin-induced increase in sEPSC frequency was inhibited by a selective 5-HT7 antagonist SB269970. Thus, serotonin showed a dual action on PVH CRF neurons, by upregulating glutamatergic- and downregulating GABAergic interneurons; the former may partly be mediated by 5-HT7 receptors, whereas the latter by 5-HT2C receptors. The CRF-Venus ΔNeo mouse was useful for the electrophysiological examination.
Collapse
Affiliation(s)
- Takayuki Sato
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Takuma Sugaya
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Ashraf Hossain Talukder
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Yuki Tsushima
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Shotaro Sasaki
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Katsuya Uchida
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Tatsuya Sato
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Yoko Ikoma
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsuo Fukuda
- Department of Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ko Matsui
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Nursing, Tohoku Fukushi University, Sendai, Japan
| |
Collapse
|
4
|
Fernandez G, De Francesco PN, Cornejo MP, Cabral A, Aguggia JP, Duque VJ, Sayar N, Cantel S, Burgos JI, Fehrentz JA, Rorato R, Atasoy D, Mecawi AS, Perello M. Ghrelin Action in the PVH of Male Mice: Accessibility, Neuronal Targets, and CRH Neurons Activation. Endocrinology 2023; 164:bqad154. [PMID: 37823477 PMCID: PMC11491828 DOI: 10.1210/endocr/bqad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
The hormone ghrelin displays several well-characterized functions, including some with pharmaceutical interest. The receptor for ghrelin, the growth hormone secretagogue receptor (GHSR), is expressed in the hypothalamic paraventricular nucleus (PVH), a critical hub for the integration of metabolic, neuroendocrine, autonomic, and behavioral functions. Here, we performed a neuroanatomical and functional characterization of the neuronal types mediating ghrelin actions in the PVH of male mice. We found that fluorescent ghrelin mainly labels PVH neurons immunoreactive for nitric oxide synthase 1 (NOS1), which catalyze the production of nitric oxide [NO]). Centrally injected ghrelin increases c-Fos in NOS1 PVH neurons and NOS1 phosphorylation in the PVH. We also found that a high dose of systemically injected ghrelin increases the ghrelin level in the cerebrospinal fluid and in the periventricular PVH, and induces c-Fos in NOS1 PVH neurons. Such a high dose of systemically injected ghrelin activates a subset of NOS1 PVH neurons, which do not express oxytocin, via an arcuate nucleus-independent mechanism. Finally, we found that pharmacological inhibition of NO production fully abrogates ghrelin-induced increase of calcium concentration in corticotropin-releasing hormone neurons of the PVH whereas it partially impairs ghrelin-induced increase of plasma glucocorticoid levels. Thus, plasma ghrelin can directly target a subset of NO-producing neurons of the PVH that is involved in ghrelin-induced activation of the hypothalamic-pituitary-adrenal neuroendocrine axis.
Collapse
Affiliation(s)
- Gimena Fernandez
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - María P Cornejo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - Agustina Cabral
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - Julieta P Aguggia
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - Victor J Duque
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, CEP: 04023-062, Brazil
| | - Nilufer Sayar
- Department of Neuroscience and Pharmacology, Carver College of Medicine, Iowa Neuroscience Institute and Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA 52242, USA
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, Montpellier cedex 5 34293, France
| | - Juan I Burgos
- Centro de Investigaciones Cardiovasculares “Dr. Horacio Eugenio Cingolani” (CONICET and National University of La Plata), La Plata 1900, Buenos Aires, Argentina
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, Montpellier cedex 5 34293, France
| | - Rodrigo Rorato
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, CEP: 04023-062, Brazil
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Carver College of Medicine, Iowa Neuroscience Institute and Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA 52242, USA
| | - André S Mecawi
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, CEP: 04023-062, Brazil
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala 751 05, Sweden
| |
Collapse
|
5
|
Laing BT, Anderson MS, Bonaventura J, Jayan A, Sarsfield S, Gajendiran A, Michaelides M, Aponte Y. Anterior hypothalamic parvalbumin neurons are glutamatergic and promote escape behavior. Curr Biol 2023; 33:3215-3228.e7. [PMID: 37490921 PMCID: PMC10529150 DOI: 10.1016/j.cub.2023.06.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/19/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
The anterior hypothalamic area (AHA) is a critical structure for defensive responding. Here, we identified a cluster of parvalbumin-expressing neurons in the AHA (AHAPV) that are glutamatergic with fast-spiking properties and send axonal projections to the dorsal premammillary nucleus (PMD). Using in vivo functional imaging, optogenetics, and behavioral assays, we determined the role of these AHAPV neurons in regulating behaviors essential for survival. We observed that AHAPV neuronal activity significantly increases when mice are exposed to a predator, and in a real-time place preference assay, we found that AHAPV neuron photoactivation is aversive. Moreover, activation of both AHAPV neurons and the AHAPV → PMD pathway triggers escape responding during a predator-looming test. Furthermore, escape responding is impaired after AHAPV neuron ablation, and anxiety-like behavior as measured by the open field and elevated plus maze assays does not seem to be affected by AHAPV neuron ablation. Finally, whole-brain metabolic mapping using positron emission tomography combined with AHAPV neuron photoactivation revealed discrete activation of downstream areas involved in arousal, affective, and defensive behaviors including the amygdala and the substantia nigra. Our results indicate that AHAPV neurons are a functional glutamatergic circuit element mediating defensive behaviors, thus expanding the identity of genetically defined neurons orchestrating fight-or-flight responses. Together, our work will serve as a foundation for understanding neuropsychiatric disorders triggered by escape such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Brenton T Laing
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Megan S Anderson
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Aishwarya Jayan
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Sarah Sarsfield
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Anjali Gajendiran
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yeka Aponte
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Rastegarmanesh A, Rostami B, Nasimi A, Hatam M. In the parvocellular part of paraventricular nucleus, glutamatergic and GABAergic neurons mediate cardiovascular responses to AngII. Synapse 2023; 77:e22259. [PMID: 36271777 DOI: 10.1002/syn.22259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 01/29/2023]
Abstract
Angiotensinergic, GABAergic, and glutamatergic neurons are present in the parvocellular region of the paraventricular nucleus (PVNp). It has been shown that microinjection of AngII into the PVNp increases arterial pressure (AP) and heart rate (HR). The presence of synapses between the angiotensinergic, GABAergic, and glutamatergic neurons has been shown in the PVNp. In this study, we investigated the possible interaction between these three systems of the PVNp for control of AP and HR. All drugs were bilaterally (100 nl/side) microinjected into the PVNp of urethane-anesthetized rats, and AP and HR were recorded continuously. Microinjection of AngII into the PVNp produced pressor and tachycardia responses. Pretreatment of PVNp with AP5 or CNQX, glutamatergic NMDA and AMPA receptors antagonists, attenuated the responses to AngII. Pretreatment of PVNp with bicuculline greatly attenuated the pressor and tachycardia responses to AngII. In conclusion, this study provides the first evidence that pressor and tachycardia responses to microinjection of AngII into the PVNp are partly mediated by both NMDA and non-NMDA receptors of glutamate. Activation of glutamatergic neurons by AngII stimulates the sympathoexcitatory neurons. We also showed that the responses to AngII were strongly mediated by GABAA receptors, probably through activation of GABAergic neurons, which in turn inhibit sympathoinhibitory neurons.
Collapse
Affiliation(s)
- Ali Rastegarmanesh
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahar Rostami
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.,Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nasimi
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Hatam
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Olivares-Barraza R, Marcos JL, Martínez-Pinto J, Fuenzalida M, Bravo JA, Gysling K, Sotomayor-Zárate R. Corticotropin-releasing factor system in the lateral septum: Implications in the pathophysiology of obesity. Front Mol Neurosci 2022; 15:1020903. [PMID: 36204135 PMCID: PMC9530601 DOI: 10.3389/fnmol.2022.1020903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a pandemic associated with lifestyles changes. These include excess intake of obesogenic foods and decreased physical activity. Brain areas, like the lateral hypothalamus (LH), ventral tegmental area (VTA), and nucleus accumbens (NAcc) have been linked in both homeostatic and hedonic control of feeding in experimental models of diet-induced obesity. Interestingly, these control systems are regulated by the lateral septum (LS), a relay of γ-aminobutyric (GABA) acid neurons (GABAergic neurons) that inhibit the LH and GABAergic interneurons of the VTA. Furthermore, the LS has a diverse receptor population for neurotransmitters and neuropeptides such as dopamine, glutamate, GABA and corticotropin-releasing factor (CRF), among others. Particularly, CRF a key player in the stress response, has been related to the development of overweight and obesity. Moreover, evidence shows that LS neurons neurophysiologically regulate reward and stress, although there is little evidence of LS taking part in homeostatic and hedonic feeding. In this review, we discuss the evidence that supports the role of LS and CRF on feeding, and how alterations in this system contribute to weight gain obesity.
Collapse
Affiliation(s)
- Rossy Olivares-Barraza
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| | - José Luis Marcos
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Ciencias Agrícolas y Veterinarias, Universidad Viña del Mar, Viña del Mar, Chile
| | - Jonathan Martínez-Pinto
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Marco Fuenzalida
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Javier A. Bravo
- Facultad de Ciencias, Grupo de NeuroGastroBioquímica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Katia Gysling
- Facultad de Ciencias Biológicas, Departmento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ramón Sotomayor-Zárate
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
- *Correspondence: Ramón Sotomayor-Zárate,
| |
Collapse
|
8
|
Cole AB, Montgomery K, Bale TL, Thompson SM. What the hippocampus tells the HPA axis: Hippocampal output attenuates acute stress responses via disynaptic inhibition of CRF+ PVN neurons. Neurobiol Stress 2022; 20:100473. [PMID: 35982732 PMCID: PMC9379952 DOI: 10.1016/j.ynstr.2022.100473] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
The hippocampus exerts inhibitory feedback on the release of glucocorticoids. Because the major hippocampal efferent projections are excitatory, it has been hypothesized that this inhibition is mediated by populations of inhibitory neurons in the hypothalamus or elsewhere. These regions would be excited by hippocampal efferents and project to corticotropin-releasing factor (CRF) cells in the paraventricular nucleus of the hypothalamus (PVN). A direct demonstration of the synaptic responses elicited by hippocampal outputs in PVN cells or upstream GABAergic interneurons has not been provided previously. Here, we used viral vectors to express channelrhodopsin (ChR) and enhanced yellow fluorescent protein (EYFP) in pyramidal cells in the ventral hippocampus (vHip) in mice expressing tdTomato in GABA- or CRF-expressing neurons. We observed dense innervation of the bed nucleus of the stria terminalis (BNST) by labeled vHip axons and sparse labeling within the PVN. Using whole-cell voltage-clamp recording in parasagittal brain slices containing the BNST and PVN, photostimulation of vHip terminals elicited rapid excitatory postsynaptic currents (EPSCs) and longer-latency inhibitory postsynaptic currents (IPSCs) in both CRF+ and GAD + cells. The ratio of synaptic excitation and inhibition was maintained in CRF + cells during 20 Hz stimulus trains. Photostimulation of hippocampal afferents to the BNST and PVN in vivo inhibited the rise in blood glucocorticoid levels produced by acute restraint stress. We thus provide functional evidence suggesting that hippocampal output to the BNST contributes to a net inhibition of the hypothalamic-pituitary axis, providing further mechanistic insights into this process using methods with enhanced spatial and temporal resolution.
