1
|
Gergues MM, Lalani LK, Kheirbek MA. Identifying dysfunctional cell types and circuits in animal models for psychiatric disorders with calcium imaging. Neuropsychopharmacology 2024; 50:274-284. [PMID: 39122815 PMCID: PMC11525937 DOI: 10.1038/s41386-024-01942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
A central goal of neuroscience is to understand how the brain transforms external stimuli and internal bodily signals into patterns of activity that underlie cognition, emotional states, and behavior. Understanding how these patterns of activity may be disrupted in mental illness is crucial for developing novel therapeutics. It is well appreciated that psychiatric disorders are complex, circuit-based disorders that arise from dysfunctional activity patterns generated in discrete cell types and their connections. Recent advances in large-scale, cell-type specific calcium imaging approaches have shed new light on the cellular, circuit, and network-level dysfunction in animal models for psychiatric disorders. Here, we highlight a series of recent findings over the last ~10 years from in vivo calcium imaging studies that show how aberrant patterns of activity in discrete cell types and circuits may underlie behavioral deficits in animal models for several psychiatric disorders, including depression, anxiety, autism spectrum disorders, and schizophrenia. These advances in calcium imaging in pre-clinical models demonstrate the power of cell-type-specific imaging tools in understanding the underlying dysfunction in cell types, activity patterns, and neural circuits that may contribute to disease and provide new blueprints for developing more targeted therapeutics and treatment strategies.
Collapse
Affiliation(s)
- Mark M Gergues
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lahin K Lalani
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mazen A Kheirbek
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
- Center for Integrative Neuroscience, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Chen YN, Kostka JK. Beyond anosmia: olfactory dysfunction as a common denominator in neurodegenerative and neurodevelopmental disorders. Front Neurosci 2024; 18:1502779. [PMID: 39539496 PMCID: PMC11557544 DOI: 10.3389/fnins.2024.1502779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Olfactory dysfunction has emerged as a hallmark feature shared among several neurological conditions, including both neurodevelopmental and neurodegenerative disorders. While diseases of both categories have been extensively studied for decades, their association with olfaction has only recently gained attention. Olfactory deficits often manifest already during prodromal stages of these diseases, yet it remains unclear whether common pathophysiological changes along olfactory pathways cause such impairments. Here we probe into the intricate relationship between olfactory dysfunction and neurodegenerative and neurodevelopmental disorders, shedding light on their commonalities and underlying mechanisms. We begin by providing a brief overview of the olfactory circuit and its connections to higher-associated brain areas. Additionally, we discuss olfactory deficits in these disorders, focusing on potential common mechanisms that may contribute to olfactory dysfunction across both types of disorders. We further debate whether olfactory deficits contribute to the disease propagation or are simply an epiphenomenon. We conclude by emphasizing the significance of olfactory function as a potential pre-clinical diagnostic tool to identify individuals with neurological disorders that offers the opportunity for preventive intervention before other symptoms manifest.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Katharina Kostka
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
4
|
Fok AHK, Huang Y, So BWL, Zheng Q, Tse CSC, Li X, Wong KKY, Huang J, Lai KO, Lai CSW. KIF5B plays important roles in dendritic spine plasticity and dendritic localization of PSD95 and FMRP in the mouse cortex in vivo. Cell Rep 2024; 43:113906. [PMID: 38451812 DOI: 10.1016/j.celrep.2024.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Kinesin 1 (KIF5) is one major type of motor protein in neurons, but its members' function in the intact brain remains less studied. Using in vivo two-photon imaging, we find that conditional knockout of Kif5b (KIF5B cKO) in CaMKIIα-Cre-expressing neurons shows heightened turnover and lower stability of dendritic spines in layer 2/3 pyramidal neurons with reduced spine postsynaptic density protein 95 acquisition in the mouse cortex. Furthermore, the RNA-binding protein fragile X mental retardation protein (FMRP) is translocated to the proximity of newly formed spines several hours before the spine formation events in vivo in control mice, but this preceding transport of FMRP is abolished in KIF5B cKO mice. We further find that FMRP is localized closer to newly formed spines after fear extinction, but this learning-dependent localization is disrupted in KIF5B cKO mice. Our findings provide the crucial in vivo evidence that KIF5B is involved in the dendritic targeting of synaptic proteins that underlies dendritic spine plasticity.
Collapse
Affiliation(s)
- Albert Hiu Ka Fok
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yuhua Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Beth Wing Lam So
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Qiyu Zheng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chun Sing Carlos Tse
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoyang Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Kin-Yip Wong
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Jiandong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China; State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Hong Kong SAR, China
| | - Kwok-On Lai
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China; Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong SAR, China.
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Cui W, Chen C, Gong L, Wen J, Yang S, Zheng M, Gao B, You J, Lin X, Hao Y, Chen Z, Wu Z, Gao L, Tang J, Yuan Z, Sun X, Jing L, Wen G. PGAM5 knockout causes depressive-like behaviors in mice via ATP deficiency in the prefrontal cortex. CNS Neurosci Ther 2024; 30:e14377. [PMID: 37622283 PMCID: PMC10848067 DOI: 10.1111/cns.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) affects about 17% population in the world. Although abnormal energy metabolism plays an important role in the pathophysiology of MDD, however, how deficiency of adenosine triphosphate (ATP) products affects emotional circuit and what regulates ATP synthesis are still need to be elaborated. AIMS Our study aimed to investigate how deficiency of PGAM5-mediated depressive behavior. RESULTS We firstly discovered that PGAM5 knockout (PGAM5-/- ) mice generated depressive-like behaviors. The phenotype was reinforced by the observation that chronic unexpected mild stress (CUMS)-induced depressive mice exhibited lowered expression of PGAM5 in prefrontal cortex (PFC), hippocampus (HIP), and striatum. Next, we found, with the using of functional magnetic resonance imaging (fMRI), that the functional connectivity between PFC reward system and the PFC volume were reduced in PGAM5-/- mice. PGAM5 ablation resulted in the loss of dendritic spines and lowered density of PSD95 in PFC, but not in HIP. Finally, we found that PGAM5 ablation led to lowered ATP concentration in PFC, but not in HIP. Coimmunoprecipitation study showed that PGAM5 directly interacted with the ATP F1 F0 synthase without influencing the interaction between ATP F1 F0 synthase and Bcl-xl. We then conducted ATP administration to PGAM5-/- mice and found that ATP could rescue the behavioral and neuronal phenotypes of PGAM5-/- mice. CONCLUSIONS Our findings provide convincing evidence that PGAM5 ablation generates depressive-like behaviors via restricting neuronal ATP production so as to impair the number of neuronal spines in PFC.
Collapse
Affiliation(s)
- Weiwei Cui
- Department of Imaging Diagnostics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Chunhui Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Liya Gong
- Department of Imaging Diagnostics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Junyan Wen
- Department of Imaging Diagnostics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shanshan Yang
- Department of Imaging Diagnostics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Min Zheng
- Department of Pharmacy, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Baogui Gao
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Junxiong You
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Xuecong Lin
- Department of Imaging Diagnostics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanyu Hao
- Department of Imaging Diagnostics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhimin Chen
- Department of Imaging Diagnostics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ziqi Wu
- Department of Imaging Diagnostics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Liaoming Gao
- Department of Imaging Diagnostics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiayu Tang
- Department of Imaging Diagnostics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhen Yuan
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
| | - Xuegang Sun
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Linlin Jing
- Traditional Chinese Medicine Integrated HospitalSouthern Medical UniversityGuangzhouChina
| | - Ge Wen
- Department of Imaging Diagnostics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
6
|
Kolar D, Krajcovic B, Kleteckova L, Kuncicka D, Vales K, Brozka H. Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia. Schizophr Bull 2023; 49:1637-1653. [PMID: 37379469 PMCID: PMC10686339 DOI: 10.1093/schbul/sbad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic
| | - Branislav Krajcovic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Daniela Kuncicka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic
| | - Hana Brozka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Rukh S, Meechan DW, Maynard TM, Lamantia AS. Out of Line or Altered States? Neural Progenitors as a Target in a Polygenic Neurodevelopmental Disorder. Dev Neurosci 2023; 46:1-21. [PMID: 37231803 DOI: 10.1159/000530898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
The genesis of a mature complement of neurons is thought to require, at least in part, precursor cell lineages in which neural progenitors have distinct identities recognized by exclusive expression of one or a few molecular markers. Nevertheless, limited progenitor types distinguished by specific markers and lineal progression through such subclasses cannot easily yield the magnitude of neuronal diversity in most regions of the nervous system. The late Verne Caviness, to whom this edition of Developmental Neuroscience is dedicated, recognized this mismatch. In his pioneering work on the histogenesis of the cerebral cortex, he acknowledged the additional flexibility required to generate multiple classes of cortical projection and interneurons. This flexibility may be accomplished by establishing cell states in which levels rather than binary expression or repression of individual genes vary across each progenitor's shared transcriptome. Such states may reflect local, stochastic signaling via soluble factors or coincidence of cell surface ligand/receptor pairs in subsets of neighboring progenitors. This probabilistic, rather than determined, signaling could modify transcription levels via multiple pathways within an apparently uniform population of progenitors. Progenitor states, therefore, rather than lineal relationships between types may underlie the generation of neuronal diversity in most regions of the nervous system. Moreover, mechanisms that influence variation required for flexible progenitor states may be targets for pathological changes in a broad range of neurodevelopmental disorders, especially those with polygenic origins.
Collapse
Affiliation(s)
- Shah Rukh
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Daniel W Meechan
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Thomas M Maynard
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Anthony-Samuel Lamantia
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
8
|
Tabata H, Mori D, Matsuki T, Yoshizaki K, Asai M, Nakayama A, Ozaki N, Nagata KI. Histological Analysis of a Mouse Model of the 22q11.2 Microdeletion Syndrome. Biomolecules 2023; 13:biom13050763. [PMID: 37238632 DOI: 10.3390/biom13050763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is associated with a high risk of developing various psychiatric and developmental disorders, including schizophrenia and early-onset Parkinson's disease. Recently, a mouse model of this disease, Del(3.0Mb)/+, mimicking the 3.0 Mb deletion which is most frequently found in patients with 22q11.2DS, was generated. The behavior of this mouse model was extensively studied and several abnormalities related to the symptoms of 22q11.2DS were found. However, the histological features of their brains have been little addressed. Here we describe the cytoarchitectures of the brains of Del(3.0Mb)/+ mice. First, we investigated the overall histology of the embryonic and adult cerebral cortices, but they were indistinguishable from the wild type. However, the morphologies of individual neurons were slightly but significantly changed from the wild type counterparts in a region-specific manner. The dendritic branches and/or dendritic spine densities of neurons in the medial prefrontal cortex, nucleus accumbens, and primary somatosensory cortex were reduced. We also observed reduced axon innervation of dopaminergic neurons into the prefrontal cortex. Given these affected neurons function together as the dopamine system to control animal behaviors, the impairment we observed may explain a part of the abnormal behaviors of Del(3.0Mb)/+ mice and the psychiatric symptoms of 22q11.2DS.