Collapse
Affiliation(s)
- Anthony B. Cole
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Medical Scientist Training Program, Departments of University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kristen Montgomery
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tracy L. Bale
- Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Scott M. Thompson
- Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, USA
| |
Collapse
|
9
|
Wang H, Cheng L, Han Y. Effect of oral administration of GABA on thermoregulation in athletes during exercise in cold environments: A preliminary study. Front Nutr 2022; 9:883571. [PMID: 35911099 PMCID: PMC9335056 DOI: 10.3389/fnut.2022.883571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Background γ-aminobutyric acid (GABA), a common ingredient in sports supplements and other health products, regulates body temperature in the preoptic area and anterior hypothalamus (PO/AH). To date, no study has examined the effect of GABA on thermoregulation during exercise in humans in a cold temperature environment (11 ± 0.3°C, 45% ± 2% relative humidity). Methods We performed a randomized, double-blind study. Ten trained male athletes consumed either a drink (3 ml/kg weight) containing GABA (1,000 mg, trial G) or an equivalent amount of placebo drink (trial C) before exercise. They rested for 20 min and then cycled at 60% of maximum output power for 40 min, pedaling at 60 rpm, and recovered for 20 min. Core temperature (Tc), skin temperature (upper arm, chest, thigh, calf), and heart rate (HR) were monitored at rest (T0), exercise begins (T20), 20 min of exercise (T40), the exercise ends (T60), and at recovery (T80). Results Compared to T0, Tc decreased significantly at T20 and increased significantly at T40, T60 and T80 (p < 0.01). From 35–80 min, the Tc was higher in trial G (peaked at 37.96 ± 0.25°C) than in trial C (37.89 ± 0.37°C), but it failed to reach significant difference (p > 0.05); Tsk continued to increase during exercise and was significantly higher than T0 at T40 (p < 0.05), T60 and T80 (p < 0.01). There was no significant difference in Tsk between the two trials (p > 0.05). Conclusion Our findings provide initial evidence that oral administration of GABA does not affect thermoregulation and has no adverse effects on the body as an ergogenic exercise supplement during exercise in cold environments.
Collapse
|
10
|
Ichiyama A, Mestern S, Benigno GB, Scott KE, Allman BL, Muller L, Inoue W. State-dependent activity dynamics of hypothalamic stress effector neurons. eLife 2022; 11:76832. [PMID: 35770968 PMCID: PMC9278954 DOI: 10.7554/elife.76832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
The stress response necessitates an immediate boost in vital physiological functions from their homeostatic operation to an elevated emergency response. However, the neural mechanisms underlying this state-dependent change remain largely unknown. Using a combination of in vivo and ex vivo electrophysiology with computational modeling, we report that corticotropin releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN), the effector neurons of hormonal stress response, rapidly transition between distinct activity states through recurrent inhibition. Specifically, in vivo optrode recording shows that under non-stress conditions, CRHPVN neurons often fire with rhythmic brief bursts (RB), which, somewhat counterintuitively, constrains firing rate due to long (~2 s) interburst intervals. Stressful stimuli rapidly switch RB to continuous single spiking (SS), permitting a large increase in firing rate. A spiking network model shows that recurrent inhibition can control this activity-state switch, and more broadly the gain of spiking responses to excitatory inputs. In biological CRHPVN neurons ex vivo, the injection of whole-cell currents derived from our computational model recreates the in vivo-like switch between RB and SS, providing direct evidence that physiologically relevant network inputs enable state-dependent computation in single neurons. Together, we present a novel mechanism for state-dependent activity dynamics in CRHPVN neurons.
Collapse
|
11
|
Bang JY, Zhao J, Rahman M, St-Cyr S, McGowan PO, Kim JC. Hippocampus-Anterior Hypothalamic Circuit Modulates Stress-Induced Endocrine and Behavioral Response. Front Neural Circuits 2022; 16:894722. [PMID: 35795487 PMCID: PMC9251012 DOI: 10.3389/fncir.2022.894722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Hippocampal input to the hypothalamus is known to be critically involved in mediating the negative feedback inhibition of stress response. However, the underlying neural circuitry has not been fully elucidated. Using a combination of rabies tracing, pathway-specific optogenetic inhibition, and cell-type specific synaptic silencing, the present study examined the role of hippocampal input to the hypothalamus in modulating neuroendocrine and behavioral responses to stress in mice. Transsynaptic rabies tracing revealed that the ventral hippocampus (vHPC) is monosynaptically connected to inhibitory cells in the anterior hypothalamic nucleus (AHN-GABA cells). Optogenetic inhibition of the vHPC→AHN pathway during a restraint stress resulted in a prolonged and exaggerated release of corticosterone, accompanied by an increase in stress-induced anxiety behaviors. Consistently, tetanus toxin-mediated synaptic inhibition in AHN-GABA cells produced a remarkably similar effect on the corticosterone release profile, corroborating the role of HPC→AHN pathway in mediating the hippocampal control of stress responses. Lastly, we found that chronic inhibition of AHN-GABA cells leads to cognitive impairments in both object and social recognition memory. Together, our data present a novel hypothalamic circuit for the modulation of adaptive stress responses, the dysfunction of which has been implicated in various affective disorders.
Collapse
Affiliation(s)
- Jee Yoon Bang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Julie Zhao
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Mouly Rahman
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Sophie St-Cyr
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Patrick O. McGowan
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Jun Chul Kim
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Jun Chul Kim
| |
Collapse
|
12
|
Bang JY, Sunstrum JK, Garand D, Parfitt GM, Woodin M, Inoue W, Kim J. Hippocampal-hypothalamic circuit controls context-dependent innate defensive responses. eLife 2022; 11:74736. [PMID: 35420543 PMCID: PMC9042231 DOI: 10.7554/elife.74736] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Preys use their memory - where they sensed a predatory threat and whether a safe shelter is nearby - to dynamically control their survival instinct to avoid harm and reach safety. However, it remains unknown which brain regions are involved, and how such top-down control of innate behaviour is implemented at the circuit level. Here, using adult male mice, we show that the anterior hypothalamic nucleus (AHN) is best positioned to control this task as an exclusive target of the hippocampus (HPC) within the medial hypothalamic defense system. Selective optogenetic stimulation and inhibition of hippocampal inputs to the AHN revealed that the HPC→AHN pathway not only mediates the contextual memory of predator threats but also controls the goal-directed escape by transmitting information about the surrounding environment. These results reveal a new mechanism for experience-dependent, top-down control of innate defensive behaviours.
Collapse
Affiliation(s)
- Jee Yoon Bang
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | | - Danielle Garand
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Gustavo Morrone Parfitt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Melanie Woodin
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Wataru Inoue
- Robarts Research Institute, Western University, London, Canada
| | - Junchul Kim
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Grassi D, Marraudino M, Garcia-Segura LM, Panzica GC. The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior. Front Neuroendocrinol 2022; 65:100974. [PMID: 34995643 DOI: 10.1016/j.yfrne.2021.100974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.
Collapse
Affiliation(s)
- D Grassi
- Department of Anatomy, Histology and Neuroscience, Universidad Autonoma de Madrid, Madrid, Spain
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy.
| |
Collapse
|
14
|
Färber N, Manuel J, May M, Foadi N, Beissner F. The Central Inflammatory Network: A Hypothalamic fMRI Study of Experimental Endotoxemia in Humans. Neuroimmunomodulation 2022; 29:231-247. [PMID: 34610606 PMCID: PMC9254315 DOI: 10.1159/000519061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Inflammation is a mechanism of the immune system that is part of the reaction to pathogens or injury. The central nervous system closely regulates inflammation via neuroendocrine or direct neuroimmune mechanisms, but our current knowledge of the underlying circuitry is limited. Therefore, we aimed to identify hypothalamic centres involved in sensing or modulating inflammation and to study their association with known large-scale brain networks. METHODS Using high-resolution functional magnetic resonance imaging (fMRI), we recorded brain activity in healthy male subjects undergoing experimental inflammation from intravenous endotoxin. Four fMRI runs covered key phases of the developing inflammation: pre-inflammatory baseline, onset of endotoxemia, onset of pro-inflammatory cytokinemia, and peak of pro-inflammatory cytokinemia. Using masked independent component analysis, we identified functionally homogeneous subregions of the hypothalamus, which were further tested for changes in functional connectivity during inflammation and for temporal correlation with tumour necrosis factor and adrenocorticotropic hormone serum levels. We then studied the connection of these inflammation-associated hypothalamic subregions with known large-scale brain networks. RESULTS Our results show that there are at least 6 hypothalamic subregions associated with inflammation in humans including the paraventricular nucleus, supraoptic nucleus, dorsomedial hypothalamus, bed nucleus of the stria terminalis, lateral hypothalamic area, and supramammillary nucleus. They are functionally embedded in at least 3 different large-scale brain networks, namely a medial frontoparietal network, an occipital-pericentral network, and a midcingulo-insular network. CONCLUSION Measuring how the hypothalamus detects or modulates systemic inflammation is a first step to understand central nervous immunomodulation.