Collapse
Affiliation(s)
- Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya 466-8550, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Kaichi Yoshizaki
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
9
|
Synaptic plasticity in Schizophrenia pathophysiology. IBRO Neurosci Rep 2023. [DOI: 10.1016/j.ibneur.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
Using Nonhuman Primate Models to Reverse-Engineer Prefrontal Circuit Failure Underlying Cognitive Deficits in Schizophrenia. Curr Top Behav Neurosci 2023; 63:315-362. [PMID: 36607528 DOI: 10.1007/7854_2022_407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this chapter, I review studies in nonhuman primates that emulate the circuit failure in prefrontal cortex responsible for working memory and cognitive control deficits in schizophrenia. These studies have characterized how synaptic malfunction, typically induced by blockade of NMDAR, disrupts neural function and computation in prefrontal networks to explain errors in cognitive tasks that are seen in schizophrenia. This work is finding causal relationships between pathogenic events of relevance to schizophrenia at vastly different levels of scale, from synapses, to neurons, local, circuits, distributed networks, computation, and behavior. Pharmacological manipulation, the dominant approach in primate models, has limited construct validity for schizophrenia pathogenesis, as the disease results from a complex interplay between environmental, developmental, and genetic factors. Genetic manipulation replicating schizophrenia risk is more advanced in rodent models. Nonetheless, gene manipulation in nonhuman primates is rapidly advancing, and primate developmental models have been established. Integration of large scale neural recording, genetic manipulation, and computational modeling in nonhuman primates holds considerable potential to provide a crucial schizophrenia model moving forward. Data generated by this approach is likely to fill several crucial gaps in our understanding of the causal sequence leading to schizophrenia in humans. This causal chain presents a vexing problem largely because it requires understanding how events at very different levels of scale relate to one another, from genes to circuits to cognition to social interactions. Nonhuman primate models excel here. They optimally enable discovery of causal relationships across levels of scale in the brain that are relevant to cognitive deficits in schizophrenia. The mechanistic understanding of prefrontal circuit failure they promise to provide may point the way to more effective therapeutic interventions to restore function to prefrontal networks in the disease.
Collapse
|
11
|
Günther A, Hanganu-Opatz IL. Neuronal oscillations: early biomarkers of psychiatric disease? Front Behav Neurosci 2022; 16:1038981. [PMID: 36600993 PMCID: PMC9806131 DOI: 10.3389/fnbeh.2022.1038981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Our understanding of the environmental and genetic factors contributing to the wide spectrum of neuropsychiatric disorders has significantly increased in recent years. Impairment of neuronal network activity during early development has been suggested as a contributor to the emergence of neuropsychiatric pathologies later in life. Still, the neurobiological substrates underlying these disorders remain yet to be fully understood and the lack of biomarkers for early diagnosis has impeded research into curative treatment options. Here, we briefly review current knowledge on potential biomarkers for emerging neuropsychiatric disease. Moreover, we summarize recent findings on aberrant activity patterns in the context of psychiatric disease, with a particular focus on their potential as early biomarkers of neuropathologies, an essential step towards pre-symptomatic diagnosis and, thus, early intervention.
Collapse
|
12
|
Zhang K, Liao P, Wen J, Hu Z. Synaptic plasticity in schizophrenia pathophysiology. IBRO Neurosci Rep 2022; 13:478-487. [PMID: 36590092 PMCID: PMC9795311 DOI: 10.1016/j.ibneur.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric syndrome with psychotic behavioral abnormalities and marked cognitive deficits. It is widely accepted that genetic and environmental factors contribute to the onset of schizophrenia. However, the etiology and pathology of the disease remain largely unexplored. Recently, the synaptopathology and the dysregulated synaptic plasticity and function have emerging as intriguing and prominent biological mechanisms of schizophrenia pathogenesis. Synaptic plasticity is the ability of neurons to change the strength of their connections in response to internal or external stimuli, which is essential for brain development and function, learning and memory, and vast majority of behavior responses relevant to psychiatric diseases including schizophrenia. Here, we reviewed molecular and cellular mechanisms of the multiple forms synaptic plasticity, and the functional regulations of schizophrenia-risk factors including disease susceptible genes and environmental alterations on synaptic plasticity and animal behavior. Recent genome-wide association studies have provided fruitful findings of hundreds of risk gene variances associated with schizophrenia, thus further clarifying the role of these disease-risk genes in synaptic transmission and plasticity will be beneficial to advance our understanding of schizophrenia pathology, as well as the molecular mechanism of synaptic plasticity.
Collapse
Affiliation(s)
- Kexuan Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China
| | - Panlin Liao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jin Wen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, PR China,Correspondence to: Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, PR China.
| |
Collapse
|
13
|
Rabadan MA, De La Cruz ED, Rao SB, Chen Y, Gong C, Crabtree G, Xu B, Markx S, Gogos JA, Yuste R, Tomer R. An in vitro model of neuronal ensembles. Nat Commun 2022; 13:3340. [PMID: 35680927 PMCID: PMC9184643 DOI: 10.1038/s41467-022-31073-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Advances in 3D neuronal cultures, such as brain spheroids and organoids, are allowing unprecedented in vitro access to some of the molecular, cellular and developmental mechanisms underlying brain diseases. However, their efficacy in recapitulating brain network properties that encode brain function remains limited, thereby precluding development of effective in vitro models of complex brain disorders like schizophrenia. Here, we develop and characterize a Modular Neuronal Network (MoNNet) approach that recapitulates specific features of neuronal ensemble dynamics, segregated local-global network activities and a hierarchical modular organization. We utilized MoNNets for quantitative in vitro modelling of schizophrenia-related network dysfunctions caused by highly penetrant mutations in SETD1A and 22q11.2 risk loci. Furthermore, we demonstrate its utility for drug discovery by performing pharmacological rescue of alterations in neuronal ensembles stability and global network synchrony. MoNNets allow in vitro modelling of brain diseases for investigating the underlying neuronal network mechanisms and systematic drug discovery.
Collapse
Affiliation(s)
- M Angeles Rabadan
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Sneha B Rao
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Yannan Chen
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Cheng Gong
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gregg Crabtree
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Bin Xu
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Sander Markx
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Joseph A Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA
- Department of Physiology, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Rafael Yuste
- Department of Biological Sciences, Columbia University, New York, NY, USA
- NeuroTechnology Center, Columbia University, New York, NY, USA
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- NeuroTechnology Center, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Shared Etiology in Autism Spectrum Disorder and Epilepsy with Functional Disability. Behav Neurol 2022; 2022:5893519. [PMID: 35530166 PMCID: PMC9068331 DOI: 10.1155/2022/5893519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Autism spectrum disorders and epilepsies are heterogeneous human disorders that have miscellaneous etiologies and pathophysiology. There is considerable risk of frequent epilepsy in autism that facilitates amplified morbidity and mortality. Several biological pathways appear to be involved in disease progression, including gene transcription regulation, cellular growth, synaptic channel function, and maintenance of synaptic structure. Here, abnormalities in excitatory/inhibitory (E/I) balance ratio are reviewed along with part of an epileptiform activity that may drive both overconnectivity and genetic disorders where autism spectrum disorders and epilepsy frequently co-occur. The most current ideas concerning common etiological and molecular mechanisms for co-occurrence of both autism spectrum disorders and epilepsy are discussed along with the powerful pharmacological therapies that protect the cognition and behavior of patients. Better understanding is necessary to identify a biological mechanism that might lead to possible treatments for these neurological disorders.
Collapse
|
15
|
de Oliveira Figueiredo EC, Bondiolotti BM, Laugeray A, Bezzi P. Synaptic Plasticity Dysfunctions in the Pathophysiology of 22q11 Deletion Syndrome: Is There a Role for Astrocytes? Int J Mol Sci 2022; 23:ijms23084412. [PMID: 35457231 PMCID: PMC9028090 DOI: 10.3390/ijms23084412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/01/2023] Open
Abstract
The 22q11 deletion syndrome (DS) is the most common microdeletion syndrome in humans and gives a high probability of developing psychiatric disorders. Synaptic and neuronal malfunctions appear to be at the core of the symptoms presented by patients. In fact, it has long been suggested that the behavioural and cognitive impairments observed in 22q11DS are probably due to alterations in the mechanisms regulating synaptic function and plasticity. Often, synaptic changes are related to structural and functional changes observed in patients with cognitive dysfunctions, therefore suggesting that synaptic plasticity has a crucial role in the pathophysiology of the syndrome. Most interestingly, among the genes deleted in 22q11DS, six encode for mitochondrial proteins that, in mouse models, are highly expressed just after birth, when active synaptogenesis occurs, therefore indicating that mitochondrial processes are strictly related to synapse formation and maintenance of a correct synaptic signalling. Because correct synaptic functioning, not only requires correct neuronal function and metabolism, but also needs the active contribution of astrocytes, we summarize in this review recent studies showing the involvement of synaptic plasticity in the pathophysiology of 22q11DS and we discuss the relevance of mitochondria in these processes and the possible involvement of astrocytes.
Collapse
Affiliation(s)
| | - Bianca Maria Bondiolotti
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Anthony Laugeray
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
- Department of Pharmacology and Physiology, University of Rome Sapienza, 00185 Rome, Italy
- Correspondence: or
| |
Collapse
|
16
|
Molinard-Chenu A, Godel M, Rey A, Musardo S, Bodogan T, Vutskits L, Bellone C, Dayer A. Down-regulation of the schizophrenia risk-gene Dgcr2 alters early microcircuit development in the mouse medial prefrontal cortex. Int J Dev Neurosci 2022; 82:277-285. [PMID: 35212007 PMCID: PMC9313615 DOI: 10.1002/jdn.10175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in the generation, migration and integration of different subtypes of neurons in the medial prefrontal cortex (mPFC) microcircuit could play an important role in vulnerability to schizophrenia. Using in vivo cell‐type specific manipulation of pyramidal neurons (PNs) progenitors, we aim to investigate the role of the schizophrenia risk‐gene DiGeorge Critical Region 2 (Dgcr2) on cortical circuit formation in the mPFC of developing mice. This report describes how Dgcr2 knock down in upper‐layer PNs impacts the functional maturation of PNs and interneurons (INs) in the mPFC. First, we demonstrate that Dgcr2 knock‐down disrupts laminar positioning, dendritic morphology and excitatory activity of upper‐layer PNs. Interestingly, inhibitory activity is also modified in Dgcr2 knock‐down PNs, suggesting a broader microcircuit alteration involving interneurons. Further analyses show that the histological maturation of parvalbumin (PV) INs is not dramatically impaired, thus implying that other INs subtypes might be at play in the reported microcircuit alteration. Overall, this study unravels how local functional deficits of the early postnatal development of the mPFC can be induced by Dgcr2 knock‐down in PNs.
Collapse
Affiliation(s)
- Aude Molinard-Chenu
- Department of Psychiatry, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Michel Godel
- Department of Psychiatry, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Alicia Rey
- Department of Psychiatry, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Stefano Musardo
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Timea Bodogan
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Laszlo Vutskits
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva 4, Switzerland
| | - Camilla Bellone
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Alexandre Dayer
- Department of Psychiatry, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| |
Collapse
|
17
|
Terashima H, Minatohara K, Maruoka H, Okabe S. Imaging neural circuit pathology of autism spectrum disorders: autism-associated genes, animal models and the application of in vivo two-photon imaging. Microscopy (Oxf) 2022; 71:i81-i99. [DOI: 10.1093/jmicro/dfab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Recent advances in human genetics identified genetic variants involved in causing autism spectrum disorders (ASDs). Mouse models that mimic mutations found in patients with ASD exhibit behavioral phenotypes consistent with ASD symptoms. These mouse models suggest critical biological factors of ASD etiology. Another important implication of ASD genetics is the enrichment of ASD risk genes in molecules involved in developing synapses and regulating neural circuit function. Sophisticated in vivo imaging technologies applied to ASD mouse models identify common synaptic impairments in the neocortex, with genetic-mutation-specific defects in local neural circuits. In this article, we review synapse- and circuit-level phenotypes identified by in vivo two-photon imaging in multiple mouse models of ASD and discuss the contributions of altered synapse properties and neural circuit activity to ASD pathogenesis.
Collapse
Affiliation(s)
- Hiroshi Terashima
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichiro Minatohara
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisato Maruoka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Liu Y, Ouyang P, Zheng Y, Mi L, Zhao J, Ning Y, Guo W. A Selective Review of the Excitatory-Inhibitory Imbalance in Schizophrenia: Underlying Biology, Genetics, Microcircuits, and Symptoms. Front Cell Dev Biol 2021; 9:664535. [PMID: 34746116 PMCID: PMC8567014 DOI: 10.3389/fcell.2021.664535] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is a chronic disorder characterized by specific positive and negative primary symptoms, social behavior disturbances and cognitive deficits (e.g., impairment in working memory and cognitive flexibility). Mounting evidence suggests that altered excitability and inhibition at the molecular, cellular, circuit and network level might be the basis for the pathophysiology of neurodevelopmental and neuropsychiatric disorders such as schizophrenia. In the past decades, human and animal studies have identified that glutamate and gamma-aminobutyric acid (GABA) neurotransmissions are critically involved in several cognitive progresses, including learning and memory. The purpose of this review is, by analyzing emerging findings relating to the balance of excitatory and inhibitory, ranging from animal models of schizophrenia to clinical studies in patients with early onset, first-episode or chronic schizophrenia, to discuss how the excitatory-inhibitory imbalance may relate to the pathophysiology of disease phenotypes such as cognitive deficits and negative symptoms, and highlight directions for appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Yi Liu
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pan Ouyang
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lin Mi
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingping Zhao
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China.,The First School of Clinical Medical University, Guangzhou, China
| | - Wenbin Guo
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Gordon A, Forsingdal A, Klewe IV, Nielsen J, Didriksen M, Werge T, Geschwind DH. Transcriptomic networks implicate neuronal energetic abnormalities in three mouse models harboring autism and schizophrenia-associated mutations. Mol Psychiatry 2021; 26:1520-1534. [PMID: 31705054 DOI: 10.1038/s41380-019-0576-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/17/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
Genetic risk for psychiatric illness is complex, so identification of shared molecular pathways where distinct forms of genetic risk might coincide is of substantial interest. A growing body of genetic and genomic studies suggest that such shared molecular pathways exist across disorders with different clinical presentations, such as schizophrenia and autism spectrum disorder (ASD). But how this relates to specific genetic risk factors is unknown. Further, whether some of the molecular changes identified in brain relate to potentially confounding antemortem or postmortem factors are difficult to prove. We analyzed the transcriptome from the cortex and hippocampus of three mouse lines modeling human copy number variants (CNVs) associated with schizophrenia and ASD: Df(h15q13)/+, Df(h22q11)/+, and Df(h1q21)/+ which carry the 15q13.3 deletion, 22q11.2 deletion, and 1q21.1 deletion, respectively. Although we found very little overlap of differential expression at the level of individual genes, gene network analysis identified two cortical and two hippocampal modules of co-expressed genes that were dysregulated across all three mouse models. One cortical module was associated with neuronal energetics and firing rate, and overlapped with changes identified in postmortem human brain from SCZ and ASD patients. These data highlight aspects of convergent gene expression in mouse models harboring major risk alleles, and strengthen the connection between changes in neuronal energetics and neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Aaron Gordon
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Annika Forsingdal
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark.,Institute of Biological Psychiatry, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
| | | | - Jacob Nielsen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark. .,Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark. .,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Lundbeck Foundation GeoGenetics Centre, Natural History Museum of Denmark, University of Copenhagen, 1350, Copenhagen, Denmark.
| | - Daniel H Geschwind
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA. .,Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Saito R, Miyoshi C, Koebis M, Kushima I, Nakao K, Mori D, Ozaki N, Funato H, Yanagisawa M, Aiba A. Two novel mouse models mimicking minor deletions in 22q11.2 deletion syndrome revealed the contribution of each deleted region to psychiatric disorders. Mol Brain 2021; 14:68. [PMID: 33845872 PMCID: PMC8042712 DOI: 10.1186/s13041-021-00778-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/03/2021] [Indexed: 12/02/2022] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a disorder caused by the segmental deletion of human chromosome 22. This chromosomal deletion is known as high genetic risk factors for various psychiatric disorders. The different deletion types are identified in 22q11.2DS patients, including the most common 3.0-Mb deletion, and the less-frequent 1.5-Mb and 1.4-Mb deletions. In previous animal studies of psychiatric disorders associated with 22q11.2DS mainly focused on the 1.5-Mb deletion and model mice mimicking the human 1.5-Mb deletion have been established with diverse genetic backgrounds, which resulted in the contradictory phenotypes. On the other hand, the contribution of the genes in 1.4-Mb region to psychiatric disorders is poorly understood. In this study, we generated two mouse lines that reproduced the 1.4-Mb and 1.5-Mb deletions of 22q11.2DS [Del(1.4 Mb)/+ and Del(1.5 Mb)/+] on the pure C57BL/6N genetic background. These mutant mice were analyzed comprehensively by behavioral tests, such as measurement of locomotor activity, sociability, prepulse inhibition and fear-conditioning memory. Del(1.4 Mb)/+ mice displayed decreased locomotor activity, but no abnormalities were observed in all other behavioral tests. Del(1.5 Mb)/+ mice showed reduction of prepulse inhibition and impairment of contextual- and cued-dependent fear memory, which is consistent with previous reports. Furthermore, apparently intact social recognition in Del(1.4 Mb)/+ and Del(1.5 Mb)/+ mice suggests that the impaired social recognition observed in Del(3.0 Mb)/+ mice mimicking the human 3.0-Mb deletion requires mutations both in 1.4-Mb and 1.5 Mb regions. Our previous study has shown that Del(3.0 Mb)/+ mice presented disturbance of behavioral circadian rhythm. Therefore, we further evaluated sleep/wakefulness cycles in Del(3.0 Mb)/+ mice by electroencephalogram (EEG) and electromyogram (EMG) recording. EEG/EMG analysis revealed the disturbed wakefulness and non-rapid eye moving sleep (NREMS) cycles in Del(3.0 Mb)/+ mice, suggesting that Del(3.0 Mb)/+ mice may be unable to maintain their wakefulness. Together, our mouse models deepen our understanding of genetic contributions to schizophrenic phenotypes related to 22q11.2DS.
Collapse
Affiliation(s)
- Ryo Saito
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Chika Miyoshi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575 Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
- Medical Genomics Center, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575 Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575 Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
21
|
Nogami M, Miyamoto K, Hayakawa-Yano Y, Nakanishi A, Yano M, Okano H. DGCR8-dependent efficient pri-miRNA processing of human pri-miR-9-2. J Biol Chem 2021; 296:100409. [PMID: 33581109 PMCID: PMC7995608 DOI: 10.1016/j.jbc.2021.100409] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Microprocessor complex, including DiGeorge syndrome critical region gene 8 (DGCR8) and DROSHA, recognizes and cleaves primary transcripts of microRNAs (pri-miRNAs) in the maturation of canonical miRNAs. The study of DGCR8 haploinsufficiency reveals that the efficiency of this activity varies for different miRNA species. It is thought that this variation might be associated with the risk of schizophrenia with 22q11 deletion syndrome caused by disruption of the DGCR8 gene. However, the underlying mechanism for varying action of DGCR8 with each miRNA remains largely unknown. Here, we used in vivo monitoring to measure the efficiency of DGCR8-dependent microprocessor activity in cultured cells. We confirmed that this system recapitulates the microprocessor activity of endogenous pri-miRNA with expression of a ratiometric fluorescence reporter. Using this system, we detected mir-9-2 as one of the most efficient targets. We also identified a novel DGCR8-responsive RNA element, which is highly conserved among mammalian species and could be regulated at the epi-transcriptome (RNA modification) level. This unique feature between DGCR8 and pri-miR-9-2 processing may suggest a link to the risk of schizophrenia.
Collapse
Affiliation(s)
- Masahiro Nogami
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan; Shonan Incubation Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.
| | - Kazumasa Miyamoto
- Drug Safety Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yoshika Hayakawa-Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsushi Nakanishi
- Shonan Incubation Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan; Regenerative Medicine Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Department of Physiology, School of Medicine, Keio University, Tokyo, Japan.
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
22
|
Quach TT, Stratton HJ, Khanna R, Kolattukudy PE, Honnorat J, Meyer K, Duchemin AM. Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol 2021; 141:139-158. [PMID: 33226471 PMCID: PMC7855540 DOI: 10.1007/s00401-020-02244-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) corresponds to several neurodevelopmental disorders of heterogeneous origin in which cognitive deficits are commonly associated with abnormalities of dendrites and dendritic spines. These histological changes in the brain serve as a proxy for underlying deficits in neuronal network connectivity, mostly a result of genetic factors. Historically, chromosomal abnormalities have been reported by conventional karyotyping, targeted fluorescence in situ hybridization (FISH), and chromosomal microarray analysis. More recently, cytogenomic mapping, whole-exome sequencing, and bioinformatic mining have led to the identification of novel candidate genes, including genes involved in neuritogenesis, dendrite maintenance, and synaptic plasticity. Greater understanding of the roles of these putative ID genes and their functional interactions might boost investigations into determining the plausible link between cellular and behavioral alterations as well as the mechanisms contributing to the cognitive impairment observed in ID. Genetic data combined with histological abnormalities, clinical presentation, and transgenic animal models provide support for the primacy of dysregulation in dendrite structure and function as the basis for the cognitive deficits observed in ID. In this review, we highlight the importance of dendrite pathophysiology in the etiologies of four prototypical ID syndromes, namely Down Syndrome (DS), Rett Syndrome (RTT), Digeorge Syndrome (DGS) and Fragile X Syndrome (FXS). Clinical characteristics of ID have also been reported in individuals with deletions in the long arm of chromosome 10 (the q26.2/q26.3), a region containing the gene for the collapsin response mediator protein 3 (CRMP3), also known as dihydropyrimidinase-related protein-4 (DRP-4, DPYSL4), which is involved in dendritogenesis. Following a discussion of clinical and genetic findings in these syndromes and their preclinical animal models, we lionize CRMP3/DPYSL4 as a novel candidate gene for ID that may be ripe for therapeutic intervention.