Collapse
Affiliation(s)
- Natalia Färber
- Somatosensory and Autonomic Therapy Research, Institute for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
- *Natalia Färber,
| | - Jorge Manuel
- Somatosensory and Autonomic Therapy Research, Institute for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Marcus May
- CRC Core Facility, Hannover Medical School, Hanover, Germany
| | - Nilufar Foadi
- Clinic for Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hanover, Germany
| | - Florian Beissner
- Somatosensory and Autonomic Therapy Research, Institute for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
- **Florian Beissner,
| |
Collapse
|
15
|
Oxytocin, Erectile Function and Sexual Behavior: Last Discoveries and Possible Advances. Int J Mol Sci 2021; 22:ijms221910376. [PMID: 34638719 PMCID: PMC8509000 DOI: 10.3390/ijms221910376] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
A continuously increasing amount of research shows that oxytocin is involved in numerous central functions. Among the functions in which oxytocin is thought to be involved are those that play a role in social and sexual behaviors, and the involvement of central oxytocin in erectile function and sexual behavior was indeed one of the first to be discovered in laboratory animals in the 1980s. The first part of this review summarizes the results of studies done in laboratory animals that support a facilitatory role of oxytocin in male and female sexual behavior and reveal mechanisms through which this ancient neuropeptide participates in concert with other neurotransmitters and neuropeptides in this complex function, which is fundamental for the species reproduction. The second part summarizes the results of studies done mainly with intranasal oxytocin in men and women with the aim to translate the results found in laboratory animals to humans. Unexpectedly, the results of these studies do not appear to confirm the facilitatory role of oxytocin found in male and female sexual behavior in animals, both in men and women. Possible explanations for the failure of oxytocin to improve sexual behavior in men and women and strategies to attempt to overcome this impasse are considered.
Collapse
|
16
|
Lorsung E, Karthikeyan R, Cao R. Biological Timing and Neurodevelopmental Disorders: A Role for Circadian Dysfunction in Autism Spectrum Disorders. Front Neurosci 2021; 15:642745. [PMID: 33776640 PMCID: PMC7994532 DOI: 10.3389/fnins.2021.642745] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a spectrum of neurodevelopmental disorders characterized by impaired social interaction and communication, as well as stereotyped and repetitive behaviors. ASDs affect nearly 2% of the United States child population and the worldwide prevalence has dramatically increased in recent years. The etiology is not clear but ASD is thought to be caused by a combination of intrinsic and extrinsic factors. Circadian rhythms are the ∼24 h rhythms driven by the endogenous biological clock, and they are found in a variety of physiological processes. Growing evidence from basic and clinical studies suggest that the dysfunction of the circadian timing system may be associated with ASD and its pathogenesis. Here we review the findings that link circadian dysfunctions to ASD in both experimental and clinical studies. We first introduce the organization of the circadian system and ASD. Next, we review physiological indicators of circadian rhythms that are found disrupted in ASD individuals, including sleep-wake cycles, melatonin, cortisol, and serotonin. Finally, we review evidence in epidemiology, human genetics, and biochemistry that indicates underlying associations between circadian regulation and the pathogenesis of ASD. In conclusion, we propose that understanding the functional importance of the circadian clock in normal and aberrant neurodevelopmental processes may provide a novel perspective to tackle ASD, and clinical treatments for ASD individuals should comprise an integrative approach considering the dynamics of daily rhythms in physical, mental, and social processes.
Collapse
Affiliation(s)
- Ethan Lorsung
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ramanujam Karthikeyan
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
17
|
Prepubertal and adult male rats differ in the degree and pattern of stress reactive neurons in brain regions that project to the paraventricular nucleus of the hypothalamus. Brain Res 2021; 1760:147371. [PMID: 33600828 DOI: 10.1016/j.brainres.2021.147371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
The hormonal stress response, mediated by the hypothalamic-pituitary-adrenal (HPA) axis, shows greater responsiveness to various stressors in prepubertal compared to adult animals. Though the implications of this age-related change are unclear, this heightened reactivity might contribute to the increase in stress-related dysfunctions observed during adolescence. Interestingly, prepubertal animals show greater stress-induced neural activation compared to adults in the paraventricular nucleus of the hypothalamus (PVN), the area responsible for initiating the hormonal stress response. Thus, it is possible that direct afferents to the PVN, such as the anterior bed nucleus of the stria terminalis (aBST), nucleus of the solitary tract (NTS), posterior BST (pBST), medial preoptic area (MPOA), and dorsomedial nucleus (DMN), contribute to this age-dependent change in reactivity. To investigate these possibilities, two separate experiments were conducted in prepubertal (30 days old) and adult (70 days old) male rats using the retrograde tracer, Fluoro-Gold (FG), and FOS immunohistochemistry to study neural connectivity and activation, respectively. Though there was no difference in the number or size of FG-positive cells in the PVN afferents we examined, we found a significantly greater number of stress-induced FOS-like-positive cells in the aBST and significantly fewer in the DMN in prepubertal compared to adult animals. Together these data suggest that functional, instead of structural, changes in nuclei that project to the PVN may lead to the greater PVN stress responsiveness observed prior to adolescence. Furthermore, these data indicate that nuclei known to directly modulate HPA stress responsiveness show differential activation patterns before and after adolescent development.
Collapse
|
18
|
Kim YB, Jung WW, Lee SW, Jin X, Kang HK, Hong EH, Min SS, Kim YS, Han HC, Colwell CS, Kim YI. Excessive maternal salt intake gives rise to vasopressin-dependent salt sensitivity of blood pressure in male offspring. J Mol Cell Cardiol 2021; 150:12-22. [PMID: 33011158 DOI: 10.1016/j.yjmcc.2020.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/26/2020] [Indexed: 01/11/2023]
Abstract
Salt sensitivity of blood pressure (SSBP) is a trait carrying strong prognostic implications for various cardiovascular diseases. To test the hypothesis that excessive maternal salt intake causes SSBP in offspring through a mechanism dependent upon arginine-vasopressin (AVP), we performed a series of experiments using offspring of the rat dams salt-loaded during pregnancy and lactation with 1.5% saline drink ("experimental offspring") and those with normal perinatal salt exposure ("control offspring"). Salt challenge, given at 7-8 weeks of age with either 2% saline drink (3 days) or 8% NaCl-containing chow (4 weeks), had little or no effect on systolic blood pressure (SBP) in female offspring, whereas the salt challenge significantly raised SBP in male offspring, with the magnitude of increase being greater in experimental, than control, rats. Furthermore, the salt challenge not only raised plasma AVP level more and caused greater depressor responses to V1a and V2 AVP receptor antagonists to occur in experimental, than control, males, but it also made GABA excitatory in a significant proportion of magnocellular AVP neurons of experimental males by depolarizing GABA equilibrium potential. The effect of the maternal salt loading on the salt challenge-elicited SBP response in male offspring was precluded by maternal conivaptan treatment (non-selective AVP receptor antagonist) during the salt-loading period, whereas it was mimicked by neonatal AVP treatment. These results suggest that the excessive maternal salt intake brings about SSBP in male offspring, both the programming and the expression of which depend on increased AVP secretion that may partly result from excitatory GABAergic action.
Collapse
Affiliation(s)
- Young-Beom Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Won Woo Jung
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Seung Won Lee
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Xiangyan Jin
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyung Kyung Kang
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Eun-Hwa Hong
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sun Seek Min
- Department of Physiology and Biophysics, Eulji University School of Medicine, Daejeon 34824, Republic of Korea
| | - Yoon-Sik Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hee Chul Han
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California School of Medicine, Los Angeles, CA, United States of America.
| | - Yang In Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
19
|
From Obesity to Hippocampal Neurodegeneration: Pathogenesis and Non-Pharmacological Interventions. Int J Mol Sci 2020; 22:ijms22010201. [PMID: 33379163 PMCID: PMC7796248 DOI: 10.3390/ijms22010201] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
High-caloric diet and physical inactivity predispose individuals to obesity and diabetes, which are risk factors of hippocampal neurodegeneration and cognitive deficits. Along with the adipose-hippocampus crosstalk, chronically inflamed adipose tissue secretes inflammatory cytokine could trigger neuroinflammatory responses in the hippocampus, and in turn, impairs hippocampal neuroplasticity under obese and diabetic conditions. Hence, caloric restriction and physical exercise are critical non-pharmacological interventions to halt the pathogenesis from obesity to hippocampal neurodegeneration. In response to physical exercise, peripheral organs, including the adipose tissue, skeletal muscles, and liver, can secret numerous exerkines, which bring beneficial effects to metabolic and brain health. In this review, we summarized how chronic inflammation in adipose tissue could trigger neuroinflammation and hippocampal impairment, which potentially contribute to cognitive deficits in obese and diabetic conditions. We also discussed the potential mechanisms underlying the neurotrophic and neuroprotective effects of caloric restriction and physical exercise by counteracting neuroinflammation, plasticity deficits, and cognitive impairments. This review provides timely insights into how chronic metabolic disorders, like obesity, could impair brain health and cognitive functions in later life.
Collapse
|
20
|
Chen C, Jiang Z, Fu X, Yu D, Huang H, Tasker JG. Astrocytes Amplify Neuronal Dendritic Volume Transmission Stimulated by Norepinephrine. Cell Rep 2020; 29:4349-4361.e4. [PMID: 31875545 PMCID: PMC7010232 DOI: 10.1016/j.celrep.2019.11.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/10/2019] [Accepted: 11/22/2019] [Indexed: 11/03/2022] Open
Abstract
In addition to their support role in neurotransmitter and ion buffering, astrocytes directly regulate neurotransmission at synapses via local bidirectional signaling with neurons. Here, we reveal a form of neuronal-astrocytic signaling that transmits retrograde dendritic signals to distal upstream neurons in order to activate recurrent synaptic circuits. Norepinephrine activates α1 adrenoreceptors in hypothalamic corticotropin-releasing hormone (CRH) neurons to stimulate dendritic release, which triggers an astrocytic calcium response and release of ATP; ATP stimulates action potentials in upstream glutamate and GABA neurons to activate recurrent excitatory and inhibitory synaptic circuits to the CRH neurons. Thus, norepinephrine activates a retrograde signaling mechanism in CRH neurons that engages astrocytes in order to extend dendritic volume transmission to reach distal presynaptic glutamate and GABA neurons, thereby amplifying volume transmission mediated by dendritic release.