Collapse
Affiliation(s)
- Tam T Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Jérome Honnorat
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- SynatAc Team, Institut NeuroMyoGène, Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH, 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH, 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
23
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
24
|
Haploinsufficiency of the HIRA gene located in the 22q11 deletion syndrome region is associated with abnormal neurodevelopment and impaired dendritic outgrowth. Hum Genet 2021; 140:885-896. [PMID: 33417013 DOI: 10.1007/s00439-020-02252-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
The 22q11.2 deletion syndrome (22q11DS) is associated with a wide spectrum of cognitive and psychiatric symptoms. Despite the considerable work performed over the past 20 years, the genetic etiology of the neurodevelopmental phenotype remains speculative. Here, we report de novo heterozygous truncating variants in the HIRA (Histone cell cycle regulation defective, S. Cerevisiae, homolog of, A) gene associated with a neurodevelopmental disorder in two unrelated patients. HIRA is located within the commonly deleted region of the 22q11DS and encodes a histone chaperone that regulates neural progenitor proliferation and neurogenesis, and that belongs to the WD40 Repeat (WDR) protein family involved in brain development and neuronal connectivity. To address the specific impact of HIRA haploinsufficiency in the neurodevelopmental phenotype of 22q11DS, we combined Hira knock-down strategies in developing mouse primary hippocampal neurons, and the direct study of brains from heterozygous Hira+/- mice. Our in vitro analyses revealed that Hira gene is mostly expressed during neuritogenesis and early dendritogenesis stages in mouse total brain and in developing primary hippocampal neurons. Moreover, shRNA knock-down experiments showed that a twofold decrease of endogenous Hira expression level resulted in an impaired dendritic growth and branching in primary developing hippocampal neuronal cultures. In parallel, in vivo analyses demonstrated that Hira+/- mice displayed subtle neuroanatomical defects including a reduced size of the hippocampus, the fornix and the corpus callosum. Our results suggest that HIRA haploinsufficiency would likely contribute to the complex pathophysiology of the neurodevelopmental phenotype of 22q11DS by impairing key processes in neurogenesis and by causing neuroanatomical defects during cerebral development.
Collapse
|
25
|
Yamauchi T, Kang G, Hiroi N. Heterozygosity of murine Crkl does not recapitulate behavioral dimensions of human 22q11.2 hemizygosity. GENES BRAIN AND BEHAVIOR 2020; 20:e12719. [PMID: 33269541 DOI: 10.1111/gbb.12719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023]
Abstract
Deletions in 22q11.2 human chromosome are known to be associated with psychiatric disorders, such as intellectual disability, schizophrenia, autism spectrum disorder, and anxiety disorders. This copy number variation includes a 3.0 Mb deletion and a nested proximal 1.5 Mb hemizygous deletion in the same region. Evidence indicates that the distal 22q11.2 region outside the nested 1.5 Mb deletion also might be contributory in humans. However, the precise genetic architecture within the distal region responsible for psychiatric disorders remains unclear, and this issue cannot be experimentally evaluated beyond the correlation in humans. As CRKL (CRK-like Proto-Oncogene, Adaptor Protein) is one of the genes encoded in the distal 22q11.2 segment and its homozygous deletion causes physical phenotypes of 22q11.2 hemizygous deletion, we tested the hypothesis that its murine homolog Crkl contributes to behavioral phenotypes relevant to psychiatric disorders in mice. Congenic Crkl heterozygosity reduced thigmotaxis, an anxiety-related behavior, in an inescapable open field, but had no apparent effect on social interaction, spontaneous alternation in a T-maze, anxiety-like behavior in an elevated plus maze, or motor activity in an open field. Our data indicate that the heterozygosity of murine Crkl does not recapitulate social deficits, working memory deficits, repetitive behavior traits or hyperactivity of human 22q11.2 hemizygous deletion. Moreover, while 22q11.2 hemizygous deletion is associated with high levels of phobia and anxiety in humans, our data suggest that Crkl heterozygosity rather acts as a protective factor for phobia-like behavior in an open field.
Collapse
Affiliation(s)
- Takahira Yamauchi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
26
|
Naujock M, Speidel A, Fischer S, Kizner V, Dorner-Ciossek C, Gillardon F. Neuronal Differentiation of Induced Pluripotent Stem Cells from Schizophrenia Patients in Two-Dimensional and in Three-Dimensional Cultures Reveals Increased Expression of the Kv4.2 Subunit DPP6 That Contributes to Decreased Neuronal Activity. Stem Cells Dev 2020; 29:1577-1587. [PMID: 33143549 DOI: 10.1089/scd.2020.0082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although the molecular underpinnings of schizophrenia (SZ) are still incompletely understood, deficits in synaptic activity and neuronal connectivity have been identified as core pathomechanisms of SZ and other neuropsychiatric disorders. In this study, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts from healthy donors and patients diagnosed with idiopathic SZ. We differentiated the human iPSC into cortical neurons both as adherent monolayers and as three-dimensional spheroids. RNA sequencing revealed little overlap in differentially expressed genes between 2D and 3D neuron cultures from SZ iPSC compared with controls. Notably, mRNA transcripts encoding dipeptidyl peptidase-like protein 6 (DPP6), an accessory subunit of Kv4.2 voltage-gated potassium channels, were massively increased in cortical neurons from SZ iPSC in the 2D and 3D model. Consistently, multielectrode array recordings and calcium imaging showed significantly decreased neuronal activity both in 2D and in 3D cultures from SZ neurons. To show a causal relationship, we treated iPSC-derived neurons in 2D cultures with lentiviral DPP6 shRNA vectors and the Kv4.2 channel blocker AmmTx3, respectively. Both treatments successfully reversed neuronal hypoexcitability and hypoactivity in cortical neurons from SZ iPSC. Our data highlight a contribution of DPP6 and Kv4.2 to the deficit in neurotransmission in an iPSC model for SZ, which may be of therapeutic relevance for a subset of SZ patients.
Collapse
Affiliation(s)
- Maximilian Naujock
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Anna Speidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Sandra Fischer
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Valeria Kizner
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Cornelia Dorner-Ciossek
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Frank Gillardon
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| |
Collapse
|
27
|
Ji Y, Zhang X, Wang Z, Qin W, Liu H, Xue K, Tang J, Xu Q, Zhu D, Liu F, Yu C. Genes associated with gray matter volume alterations in schizophrenia. Neuroimage 2020; 225:117526. [PMID: 33147509 DOI: 10.1016/j.neuroimage.2020.117526] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Although both schizophrenia and gray matter volume (GMV) show high heritability, however, genes accounting for GMV alterations in schizophrenia remain largely unknown. Based on risk genes identified in schizophrenia by the genome-wide association study of the Schizophrenia Working Group of the Psychiatric Genomics Consortium, we used transcription-neuroimaging association analysis to test that which of these genes are associated with GMV changes in schizophrenia. For each brain tissue sample, the expression profiles of 196 schizophrenia risk genes were extracted from six donated normal brains of the Allen Human Brain Atlas, and GMV differences between patients with schizophrenia and healthy controls were calculated based on five independent case-control structural MRI datasets (276 patients and 284 controls). Genes associated with GMV changes in schizophrenia were identified by performing cross-sample spatial correlations between expression levels of each gene and case-control GMV difference derived from the five MRI datasets integrated by harmonization and meta-analysis. We found that expression levels of 98 genes consistently showed significant cross-sample spatial correlations with GMV changes in schizophrenia. These genes were functionally enriched for chemical synaptic transmission, central nervous system development, and cell projection. Overall, this study provides a set of genes possibly associated with GMV changes in schizophrenia, which could be used as candidate genes to explore biological mechanisms underlying the structural impairments in schizophrenia.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xue Zhang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zirui Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huaigui Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kaizhong Xue
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jie Tang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiang Xu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dan Zhu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
28
|
Nagahama K, Sakoori K, Watanabe T, Kishi Y, Kawaji K, Koebis M, Nakao K, Gotoh Y, Aiba A, Uesaka N, Kano M. Setd1a Insufficiency in Mice Attenuates Excitatory Synaptic Function and Recapitulates Schizophrenia-Related Behavioral Abnormalities. Cell Rep 2020; 32:108126. [PMID: 32937141 DOI: 10.1016/j.celrep.2020.108126] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
SETD1A encodes a histone methyltransferase whose de novo mutations are identified in schizophrenia (SCZ) patients and confer a large increase in disease risk. Here, we generate Setd1a mutant mice carrying the frameshift mutation that closely mimics a loss-of-function variant of SCZ. Our Setd1a (+/-) mice display various behavioral abnormalities relevant to features of SCZ, impaired excitatory synaptic transmission in layer 2/3 (L2/3) pyramidal neurons of the medial prefrontal cortex (mPFC), and altered expression of diverse genes related to neurodevelopmental disorders and synaptic functions in the mPFC. RNAi-mediated Setd1a knockdown (KD) specifically in L2/3 pyramidal neurons of the mPFC only recapitulates impaired sociality among multiple behavioral abnormalities of Setd1a (+/-) mice. Optogenetics-assisted selective stimulation of presynaptic neurons combined with Setd1a KD reveals that Setd1a at postsynaptic site is essential for excitatory synaptic transmission. Our findings suggest that reduced SETD1A may attenuate excitatory synaptic function and contribute to the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keita Kawaji
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Gotoh
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
29
|
Lin A, Vajdi A, Kushan-Wells L, Helleman G, Hansen LP, Jonas RK, Jalbrzikowski M, Kingsbury L, Raznahan A, Bearden CE. Reciprocal Copy Number Variations at 22q11.2 Produce Distinct and Convergent Neurobehavioral Impairments Relevant for Schizophrenia and Autism Spectrum Disorder. Biol Psychiatry 2020; 88:260-272. [PMID: 32143830 PMCID: PMC7354903 DOI: 10.1016/j.biopsych.2019.12.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND 22q11.2 deletions and duplications are copy number variations (CNVs) that predispose to developmental neuropsychiatric disorders. Both CNVs are associated with autism spectrum disorder (ASD), while the deletion confers disproportionate risk for schizophrenia. Neurobehavioral profiles associated with these reciprocal CNVs in conjunction with brain imaging measures have not been reported. METHODS We profiled the impact of 22q11.2 CNVs on neurobehavioral measures relevant to ASD and psychosis in 106 22q11.2 deletion carriers, 38 22q11.2 duplication carriers, and 82 demographically matched healthy control subjects. To determine whether brain-behavior relationships were altered in CNV carriers, we further tested for interactions between group and regional brain structure on neurobehavioral domains. RESULTS Cognitive deficits were observed in both CNV groups, with the lowest IQs in deletion carriers. ASD and dimensionally measured ASD traits were elevated in both CNV groups; however, duplication carriers exhibited increased stereotypies compared to deletion carriers. Moreover, discriminant analysis using ASD subdomains distinguished between CNV cases with 76% accuracy. Both psychotic disorder diagnosis and dimensionally measured positive and negative symptoms were elevated in deletion carriers. Finally, healthy control subjects showed an inverse relationship between processing speed and cortical thickness in heteromodal association areas, which was absent in both CNV groups. CONCLUSIONS 22q11.2 CNVs differentially modulate intellectual functioning and psychosis-related symptomatology but converge on broad ASD-related symptomatology. However, subtle differences in ASD profiles distinguish CNV groups. Processing speed impairments, coupled with the lack of normative relationship between processing speed and cortical thickness in CNV carriers, implicate aberrant development of the cortical mantle in the pathology underlying impaired processing speed ability.
Collapse
Affiliation(s)
- Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Gerhard Helleman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Laura Pacheco Hansen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Rachel K Jonas
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lyle Kingsbury
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California; Department of Neurobiology, University of California, Los Angeles, Los Angeles, California
| | - Armin Raznahan
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
30
|
Gogos JA, Crabtree G, Diamantopoulou A. The abiding relevance of mouse models of rare mutations to psychiatric neuroscience and therapeutics. Schizophr Res 2020; 217:37-51. [PMID: 30987923 PMCID: PMC6790166 DOI: 10.1016/j.schres.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Abstract
Studies using powerful family-based designs aided by large scale case-control studies, have been instrumental in cracking the genetic complexity of the disease, identifying rare and highly penetrant risk mutations and providing a handle on experimentally tractable model systems. Mouse models of rare mutations, paired with analysis of homologous cognitive and sensory processing deficits and state-of-the-art neuroscience methods to manipulate and record neuronal activity have started providing unprecedented insights into pathogenic mechanisms and building the foundation of a new biological framework for understanding mental illness. A number of important principles are emerging, namely that degradation of the computational mechanisms underlying the ordered activity and plasticity of both local and long-range neuronal assemblies, the building blocks necessary for stable cognition and perception, might be the inevitable consequence and the common point of convergence of the vastly heterogeneous genetic liability, manifesting as defective internally- or stimulus-driven neuronal activation patterns and triggering the constellation of schizophrenia symptoms. Animal models of rare mutations have the unique potential to help us move from "which" (gene) to "how", "where" and "when" computational regimes of neural ensembles are affected. Linking these variables should improve our understanding of how symptoms emerge and how diagnostic boundaries are established at a circuit level. Eventually, a better understanding of pathophysiological trajectories at the level of neural circuitry in mice, aided by basic human experimental biology, should guide the development of new therapeutics targeting either altered circuitry itself or the underlying biological pathways.
Collapse
Affiliation(s)
- Joseph A. Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA,Department of Neuroscience, Columbia University, New York, NY 10032 USA,Correspondence should be addressed to: Joseph A. Gogos ()
| | - Gregg Crabtree
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
31
|
Amoah SK, Rodriguez BA, Logothetis CN, Chander P, Sellgren CM, Weick JP, Sheridan SD, Jantzie LL, Webster MJ, Mellios N. Exosomal secretion of a psychosis-altered miRNA that regulates glutamate receptor expression is affected by antipsychotics. Neuropsychopharmacology 2020; 45:656-665. [PMID: 31775160 PMCID: PMC7021900 DOI: 10.1038/s41386-019-0579-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/24/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
The ability of small secretory microvesicles known as exosomes to influence neuronal and glial function via their microRNA (miRNA) cargo has positioned them as a novel and effective method of cell-to-cell communication. However, little is known about the role of exosome-secreted miRNAs in the regulation of glutamate receptor gene expression and their relevance for schizophrenia (SCZ) and bipolar disorder (BD). Using mature miRNA profiling and quantitative real-time PCR (qRT-PCR) in the orbitofrontal cortex (OFC) of SCZ (N = 29; 20 male and 9 female), BD (N = 26; 12 male and 14 female), and unaffected control (N = 25; 21 male and 4 female) subjects, we uncovered that miR-223, an exosome-secreted miRNA that targets glutamate receptors, was increased at the mature miRNA level in the OFC of SCZ and BD patients with positive history of psychosis at the time of death and was inversely associated with deficits in the expression of its targets glutamate ionotropic receptor NMDA-type subunit 2B (GRIN2B) and glutamate ionotropic receptor AMPA-type subunit 2 (GRIA2). Furthermore, changes in miR-223 levels in the OFC were positively and negatively correlated with inflammatory and GABAergic gene expression, respectively. Moreover, miR-223 was found to be enriched in astrocytes and secreted via exosomes, and antipsychotics were shown to control its cellular and exosomal localization in a cell-specific manner. Furthermore, addition of astrocytic exosomes in neuronal cultures resulted in a significant increase in miR-223 expression and a notable reduction in Grin2b and Gria2 mRNA levels, which was strongly inversely associated with miR-223 expression. Lastly, inhibition of astrocytic miR-223 abrogated the exosomal-mediated reduction in neuronal Grin2b expression. Taken together, our results demonstrate that the exosomal secretion of a psychosis-altered and glial-enriched miRNA that controls neuronal gene expression is regulated by antipsychotics.
Collapse
Affiliation(s)
- Stephen K Amoah
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM, USA
| | - Brian A Rodriguez
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Praveen Chander
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Steven D Sheridan
- Center for Genomic Medicine, Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Experimental Drugs and Diagnostics, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Lauren L Jantzie
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Chevy Chase, MD, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM, USA.
| |
Collapse
|
32
|
Cognition- and circuit-based dysfunction in a mouse model of 22q11.2 microdeletion syndrome: effects of stress. Transl Psychiatry 2020; 10:41. [PMID: 32066701 PMCID: PMC7026063 DOI: 10.1038/s41398-020-0687-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic microdeletion at the 22q11 locus is associated with very high risk for schizophrenia. The 22q11.2 microdeletion (Df(h22q11)/+) mouse model shows cognitive deficits observed in this disorder, some of which can be linked to dysfunction of the prefrontal cortex (PFC). We used behavioral (n = 10 per genotype), electrophysiological (n = 7 per genotype per group), and neuroanatomical (n = 5 per genotype) techniques to investigate schizophrenia-related pathology of Df(h22q11)/+ mice, which showed a significant decrease in the total number of parvalbumin positive interneurons in the medial PFC. The Df(h22q11)/+ mice when tested on PFC-dependent behavioral tasks, including gambling tasks, perform significantly worse than control animals while exhibiting normal behavior on hippocampus-dependent tasks. They also show a significant decrease in hippocampus-medial Prefrontal cortex (H-PFC) synaptic plasticity (long-term potentiation, LTP). Acute platform stress almost abolished H-PFC LTP in both wild-type and Df(h22q11)/+ mice. H-PFC LTP was restored to prestress levels by clozapine (3 mg/kg i.p.) in stressed Df(h22q11)/+ mice, but the restoration of stress-induced LTP, while significant, was similar between wild-type and Df(h22q11)/+ mice. A medial PFC dysfunction may underlie the negative and cognitive symptoms in human 22q11 deletion carriers, and these results are relevant to the current debate on the utility of clozapine in such subjects.
Collapse
|
33
|
Zhao J, Fok AHK, Fan R, Kwan PY, Chan HL, Lo LHY, Chan YS, Yung WH, Huang J, Lai CSW, Lai KO. Specific depletion of the motor protein KIF5B leads to deficits in dendritic transport, synaptic plasticity and memory. eLife 2020; 9:53456. [PMID: 31961321 PMCID: PMC7028368 DOI: 10.7554/elife.53456] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
The kinesin I family of motor proteins are crucial for axonal transport, but their roles in dendritic transport and postsynaptic function are not well-defined. Gene duplication and subsequent diversification give rise to three homologous kinesin I proteins (KIF5A, KIF5B and KIF5C) in vertebrates, but it is not clear whether and how they exhibit functional specificity. Here we show that knockdown of KIF5A or KIF5B differentially affects excitatory synapses and dendritic transport in hippocampal neurons. The functional specificities of the two kinesins are determined by their diverse carboxyl-termini, where arginine methylation occurs in KIF5B and regulates its function. KIF5B conditional knockout mice exhibit deficits in dendritic spine morphogenesis, synaptic plasticity and memory formation. Our findings provide insights into how expansion of the kinesin I family during evolution leads to diversification and specialization of motor proteins in regulating postsynaptic function. Transporting molecules within a cell becomes a daunting task when the cell is a neuron, with fibers called axons and dendrites that can stretch as long as a meter. Neurons use many different molecules to send messages across the body and store memories in the brain. If the right molecules cannot be delivered along the length of nerve cells, connections to neighboring neurons may decay, which may impair learning and memory. Motor proteins are responsible for transporting molecules within cells. Kinesins are a type of motor protein that typically transports materials from the body of a neuron to the cell’s periphery, including the dendrites, which is where a neuron receives messages from other nerve cells. Each cell has up to 45 different kinesin motors, but it is not known whether each one performs a distinct task or if they have overlapping roles. Now, Zhao, Fok et al. have studied two similar kinesins, called KIF5A and KIF5B, in rodent neurons to determine their roles. First, it was shown that both proteins were found at dendritic spines, which are small outgrowths on dendrites where contact with other cells occurs. Next, KIF5A and KIF5B were depleted, one at a time, from neurons extracted from a brain region called the hippocampus. Removing KIF5B interfered with the formation of dendritic spines, but removing KIF5A did not have an effect. Dendritic spines are essential for learning and memory, so several behavioral tests were conducted on mice that had been genetically modified to express less KIF5B in the forebrain. These tests revealed that the mice performed poorly in tasks that tested their memory recall. This work opens a new area of research studying the specific roles of different kinesin motor proteins in nerve cells. This could have important implications because certain kinesin motor proteins such as KIF5A are known to be defective in some inherited neurodegenerative diseases.