Collapse
Affiliation(s)
- Chun Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - ZhiYing Jiang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Xin Fu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Diankun Yu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Hai Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
21
|
Pinna G. Allopregnanolone, the Neuromodulator Turned Therapeutic Agent: Thank You, Next? Front Endocrinol (Lausanne) 2020; 11:236. [PMID: 32477260 PMCID: PMC7240001 DOI: 10.3389/fendo.2020.00236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Graziano Pinna
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
22
|
Hamidovic A, Karapetyan K, Serdarevic F, Choi SH, Eisenlohr-Moul T, Pinna G. Higher Circulating Cortisol in the Follicular vs. Luteal Phase of the Menstrual Cycle: A Meta-Analysis. Front Endocrinol (Lausanne) 2020; 11:311. [PMID: 32582024 PMCID: PMC7280552 DOI: 10.3389/fendo.2020.00311] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/24/2020] [Indexed: 01/27/2023] Open
Abstract
Although results of animal research show that interactions between stress and sex hormones are implicated in the development of affective disorders in women, translation of these findings to patients has been scarce. As a basic step toward advancing this field of research, we analyzed findings of studies which reported circulating cortisol levels in healthy women in the follicular vs. luteal phase of the menstrual cycle. We deemed this analysis critical not only to advance our understanding of basic physiology, but also as an important contrast to the findings of future studies evaluating stress and sex hormones in women with affective disorders. We hypothesized that cortisol levels would be lower in the follicular phase based on the proposition that changes in levels of potent GABAergic neurosteroids, including allopregnanolone, during the menstrual cycle dynamically change in the opposite direction relative to cortisol levels. Implementing strict inclusion criteria, we compiled results of high-quality studies involving 778 study participants to derive a standardized mean difference between circulating cortisol levels in the follicular vs. luteal phase of the menstrual cycle. In line with our hypothesis, our meta-analysis found that women in the follicular phase had higher cortisol levels than women in the luteal phase, with an overall Hedges' g of 0.13 (p < 0.01) for the random effects model. No significant between-study difference was detected, with the level of heterogeneity in the small range. Furthermore, there was no evidence of publication bias. As cortisol regulation is a delicate process, we review some of the basic mechanisms by which progesterone, its potent metabolites, and estradiol regulate cortisol output and circulation to contribute to the net effect of higher cortisol in the follicular phase.
Collapse
Affiliation(s)
- Ajna Hamidovic
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Ajna Hamidovic
| | - Kristina Karapetyan
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Fadila Serdarevic
- Department of Epidemiology, Erasmus Medical Centre Rotterdam, Rotterdam, Netherlands
| | - So Hee Choi
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Tory Eisenlohr-Moul
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
23
|
Kania A, Sambak P, Gugula A, Szlaga A, Soltys Z, Blasiak T, Hess G, Rajfur Z, Blasiak A. Electrophysiology and distribution of oxytocin and vasopressin neurons in the hypothalamic paraventricular nucleus: a study in male and female rats. Brain Struct Funct 2019; 225:285-304. [DOI: 10.1007/s00429-019-01989-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022]
|
24
|
Egan AE, Seemiller LR, Packard AEB, Solomon MB, Ulrich-Lai YM. Palatable food reduces anxiety-like behaviors and HPA axis responses to stress in female rats in an estrous-cycle specific manner. Horm Behav 2019; 115:104557. [PMID: 31310760 PMCID: PMC6765440 DOI: 10.1016/j.yhbeh.2019.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022]
Abstract
Eating tasty foods dampens responses to stress - an idea reflected in the colloquial term 'comfort foods'. To study the neurobiological mechanisms by which palatable foods provide stress relief, we previously characterized a limited sucrose intake (LSI) paradigm in which male rats are given twice-daily access to 4 ml of 30% sucrose solution (vs. water as a control), and subsequently have reduced hypothalamic-pituitary-adrenocortical (HPA) axis responsivity and anxiety-related behaviors. Notably, women may be more prone to 'comfort feeding' than men, and this may vary across the menstrual cycle, suggesting the potential for important sex and estrous cycle differences. In support of this idea, LSI reduces HPA axis responses in female rats during the proestrus/estrus (P/E), as opposed to the diestrus 1/diestrus 2 (D1/D2) estrous cycle stage. However, the effect of LSI on anxiety-related behaviors in females remains unknown. Here we show that LSI reduced stress-related behaviors in female rats in the elevated plus-maze and restraint tests, but not in the open field test, though only during P/E. LSI also decreased the HPA axis stress response primarily during P/E, consistent with prior findings. Finally, cFos immunolabeling (a marker of neuronal activation) revealed that LSI increased post-restraint cFos in the central amygdala medial subdivision (CeM) and the bed nucleus of the stria terminalis posterior subnuclei (BSTp) exclusively during P/E. These results suggest that in female rats, palatable food reduces both behavioral and neuroendocrine stress responses in an estrous cycle-dependent manner, and the CeM and BSTp are implicated as potential mediators of these effects.
Collapse
Affiliation(s)
- Ann E Egan
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Laurel R Seemiller
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Amy E B Packard
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA; Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA.
| |
Collapse
|
25
|
Kim YB, Colwell CS, Kim YI. Long-term ionic plasticity of GABAergic signalling in the hypothalamus. J Neuroendocrinol 2019; 31:e12753. [PMID: 31166034 DOI: 10.1111/jne.12753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/23/2022]
Abstract
The hypothalamus contains a number of nuclei that subserve a variety of functions, including generation of circadian rhythms, regulation of hormone secretion and maintenance of homeostatic levels for a variety of physiological parameters. Within the hypothalamus, γ-amino-butyric acid (GABA) is one of the major neurotransmitters responsible for cellular communication. Although GABA most commonly serves as an inhibitory neurotransmitter, a growing body of evidence indicates that it can evoke post-synaptic excitation as a result of the active regulation of intracellular chloride concentration. In this review, we consider the evidence for this ionic plasticity of GABAergic synaptic transmission in five distinct cases in hypothalamic cell populations. We argue that this plasticity serves as part of the functional response to or is at least associated with dehydration, lactation, hypertension and stress. As such, GABA excitation should be considered as part of the core homeostatic mechanisms of the hypothalamus.
Collapse
Affiliation(s)
- Young-Beom Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Korea University, Seoul, Korea
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| | - Yang In Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Korea University, Seoul, Korea
| |
Collapse
|
26
|
Zhou JJ, Ma HJ, Shao J, Wei Y, Zhang X, Zhang Y, Li DP. Downregulation of Orexin Receptor in Hypothalamic Paraventricular Nucleus Decreases Blood Pressure in Obese Zucker Rats. J Am Heart Assoc 2019; 8:e011434. [PMID: 31213116 PMCID: PMC6662376 DOI: 10.1161/jaha.118.011434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Orexin and its receptors are critical regulating sympathetic vasomotor tone under physiological and pathophysiological conditions. Orexin receptor 1 (OXR1) is upregulated in the paraventricular nucleus (PVN) in the hypothalamus and contributes to increased sympathetic outflow in obese Zucker rats (OZRs). We hypothesized that silencing OXR1 expression in the PVN decreases heightened blood pressure and elevated sympathetic outflow in OZRs. Methods and Results An adeno‐associated virus (AAV) vector containing a short hairpin RNA (shRNA) targeting rat OXR1 was designed to silence OXR1 expression in the PVN. The AAV‐OXR1‐shRNA or scrambled shRNA was injected into the PVN in OZRs. The arterial blood pressure in free‐moving OZRs was continuously monitored by using a telemetry approach. The firing activity of spinally projecting PVN neurons in rat brain slices was recorded 3 to 4 weeks after injection of viral vectors. The free‐moving OZRs treated with AAV‐OXR1‐shRNA had markedly lower OXR1 expression and lower mean arterial blood pressure, heart rate, and ratio of low‐ to high‐frequency components of heart rate variability compared with OZRs treated with scrambled shRNA. Furthermore, AAV‐OXR1‐shRNA treatment markedly reduced renal sympathetic nerve activity and attenuated sympathoexcitatory response induced by microinjection of orexin A into the PVN. In addition, treatment with AAV‐OXR1‐shRNA substantially decreased the basal firing activity of spinally projecting PVN neurons in OZRs and attenuated the excitatory effect of orexin A on the firing activity of these neurons. Conclusions These data suggest that chronic downregulation of OXR1 expression in the PVN reduces sympathetic vasomotor tone in obesity‐related hypertension.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- 1 Division of Anesthesiology & Critical Care The University of Texas MD Anderson Cancer Center Houston TX
| | - Hui-Jie Ma
- 1 Division of Anesthesiology & Critical Care The University of Texas MD Anderson Cancer Center Houston TX.,2 Department of Physiology Hebei Medical University Shijiazhuang China
| | - Jianying Shao
- 1 Division of Anesthesiology & Critical Care The University of Texas MD Anderson Cancer Center Houston TX
| | - Yan Wei
- 3 Key Laboratory of Medical Electrophysiology Ministry of Education Institute of Cardiovascular Research Southwest Medical University Luzhou China
| | - Xiangjian Zhang
- 4 Hebei Collaborative Innovation Center for Cardiocerebrovascular Disease 2nd Hospital of Hebei Medical University Shijiazhuang China.,5 Department of Neurology 2nd Hospital of Hebei Medical University Shijiazhuang China
| | - Yi Zhang
- 2 Department of Physiology Hebei Medical University Shijiazhuang China.,4 Hebei Collaborative Innovation Center for Cardiocerebrovascular Disease 2nd Hospital of Hebei Medical University Shijiazhuang China
| | - De-Pei Li
- 1 Division of Anesthesiology & Critical Care The University of Texas MD Anderson Cancer Center Houston TX.,6 Department of Medicine Center for Precision Medicine University of Missouri Columbia MO
| |
Collapse
|
27
|
Gomes-de-Souza L, Benini R, Costa-Ferreira W, Crestani CC. GABA A but not GABA B receptors in the lateral hypothalamus modulate the tachycardic response to emotional stress in rats. Eur Neuropsychopharmacol 2019; 29:672-680. [PMID: 30878320 DOI: 10.1016/j.euroneuro.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/05/2019] [Accepted: 03/02/2019] [Indexed: 01/26/2023]
Abstract