Collapse
Affiliation(s)
- Junjun Zhao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Albert Hiu Ka Fok
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Ruolin Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Pui-Yi Kwan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Hei-Lok Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Louisa Hoi-Ying Lo
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jiandong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Kwok-On Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
34
|
Forsyth JK, Nachun D, Gandal MJ, Geschwind DH, Anderson AE, Coppola G, Bearden CE. Synaptic and Gene Regulatory Mechanisms in Schizophrenia, Autism, and 22q11.2 Copy Number Variant-Mediated Risk for Neuropsychiatric Disorders. Biol Psychiatry 2020; 87:150-163. [PMID: 31500805 PMCID: PMC6925326 DOI: 10.1016/j.biopsych.2019.06.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/10/2019] [Accepted: 06/27/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND 22q11.2 copy number variants are among the most highly penetrant genetic risk variants for developmental neuropsychiatric disorders such as schizophrenia (SCZ) and autism spectrum disorder (ASD). However, the specific mechanisms through which they confer risk remain unclear. METHODS Using a functional genomics approach, we integrated transcriptomic data from the developing human brain, genome-wide association findings for SCZ and ASD, protein interaction data, and gene expression signatures from SCZ and ASD postmortem cortex to 1) organize genes into the developmental cellular and molecular systems within which they operate, 2) identify neurodevelopmental processes associated with polygenic risk for SCZ and ASD across the allelic frequency spectrum, and 3) elucidate pathways and individual genes through which 22q11.2 copy number variants may confer risk for each disorder. RESULTS Polygenic risk for SCZ and ASD converged on partially overlapping neurodevelopmental modules involved in synaptic function and transcriptional regulation, with ASD risk variants additionally enriched for modules involved in neuronal differentiation during fetal development. The 22q11.2 locus formed a large protein network during development that disproportionately affected SCZ-associated and ASD-associated neurodevelopmental modules, including loading highly onto synaptic and gene regulatory pathways. SEPT5, PI4KA, and SNAP29 genes are candidate drivers of 22q11.2 synaptic pathology relevant to SCZ and ASD, and DGCR8 and HIRA are candidate drivers of disease-relevant alterations in gene regulation. CONCLUSIONS This approach offers a powerful framework to identify neurodevelopmental processes affected by diverse risk variants for SCZ and ASD and elucidate mechanisms through which highly penetrant, multigene copy number variants contribute to disease risk.
Collapse
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California.
| | - Daniel Nachun
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Michael J Gandal
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Daniel H Geschwind
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California; Department of Neurology, University of California, Los Angeles, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Ariana E Anderson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California; Department of Neurology, University of California, Los Angeles, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
35
|
Mukai J, Cannavò E, Crabtree GW, Sun Z, Diamantopoulou A, Thakur P, Chang CY, Cai Y, Lomvardas S, Takata A, Xu B, Gogos JA. Recapitulation and Reversal of Schizophrenia-Related Phenotypes in Setd1a-Deficient Mice. Neuron 2019; 104:471-487.e12. [PMID: 31606247 DOI: 10.1016/j.neuron.2019.09.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/28/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
SETD1A, a lysine-methyltransferase, is a key schizophrenia susceptibility gene. Mice carrying a heterozygous loss-of-function mutation of the orthologous gene exhibit alterations in axonal branching and cortical synaptic dynamics accompanied by working memory deficits. We show that Setd1a binds both promoters and enhancers with a striking overlap between Setd1a and Mef2 on enhancers. Setd1a targets are highly expressed in pyramidal neurons and display a complex pattern of transcriptional up- and downregulations shaped by presumed opposing functions of Setd1a on promoters and Mef2-bound enhancers. Notably, evolutionarily conserved Setd1a targets are associated with neuropsychiatric genetic risk burden. Reinstating Setd1a expression in adulthood rescues cognitive deficits. Finally, we identify LSD1 as a major counteracting demethylase for Setd1a and show that its pharmacological antagonism results in a full rescue of the behavioral and morphological deficits in Setd1a-deficient mice. Our findings advance understanding of how SETD1A mutations predispose to schizophrenia (SCZ) and point to novel therapeutic interventions.
Collapse
Affiliation(s)
- Jun Mukai
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Enrico Cannavò
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Gregg W Crabtree
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Ziyi Sun
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Pratibha Thakur
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Chia-Yuan Chang
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yifei Cai
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Stavros Lomvardas
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
36
|
Abstract
The structure of neuronal circuits that subserve cognitive functions in the brain is shaped and refined throughout development and into adulthood. Evidence from human and animal studies suggests that the cellular and synaptic substrates of these circuits are atypical in neuropsychiatric disorders, indicating that altered structural plasticity may be an important part of the disease biology. Advances in genetics have redefined our understanding of neuropsychiatric disorders and have revealed a spectrum of risk factors that impact pathways known to influence structural plasticity. In this Review, we discuss the importance of recent genetic findings on the different mechanisms of structural plasticity and propose that these converge on shared pathways that can be targeted with novel therapeutics.
Collapse
|
37
|
Takahashi-Nakazato A, Parajuli LK, Iwasaki H, Tanaka S, Okabe S. Ultrastructural Observation of Glutamatergic Synapses by Focused Ion Beam Scanning Electron Microscopy (FIB/SEM). Methods Mol Biol 2019; 1941:17-27. [PMID: 30707424 DOI: 10.1007/978-1-4939-9077-1_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A thorough understanding of the synaptic ultrastructure is necessary to bridge our current knowledge gap about the relationship between neuronal structure and function. Recent development of focused ion beam scanning electron microscopy (FIB/SEM) has made it possible to image neuronal structures with high speed and efficiency. Here, we present our routine protocol for correlative two-photon microscopy and FIB/SEM imaging of glutamatergic synapses. Femtosecond-pulsed near-infrared laser was used to create fiducial marks around the dendrite of interest in aldehyde-fixed tissues. Thereafter, samples were subjected to en bloc staining with rOTO (reduced osmium tetroxide-thiocarbohydrazide-osmium tetroxide), followed by lead aspartate and uranyl acetate to enhance tissue contrast. Reliable detection of postsynaptic density (PSD) and plasma membrane contours by the sample preparation protocol optimized for FIB/SEM allows us to precisely evaluate morphological features that shape glutamatergic synaptic transmission.
Collapse
Affiliation(s)
- Ai Takahashi-Nakazato
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,CREST, JST, Tokyo, Japan
| | - Laxmi Kumar Parajuli
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,CREST, JST, Tokyo, Japan
| | - Hirohide Iwasaki
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,CREST, JST, Tokyo, Japan
| | - Shinji Tanaka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,CREST, JST, Tokyo, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,CREST, JST, Tokyo, Japan.
| |
Collapse
|
38
|
Hiroi N, Yamauchi T. Modeling and Predicting Developmental Trajectories of Neuropsychiatric Dimensions Associated With Copy Number Variations. Int J Neuropsychopharmacol 2019; 22:488-500. [PMID: 31135887 PMCID: PMC6672556 DOI: 10.1093/ijnp/pyz026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 01/23/2023] Open
Abstract
Copy number variants, such as duplications and hemizygous deletions at chromosomal loci of up to a few million base pairs, are highly associated with psychiatric disorders. Hemizygous deletions at human chromosome 22q11.2 were found to be associated with elevated instances of schizophrenia and autism spectrum disorder in 1992 and 2002, respectively. Following these discoveries, many mouse models have been developed and tested to analyze the effects of gene dose alterations in small chromosomal segments and single genes of 22q11.2. Despite several limitations to modeling mental illness in mice, mouse models have identified several genes on 22q11.2-Tbx1, Dgcr8, Comt, Sept5, and Prodh-that contribute to dimensions of autism spectrum disorder and schizophrenia, including working memory, social communication and interaction, and sensorimotor gating. Mouse studies have identified that heterozygous deletion of Tbx1 results in defective social communication during the neonatal period and social interaction deficits during adolescence/adulthood. Overexpression of Tbx1 or Comt in adult neural progenitor cells in the hippocampus delays the developmental maturation of working memory capacity. Collectively, mouse models of variants of these 4 genes have revealed several potential neuronal mechanisms underlying various aspects of psychiatric disorders, including adult neurogenesis, microRNA processing, catecholamine metabolism, and synaptic transmission. The validity of the mouse data would be ultimately tested when therapies or drugs based on such potential mechanisms are applied to humans.
Collapse
Affiliation(s)
- Noboru Hiroi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Takahira Yamauchi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
39
|
Pituitary Adenylate Cyclase-Activating Polypeptide Modulates Dendritic Spine Maturation and Morphogenesis via MicroRNA-132 Upregulation. J Neurosci 2019; 39:4208-4220. [PMID: 30886013 DOI: 10.1523/jneurosci.2468-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Alterations in pituitary adenylate cyclase-activating polypeptide (PACAP), a multifunctional neuropeptide, and its receptors have been identified as risk factors for certain psychiatric disorders, including schizophrenia. Increasing evidence from human genetic and animal model studies suggest an association between various psychiatric disorders and altered dendritic spine morphology. In the present study, we investigated the role of exogenous and endogenous PACAP in spine formation and maturation. PACAP modified the density and morphology of PSD-95-positive spines in primary cultured hippocampal neurons. Notably, PACAP increased the levels of microRNA (miR)-132 and decreased expression of corresponding miR-132 target genes and protein expression of p250GAP, a miR-132 effector known to be involved in spine morphology regulation. In corroboration, PSD-95-positive spines were reduced in PACAP-deficient (PACAP -/-) mice versus WT mice. Golgi staining of hippocampal CA1 neurons revealed a reduced spine densities and atypical morphologies in the male PACAP -/- mice. Furthermore, viral miR-132 overexpression reversed the reduction in hippocampal spinal density in the male PACAP -/- mice. These results indicate that PACAP signaling plays a critical role in spine morphogenesis possibly via miR-132. We suggest that dysfunction of PACAP signaling may contribute to the pathogenesis of neuropsychiatric disorders, at least partly through its effects on spine formation.SIGNIFICANCE STATEMENT Pituitary adenylate cyclase-activating polypeptide (PACAP) signaling dysfunction and dendritic spine morphology alterations have recently been suggested as important pathophysiological mechanisms underlying several psychiatric and neurological disorders. In this study, we investigated whether PACAP regulates dendritic spine morphogenesis. In a combination of pharmacological and viral gain- and loss-of-function approaches in vitro and in vivo experiments, we found PACAP to increase the size and density of dendritic spines via miR-132 upregulation. Together, our data suggest that a dysfunction of PACAP signaling may contribute to the pathogenesis of neuropsychiatric disorders, at least partly through abnormal spine formation.
Collapse
|
40
|
The Thalamus Regulates Retinoic Acid Signaling and Development of Parvalbumin Interneurons in Postnatal Mouse Prefrontal Cortex. eNeuro 2019; 6:eN-NWR-0018-19. [PMID: 30868103 PMCID: PMC6385081 DOI: 10.1523/eneuro.0018-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/01/2022] Open
Abstract
GABAergic inhibitory neurons in the prefrontal cortex (PFC) play crucial roles in higher cognitive functions. Despite the link between aberrant development of PFC interneurons and a number of psychiatric disorders, mechanisms underlying the development of these neurons are poorly understood. Here we show that the retinoic acid (RA)-degrading enzyme CYP26B1 (cytochrome P450 family 26, subfamily B, member 1) is transiently expressed in the mouse frontal cortex during postnatal development, and that medial ganglionic eminence (MGE)-derived interneurons, particularly in parvalbumin (PV)-expressing neurons, are the main cell type that has active RA signaling during this period. We found that frontal cortex-specific Cyp26b1 knock-out mice had an increased density of PV-expressing, but not somatostatin-expressing, interneurons in medial PFC, indicating a novel role of RA signaling in controlling PV neuron development. The initiation of Cyp26b1 expression in neonatal PFC coincides with the establishment of connections between the thalamus and the PFC. We found that these connections are required for the postnatal expression of Cyp26b1 in medial PFC. In addition to this region-specific role in postnatal PFC that regulates RA signaling and PV neuron development, the thalamocortical connectivity had an earlier role in controlling radial dispersion of MGE-derived interneurons throughout embryonic neocortex. In summary, our results suggest that the thalamus plays multiple, temporally separate roles in interneuron development in the PFC.
Collapse
|
41
|
Ma Q, Zhang L, Pearce WJ. MicroRNAs in brain development and cerebrovascular pathophysiology. Am J Physiol Cell Physiol 2019; 317:C3-C19. [PMID: 30840494 DOI: 10.1152/ajpcell.00022.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs with 21-25 nucleotides in length and play an important role in regulating gene expression at the posttranscriptional level via base-paring with complementary sequences of the 3'-untranslated region of the target gene mRNA, leading to either transcript degradation or translation inhibition. Brain-enriched miRNAs act as versatile regulators of brain development and function, including neural lineage and subtype determination, neurogenesis, synapse formation and plasticity, neural stem cell proliferation and differentiation, and responses to insults. Herein, we summarize the current knowledge regarding the role of miRNAs in brain development and cerebrovascular pathophysiology. We review recent progress of the miRNA-based mechanisms in neuronal and cerebrovascular development as well as their role in hypoxic-ischemic brain injury. These findings hold great promise, not just for deeper understanding of basic brain biology but also for building new therapeutic strategies for prevention and treatment of pathologies such as cerebral ischemia.
Collapse
Affiliation(s)
- Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - William J Pearce
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
42
|
Diamantopoulou A, Gogos JA. Neurocognitive and Perceptual Processing in Genetic Mouse Models of Schizophrenia: Emerging Lessons. Neuroscientist 2019; 25:597-619. [PMID: 30654694 DOI: 10.1177/1073858418819435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past two decades, the number of animal models of psychiatric disorders has grown exponentially. Of these, genetic animal models that are modeled after rare but highly penetrant mutations hold great promise for deciphering critical molecular, synaptic, and neurocircuitry deficits of major psychiatric disorders, such as schizophrenia. Animal models should aim to focus on core aspects rather than capture the entire human disease. In this context, animal models with strong etiological validity, where behavioral and neurophysiological phenotypes and the features of the disease being modeled are in unambiguous homology, are being used to dissect both elementary and complex cognitive and perceptual processing deficits present in psychiatric disorders at the level of neurocircuitry, shedding new light on critical disease mechanisms. Recent progress in neuroscience along with large-scale initiatives that propose a consistent approach in characterizing these deficits across different laboratories will further enhance the efficacy of these studies that will ultimately lead to identifying new biological targets for drug development.
Collapse
Affiliation(s)
- Anastasia Diamantopoulou
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA.,Zuckerman Mind Brain Behavior Institute, New York, NY, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA.,Zuckerman Mind Brain Behavior Institute, New York, NY, USA.,Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
43
|
Forsingdal A, Jørgensen TN, Olsen L, Werge T, Didriksen M, Nielsen J. Can Animal Models of Copy Number Variants That Predispose to Schizophrenia Elucidate Underlying Biology? Biol Psychiatry 2019; 85:13-24. [PMID: 30144930 DOI: 10.1016/j.biopsych.2018.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
The diagnosis of schizophrenia rests on clinical criteria that cannot be assessed in animal models. Together with absence of a clear underlying pathology and understanding of what causes schizophrenia, this has hindered development of informative animal models. However, recent large-scale genomic studies have identified copy number variants (CNVs) that confer high risk of schizophrenia and have opened a new avenue for generation of relevant animal models. Eight recurrent CNVs have reproducibly been shown to increase the risk of schizophrenia by severalfold: 22q11.2(del), 15q13.3(del), 1q21(del), 1q21(dup), NRXN1(del), 3q29(del), 7q11.23(dup), and 16p11.2(dup). Five of these CNVs have been modeled in animals, mainly mice, but also rats, flies, and zebrafish, and have been shown to recapitulate behavioral and electrophysiological aspects of schizophrenia. Here, we provide an overview of the schizophrenia-related phenotypes found in animal models of schizophrenia high-risk CNVs. We also discuss strengths and limitations of the CNV models, and how they can advance our biological understanding of mechanisms that can lead to schizophrenia and can be used to develop new and better treatments for schizophrenia.
Collapse
Affiliation(s)
- Annika Forsingdal
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Trine Nygaard Jørgensen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde
| | - Line Olsen
- Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Michael Didriksen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde
| | - Jacob Nielsen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde.
| |
Collapse
|
44
|
Nilsson SRO, Heath CJ, Takillah S, Didienne S, Fejgin K, Nielsen V, Nielsen J, Saksida LM, Mariani J, Faure P, Didriksen M, Robbins TW, Bussey TJ, Mar AC. Continuous performance test impairment in a 22q11.2 microdeletion mouse model: improvement by amphetamine. Transl Psychiatry 2018; 8:247. [PMID: 30429456 PMCID: PMC6235862 DOI: 10.1038/s41398-018-0295-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/21/2018] [Accepted: 10/05/2018] [Indexed: 02/03/2023] Open
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) confers high risk of neurodevelopmental disorders such as schizophrenia and attention-deficit hyperactivity disorder. These disorders are associated with attentional impairment, the remediation of which is important for successful therapeutic intervention. We assessed a 22q11.2DS mouse model (Df(h22q11)/+) on a touchscreen rodent continuous performance test (rCPT) of attention and executive function that is analogous to human CPT procedures. Relative to wild-type littermates, Df(h22q11)/+ male mice showed impaired attentional performance as shown by decreased correct response ratio (hit rate) and a reduced ability to discriminate target stimuli from non-target stimuli (discrimination sensitivity, or d'). The Df(h22q11)/+ model exhibited decreased prefrontal cortical-hippocampal oscillatory synchrony within multiple frequency ranges during quiet wakefulness, which may represent a biomarker of cognitive dysfunction. The stimulant amphetamine (0-1.0 mg/kg, i.p.) dose-dependently improved d' in Df(h22q11)/+ mice whereas the highest dose of modafinil (40 mg/kg, i.p.) exacerbated their d' impairment. This is the first report to directly implicate attentional impairment in a 22q11.2DS mouse model, mirroring a key endophenotype of the human disorder. The capacity of the rCPT to detect performance impairments in the 22q11.2DS mouse model, and improvement following psychostimulant-treatment, highlights the utility and translational potential of the Df(h22q11)/+ model and this automated behavioral procedure.
Collapse
Affiliation(s)
- Simon R. O. Nilsson
- 0000000121885934grid.5335.0Department of Psychology, University of Cambridge, Cambridge, UK ,0000000121885934grid.5335.0MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK ,0000 0001 2109 4251grid.240324.3Neuroscience Institute, New York University Medical Center, New York, NY USA ,0000 0004 1936 8753grid.137628.9Department of Neuroscience and Physiology, School of Medicine, New York University, New York, NY USA
| | - Christopher J. Heath
- 0000000096069301grid.10837.3dSchool of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Samir Takillah
- Fatigue and Vigilance team, Neuroscience and Operational Constraints Department, French Armed Forces Biomedical Research Institute (IRBA), Brétigny-sur-Orge, France ,0000 0001 2188 0914grid.10992.33VIFASOM team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France ,0000 0001 2097 0141grid.121334.6Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, INSERM, U1130, Institut de Biologie Paris Seine (IBPS), UMR 8246 Neuroscience Paris Seine (NPS), Team Neurophysiology and Behavior, Paris, France ,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris Seine (IBPS), UMR 8256 Biological adaptation and ageing (B2A), Team Brain Development, Repair and Ageing, Paris, France ,APHP Hôpital, DHU Fast, Institut de la Longévité, Ivry-Sur-Seine, France
| | - Steve Didienne
- 0000 0001 2097 0141grid.121334.6Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, INSERM, U1130, Institut de Biologie Paris Seine (IBPS), UMR 8246 Neuroscience Paris Seine (NPS), Team Neurophysiology and Behavior, Paris, France
| | - Kim Fejgin
- 0000 0004 0476 7612grid.424580.fH. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Copenhagen, Denmark
| | - Vibeke Nielsen
- 0000 0004 0476 7612grid.424580.fH. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Copenhagen, Denmark
| | - Jacob Nielsen
- 0000 0004 0476 7612grid.424580.fH. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Copenhagen, Denmark
| | - Lisa M. Saksida
- 0000000121885934grid.5335.0Department of Psychology, University of Cambridge, Cambridge, UK ,0000000121885934grid.5335.0MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK ,0000 0004 1936 8884grid.39381.30Molecular Medicine Research Group, Robarts Research Institute & Department of Physiology, Western University, London, ON Canada ,0000 0004 1936 8884grid.39381.30Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON Canada ,0000 0004 1936 8884grid.39381.30The Brain and Mind Institute, Western University, London, ON Canada
| | - Jean Mariani
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris Seine (IBPS), UMR 8256 Biological adaptation and ageing (B2A), Team Brain Development, Repair and Ageing, Paris, France ,APHP Hôpital, DHU Fast, Institut de la Longévité, Ivry-Sur-Seine, France
| | - Philippe Faure
- 0000 0001 2188 0914grid.10992.33VIFASOM team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France
| | - Michael Didriksen
- 0000 0004 0476 7612grid.424580.fH. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Copenhagen, Denmark
| | - Trevor W. Robbins
- 0000000121885934grid.5335.0Department of Psychology, University of Cambridge, Cambridge, UK ,0000000121885934grid.5335.0MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Timothy J. Bussey
- 0000000121885934grid.5335.0Department of Psychology, University of Cambridge, Cambridge, UK ,0000000121885934grid.5335.0MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK ,0000 0004 1936 8884grid.39381.30Molecular Medicine Research Group, Robarts Research Institute & Department of Physiology, Western University, London, ON Canada ,0000 0004 1936 8884grid.39381.30Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON Canada ,0000 0004 1936 8884grid.39381.30The Brain and Mind Institute, Western University, London, ON Canada
| | - Adam C. Mar
- 0000 0001 2109 4251grid.240324.3Neuroscience Institute, New York University Medical Center, New York, NY USA ,0000 0004 1936 8753grid.137628.9Department of Neuroscience and Physiology, School of Medicine, New York University, New York, NY USA
| |
Collapse
|
45
|
Choi SJ, Mukai J, Kvajo M, Xu B, Diamantopoulou A, Pitychoutis PM, Gou B, Gogos JA, Zhang H. A Schizophrenia-Related Deletion Leads to KCNQ2-Dependent Abnormal Dopaminergic Modulation of Prefrontal Cortical Interneuron Activity. Cereb Cortex 2018; 28:2175-2191. [PMID: 28525574 PMCID: PMC6018968 DOI: 10.1093/cercor/bhx123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/25/2017] [Indexed: 02/06/2023] Open
Abstract
Altered prefrontal cortex function is implicated in schizophrenia (SCZ) pathophysiology and could arise from imbalance between excitation and inhibition (E/I) in local circuits. It remains unclear whether and how such imbalances relate to genetic etiologies. We used a mouse model of the SCZ-predisposing 22q11.2 deletion (Df(16)A+/- mice) to evaluate how this genetic lesion affects the excitability of layer V prefrontal pyramidal neurons and its modulation by dopamine (DA). Df(16)A+/- mice have normal balance between E/I at baseline but are unable to maintain it upon dopaminergic challenge. Specifically, in wild-type mice, D1 receptor (D1R) activation enhances excitability of layer V prefrontal pyramidal neurons and D2 receptor (D2R) activation reduces it. Whereas the excitatory effect upon D1R activation is enhanced in Df(16)A+/- mice, the inhibitory effect upon D2R activation is reduced. The latter is partly due to the inability of mutant mice to activate GABAergic parvalbumin (PV)+ interneurons through D2Rs. We further demonstrate that reduced KCNQ2 channel function in PV+ interneurons in Df(16)A+/- mice renders them less capable of inhibiting pyramidal neurons upon D2 modulation. Thus, DA modulation of PV+ interneurons and control of E/I are altered in Df(16)A+/- mice with a higher excitation and lower inhibition during dopaminergic modulation.