The lateral hypothalamus (LH) has been described as one of the hypothalamic areas involved in the behavioral and physiological responses triggered by aversive stimuli. Previous studies indicated involvement of the LH in cardiovascular responses to stress. Despite this evidence, the local neurochemical mechanisms involved in LH control of stress responses is still poorly understood. Therefore, in the present study, we investigated the role of GABAergic neurotransmission within the LH in cardiovascular responses induced by an acute session of restraint stress in rats. For this, we evaluated the effect of bilateral microinjection of selective antagonists of either GABAA or GABAB receptors into the LH on arterial pressure increase, heart rate (HR) increase and reduction in tail skin temperature induced by restraint stress. We found that microinjection of the selective GABAA receptor antagonist SR95531 into the LH decreased the increase in HR caused by restraint stress, but without affecting the increase in arterial pressure increase or the reduction in tail skin temperature. Conversely, LH treatment with the selective GABAB receptor antagonist CGP35348 did not affect the restraint-evoked cardiovascular changes. These findings indicate that GABAergic neurotransmission in the LH, acting through activation of local GABAA receptors, plays a facilitatory role in the tachycardic response observed during aversive threats.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jau Km 01 (Campus Universitário), Campus Ville, 14800-903 Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jau Km 01 (Campus Universitário), Campus Ville, 14800-903 Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Willian Costa-Ferreira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jau Km 01 (Campus Universitário), Campus Ville, 14800-903 Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jau Km 01 (Campus Universitário), Campus Ville, 14800-903 Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
28
|
Sunstrum JK, Inoue W. Heterosynaptic modulation in the paraventricular nucleus of the hypothalamus. Neuropharmacology 2018; 154:87-95. [PMID: 30408488 DOI: 10.1016/j.neuropharm.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/18/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
Abstract
The stress response-originally described by Hans Selye as "the nonspecific response of the body to any demand made upon it"-is chiefly mediated by the hypothalamic-pituitary-adrenal (HPA) axis and is activated by diverse sensory stimuli that inform threats to homeostasis. The diversity of signals regulating the HPA axis is partly achieved by the complexity of afferent inputs that converge at the apex of the HPA axis: this apex is formed by a group of neurosecretory neurons that synthesize corticotropin-releasing hormone (CRH) in the paraventricular nucleus of the hypothalamus (PVN). The afferent synaptic inputs onto these PVN-CRH neurons originate from a number of brain areas, and PVN-CRH neurons respond to a long list of neurotransmitters/neuropeptides. Considering this complexity, an important question is how these diverse afferent signals independently and/or in concert influence the excitability of PVN-CRH neurons. While many of these inputs directly act on the postsynaptic PVN-CRH neurons for the summation of signals, accumulating data indicates that they also modulate each other's transmission in the PVN. This mode of transmission, termed heterosynaptic modulation, points to mechanisms through which the activity of a specific modulatory input (conveying a specific sensory signal) can up- or down-regulate the efficacy of other afferent synapses (mediating other stress modalities) depending on receptor expression for and spatial proximity to the heterosynaptic signals. Here, we review examples of heterosynaptic modulation in the PVN and discuss its potential role in the regulation of PVN-CRH neurons' excitability and resulting HPA axis activity. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Julia K Sunstrum
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Wataru Inoue
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
29
|
Khazaeipool Z, Wiederman M, Inoue W. Prostaglandin E 2 depresses GABA release onto parvocellular neuroendocrine neurones in the paraventricular nucleus of the hypothalamus via presynaptic receptors. J Neuroendocrinol 2018; 30:e12638. [PMID: 30084511 DOI: 10.1111/jne.12638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
Inflammation-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis and the ensuing release of anti-inflammatory glucocorticoids are critical for the fine-tuning of the inflammatory response. This immune-induced neuroendocrine response is in large part mediated by prostaglandin E2 (PGE2 ), the central actions of which ultimately translate into the excitation of parvocellular neuroendocrine cells (PNCs) in the hypothalamic paraventricular nucleus. However, the neuronal mechanisms by which PGE2 excites PNCs remain incompletely understood. In the present study, we report that PGE2 potently depresses GABAergic inhibitory synaptic transmission onto PNCs. Using whole-cell patch clamp recordings obtained from PNCs in ex vivo hypothalamic slices from rats, we found that bath application of PGE2 (0.01-100 μmol L-1 ) concentration-dependently decreased the amplitude of evoked inhibitory postsynaptic currents (eIPSCs) with maximum effects at 10 μmol L-1 . The PGE2 -mediated depression of eIPSCs had a rapid onset and was long-lasting, and also was accompanied by an increase in paired pulse ratio. In addition, PGE2 decreased the frequency but not the amplitude of both spontaneous IPSCs and miniature IPSCs. These results collectively indicate that PGE2 acts at a presynaptic locus to decrease the probability of GABA release. Using pharmacological approaches, we also demonstrated that the EP3 subtype of the PGE2 receptor mediated the actions of PGE2 on GABA synapses. Taken together, our results show that PGE2 , via actions of presynaptic EP3 receptors, potently depresses GABA release onto PNCs, providing a plausible mechanism for the disinhibition of HPA axis output during inflammation.
Collapse
Affiliation(s)
- Zahra Khazaeipool
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Meagan Wiederman
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Wataru Inoue
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
30
|
The metamorphosis of adolescent hormonal stress reactivity: A focus on animal models. Front Neuroendocrinol 2018; 49:43-51. [PMID: 29275000 PMCID: PMC5963973 DOI: 10.1016/j.yfrne.2017.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
Abstract
As adolescents transition from childhood to adulthood, many physiological and neurobehavioral changes occur. Shifts in neuroendocrine function are one such change, including the hormonal systems that respond to stressors. This review will focus on these hormonal changes, with a particular emphasis on the pubertal and adolescent maturation of the hypothalamic-pituitary-adrenal (HPA) axis. Furthermore, this review will concentrate on studies using animal models, as these model systems have contributed a great deal to our mechanistic understanding of how factors such as sex and experience with stressors shape hormonal reactivity during development. Continued study of the maturation of stress reactivity will undoubtedly shed much needed light on the stress-related vulnerabilities often associated with adolescence as well as providing us with possible strategies to mitigate these vulnerabilities. This area of research may lead to discoveries that enhance the well-being of adolescents, ultimately providing them with greater opportunities to mature into healthy adults.
Collapse
|
31
|
Johnson CS, Bains JS, Watts AG. Neurotransmitter diversity in pre-synaptic terminals located in the parvicellular neuroendocrine paraventricular nucleus of the rat and mouse hypothalamus. J Comp Neurol 2018; 526:1287-1306. [PMID: 29424419 DOI: 10.1002/cne.24407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/02/2023]
Abstract
Virtually all rodent neuroendocrine corticotropin-releasing-hormone (CRH) neurons are in the dorsal medial parvicellular (mpd) part of the paraventricular nucleus of the hypothalamus (PVH). They form the final common pathway for adrenocortical stress responses. Their activity is controlled by sets of GABA-, glutamate-, and catecholamine-containing inputs arranged in an interactive pre-motor network. Defining the nature and arrangement of these inputs can help clarify how stressor type and intensity information is conveyed to neuroendocrine neurons. Here we use immunohistochemistry with high-resolution 3-dimensional image analyses to examine the arrangement of single- and co-occurring GABA, glutamate, and catecholamine markers in synaptophysin-defined pre-synaptic terminals in the PVHmpd of unstressed rats and Crh-IRES-Cre;Ai14 transgenic mice: respectively, vesicular glutamate transporter 2 (VGluT2), vesicular GABA transporter (VGAT), dopamine β-hydroxylase (DBH), and phenylethanolamine n-methyltransferase (PNMT). Just over half of all PVHmpd pre-synaptic terminals contain VGAT, with slightly less containing VGluT2. The vast majority of terminal appositions with mouse CRH neurons occur non-somatically. However, there are significantly more somatic VGAT than VGluT2 appositions. In the rat PVHmpd, about five times as many pre-synaptic terminals contain PNMT than DBH only. However, because epinephrine release has never been detected in the PVH, PNMT terminals may functionally be noradrenergic not adrenergic. PNMT and VGluT2 co-occur in some pre-synaptic terminals indicating the potential for co-transmission of glutamate and norepinephrine. Collectively, these results provide a structural basis for how GABA/glutamate/catecholamine interactions enable adrenocortical responses to fast-onset interosensory stimuli, and more broadly, how combinations of PVH neurotransmitters and neuromodulators interact dynamically to control adrenocortical activity.
Collapse
Affiliation(s)
- Caroline S Johnson
- The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, and Neuroscience, Graduate Program, University of Southern California, Los Angeles, California
| | - Jaideep S Bains
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Alan G Watts
- The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, and Neuroscience, Graduate Program, University of Southern California, Los Angeles, California
| |
Collapse
|
32
|
Kim YB, Kim WB, Jung WW, Jin X, Kim YS, Kim B, Han HC, Block GD, Colwell CS, Kim YI. Excitatory GABAergic Action and Increased Vasopressin Synthesis in Hypothalamic Magnocellular Neurosecretory Cells Underlie the High Plasma Level of Vasopressin in Diabetic Rats. Diabetes 2018; 67:486-495. [PMID: 29212780 DOI: 10.2337/db17-1042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022]
Abstract
Diabetes mellitus (DM) is associated with increased plasma levels of arginine-vasopressin (AVP), which may aggravate hyperglycemia and nephropathy. However, the mechanisms by which DM may cause the increased AVP levels are not known. Electrophysiological recordings in supraoptic nucleus (SON) slices from streptozotocin (STZ)-induced DM rats and vehicle-treated control rats revealed that γ-aminobutyric acid (GABA) functions generally as an excitatory neurotransmitter in the AVP neurons of STZ rats, whereas it usually evokes inhibitory responses in the cells of control animals. Furthermore, Western blotting analyses of Cl- transporters in the SON tissues indicated that Na+-K+-2Cl- cotransporter isotype 1 (a Cl- importer) was upregulated and K+-Cl- cotransporter isotype 2 (KCC2; a Cl- extruder) was downregulated in STZ rats. Treatment with CLP290 (a KCC2 activator) significantly lowered blood AVP and glucose levels in STZ rats. Last, investigation that used rats expressing an AVP-enhanced green fluorescent protein fusion gene showed that AVP synthesis in AVP neurons was much more intense in STZ rats than in control rats. We conclude that altered Cl- homeostasis that makes GABA excitatory and enhanced AVP synthesis are important changes in AVP neurons that would increase AVP secretion in DM. Our data suggest that Cl- transporters in AVP neurons are potential targets of antidiabetes treatments.
Collapse
Affiliation(s)
- Young-Beom Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woong Bin Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won Woo Jung
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Xiangyan Jin
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoon Sik Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Byoungjae Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Chul Han
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gene D Block
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Yang In Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
Smithers HE, Terry JR, Brown JT, Randall AD. Aging-Associated Changes to Intrinsic Neuronal Excitability in the Bed Nucleus of the Stria Terminalis Is Cell Type-Dependent. Front Aging Neurosci 2017; 9:424. [PMID: 29311907 PMCID: PMC5744640 DOI: 10.3389/fnagi.2017.00424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022] Open
Abstract
Intrinsic neuronal excitability has been reported to change during normal aging. The bed nucleus of the stria terminalis (BNST), a limbic forebrain structure, is involved in fear, stress and anxiety; behavioral features that exhibit age-dependent properties. To examine the effect of aging on intrinsic neuronal properties in BNST we compared patch clamp recordings from cohorts of female mice at two ages, 3–4 months (Young) and 29–30 months (Aged) focusing on 2 types of BNST neurons. Aged Type I neurons exhibited a hyperpolarized resting membrane potential (RMP) of circa -80 mV compared to circa -70 mV in the Young. A key finding in this study is a hyper-excitability of Type II neurons with age reflected in an increase in firing frequency in response to depolarizing current injections; activation of Type II neurons is believed to dampen anxiety like responses. Such age-related changes in intrinsic neurophysiological function are likely to modulate how the limbic system, acting via BNST, shapes function in the HPA-axis.
Collapse
Affiliation(s)
- Hannah E Smithers
- Hatherly Laboratory, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - John R Terry
- College of Engineering, Mathematics and Physical Sciences, Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Jon T Brown
- Hatherly Laboratory, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Andrew D Randall
- Hatherly Laboratory, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
34
|
Henckens MJAG, Printz Y, Shamgar U, Dine J, Lebow M, Drori Y, Kuehne C, Kolarz A, Eder M, Deussing JM, Justice NJ, Yizhar O, Chen A. CRF receptor type 2 neurons in the posterior bed nucleus of the stria terminalis critically contribute to stress recovery. Mol Psychiatry 2017; 22:1691-1700. [PMID: 27550842 DOI: 10.1038/mp.2016.133] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is critical in mediating states of anxiety, and its dysfunction has been linked to stress-related mental disease. Although the anxiety-related role of distinct subregions of the anterior BNST was recently reported, little is known about the contribution of the posterior BNST (pBNST) to the behavioral and neuroendocrine responses to stress. Previously, we observed abnormal expression of corticotropin-releasing factor receptor type 2 (CRFR2) to be associated with post-traumatic stress disorder (PTSD)-like symptoms. Here, we found that CRFR2-expressing neurons within the pBNST send dense inhibitory projections to other stress-related brain regions (for example, the locus coeruleus, medial amygdala and paraventricular nucleus), implicating a prominent role of these neurons in orchestrating the neuroendocrine, autonomic and behavioral response to stressful situations. Local CRFR2 activation by urocortin 3 depolarized the cells, increased the neuronal input resistance and increased firing of action potentials, indicating an enhanced excitability. Furthermore, we showed that CRFR2-expressing neurons within the pBNST are critically involved in the modulation of the behavioral and neuroendocrine response to stress. Optogenetic activation of CRFR2 neurons in the pBNST decreased anxiety, attenuated the neuroendocrine stress response, ameliorated stress-induced anxiety and impaired the fear memory for the stressful event. Moreover, activation following trauma exposure reduced the susceptibility for PTSD-like symptoms. Optogenetic inhibition of pBNST CRFR2 neurons yielded opposite effects. These data indicate the relevance of pBNST activity for adaptive stress recovery.
Collapse
Affiliation(s)
- M J A G Henckens
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Y Printz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - U Shamgar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - J Dine
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Lebow
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Y Drori
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - C Kuehne
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Kolarz
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Eder
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - J M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - N J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - O Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - A Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
35
|
Albrechet-Souza L, Viola TW, Grassi-Oliveira R, Miczek KA, de Almeida RMM. Corticotropin Releasing Factor in the Bed Nucleus of the Stria Terminalis in Socially Defeated and Non-stressed Mice with a History of Chronic Alcohol Intake. Front Pharmacol 2017; 8:762. [PMID: 29118713 PMCID: PMC5660971 DOI: 10.3389/fphar.2017.00762] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/10/2017] [Indexed: 11/21/2022] Open
Abstract
Stress exposure has been identified as one risk factor for alcohol abuse that may facilitate the transition from social or regulated use to the development of alcohol dependence. Preclinical studies have shown that dysregulation of the corticotropin releasing factor (CRF) neurotransmission has been implicated in stress-related psychopathologies such as depression and anxiety, and may affect alcohol consumption. The bed nucleus of the stria terminalis (BNST) contains CRF-producing neurons which seem to be sensitive to stress. In this study, adult male C57BL/6 mice previously defeated in resident-intruder confrontations were evaluated in the elevated plus-maze and tail suspension test. Mice were also tested for sweet solution intake before and after social stress. After having had continuous access to ethanol (20% weight/volume) for 4 weeks, control and stressed mice had CRF type 1 (CRFR1) or type 2 (CRFR2) receptor antagonists infused into the BNST and then had access to ethanol for 24 h. In separate cohorts of control and stressed mice, we assessed mRNA levels of BNST CRF, CRFR1 and CRFR2. Stressed mice increased their intake of sweet solution after ten sessions of social defeat and showed reduced activity in the open arms of the elevated plus-maze. When tested for ethanol consumption, stressed mice persistently drank significantly more than controls during the 4 weeks of access. Also, social stress induced higher BNST CRF mRNA levels. The selective blockade of BNST CRFR1 with CP376,395 effectively reduced alcohol drinking in non-stressed mice, whereas the selective CRFR2 antagonist astressin2B produced a dose-dependent increase in ethanol consumption in both non-stressed controls and stressed mice. The 10-day episodic defeat stress used here elicited anxiety- but not depressive-like behaviors, and promoted an increase in ethanol drinking. CRF-CRFR1 signaling in the BNST seems to underlie ethanol intake in non-stressed mice, whereas CRFR2 modulates alcohol consumption in both socially defeated and non-stressed mice with a history of chronic intake.
Collapse
Affiliation(s)
- Lucas Albrechet-Souza
- Institute of Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thiago W Viola
- Developmental Cognitive Neuroscience Lab (DCNL) and Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL) and Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Klaus A Miczek
- Departments of Psychology and Neuroscience, Tufts University, Medford, MA, United States
| | - Rosa M M de Almeida
- Institute of Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
36
|
Yeganeh F, Nasimi A, Hatam M. Interaction of GABA and norepinephrine in the lateral division of the bed nucleus of the stria terminals in anesthetized rat, correlating single-unit and cardiovascular responses. Neuroscience 2017; 356:255-264. [PMID: 28576724 DOI: 10.1016/j.neuroscience.2017.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/23/2022]
Abstract
The bed nucleus of the stria terminalis (BST) consists of multiple anatomically distinct nuclei. The lateral division, which receives dense noradrenergic innervation, has been implicated in cardiovascular regulation and modulation of responses to stress. This study is performed to identify the cardiovascular and single-unit responses of the lateral BST to norepinephrine (NE), involved adrenoceptors, and possible interaction with GABAergic system of the BST in urethane-anesthetized rats. NE, adrenoreceptor antagonists, and GABAA antagonist were microinjected into the lateral division of BST, while arterial pressure (AP), heart rate (HR), and single-unit responses were simultaneously recorded. NE microinjected into the lateral division of BST produced depressor and bradycardic responses. The decrease in AP and HR to NE was blocked by prazosin, an α1-adrenoreceptor antagonist, but not by yohimbine, an α2 antagonist. Furthermore, injections of the GABAA receptor antagonist, bicuculline methiodide (BMI), into the lateral BST abolished the NE-induced depressor and bradycardic responses. We also observed single-unit responses consisting of excitatory and inhibitory responses correlated with cardiovascular function to the microinjection of NE. In conclusion, these data provide the first evidence that microinjection of NE in the lateral division of BST produces depressor and bradycardic responses in urethane-anesthetized rat. The depressor and bradycardiac response are mediated by local α1- but not α2-adrenoceptors. α1-AR activates the GABAergic system within the BST, which in turn produces depressor and bradycardic responses.
Collapse
Affiliation(s)
- Fahimeh Yeganeh
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nasimi
- Dept. of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Hatam
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
37
|
Loewen SP, Ferguson AV. Adropin acts in the rat paraventricular nucleus to influence neuronal excitability. Am J Physiol Regul Integr Comp Physiol 2017; 312:R511-R519. [PMID: 28100478 DOI: 10.1152/ajpregu.00517.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 01/28/2023]
Abstract
Adropin is a peptide hormone with cardiovascular and metabolic roles in the periphery, including effects on glucose and lipid homeostasis. Central administration of adropin has been shown to inhibit water intake in rats; however, the site at which central adropin acts has yet to be elucidated. The hypothalamic paraventricular nucleus (PVN), a critical autonomic control center, plays essential roles in the control of fluid balance, energy homeostasis, and cardiovascular regulation, and is, therefore, a potential target for centrally acting adropin. In the present study, we used whole cell patch-clamp techniques to examine the effects of adropin on the excitability of neurons within the PVN. All three neuronal subpopulations (magnocellular, preautonomic, and neuroendocrine) in the PVN were found to be responsive to bath-application of 10 nM adropin, which elicited responses in 68% of cells tested (n = 57/84). The majority of cells (58%) depolarized (5.2 ± 0.3 mV; n = 49) in response to adropin, whereas the remaining responsive cells (10%) hyperpolarized (-3.4 ± 0.5 mV; n = 8), effects that were shown to be concentration-dependent. Additionally, responses were maintained in the presence of 1 μM TTX in 75% of cells tested (n = 9/12), and voltage-clamp analysis revealed that adropin had no effect on the amplitude or frequency of excitatory or inhibitory postsynaptic currents (EPSCs and IPSCs) in PVN neurons, suggesting the peptide exerts direct, postsynaptic actions on these neurons. Collectively, these findings suggest central adropin may exert its physiological effects through direct actions on neurons in the PVN.