Collapse
Affiliation(s)
- Se Joon Choi
- Department of Neurology, Columbia University, New York, NY10032, USA
| | - Jun Mukai
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mirna Kvajo
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Bin Xu
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Pothitos M Pitychoutis
- Department of Biology, Center for Tissue Regeneration and Engineering (TREND), University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Bin Gou
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hui Zhang
- Department of Neurology, Columbia University, New York, NY10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
46
|
Moutin E, Nikonenko I, Stefanelli T, Wirth A, Ponimaskin E, De Roo M, Muller D. Palmitoylation of cdc42 Promotes Spine Stabilization and Rescues Spine Density Deficit in a Mouse Model of 22q11.2 Deletion Syndrome. Cereb Cortex 2018; 27:3618-3629. [PMID: 27365300 DOI: 10.1093/cercor/bhw183] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
22q11.2 deletion syndrome (22q11DS) is associated with learning and cognitive dysfunctions and a high risk of developing schizophrenia. It has become increasingly clear that dendritic spine plasticity is tightly linked to cognition. Thus, understanding how genes involved in cognitive disorders affect synaptic networks is a major challenge of modern biology. Several studies have pointed to a spine density deficit in 22q11DS transgenic mice models. Using the LgDel mouse model, we first quantified spine deficit at different stages using electron microscopy. Next we performed repetitive confocal imaging over several days on hippocampal organotypic cultures of LgDel mice. We show no imbalanced ratio between daily spine formation and spine elimination, but a decreased spine life expectancy. We corrected this impaired spine stabilization process by overexpressing ZDHHC8 palmitoyltransferase, whose gene belongs to the LgDel microdeletion. Overexpression of one of its substrates, the cdc42 brain-specific variant, under a constitutively active form (cdc42-palm-CA) led to the same result. Finally, we could rescue spine density in vivo, in adult LgDel mice, by injecting pups with a vector expressing cdc42-palm-CA. This study reveals a new role of ZDHHC8-cdc42-palm molecular pathway in postsynaptic structural plasticity and provides new evidence in favor of the dysconnectivity hypothesis for schizophrenia.
Collapse
Affiliation(s)
- E Moutin
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| | - I Nikonenko
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| | - T Stefanelli
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| | - A Wirth
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - E Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - M De Roo
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| | - D Muller
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
47
|
Hiroi N. Critical reappraisal of mechanistic links of copy number variants to dimensional constructs of neuropsychiatric disorders in mouse models. Psychiatry Clin Neurosci 2018; 72:301-321. [PMID: 29369447 PMCID: PMC5935536 DOI: 10.1111/pcn.12641] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/27/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022]
Abstract
Copy number variants are deletions and duplications of a few thousand to million base pairs and are associated with extraordinarily high levels of autism spectrum disorder, schizophrenia, intellectual disability, or attention-deficit hyperactivity disorder. The unprecedented levels of robust and reproducible penetrance of copy number variants make them one of the most promising and reliable entry points to delve into the mechanistic bases of many mental disorders. However, the precise mechanistic bases of these associations still remain elusive in humans due to the many genes encoded in each copy number variant and the diverse associated phenotypic features. Genetically engineered mice have provided a technical means to ascertain precise genetic mechanisms of association between copy number variants and dimensional aspects of mental illnesses. Molecular, cellular, and neuronal phenotypes can be detected as potential mechanistic substrates for various behavioral constructs of mental illnesses. However, mouse models come with many technical pitfalls. Genetic background is not well controlled in many mouse models, leading to rather obvious interpretative issues. Dose alterations of many copy number variants and single genes within copy number variants result in some molecular, cellular, and neuronal phenotypes without a behavioral phenotype or with a behavioral phenotype opposite to what is seen in humans. In this review, I discuss technical and interpretative pitfalls of mouse models of copy number variants and highlight well-controlled studies to suggest potential neuronal mechanisms of dimensional aspects of mental illnesses. Mouse models of copy number variants represent toeholds to achieve a better understanding of the mechanistic bases of dimensions of neuropsychiatric disorders and thus for development of mechanism-based therapeutic options in humans.
Collapse
Affiliation(s)
- Noboru Hiroi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, USA.,Department of Neuroscience, Albert Einstein College of Medicine, New York, USA.,Department of Genetics, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
48
|
Sun Z, Williams DJ, Xu B, Gogos JA. Altered function and maturation of primary cortical neurons from a 22q11.2 deletion mouse model of schizophrenia. Transl Psychiatry 2018; 8:85. [PMID: 29666363 PMCID: PMC5904157 DOI: 10.1038/s41398-018-0132-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/19/2017] [Accepted: 02/18/2018] [Indexed: 02/05/2023] Open
Abstract
Given its high penetrance, clearly delineated and evolutionary conserved genomic structure, mouse models of the 22q11.2 deletion provide an ideal organism-based and cell-based model of this well-established disease mutation for schizophrenia. In this study we examined the development of changes in intrinsic properties, action potential firing and synaptic transmission using whole-cell patch-clamp recordings of cultured embryonic cortical neurons from Df(16)A +/- and WT mice at DIV7 and DIV14, respectively. Compared to neurons from the WT littermates, significantly increased input resistance and decreased rising rate of action potential was observed in Df(16)A +/- mice at DIV7 but not at DIV14 indicative of delayed neuronal maturation. Neurons from Df(16)A +/- mice also showed significantly higher cellular excitability at both DIV7 and DIV14. Evaluation of Ca2+ homeostasis perturbation caused by 22q11.2 deletion using calcium imaging revealed a significantly lower amplitude of calcium elevation and a smaller area under the curve after depolarization in neurons from Df(16)A +/- mice at both DIV7 and DIV14. Furthermore, the properties of inhibitory synaptic events were significantly altered in Df(16)A +/- mice. We identified changes in mRNA expression profiles, especially in ion channels, receptors, and transporters that may underlie the neurophysiological effects of this mutation. Overall, we show a number of alterations in electrophysiological and calcium homeostatic properties of embryonic cortical neurons from a 22q11.2 deletion mouse model at different culture times and provide valuable insights towards revealing disease mechanisms and discovery of new therapeutic compounds.
Collapse
Affiliation(s)
- Ziyi Sun
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China. .,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| | - Damian J. Williams
- 0000 0001 2285 2675grid.239585.0Columbia Stem Cell Core Facility, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Bin Xu
- 0000 0001 2285 2675grid.239585.0Department of Psychiatry, Columbia University Medical Center, New York, NY 10032 USA
| | - Joseph A. Gogos
- 0000000419368729grid.21729.3fDepartment of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032 USA ,0000 0001 2285 2675grid.239585.0Department of Neuroscience, Columbia University Medical Center, New York, NY 10032 USA
| |
Collapse
|
49
|
Molinard-Chenu A, Dayer A. The Candidate Schizophrenia Risk Gene DGCR2 Regulates Early Steps of Corticogenesis. Biol Psychiatry 2018; 83:692-706. [PMID: 29305086 DOI: 10.1016/j.biopsych.2017.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alterations in early steps of cortical circuit assembly are thought to play a critical role in vulnerability to schizophrenia (SZ), but the pathogenic impact of SZ-risk mutations on corticogenesis remains to be determined. DiGeorge syndrome critical region 2 (DGCR2) is located in the 22q11.2 locus, whose deletion is a major risk factor for SZ. Moreover, exome sequencing of individuals with idiopathic SZ identified a rare missense mutation in DGCR2, further suggesting that DGCR2 is involved in SZ. METHODS Here we investigated the function of Dgcr2 and the pathogenic impact of the SZ-risk DGCR2 mutation in mouse corticogenesis using in utero electroporation targeted to projection neurons. RESULTS Dgcr2 knockdown impaired radial locomotion and final translocation of projection neurons, leading to persistent laminar positioning alterations. The DGCR2 missense SZ-risk mutation had a pathogenic impact on projection neuron laminar allocation by reducing protein expression. Mechanistically, we identified Dgcr2 as a novel member of the Reelin complex, regulating the phosphorylation of Reelin-dependent substrates and the expression of Reelin-dependent transcriptional targets. CONCLUSIONS Overall, this study provides biological evidence that the SZ-risk gene DGCR2 regulates critical steps of early corticogenesis possibly through a Reelin-dependent mechanism. Additionally, we found that the SZ-risk mutation in DGCR2 has a pathogenic impact on cortical formation by reducing protein expression level, suggesting a functional role for DGCR2 haploinsufficiency in the 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- Aude Molinard-Chenu
- Department of Psychiatry, University of Geneva Medical School, Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, University of Geneva Medical Center, Geneva, Switzerland
| | - Alexandre Dayer
- Department of Psychiatry, University of Geneva Medical School, Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, University of Geneva Medical Center, Geneva, Switzerland.
| |
Collapse
|
50
|
Antidepressant effect of recombinant NT4-NAP/AAV on social isolated mice through intranasal route. Oncotarget 2018; 8:10103-10113. [PMID: 28052034 PMCID: PMC5354645 DOI: 10.18632/oncotarget.14356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/13/2016] [Indexed: 12/26/2022] Open
Abstract
The purpose of the present study was to observe the depression-like behavior induced by social isolation; detect the antidepressant effect of a recombinant adeno-associated virus (AAV) expressing NAP on social isolation mice by intranasal delivery. After construction of NT4-NAP/AAV, expression of NAP was confirmed in vitro. 3-week-old C57/BL mice were bred individually in cages as social isolation-rearing. Six weeks later, the first subset of mice underwent behavioral tests and western blot; the second was for enzyme-linked immunosorbent assay. NT4-NAP/AAV was delivered quaque die by nasal administration for consecutive 10 days before behavioral test. Several depression-like behaviors were observed in social isolation mice, including decreased relative sucrose preference, longer immobility time in forced swimming test, lower plasma corticosterone and decreased brain-derived neurotrophic factor in hippocampus. Thus, social isolation procedure appears to be an animal model of depression with good face and construct validity. What's more, the antidepressant effect in social isolation-rearing mice was observed after intranasal administration of NT4-NAP/AAV, suggesting that this might be a promising therapeutic strategy for depressive disorder.
Collapse
|