Collapse
Affiliation(s)
- Spencer P Loewen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
38
|
de Kloet AD, Pitra S, Wang L, Hiller H, Pioquinto DJ, Smith JA, Sumners C, Stern JE, Krause EG. Angiotensin Type-2 Receptors Influence the Activity of Vasopressin Neurons in the Paraventricular Nucleus of the Hypothalamus in Male Mice. Endocrinology 2016; 157:3167-80. [PMID: 27267713 PMCID: PMC4967126 DOI: 10.1210/en.2016-1131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is known that angiotensin-II acts at its type-1 receptor to stimulate vasopressin (AVP) secretion, which may contribute to angiotensin-II-induced hypertension. Less well known is the impact of angiotensin type-2 receptor (AT2R) activation on these processes. Studies conducted in a transgenic AT2R enhanced green fluorescent protein reporter mouse revealed that although AT2R are not themselves localized to AVP neurons within the paraventricular nucleus of the hypothalamus (PVN), they are localized to neurons that extend processes into the PVN. In the present set of studies, we set out to characterize the origin, phenotype, and function of nerve terminals within the PVN that arise from AT2R-enhanced green fluorescent protein-positive neurons and synapse onto AVP neurons. Initial experiments combined genetic and neuroanatomical techniques to determine that γ-aminobutyric acid (GABA)ergic neurons derived from the peri-PVN area containing AT2R make appositions onto AVP neurons within the PVN, thereby positioning AT2R to negatively regulate neuroendocrine secretion. Subsequent patch-clamp electrophysiological experiments revealed that selective activation of AT2R in the peri-PVN area using compound 21 facilitates inhibitory (ie, GABAergic) neurotransmission and leads to reduced activity of AVP neurons within the PVN. Final experiments determined the functional impact of AT2R activation by testing the effects of compound 21 on plasma AVP levels. Collectively, these experiments revealed that AT2R expressing neurons make GABAergic synapses onto AVP neurons that inhibit AVP neuronal activity and suppress baseline systemic AVP levels. These findings have direct implications in the targeting of AT2R for disorders of AVP secretion and also for the alleviation of high blood pressure.
Collapse
|
39
|
Abstract
The renin-angiotensin system is an enzymatic cascade by which angiotensinogen is cleaved by renin and then by angiotensin-converting enzyme to produce angiotensin II (Ang II) and subsequently other angiotensins. Biochemical and neurophysiological studies have documented the presence of the reninangiotensin system and specific Ang II receptors in the brain. Also, circulating Ang II can exert some of its actions, such as blood pressure control and body fluid homeostasis, through stimulation of Ang II receptors in the circumventricular organs that lack a normal blood-brain barrier. In addition to some of the post-synaptic effects of Ang II, recent studies have revealed that Ang II regulates synaptic transmission in several brain regions, especially the nucleus of the solitary tract, hypothalamic paraventricular nucleus, and hippocampus. This review summarizes emerging new evidence on the effect of brain Ang II on glutamatergic and GABAergic synaptic transmission. This previously unrecognized presynaptic action of Ang II is important for the control of neuronal excitability and many physiological functions including autonomic control, hormone secretion, and memory. Future research on the role of brain-derived Ang II and its receptors in synaptic transmission will further enhance our understanding of the cellular mechanisms of Ang II and the relationship between the renin-angiotensin system and brain functions.
Collapse
Affiliation(s)
- Hui-Lin Pan
- Department of Anesthesiology, Pennsylvania State University College of Medicine, Hershey 17033-0850, USA.
| |
Collapse
|
40
|
Otgon-Uul Z, Suyama S, Onodera H, Yada T. Optogenetic activation of leptin- and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus. Mol Metab 2016; 5:709-715. [PMID: 27656408 PMCID: PMC5021668 DOI: 10.1016/j.molmet.2016.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The dorsomedial hypothalamus (DMH) has been considered an orexigenic nucleus, since the DMH lesion reduced food intake and body weight and induced resistance to diet-induced obesity. The DMH expresses feeding regulatory neuropeptides and receptors including neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART), cholecystokinin (CCK), leptin receptor, and melanocortin 3/4 receptors. However, the principal neurons generating the orexigenic function in the DMH remain to be defined. This study aimed to clarify the role of the DMH GABAergic neurons in feeding regulation by using optogenetics and electrophysiological techniques. METHODS We generated the mice expressing ChRFR-C167A, a bistable chimeric channelrhodopsin, selectively in GABAergic neurons of DMH via locally injected adeno-associated virus 2. Food intake after optogenetic activation of DMH GABAergic neurons was measured. Electrophysiological properties of DMH GABAergic neurons were measured using slice patch clamp. RESULTS Optogenetic activation of DMH GABAergic neurons promoted food intake. Leptin hyperpolarized and lowering glucose depolarized half of DMH GABAergic neurons, suggesting their orexigenic property. Optical activation of axonal terminals of DMH GABAergic neurons at the paraventricular nucleus of hypothalamus (PVN), where anorexigenic neurons are localized, increased inhibitory postsynaptic currents on PVN neurons and promoted food intake. CONCLUSION DMH GABAergic neurons are regulated by metabolic signals leptin and glucose and, once activated, promote food intake via inhibitory synaptic transmission to PVN.
Collapse
Affiliation(s)
- Zesemdorj Otgon-Uul
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan
| | - Shigetomo Suyama
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan
| | - Hiroshi Onodera
- Photon Science Center of the University of Tokyo, Department of Electrical Engineering of the University of Tokyo, Tokyo, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan.
| |
Collapse
|
41
|
Romeo RD, Patel R, Pham L, So VM. Adolescence and the ontogeny of the hormonal stress response in male and female rats and mice. Neurosci Biobehav Rev 2016; 70:206-216. [PMID: 27235079 DOI: 10.1016/j.neubiorev.2016.05.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/11/2016] [Accepted: 05/22/2016] [Indexed: 01/24/2023]
Abstract
Adolescent development is marked by many changes in neuroendocrine function, resulting in both immediate and long-term influences on an individual's physiology and behavior. Stress-induced hormonal responses are one such change, with adolescent animals often showing different patterns of hormonal reactivity following a stressor compared with adults. This review will describe the unique ways in which adolescent animals respond to a variety of stressors and how these adolescent-related changes in hormonal responsiveness can be further modified by the sex and previous experience of the individual. Potential central and peripheral mechanisms that contribute to these developmental shifts in stress reactivity are also discussed. Finally, the short- and long-term programming effects of chronic stress exposure during adolescence on later adult hormonal responsiveness are also examined. Though far from a clear understanding of the neurobehavioral consequences of these adolescent-related shifts in stress reactivity, continued study of developmental changes in stress-induced hormonal responses may shed light on the increased vulnerability to physical and psychological dysfunctions that often accompany a stressful adolescence.
Collapse
Affiliation(s)
- Russell D Romeo
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, United States.
| | - Ravenna Patel
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, United States
| | - Laurie Pham
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, United States
| | - Veronica M So
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, United States
| |
Collapse
|
42
|
Abstract
The hypothalamo-pituitary-adrenal axis (HPA) is responsible for stimulation of adrenal corticosteroids in response to stress. Negative feedback control by corticosteroids limits pituitary secretion of corticotropin, ACTH, and hypothalamic secretion of corticotropin-releasing hormone, CRH, and vasopressin, AVP, resulting in regulation of both basal and stress-induced ACTH secretion. The negative feedback effect of corticosteroids occurs by action of corticosteroids at mineralocorticoid receptors (MR) and/or glucocorticoid receptors (GRs) located in multiple sites in the brain and in the pituitary. The mechanisms of negative feedback vary according to the receptor type and location within the brain-hypothalmo-pituitary axis. A very rapid nongenomic action has been demonstrated for GR action on CRH neurons in the hypothalamus, and somewhat slower nongenomic effects are observed in the pituitary or other brain sites mediated by GR and/or MR. Corticosteroids also have genomic actions, including repression of the pro-opiomelanocortin (POMC) gene in the pituitary and CRH and AVP genes in the hypothalamus. The rapid effect inhibits stimulated secretion, but requires a rapidly rising corticosteroid concentration. The more delayed inhibitory effect on stimulated secretion is dependent on the intensity of the stimulus and the magnitude of the corticosteroid feedback signal, but also the neuroanatomical pathways responsible for activating the HPA. The pathways for activation of some stressors may partially bypass hypothalamic feedback sites at the CRH neuron, whereas others may not involve forebrain sites; therefore, some physiological stressors may override or bypass negative feedback, and other psychological stressors may facilitate responses to subsequent stress.
Collapse
|
43
|
Busnardo C, Crestani CC, Fassini A, Resstel LBM, Corrêa FMA. NMDA and non-NMDA glutamate receptors in the paraventricular nucleus of the hypothalamus modulate different stages of hemorrhage-evoked cardiovascular responses in rats. Neuroscience 2016; 320:149-59. [PMID: 26861418 DOI: 10.1016/j.neuroscience.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Here we report the involvement of N-Methyl-d-Aspartate (NMDA) and non-NMDA glutamate receptors from the paraventricular nucleus of the hypothalamus (PVN) in the mediation of cardiovascular changes observed during hemorrhage and post-bleeding periods. In addition, the present study provides further evidence of the involvement of circulating vasopressin and cardiac sympathetic activity in cardiovascular responses to hemorrhage. Systemic treatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (50 μg/kg, i.v.) increased the latency to the onset of hypotension during hemorrhage and slowed post-bleeding recovery of blood pressure. Systemic treatment with the β1-adrenergic receptor antagonist atenolol (1 mg/kg, i.v.) also increased the latency to the onset of hypotension during hemorrhage. Moreover, atenolol reversed the hemorrhage-induced tachycardia into bradycardia. Bilateral microinjection of the selective NMDA glutamate receptor antagonist LY235959 (2 nmol/100 nL) into the PVN blocked the hypotensive response to hemorrhage and reduced the tachycardia during the post-hemorrhage period. Systemic treatment with dTyr(CH2)5(Me)AVP inhibited the effect of LY235959 on hemorrhage-induced hypotension, without affecting the post-bleeding tachycardia. PVN treatment with the selective non-NMDA receptor antagonist NBQX (2 nmol/100 nL) reduced the recovery of blood pressure to normal levels in the post-bleeding phase and reduced hemorrhage-induced tachycardia. Combined blockade of both NMDA and non-NMDA glutamate receptors in the PVN completely abolished the hypotensive response in the hemorrhage period and reduced the tachycardiac response in the post-hemorrhage period. These results indicate that local PVN glutamate neurotransmission is involved in the neural pathway mediating cardiovascular responses to hemorrhage, via an integrated control involving autonomic nervous system activity and vasopressin release into the circulation.
Collapse
Affiliation(s)
- C Busnardo
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - C C Crestani
- School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil
| | - A Fassini
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F M A Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
44
|
Vasopressin and sympathetic system mediate the cardiovascular effects of the angiotensin II in the bed nucleus of the stria terminalis in rat. Neurosci Res 2016; 108:34-9. [PMID: 26820216 DOI: 10.1016/j.neures.2016.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 12/12/2015] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Abstract
The bed nucleus of the stria terminalis (BST) is involved in cardiovascular regulation. The angiotensin II (Ang II) receptor (AT1), and angiotensinogen were found in the BST. In our previous study we found that microinjection of Ang II into the BST produced a pressor response. This study was performed to find the mechanisms mediating this response in anesthetized rats. Ang II was microinjected into the BST and the cardiovascular responses were re-tested after systemic injection of a blocker of autonomic or vasopressin V1 receptor. The ganglionic nicotinic receptor blocker, hexamethonium dichloride, attenuated the pressor response to Ang II, indicating that the cardiovascular sympathetic system is involved in the pressor effect of Ang II. A selective vasopressin V1 receptor antagonist greatly attenuated the pressor effect of Ang II, indicating that the Ang II increases the arterial pressure via stimulation of vasopressin release as well. In conclusion, in the BST, Ang II as a neurotransmitter increases blood pressure by exciting cardiovascular sympathetic system and directly or indirectly causing vasopressin to release into bloodstream by VPN. This is an interesting new finding that not only circulating Ang II but also brain Ang II makes vasopressin release.
Collapse
|
45
|
The role of the AMPA receptor and 5-HT3 receptor on aggressive behavior and depressive-like symptoms in chronic social isolation-reared mice. Physiol Behav 2016; 153:70-83. [DOI: 10.1016/j.physbeh.2015.10.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/25/2015] [Accepted: 10/26/2015] [Indexed: 12/30/2022]
|
46
|
Luchtman DW, Chee MJS, Doslikova B, Marks DL, Baracos VE, Colmers WF. Defense of Elevated Body Weight Setpoint in Diet-Induced Obese Rats on Low Energy Diet Is Mediated by Loss of Melanocortin Sensitivity in the Paraventricular Hypothalamic Nucleus. PLoS One 2015; 10:e0139462. [PMID: 26444289 PMCID: PMC4596859 DOI: 10.1371/journal.pone.0139462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/12/2015] [Indexed: 01/15/2023] Open
Abstract
Some animals and humans fed a high-energy diet (HED) are diet-resistant (DR), remaining as lean as individuals who were naïve to HED. Other individuals become obese during HED exposure and subsequently defend the obese weight (Diet-Induced Obesity- Defenders, DIO-D) even when subsequently maintained on a low-energy diet. We hypothesized that the body weight setpoint of the DIO-D phenotype resides in the hypothalamic paraventricular nucleus (PVN), where anorexigenic melanocortins, including melanotan II (MTII), increase presynaptic GABA release, and the orexigenic neuropeptide Y (NPY) inhibits it. After prolonged return to low-energy diet, GABA inputs to PVN neurons from DIO-D rats exhibited highly attenuated responses to MTII compared with those from DR and HED-naïve rats. In DIO-D rats, melanocortin-4 receptor expression was significantly reduced in dorsomedial hypothalamus, a major source of GABA input to PVN. Unlike melanocortin responses, NPY actions in PVN of DIO-D rats were unchanged, but were reduced in neurons of the ventromedial hypothalamic nucleus; in PVN of DR rats, NPY responses were paradoxically increased. MTII-sensitivity was restored in DIO-D rats by several weeks’ refeeding with HED. The loss of melanocortin sensitivity restricted to PVN of DIO-D animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint.
Collapse
Affiliation(s)
- Dirk W. Luchtman
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Melissa J. S. Chee
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Barbora Doslikova
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Portland, Oregon, United States of America
| | - Vickie E. Baracos
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - William F. Colmers
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
47
|
Bains JS, Wamsteeker Cusulin JI, Inoue W. Stress-related synaptic plasticity in the hypothalamus. Nat Rev Neurosci 2015; 16:377-88. [PMID: 26087679 DOI: 10.1038/nrn3881] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stress necessitates an immediate engagement of multiple neural and endocrine systems. However, exposure to a single stressor causes adaptive changes that modify responses to subsequent stressors. Recent studies examining synapses onto neuroendocrine cells in the paraventricular nucleus of the hypothalamus demonstrate that stressful experiences leave indelible marks that alter the ability of these synapses to undergo plasticity. These adaptations include a unique form of metaplasticity at glutamatergic synapses, bidirectional changes in endocannabinoid signalling and bidirectional changes in strength at GABAergic synapses that rely on distinct temporal windows following stress. This rich repertoire of plasticity is likely to represent an important building block for dynamic, experience-dependent modulation of neuroendocrine stress adaptation.
Collapse
Affiliation(s)
- Jaideep S Bains
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jaclyn I Wamsteeker Cusulin
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Wataru Inoue
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
48
|
Kafami M, Nasimi A. Cardiovascular and single-unit responses to microinjection of angiotensin II into the bed nucleus of the stria terminalis in rat. Neuroscience 2015; 300:418-24. [PMID: 26026681 DOI: 10.1016/j.neuroscience.2015.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/06/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
The bed nucleus of the stria terminalis (BST) is part of the limbic system located in the rostral forebrain. BST is involved in behavioral, neuroendocrine and autonomic functions, including cardiovascular regulation. The angiotensin II (Ang II) receptor, AT1, was found in the BST, however its effects on the cardiovascular system and on single-unit responses have not been studied yet. In the present study, Ang II was microinjected into the BST of anesthetized rats and cardiovascular and single-unit responses were recorded simultaneously. Furthermore the responses were re-tested after the microinjection of a blocker of the AT1 receptor, losartan, into the BST. We found that microinjection of Ang II into the BST produced a pressor response of 11±1mmHg for a duration of 2-8min. Ang II had no consistent effect on heart rate. It also produced two types of single-unit responses in the BST, short excitatory and long inhibitory. Blockade of AT1 receptors abolished both the cardiovascular and single-unit responses, indicating that the responses were mediated through AT1 receptors. These findings imply that Ang II may be utilized as a neurotransmitter and may play a role in returning blood pressure toward normal during hypotension.
Collapse
Affiliation(s)
- M Kafami
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Nasimi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
49
|
Yeganeh F, Ranjbar A, Hatam M, Nasimi A. Mechanism of the cardiovascular effects of the GABAA receptors of the ventral tegmental area of the rat brain. Neurosci Lett 2015; 600:193-8. [PMID: 26079327 DOI: 10.1016/j.neulet.2015.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
The ventral tegmental area (VTA) contains GABA terminals involved in the regulation of the cardiovascular system. Previously, we demonstrated that blocking GABAA but not GABAB receptors produced a pressor response accompanied by marked bradycardia. This study was performed to find the possible mechanisms involved in these responses by blocking ganglionic nicotinic receptors, peripheral muscarinic receptors or peripheral V1 vasopressin receptors. Experiments were performed on urethane anesthetized male Wistar rats. Drugs were microinjected unilaterally into the VTA (100 nl). The average changes in mean arterial pressure (MAP) and heart rate (HR) were compared between pre- and post-treatment using paired t-test. Injection of bicuculline methiodide (BMI), a GABAA antagonist, into the VTA caused a significant increase in MAP and a decrease in HR. Administration (i.v.) of the nicotinic receptor blocker, hexamethonium, enhanced the pressor response but abolished the bradycardic response to BMI, which ruled out involvement of the sympathetic nervous system. Blockade of the peripheral muscarinic receptors by homatropine (i.v.) abolished the bradycardic effect of BMI, but had no effect on the pressor response, indicating that bradycardia was produced by the parasympathetic outflow to the heart. Both the pressor and bradycardic responses to BMI were blocked by V1 receptor antagonist (i.v.), indicating that administration of BMI in the VTA disinhibited the release of vasopressin into the circulation. In conclusion, we demonstrated that GABAergic mechanism of the VTA exerts a tonic inhibition on vasopressin release through activation of GABAA receptors. The sympathetic system is not involved in the decrease of blood pressure by GABA of the VTA.
Collapse
Affiliation(s)
- Fahimeh Yeganeh
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Ranjbar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Hatam
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Nasimi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
50
|
Abstract
Stress in life is unavoidable, affecting everyone on a daily basis. Psychological stress in mammals triggers a rapidly organized response for survival, but it may also cause a variety of behavioral disorders and damage cognitive function. Stress is associated with biases in cognitive processing; some of the most enduring memories are formed by traumatic events. Our understanding of how cognition is shaped by stress is still relatively primitive; however, evidence is rapidly accumulating that the 'mature' brain has a great capacity for plasticity and that there are numerous ways through which pharmacological therapeutics could rescue cognitive function and regain cognitive balance. In this review, we discuss recent advances in our understanding of the interplay between stress and cognitive processes and potential therapeutic approaches to stress-related behavioral and cognitive disorders.
Collapse
|